The monotonicity of ratios involving arc tangent function with applications
In this paper, we investigate the monotonicity of the functions on (0, ∞) for > 0, which not only gives relative errors of known bounds with quadratic for arctan , but also yields some new accurate bounds. Moreover, the known bounds are extended and a more accurate estimate for arctan is presente...
Saved in:
Published in | Open mathematics (Warsaw, Poland) Vol. 17; no. 1; pp. 1450 - 1467 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Warsaw
De Gruyter
01.01.2019
De Gruyter Poland |
Subjects | |
Online Access | Get full text |
ISSN | 2391-5455 2391-5455 |
DOI | 10.1515/math-2019-0098 |
Cover
Abstract | In this paper, we investigate the monotonicity of the functions
on (0, ∞) for
> 0, which not only gives relative errors of known bounds with quadratic for arctan
, but also yields some new accurate bounds. Moreover, the known bounds are extended and a more accurate estimate for arctan
is presented. |
---|---|
AbstractList | In this paper, we investigate the monotonicity of the functions
on (0, ∞) for
> 0, which not only gives relative errors of known bounds with quadratic for arctan
, but also yields some new accurate bounds. Moreover, the known bounds are extended and a more accurate estimate for arctan
is presented. In this paper, we investigate the monotonicity of the functions In this paper, we investigate the monotonicity of the functions $$\begin{array}{} \begin{split}{} \displaystyle x &\mapsto &\frac{1}{x}\left( 1-a+\sqrt{\frac{2}{3}ax^{2}+a^{2}}\right) \arctan x, \\ x &\mapsto &\frac{1}{x}\left( \frac{4}{\pi ^{2}}+\sqrt{\frac{4}{\pi ^{2}}% x^{2}+a}\right) \arctan x \end{split} \end{array}$$ on (0, ∞) for a > 0, which not only gives relative errors of known bounds with quadratic for arctan x , but also yields some new accurate bounds. Moreover, the known bounds are extended and a more accurate estimate for arctan x is presented. In this paper, we investigate the monotonicity of the functionsx↦1x1−a+23ax2+a2arctanx,x↦1x4π2+4π2x2+aarctanxon (0, ∞) for a > 0, which not only gives relative errors of known bounds with quadratic for arctan x, but also yields some new accurate bounds. Moreover, the known bounds are extended and a more accurate estimate for arctan x is presented. |
Author | Gao, Qin Yang, Zhen-Hang Tin, King-Fung |
Author_xml | – sequence: 1 givenname: Zhen-Hang surname: Yang fullname: Yang, Zhen-Hang email: yzhkm@163.com organization: Zhejiang Society for Electric Power, 310014, Hangzhou, P. R. China – sequence: 2 givenname: King-Fung surname: Tin fullname: Tin, King-Fung email: tinkf_hbu@126.com organization: College of Science and Technology, North China Electric Power University, Ruixiang Street 282, 071051, Baoding, P. R. China – sequence: 3 givenname: Qin surname: Gao fullname: Gao, Qin email: nknkmdk@gmail.com organization: College of Science and Technology, North China Electric Power University, Ruixiang Street 282, 071051, Baoding, P. R. China |
BookMark | eNp1kc1PxCAQxYnRRF29eibxXAUKbTl4MMavaOJlPZMphV02XVgpq9n_XuoaNUZPTIb5vXk8DtGuD94gdELJGRVUnC8hzQtGqCwIkc0OOmClpIXgQuz-qPfR8TAsCCGZITWlB-hhOjd4GXxIwTvt0gYHiyMkFwbs_GvoX52fYYgaJ_Az4xO2a6_ztcdvLs0xrFa90-O8H47QnoV-MMef5wQ931xPr-6Kx6fb-6vLx0JzVqeCZzdAaEmJBgDW8KpjujW50dWtsFKItiulJU3DKkF117WybZtadrKqmG1FOUH3W90uwEKtoltC3KgATn00QpwpiMnp3qj8aCsJNUzzkkNVNkzXzDTGgC61ZTZrnW61VjG8rM2Q1CKso8_2Fcsw44TxOk-dbad0DMMQjf3aSoka81dj_mrMX435Z4D_AnK2HymlCK7_H7vYYm_QJxM7M4vrTS6-Tf0N0vyXXJDyHSsPoFE |
CitedBy_id | crossref_primary_10_3390_axioms11060262 crossref_primary_10_1007_s13398_021_01152_x crossref_primary_10_3934_math_2020466 |
Cites_doi | 10.1186/s13660-018-1704-0 10.1090/proc/14199 10.1155/2009/930294 10.4064/cm136-2-8 10.1016/j.jmaa.2015.03.043 10.1186/s13660-016-1157-2 10.1186/s13662-018-1545-7 10.1186/s13660-017-1312-4 10.1080/00029890.1966.11970755 10.1007/s13398-018-0609-6 10.1155/2011/840206 10.1016/j.jmaa.2014.05.034 10.2298/AADM1801244N 10.1186/s13660-018-1734-7 10.2307/2314285 |
ContentType | Journal Article |
Copyright | 2019. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M2P P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1515/math-2019-0098 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2391-5455 |
EndPage | 1467 |
ExternalDocumentID | oai_doaj_org_article_545f901e2c434a6382c72e8eeac3cf2f 10_1515_math_2019_0098 10_1515_math_2019_00981711450 |
GroupedDBID | 5VS 88I AAFWJ ABFKT ABUWG ACGFS ADBBV AENEX AFBDD AFKRA AFPKN AHGSO ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ CCPQU DWQXO EBS EJD GNUQQ GROUPED_DOAJ HCIFZ K7- KQ8 M2P M~E OK1 PHGZM PHGZT PIMPY PQGLB PUEGO QD8 Y2W AAYXX CITATