Review of Electrothermal Actuators and Applications
This paper presents a review of electrothermal micro-actuators and applications. Electrothermal micro-actuators have been a significant research interest over the last two decades, and many different designs and applications have been investigated. The electrothermal actuation method offers several...
Saved in:
Published in | Actuators Vol. 8; no. 4; p. 69 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a review of electrothermal micro-actuators and applications. Electrothermal micro-actuators have been a significant research interest over the last two decades, and many different designs and applications have been investigated. The electrothermal actuation method offers several advantages when compared with the other types of actuation approaches based on electrostatic and piezoelectric principles. The electrothermal method offers flexibility in the choice of materials, low-cost fabrication, and large displacement capabilities. The three main configurations of electrothermal actuators are discussed: hot-and-cold-arm, chevron, and bimorph types as well as a few other unconventional actuation approaches. Within each type, trends are outlined from the basic concept and design modifications to applications which have been investigated in order to enhance the performance or to overcome the limitations of the previous designs. It provides a grasp of the actuation methodology, design, and fabrication, and the related performance and applications in cell manipulation, micro assembly, and mechanical testing of nanomaterials, Radio Frequency (RF) switches, and optical Micro-Electro-Mechanical Systems (MEMS). |
---|---|
AbstractList | This paper presents a review of electrothermal micro-actuators and applications. Electrothermal micro-actuators have been a significant research interest over the last two decades, and many different designs and applications have been investigated. The electrothermal actuation method offers several advantages when compared with the other types of actuation approaches based on electrostatic and piezoelectric principles. The electrothermal method offers flexibility in the choice of materials, low-cost fabrication, and large displacement capabilities. The three main configurations of electrothermal actuators are discussed: hot-and-cold-arm, chevron, and bimorph types as well as a few other unconventional actuation approaches. Within each type, trends are outlined from the basic concept and design modifications to applications which have been investigated in order to enhance the performance or to overcome the limitations of the previous designs. It provides a grasp of the actuation methodology, design, and fabrication, and the related performance and applications in cell manipulation, micro assembly, and mechanical testing of nanomaterials, Radio Frequency (RF) switches, and optical Micro-Electro-Mechanical Systems (MEMS). |
Author | Wang, Changhai Potekhina, Alissa |
Author_xml | – sequence: 1 givenname: Alissa surname: Potekhina fullname: Potekhina, Alissa – sequence: 2 givenname: Changhai surname: Wang fullname: Wang, Changhai |
BookMark | eNptkE9LAzEQxYNUsNZe_AQL3oTVySbZbI6lVC0UBNFzmOaPbtluajZV_PZuW0UR5zLD8N6PN3NKBm1oHSHnFK4YU3CNJlXAAUp1RIYFyDKHqhCDX_MJGXfdCvpSlFXAhoQ9uLfavWfBZ7PGmRRDenFxjU02MWmLKcQuw9Zmk82mqQ2mOrTdGTn22HRu_NVH5Olm9ji9yxf3t_PpZJEbXsiUcyE8dxwqQ33pVVFxhFIulVwKKrmiQO1SCamcRbAWLWdKlNaDochFCZKNyPzAtQFXehPrNcYPHbDW-0WIzxpjqk3jNIgeVAKzxhfcSYmGWYrWl8jU0kjoWRcH1iaG163rkl6FbWz7-LoQfOcu1E4FB5WJoeui89rUaX90ilg3moLefVr_fLq3XP6xfAf9R_wJbD1-cw |
CitedBy_id | crossref_primary_10_1007_s00542_022_05404_7 crossref_primary_10_1007_s00542_022_05300_0 crossref_primary_10_1557_s43577_022_00474_4 crossref_primary_10_15625_0866_7136_20980 crossref_primary_10_1002_admt_202101732 crossref_primary_10_1002_jnm_2843 crossref_primary_10_1007_s00542_022_05369_7 crossref_primary_10_1038_s41928_022_00791_1 crossref_primary_10_1038_s41378_020_00232_z crossref_primary_10_3390_mi13091391 crossref_primary_10_1109_JMEMS_2021_3079362 crossref_primary_10_1002_admt_202200041 crossref_primary_10_1007_s11431_023_2581_9 crossref_primary_10_1016_j_jsv_2024_118826 crossref_primary_10_1016_j_sna_2024_115230 crossref_primary_10_1002_aisy_202400872 crossref_primary_10_1002_aisy_202300780 crossref_primary_10_1109_JSEN_2024_3356562 crossref_primary_10_1108_MI_05_2022_0076 crossref_primary_10_3390_mi14061264 crossref_primary_10_1016_j_matpr_2022_12_164 crossref_primary_10_3390_micro2010003 crossref_primary_10_1007_s12213_023_00159_4 crossref_primary_10_1007_s42341_021_00345_w crossref_primary_10_1109_JMEMS_2021_3120109 crossref_primary_10_1109_TED_2023_3255159 crossref_primary_10_1007_s10665_024_10359_x crossref_primary_10_3390_mi13010008 crossref_primary_10_1088_2631_8695_ad7f27 crossref_primary_10_3390_app131810140 crossref_primary_10_3390_app10196865 crossref_primary_10_1016_j_sna_2024_115481 crossref_primary_10_1109_JSEN_2021_3076302 crossref_primary_10_3390_s24113328 crossref_primary_10_3390_mi13101756 crossref_primary_10_1016_j_sna_2022_113984 crossref_primary_10_3390_mi14040797 crossref_primary_10_1002_admt_202401254 crossref_primary_10_1109_LRA_2023_3274428 crossref_primary_10_1109_JMEMS_2024_3371829 crossref_primary_10_3390_s21124088 crossref_primary_10_1039_D4TC00911H crossref_primary_10_1089_rorep_2023_0023 crossref_primary_10_3390_mi13071088 crossref_primary_10_1080_15376494_2024_2317428 crossref_primary_10_1109_JLT_2023_3292341 crossref_primary_10_3390_photonics8010006 crossref_primary_10_1002_admt_202000093 crossref_primary_10_1016_j_euromechsol_2023_105029 crossref_primary_10_1016_j_measen_2021_100179 crossref_primary_10_1177_10567895211033972 crossref_primary_10_1109_JSEN_2024_3447278 crossref_primary_10_1002_adfm_202003741 crossref_primary_10_1002_aisy_202100075 crossref_primary_10_21595_rsa_2021_22071 crossref_primary_10_3390_mi15121491 crossref_primary_10_1186_s40486_020_00122_z crossref_primary_10_1016_j_precisioneng_2024_04_008 crossref_primary_10_1002_adhm_202302969 crossref_primary_10_1016_j_sna_2025_116268 crossref_primary_10_1016_j_sna_2024_116146 crossref_primary_10_1016_j_vacuum_2024_113409 crossref_primary_10_1016_j_sna_2024_115867 crossref_primary_10_1109_LRA_2021_3100939 crossref_primary_10_1016_j_nanoen_2021_106280 crossref_primary_10_1038_s41598_021_99500_9 crossref_primary_10_1080_15599612_2024_2350749 crossref_primary_10_1140_epjp_s13360_020_00992_7 crossref_primary_10_3390_mi11070704 crossref_primary_10_3389_fphy_2021_633970 crossref_primary_10_1016_j_polymertesting_2023_108131 crossref_primary_10_1007_s00542_020_05086_z crossref_primary_10_1088_1361_6528_ac2190 crossref_primary_10_3390_s24113626 crossref_primary_10_1109_JMEMS_2020_3033477 crossref_primary_10_1364_OPTICA_446407 crossref_primary_10_1088_1361_6439_ac1eed crossref_primary_10_1126_sciadv_adj1984 |
Cites_doi | 10.5772/56786 10.1117/12.284528 10.1021/nl103618e 10.1016/S0026-2692(00)00061-6 10.1016/0924-4247(96)80164-6 10.1016/S0924-4247(03)00065-7 10.1109/ICMA.2015.7237626 10.1109/CRC.2017.9 10.1016/j.sna.2015.09.028 10.1109/MARSS.2016.7561700 10.1088/0960-1317/18/2/025001 10.1007/s00542-015-2789-8 10.1007/978-3-642-11598-1_24 10.1088/0960-1317/16/2/008 10.1109/JMEMS.2005.845445 10.1109/LED.2013.2269993 10.1088/1464-4258/8/7/S10 10.1109/SOI.2009.5318786 10.1007/s00542-015-2561-0 10.1109/84.925774 10.1016/j.mee.2006.01.072 10.1016/j.sna.2007.10.068 10.1109/IROS.2005.1545137 10.1007/s00542-008-0580-9 10.1088/0960-1317/10/2/326 10.1109/JMEMS.2007.911373 10.1116/1.1468654 10.1109/TMECH.2004.828652 10.1007/s00542-014-2404-4 10.1109/TCST.2013.2284923 10.1016/j.mee.2008.01.049 10.1016/j.mee.2016.01.005 10.1109/JMEMS.2007.908754 10.1109/DTIP.2008.4752980 10.1016/j.optcom.2004.04.014 10.1016/j.sna.2006.03.004 10.1007/s12213-017-0098-2 10.1088/0960-1317/18/5/055013 10.3390/mi3030542 10.1088/0960-1317/7/1/003 10.1016/j.mee.2007.01.153 10.1088/0960-1317/14/7/018 10.1116/1.1805544 10.3390/mi8070203 10.1109/ICIEA.2013.6566623 10.1016/j.sna.2005.02.037 10.1016/S0924-4247(99)00200-9 10.1088/0960-1317/13/2/316 10.2174/2212797611306020005 10.1109/TRANSDUCERS.2015.7181072 10.1109/JMEMS.2012.2185820 10.1088/1742-6596/757/1/012015 10.5194/jsss-8-37-2019 10.1088/0957-0233/23/2/022001 10.1109/Transducers.2013.6627086 10.1088/0960-1317/14/12/006 10.1109/ICSENS.2011.6127276 10.1016/j.rcim.2006.05.010 10.1080/00207540512331311813 10.1016/0924-4247(94)00976-O 10.1016/j.sna.2012.03.021 10.1007/s11431-010-0097-1 10.1016/j.mee.2007.12.080 10.1364/JOSA.11.000233 10.5772/57571 10.1109/MEMSYS.2008.4443589 10.1007/s00542-017-3298-8 10.1109/JMEMS.2005.845449 10.1016/j.sna.2009.04.027 10.3390/mi9110577 10.1002/mame.201700239 10.1109/DTIP.2018.8394201 10.1109/LMWC.2009.2020025 10.1364/OE.23.009555 10.1016/j.mee.2014.01.007 10.1007/s00542-013-1888-7 10.1016/j.scient.2012.10.020 10.1109/JMEMS.2005.856676 10.1007/s12213-010-0029-y 10.1109/INMIC.2011.6151473 10.1088/0960-1317/12/3/315 10.1109/JMEMS.2010.2052093 10.1088/0960-1317/9/1/308 10.3390/act7010005 10.12989/arr.2014.1.1.001 10.1088/0960-1317/21/12/125026 10.1088/0960-1317/21/5/054030 10.1088/0960-1317/11/4/303 10.1016/S0924-4247(98)00211-8 10.1007/s00542-013-2065-8 10.1016/S0924-4247(00)00563-X 10.1016/j.mee.2007.01.177 10.1109/JMEMS.2008.2007268 10.1109/ICSENS.2010.5690374 10.1088/1742-6596/922/1/012006 10.1109/JMEMS.2009.2023838 10.1088/0960-1317/15/6/018 10.1109/JSTQE.2004.829194 10.1007/s00542-014-2084-0 10.1016/S0924-4247(02)00315-1 10.1016/j.mechatronics.2016.05.011 10.1088/0960-1317/13/2/321 10.1088/0960-1317/20/8/085014 10.1088/0960-1317/15/8/005 10.3182/20060912-3-DE-2911.00024 10.1116/1.3520645 10.1088/0960-1317/16/8/014 10.1088/0960-1317/15/6/022 10.1109/84.925771 10.1007/s00170-015-7698-6 10.1088/0960-1317/3/1/002 10.1007/s00542-012-1567-0 10.1109/JMEMS.2008.924275 10.1115/1.4036351 10.1116/1.1614252 10.1109/SMICND.2017.8101169 10.1177/1729881416663375 10.1088/0960-1317/11/5/303 10.1115/1.4036352 10.1115/1.2345371 10.1007/s00542-010-1110-0 |
ContentType | Journal Article |
Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/act8040069 |
DatabaseName | CrossRef ProQuest Central (Corporate) Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computing Database ProQuest Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2076-0825 |
ExternalDocumentID | oai_doaj_org_article_05579603dcf24e77ac3d1adf6a39bc70 10_3390_act8040069 |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ABUWG ACIWK ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO K6V K7- KQ8 L6V M7S MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS 3V. 7SP 7TB 7XB 8AL 8FD 8FK FR3 JQ2 L7M M0N PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c427t-455f4e408c1f6f9284a067b97b51749101db9579eda0ddad43956df0c1a456073 |
IEDL.DBID | BENPR |
ISSN | 2076-0825 |
IngestDate | Wed Aug 27 01:33:10 EDT 2025 Fri Jul 25 12:12:21 EDT 2025 Thu Apr 24 22:54:32 EDT 2025 Tue Jul 01 02:08:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-455f4e408c1f6f9284a067b97b51749101db9579eda0ddad43956df0c1a456073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2545579290?pq-origsite=%requestingapplication% |
PQID | 2545579290 |
PQPubID | 2032444 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_05579603dcf24e77ac3d1adf6a39bc70 proquest_journals_2545579290 crossref_citationtrail_10_3390_act8040069 crossref_primary_10_3390_act8040069 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Actuators |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Jia (ref_121) 2009; 18 ref_93 ref_136 ref_92 Sang (ref_105) 2017; 302 ref_138 ref_90 Funk (ref_101) 1995; 47 Guan (ref_91) 2010; 20 Luo (ref_130) 2004; 1 ref_13 Enikov (ref_67) 2005; 14 ref_98 Huang (ref_20) 1999; 9 ref_132 Wang (ref_66) 2015; 21 Zhu (ref_104) 2011; 11 ref_134 ref_17 Voicu (ref_88) 2016; 757 ref_15 Pan (ref_22) 1997; 7 Kopka (ref_62) 2000; 10 Sardan (ref_61) 2008; 85 Hickey (ref_16) 2002; 20 Kwan (ref_68) 2012; 21 Gilgunn (ref_108) 2008; 17 Syms (ref_137) 2004; 14 Chu (ref_76) 2011; 21 Demaghsi (ref_75) 2014; 20 Nordquist (ref_83) 2009; 19 ref_122 Chen (ref_21) 2002; 12 Dow (ref_40) 2011; 21 Liew (ref_103) 2000; 31 Solano (ref_35) 2007; 84 Duc (ref_129) 2008; 17 Mankame (ref_25) 2001; 11 ref_27 Singh (ref_123) 2007; 18 Shen (ref_87) 2013; 10 Setiono (ref_9) 2019; 8 Verotti (ref_14) 2017; 139 Dellaert (ref_37) 2016; 40 Voicu (ref_128) 2017; 922 Yan (ref_28) 2003; 13 Zhou (ref_115) 2004; 9 ref_72 Mastropaolo (ref_10) 2014; 119 Singh (ref_118) 2005; 123 Chu (ref_100) 1993; 3 Ai (ref_12) 2014; 1 Iamoni (ref_49) 2014; 20 ref_74 ref_73 Fu (ref_124) 2010; 53 Enikov (ref_18) 2003; 105 Yang (ref_1) 2017; 13 Liu (ref_116) 2012; 188 Timoshenko (ref_99) 1925; 11 Angelov (ref_126) 2016; 154 Mackay (ref_131) 2011; 6 Zhang (ref_81) 2013; 19 Wei (ref_51) 2015; 234 ref_85 ref_84 Varona (ref_97) 2009; 153 Luo (ref_69) 2005; 15 Wu (ref_119) 2008; 145 Cecil (ref_32) 2007; 23 Hansen (ref_60) 2005; 15 Khazaai (ref_45) 2010; 2 Zeman (ref_135) 2006; 16 Sehr (ref_107) 2001; 11 Chen (ref_64) 2003; 103 Beardslee (ref_8) 2010; 19 Zhu (ref_80) 2006; 16 Pedrak (ref_125) 2003; 21 ref_53 ref_52 Ivanova (ref_39) 2006; 83 Voicu (ref_44) 2009; 12 Todd (ref_102) 2008; 17 Chu (ref_70) 2003; 13 Cecil (ref_33) 2016; 83 Andersen (ref_71) 2008; 85 Dochshanov (ref_3) 2017; 139 Que (ref_86) 2001; 10 Jia (ref_11) 2013; 6 ref_65 Hubbard (ref_29) 2006; 59 ref_63 Shivhare (ref_78) 2016; 22 Chiou (ref_56) 2004; 237 Qiu (ref_26) 2005; 14 Moulton (ref_23) 2001; 90 Petersen (ref_57) 2006; 39 Todd (ref_120) 2006; 8 Kim (ref_82) 2008; 18 Wang (ref_127) 2004; 22 Park (ref_89) 2001; 10 Jain (ref_117) 2004; 10 Nguyen (ref_59) 2004; 14 Morrison (ref_112) 2015; 23 ref_34 Voicu (ref_77) 2016; 19 Greitmann (ref_5) 1996; 53 Li (ref_7) 2011; 23 Colinjivadi (ref_79) 2008; 14 Duc (ref_133) 2008; 17 Hoffmann (ref_24) 1999; 78 Ivanova (ref_113) 2008; 26 Rawashdeh (ref_95) 2012; 3 ref_38 Luo (ref_114) 2006; 132 Pustan (ref_96) 2017; 23 Iamoni (ref_36) 2017; 24 Zhu (ref_58) 2013; 34 Butler (ref_19) 1999; 72 ref_106 Deutschinger (ref_41) 2010; 16 Pirmoradi (ref_55) 2015; 21 ref_109 ref_47 Wu (ref_30) 2018; 7 ref_46 Zheng (ref_110) 2011; 29 Nikoobin (ref_54) 2012; 19 ref_43 Luo (ref_111) 2005; 15 ref_2 Wang (ref_48) 2018; 24 Boudaoud (ref_50) 2014; 11 Rakotondrabe (ref_94) 2014; 22 Cecil (ref_31) 2005; 43 Volland (ref_42) 2007; 84 Chronis (ref_4) 2005; 14 ref_6 |
References_xml | – volume: 10 start-page: 379 year: 2013 ident: ref_87 article-title: Mechanical performance of a cascaded V-shaped electrothermal actuator publication-title: Int. J. Adv. Robot. Syst. doi: 10.5772/56786 – ident: ref_27 doi: 10.1117/12.284528 – volume: 11 start-page: 977 year: 2011 ident: ref_104 article-title: Graphene-based bimorph microactuators publication-title: Nano Lett. doi: 10.1021/nl103618e – volume: 31 start-page: 791 year: 2000 ident: ref_103 article-title: Modeling of thermal actuation in a bulk-micromachined CMOS micromirror publication-title: Microelectron. J. doi: 10.1016/S0026-2692(00)00061-6 – volume: 53 start-page: 410 year: 1996 ident: ref_5 article-title: Tactile microgripper for automated handling of microparts publication-title: Sens. Actuators A Phys. doi: 10.1016/0924-4247(96)80164-6 – volume: 105 start-page: 76 year: 2003 ident: ref_18 article-title: PCB-integrated metallic thermal micro-actuators publication-title: Sens. Actuators A Phys. doi: 10.1016/S0924-4247(03)00065-7 – ident: ref_92 doi: 10.1109/ICMA.2015.7237626 – ident: ref_53 doi: 10.1109/CRC.2017.9 – volume: 234 start-page: 359 year: 2015 ident: ref_51 article-title: An overview of micro-force sensing techniques publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2015.09.028 – ident: ref_63 doi: 10.1109/MARSS.2016.7561700 – volume: 18 start-page: 25001 year: 2007 ident: ref_123 article-title: A two axes scanning SOI MEMS micromirror for endoscopic bioimaging publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/18/2/025001 – volume: 19 start-page: 269 year: 2016 ident: ref_77 article-title: SU-8 microgrippers based on V-shaped electrothermal actuators with implanted heaters publication-title: Rom. J. Inf. Sci. Technol. – volume: 23 start-page: 3863 year: 2017 ident: ref_96 article-title: Reliability design of thermally actuated MEMS switches based on V—Shape beams publication-title: Microsyst. Technol. doi: 10.1007/s00542-015-2789-8 – ident: ref_132 – ident: ref_73 doi: 10.1007/978-3-642-11598-1_24 – volume: 16 start-page: 242 year: 2006 ident: ref_80 article-title: A thermal actuator for nanoscale in situ microscopy testing: Design and characterization publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/16/2/008 – volume: 14 start-page: 857 year: 2005 ident: ref_4 article-title: Electrothermally activated SU-8 microgripper for single cell manipulation in solution publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2005.845445 – volume: 34 start-page: 1062 year: 2013 ident: ref_58 article-title: A novel three-state RF MEMS switch for ultrabroadband (DC-40 GHz) applications publication-title: IEEE Electron. Device Lett. doi: 10.1109/LED.2013.2269993 – volume: 8 start-page: S352 year: 2006 ident: ref_120 article-title: A multi-degree-of-freedom micromirror utilizing inverted-series-connected bimorph actuators publication-title: J. Opt. A Pure Appl. Opt. doi: 10.1088/1464-4258/8/7/S10 – ident: ref_6 doi: 10.1109/SOI.2009.5318786 – volume: 22 start-page: 2623 year: 2016 ident: ref_78 article-title: Design enhancement of a chevron electrothermally actuated microgripper for improved gripping performance publication-title: Microsyst. Technol. doi: 10.1007/s00542-015-2561-0 – volume: 10 start-page: 255 year: 2001 ident: ref_89 article-title: Bent-beam electrothermal actuators-Part II: Linear and rotary microengines publication-title: J. Microelectromech. Syst. doi: 10.1109/84.925774 – volume: 83 start-page: 1393 year: 2006 ident: ref_39 article-title: Thermally driven microgripper as a tool for micro assembly publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2006.01.072 – volume: 145 start-page: 371 year: 2008 ident: ref_119 article-title: A large vertical displacement electrothermal bimorph microactuator with very small lateral shift publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2007.10.068 – ident: ref_136 doi: 10.1109/IROS.2005.1545137 – volume: 14 start-page: 1627 year: 2008 ident: ref_79 article-title: Viable cell handling with high aspect ratio polymer chopstick gripper mounted on a nano precision manipulator publication-title: Microsyst. Technol. doi: 10.1007/s00542-008-0580-9 – volume: 10 start-page: 260 year: 2000 ident: ref_62 article-title: Coupled U-shaped cantilever actuators for 1 × 4 and 2 × 2 optical fibre switches publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/10/2/326 – volume: 17 start-page: 103 year: 2008 ident: ref_108 article-title: CMOS–MEMS lateral electrothermal actuators publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2007.911373 – volume: 20 start-page: 971 year: 2002 ident: ref_16 article-title: Heat transfer analysis and optimization of two-beam microelectromechanical thermal actuators publication-title: J. Vac. Sci. Technol. A Vac. Surf. Film. doi: 10.1116/1.1468654 – volume: 9 start-page: 334 year: 2004 ident: ref_115 article-title: Polymer MEMS actuators for underwater micromanipulation publication-title: IEEE ASME Trans. Mechatron. doi: 10.1109/TMECH.2004.828652 – volume: 21 start-page: 2307 year: 2015 ident: ref_66 article-title: Design, modeling, and characterization of a MEMS electrothermal microgripper publication-title: Microsyst. Technol. doi: 10.1007/s00542-014-2404-4 – volume: 22 start-page: 1486 year: 2014 ident: ref_94 article-title: Control of a novel 2-DoF MEMS nanopositioner with electrothermal actuation and sensing publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2013.2284923 – volume: 85 start-page: 1096 year: 2008 ident: ref_61 article-title: Topology optimized electrothermal polysilicon microgrippers publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2008.01.049 – volume: 154 start-page: 1 year: 2016 ident: ref_126 article-title: Thermo-mechanical transduction suitable for high-speed scanning probe imaging and lithography publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2016.01.005 – ident: ref_13 – volume: 17 start-page: 213 year: 2008 ident: ref_102 article-title: An Electrothermomechanical lumped element model of an electrothermal bimorph actuator publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2007.908754 – ident: ref_43 doi: 10.1109/DTIP.2008.4752980 – volume: 237 start-page: 341 year: 2004 ident: ref_56 article-title: Variable optical attenuator using a thermal actuator array with dual shutters publication-title: Opt. Commun. doi: 10.1016/j.optcom.2004.04.014 – volume: 132 start-page: 346 year: 2006 ident: ref_114 article-title: Modelling and fabrication of low operation temperature microcages with a polymer/metal/DLC trilayer structure publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2006.03.004 – volume: 13 start-page: 1 year: 2017 ident: ref_1 article-title: A review on actuation and sensing techniques for MEMS-based microgrippers publication-title: J. Micro-Bio Robot. doi: 10.1007/s12213-017-0098-2 – volume: 18 start-page: 55013 year: 2008 ident: ref_82 article-title: Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/18/5/055013 – volume: 12 start-page: 402 year: 2009 ident: ref_44 article-title: Design study for an electro-thermally actuator for micromanipulation publication-title: Rom. J. Inf. Sci. Technol. – volume: 3 start-page: 542 year: 2012 ident: ref_95 article-title: Characterization of kink actuators as compared to traditional Chevron shaped bent-beam electrothermal actuators publication-title: Micromachines doi: 10.3390/mi3030542 – volume: 7 start-page: 7 year: 1997 ident: ref_22 article-title: An electro-thermally and laterally driven polysilicon microactuator publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/7/1/003 – volume: 84 start-page: 1219 year: 2007 ident: ref_35 article-title: Design and testing of a polymeric microgripper for cell manipulation publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2007.01.153 – ident: ref_47 – volume: 14 start-page: 969 year: 2004 ident: ref_59 article-title: A polymeric microgripper with integrated thermal actuators publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/14/7/018 – volume: 22 start-page: 2563 year: 2004 ident: ref_127 article-title: Thermally actuated probe array for parallel dip-pen nanolithography publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.1805544 – ident: ref_65 doi: 10.3390/mi8070203 – ident: ref_84 doi: 10.1109/ICIEA.2013.6566623 – volume: 123 start-page: 468 year: 2005 ident: ref_118 article-title: 3D free space thermally actuated micromirror device publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2005.02.037 – volume: 78 start-page: 28 year: 1999 ident: ref_24 article-title: Bistable micromechanical fiber-optic switches on silicon with thermal actuators publication-title: Sens. Actuators A Phys. doi: 10.1016/S0924-4247(99)00200-9 – volume: 13 start-page: 279 year: 2003 ident: ref_70 article-title: A micromachined 2D positioner with electrothermal actuation and sub-nanometer capacitive sensing publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/13/2/316 – ident: ref_106 – volume: 6 start-page: 132 year: 2013 ident: ref_11 article-title: MEMS microgripper actuators and sensors: The state-of-the-art survey publication-title: Recent Pat. Mech. Eng. doi: 10.2174/2212797611306020005 – ident: ref_122 doi: 10.1109/TRANSDUCERS.2015.7181072 – volume: 21 start-page: 586 year: 2012 ident: ref_68 article-title: Improved designs for an electrothermal in-plane microactuator publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2012.2185820 – volume: 757 start-page: 12015 year: 2016 ident: ref_88 article-title: Design, numerical simulation and experimental investigation of an SU-8 microgripper based on the cascaded V-shaped electrothermal actuators publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/757/1/012015 – volume: 8 start-page: 37 year: 2019 ident: ref_9 article-title: Phase optimization of thermally actuated piezoresistive resonant MEMS cantilever sensors publication-title: J. Sens. Sens. Syst. doi: 10.5194/jsss-8-37-2019 – volume: 23 start-page: 22001 year: 2011 ident: ref_7 article-title: Integrated microcantilevers for high-resolution sensing and probing publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/23/2/022001 – ident: ref_109 doi: 10.1109/Transducers.2013.6627086 – volume: 14 start-page: 1633 year: 2004 ident: ref_137 article-title: Scalable electrothermal MEMS actuator for optical fibre alignment publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/14/12/006 – ident: ref_46 doi: 10.1109/ICSENS.2011.6127276 – volume: 24 start-page: 1053 year: 2017 ident: ref_36 article-title: Design and experimental testing of an electro-thermal microgripper for cell manipulation publication-title: Microsyst. Technol. – volume: 23 start-page: 580 year: 2007 ident: ref_32 article-title: Assembly and manipulation of micro devices—A state of the art survey publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2006.05.010 – volume: 43 start-page: 819 year: 2005 ident: ref_31 article-title: A review of gripping and manipulation techniques for micro-assembly applications publication-title: Int. J. Prod. Res. doi: 10.1080/00207540512331311813 – volume: 47 start-page: 572 year: 1995 ident: ref_101 article-title: Thermally actuated CMOS micromirrors publication-title: Sens. Actuators A Phys. doi: 10.1016/0924-4247(94)00976-O – volume: 188 start-page: 349 year: 2012 ident: ref_116 article-title: MEMS mirrors based on a curved concentric electrothermal actuator publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2012.03.021 – volume: 53 start-page: 1184 year: 2010 ident: ref_124 article-title: Study on electrothermally actuated cantilever array for nanolithography publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-010-0097-1 – volume: 85 start-page: 1128 year: 2008 ident: ref_71 article-title: Electrothermal microgrippers for pick-and-place operations publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2007.12.080 – volume: 11 start-page: 233 year: 1925 ident: ref_99 article-title: Analysis of Bi-metal thermostats publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.11.000233 – volume: 11 start-page: 45 year: 2014 ident: ref_50 article-title: An overview on gripping force measurement at the micro and nano-scales using two-fingered microrobotic systems publication-title: Int. J. Adv. Robot. Syst. doi: 10.5772/57571 – ident: ref_134 doi: 10.1109/MEMSYS.2008.4443589 – volume: 24 start-page: 379 year: 2018 ident: ref_48 article-title: Measurement and characterisation of displacement and temperature of polymer based electrothermal microgrippers publication-title: Microsyst. Technol. doi: 10.1007/s00542-017-3298-8 – volume: 14 start-page: 788 year: 2005 ident: ref_67 article-title: Analytical model for analysis and design of V-shaped thermal microactuators publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2005.845449 – volume: 153 start-page: 127 year: 2009 ident: ref_97 article-title: Design of MEMS vertical–horizontal chevron thermal actuators publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2009.04.027 – ident: ref_85 doi: 10.3390/mi9110577 – volume: 302 start-page: 1700239 year: 2017 ident: ref_105 article-title: Electrothermal actuator on graphene bilayer film publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201700239 – ident: ref_98 doi: 10.1109/DTIP.2018.8394201 – volume: 19 start-page: 380 year: 2009 ident: ref_83 article-title: Poly-silicon based latching RF MEMS switch publication-title: IEEE Microw. Wirel. Compon. Lett. doi: 10.1109/LMWC.2009.2020025 – volume: 23 start-page: 9555 year: 2015 ident: ref_112 article-title: Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability publication-title: Opt. Express doi: 10.1364/OE.23.009555 – volume: 119 start-page: 24 year: 2014 ident: ref_10 article-title: Piezoelectric sensing of electrothermally actuated silicon carbide MEMS resonators publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2014.01.007 – volume: 20 start-page: 65 year: 2014 ident: ref_75 article-title: Design and simulation of a novel metallic microgripper using vibration to release nano objects actively publication-title: Microsyst. Technol. doi: 10.1007/s00542-013-1888-7 – volume: 19 start-page: 1554 year: 2012 ident: ref_54 article-title: Deriving and analyzing the effective parameters in microgrippers performance publication-title: Sci. Iran. doi: 10.1016/j.scient.2012.10.020 – volume: 14 start-page: 1099 year: 2005 ident: ref_26 article-title: A bulk-micromachined bistable relay with U-shaped thermal actuators publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2005.856676 – volume: 1 start-page: 355 year: 2004 ident: ref_130 article-title: Modelling of Microspring Thermal Actuator publication-title: NSTI-Nanotech – volume: 6 start-page: 13 year: 2011 ident: ref_131 article-title: Design optimisation and fabrication of SU-8 based electro-thermal micro-grippers publication-title: J. Micro Nano Mechatron. doi: 10.1007/s12213-010-0029-y – ident: ref_90 – ident: ref_72 doi: 10.1109/INMIC.2011.6151473 – volume: 12 start-page: 291 year: 2002 ident: ref_21 article-title: Analysis of the optimal dimension on the electrothermal microactuator publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/12/3/315 – volume: 19 start-page: 1015 year: 2010 ident: ref_8 article-title: Thermal excitation and piezoresistive detection of cantilever in-plane resonance modes for sensing applications publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2010.2052093 – volume: 9 start-page: 64 year: 1999 ident: ref_20 article-title: Analysis and design of polysilicon thermal flexure actuator publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/9/1/308 – volume: 7 start-page: 5 year: 2018 ident: ref_30 article-title: Survey on recent designs of compliant micro-/nano-positioning stages publication-title: Actuators doi: 10.3390/act7010005 – volume: 1 start-page: 1 year: 2014 ident: ref_12 article-title: Overview of flexure-based compliant microgrippers publication-title: Adv. Robot. Res. doi: 10.12989/arr.2014.1.1.001 – volume: 21 start-page: 125026 year: 2011 ident: ref_40 article-title: Development and modeling of an electrothermally MEMS microactuator with an integrated microgripper publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/21/12/125026 – volume: 21 start-page: 54030 year: 2011 ident: ref_76 article-title: A novel SU-8 electrothermal microgripper based on the type synthesis of the kinematic chain method and the stiffness matrix method publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/21/5/054030 – volume: 11 start-page: 306 year: 2001 ident: ref_107 article-title: Fabrication and test of thermal vertical bimorph actuators for movement in the wafer plane publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/11/4/303 – ident: ref_52 – volume: 72 start-page: 88 year: 1999 ident: ref_19 article-title: Average power control and positioning of polysilicon thermal actuators publication-title: Sens. Actuators A Phys. doi: 10.1016/S0924-4247(98)00211-8 – volume: 20 start-page: 869 year: 2014 ident: ref_49 article-title: Design of an electro-thermally actuated cell microgripper publication-title: Microsyst. Technol. doi: 10.1007/s00542-013-2065-8 – volume: 90 start-page: 38 year: 2001 ident: ref_23 article-title: Micromechanical devices with embedded electro-thermal-compliant actuation publication-title: Sens. Actuators A Phys. doi: 10.1016/S0924-4247(00)00563-X – volume: 84 start-page: 1329 year: 2007 ident: ref_42 article-title: Duo-action electro thermal micro gripper publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2007.01.177 – volume: 17 start-page: 1546 year: 2008 ident: ref_129 article-title: Electrothermal microgripper with large jaw displacement and integrated force sensors publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2008.2007268 – ident: ref_138 doi: 10.1109/ICSENS.2010.5690374 – ident: ref_38 – ident: ref_17 – volume: 922 start-page: 12006 year: 2017 ident: ref_128 article-title: Nonlinear numerical analysis and experimental testing for an electrothermal SU-8 microgripper with reduced out-of-plane displacement publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/922/1/012006 – volume: 18 start-page: 1004 year: 2009 ident: ref_121 article-title: An electrothermal tip–tilt–piston micromirror based on folded dual S-shaped bimorphs publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2009.2023838 – volume: 15 start-page: 1265 year: 2005 ident: ref_60 article-title: Electro-thermally actuated microgrippers with integrated force-feedback publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/15/6/018 – volume: 10 start-page: 636 year: 2004 ident: ref_117 article-title: A two-axis electrothermal micromirror for endoscopic optical coherence tomography publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2004.829194 – volume: 21 start-page: 465 year: 2015 ident: ref_55 article-title: Design and simulation of a novel electro-thermally actuated lateral RF MEMS latching switch for low power applications publication-title: Microsyst. Technol. doi: 10.1007/s00542-014-2084-0 – ident: ref_34 – volume: 103 start-page: 48 year: 2003 ident: ref_64 article-title: A reliable single-layer out-of-plane micromachined thermal actuator publication-title: Sens. Actuators A Phys. doi: 10.1016/S0924-4247(02)00315-1 – volume: 40 start-page: 287 year: 2016 ident: ref_37 article-title: A thermally-actuated latching MEMS switch matrix and driver chip for an automated distribution frame publication-title: Mechatronics doi: 10.1016/j.mechatronics.2016.05.011 – volume: 13 start-page: 312 year: 2003 ident: ref_28 article-title: Modeling of two-hot-arm horizontal thermal actuator publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/13/2/321 – volume: 20 start-page: 85014 year: 2010 ident: ref_91 article-title: An electrothermal microactuator with Z-shaped beams publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/20/8/085014 – volume: 15 start-page: 1406 year: 2005 ident: ref_111 article-title: Fabrication and characterization of diamond-like carbon/Ni bimorph normally closed microcages publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/15/8/005 – volume: 39 start-page: 120 year: 2006 ident: ref_57 article-title: Microfabricated tools for pick-and-place of nanoscale components publication-title: IFAC Proc. Vol. doi: 10.3182/20060912-3-DE-2911.00024 – volume: 29 start-page: 11007 year: 2011 ident: ref_110 article-title: Design and fabrication of a novel microgripper with four-point contact fingers Design and fabrication of a novel microgripper with four-point publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.3520645 – volume: 16 start-page: 1540 year: 2006 ident: ref_135 article-title: Design, kinematic modeling and performance testing of an electro-thermally driven microgripper for micromanipulation applications publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/16/8/014 – volume: 15 start-page: 1294 year: 2005 ident: ref_69 article-title: Comparison of microtweezers based on three lateral thermal actuator configurations publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/15/6/022 – volume: 10 start-page: 247 year: 2001 ident: ref_86 article-title: Bent-beam electrothermal actuators-Part I: Single beam and cascaded devices publication-title: J. Microelectromech. Syst. doi: 10.1109/84.925771 – volume: 83 start-page: 1569 year: 2016 ident: ref_33 article-title: A review of micro-devices assembly techniques and technology publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-015-7698-6 – volume: 3 start-page: 4 year: 1993 ident: ref_100 article-title: Analysis of tip deflection and force of a bimetallic cantilever microactuator publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/3/1/002 – volume: 19 start-page: 89 year: 2013 ident: ref_81 article-title: A multipurpose electrothermal microgripper for biological micro-manipulation publication-title: Microsyst. Technol. doi: 10.1007/s00542-012-1567-0 – volume: 17 start-page: 823 year: 2008 ident: ref_133 article-title: Polymeric thermal microactuator with embedded silicon skeleton: Part II—Fabrication, characterization, and application for 2-DOF microgripper publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2008.924275 – ident: ref_2 – volume: 139 start-page: 60801 year: 2017 ident: ref_14 article-title: A comprehensive survey on microgrippers design: Mechanical structure publication-title: J. Mech. Des. doi: 10.1115/1.4036351 – ident: ref_15 – volume: 26 start-page: 2367 year: 2008 ident: ref_113 article-title: Scanning proximal probes for parallel imaging and lithography publication-title: J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. – volume: 21 start-page: 3102 year: 2003 ident: ref_125 article-title: Micromachined atomic force microscopy sensor with integrated piezoresistive sensor and thermal bimorph actuator for high-speed tapping-mode atomic force microscopy phase-imaging in higher eigenmodes publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.1614252 – ident: ref_74 doi: 10.1109/SMICND.2017.8101169 – ident: ref_93 doi: 10.1177/1729881416663375 – volume: 11 start-page: 452 year: 2001 ident: ref_25 article-title: Comprehensive thermal modelling and characterization of an electro-thermal-compliant microactuator publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/11/5/303 – volume: 2 start-page: 681 year: 2010 ident: ref_45 article-title: Design and Fabrication of a Low Power Electro-Thermal V-Shape Actuator with Large Displacement publication-title: NSTI-Nanotech – volume: 139 start-page: 70801 year: 2017 ident: ref_3 article-title: A comprehensive survey on microgrippers design: Operational strategy publication-title: J. Mech. Des. doi: 10.1115/1.4036352 – volume: 59 start-page: 324 year: 2006 ident: ref_29 article-title: Actuators for micro positioners and nanopositioners publication-title: Appl. Mech. Rev. doi: 10.1115/1.2345371 – volume: 16 start-page: 1901 year: 2010 ident: ref_41 article-title: Characterization of an electro-thermal micro gripper and tip sharpening using FIB technique publication-title: Microsyst. Technol. doi: 10.1007/s00542-010-1110-0 |
SSID | ssj0000913803 |
Score | 2.4099224 |
SecondaryResourceType | review_article |
Snippet | This paper presents a review of electrothermal micro-actuators and applications. Electrothermal micro-actuators have been a significant research interest over... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 69 |
SubjectTerms | Actuation actuators Cold Design modifications electrothermal Heat Investigations Materials selection Mechanical tests MEMS Microactuators Microelectromechanical systems microgrippers Nanomaterials Piezoelectricity Principles Radio frequency Switches |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwyIT1EoKBIsDFGT2LHjsaBWFQMTlbpFZzueIEUQ_j93dloigcTCGp2V6M72exef3zF2ywVkXnFIS-5kKqwpU7DGp41RIFwuvXWh2uJJLpbicVWuBq2-qCYsygNHx01IIwpZNnfWF6JRCix3OTgvgWtjVcjWEfMGyVTYg3XOq4xHPVKOef0EbFfRhKXK5gECBaH-H_twAJf5ITvoWWEyjV9zxHaa9pjtD7QCTxiPf_GTtU9msXUNUbdXGkV3QKhpTgKtS6aDE-lTtpzPnh8Wad_xILWiUF0qytKLRmSVzb30GqEDEE2MVoYEpRHZc2foXK1xkDkHDtlEKZ3PbA5IhHC1nrHddt025ywREkBpXRintYAKeUlRGolkrcg9JXUjdrfxQm17OXDqSvFSY1pAHqu_PTZiN1vbtyiC8avVPTlza0HC1eEBhrPuw1n_Fc4RG29CUfer6aPGJJaGFTq7-I93XLI9pD06FqWM2W73_tlcIbXozHWYRV9Zbstr priority: 102 providerName: Directory of Open Access Journals |
Title | Review of Electrothermal Actuators and Applications |
URI | https://www.proquest.com/docview/2545579290 https://doaj.org/article/05579603dcf24e77ac3d1adf6a39bc70 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5Bu8CAeIpCqSLBwmA1DydOJtSiloqhQohK3SI_YhZIS1v-P3eJ-5BArIkz5Gzffd_5_B3AXcSlb0UkWRyZhHGtYia1sqxQQnITJFabqtpinIwm_HkaT13CbenKKtc-sXLUZqYpR95FIhPHAoO5_zD_YtQ1ik5XXQuNfWiiC07TBjT7g_HL6ybLQqqXadUeOUTCzogP1RqlEXL9rtSrlBYxVTvvRKVKvP-Xb64CzvAYjhxS9Hr11J7AXlGewuGOfuAZRHVm35tZb1C3syE490lf0b0QaqTjydJ4vZ1T6nOYDAdvjyPmuiAwzUOxYvjblhfcT3VgE5thOJEYYVQmFIlMY7QPjKKztsJI3xhpEGHEibG-DiSCI9zBF9AoZ2VxCR5PpBRZFiqTZVymiFXCWCUI4MLAEtFrwf3aCrl2EuHUqeIjR6pAFsu3FmvB7WbsvBbG-HNUn4y5GUFi1tWD2eI9d3sjJxkwJFKR0TbkhRBSRyaQxiYyypQWfgva66nI3Q5b5tv1cPX_62s4QJCT1SUobWisFt_FDQKJlerAfjp86rg106no-A8lSceg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsNAEB1xFECBOEU4LQEFhRUfa29cIMSRECCkSqR0Zg8vDdgBghA_xTcy4yOJBKKjtcdbjOfcnX0P4MhnwjHcF3bg69BmSga2UNLYieSCaTc0SufTFt2w3We3g2AwA1_VXRgaq6xiYh6odaZoj7yOjUwQcEzmztnwxSbWKDpdrSg0CrO4Sz4_sGV7O725wv977HmtZu-ybZesArZiHh_ZuIxhCXMayjWhiTA8C4zYMuKSQJsxe7pa0tlVooWjtdCYsYNQG0e5AosN9AhcdxbmmY-ZnG6mt67HezqEsdnIyZg9h2Ojjt1XgYiKsk5dqFGDXIZmq6dyYE4V8CMT5OmttQLLZV1qnReGtAozSboGS1NohevgF-cIVmasZkGeQ8XjM31Ft1CItscSqbbOp87EN6D_L9rZhLk0S5MtsFgoBI8iT-ooYqKBlZEXyBDLRc811FbW4KTSQqxKQHLixXiKsTEhjcUTjdXgcCw7LGA4fpW6IGWOJQg6O3-QvT7GpSfGBDqGbZuvlfFYwrlQvnaFNqHwI6m4U4Pd6lfEpT-_xRPr2_779QEstHv3nbhz073bgUUsr6Ji-GUX5kav78keljAjuZ_bjQUP_22o35BeABA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qBdGD-MRq1YB68BBMsptscxCp2uKLUkTBW9xH1ou2ta2If81f50wetaB485psFjI7szPfzux8APuMS88KJt2QmcjlWoWu1Mq6qRKSGz-y2mTVFp3o4p5fPYQPFfgs78JQWWW5J2YbtelrOiM_QiAThgKduXdki7KI7nn7ZPDqEoMUZVpLOo1cRa7Tj3eEb6Pjy3Nc64MgaLfuzi7cgmHA1TwQYxentDzlXkP7NrIxbtUSd28VC0UNnNGT-kZRHis10jNGGvTeYWSsp32JgQdaB847A7OCUFEVZk9bne7t5ISHOm42MmrmwBMI2xGL5f1RGcOfkHrcIAOiSuspj5gRB_zwC5mzay_BYhGlOs1crZahkvZWYGGqd-EqsDyr4PSt08qpdCiUfKGv6E4Kkfg4smec5lSGfA3u_0U-61Dt9XvpBjg8klLEcaBMHHPZwDgpCFWEwWPgWwKZNTgspZDooj05sWQ8JwhTSGLJt8RqsDcZO8ibcvw66pSEORlBjbSzB_3hU1LYZUItyBDEMaNtwFMhpGbGl8ZGksVKC68G9XIpksK6R8m3Lm7-_XoX5lBJk5vLzvUWzGOsFeeVMHWojodv6TbGM2O1UyiOA4__ratf2XkFog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+Electrothermal+Actuators+and+Applications&rft.jtitle=Actuators&rft.au=Potekhina%2C+Alissa&rft.date=2019-12-01&rft.pub=MDPI+AG&rft.issn=2076-0825&rft.eissn=2076-0825&rft.volume=8&rft.issue=4&rft.spage=69&rft_id=info:doi/10.3390%2Fact8040069&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-0825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-0825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-0825&client=summon |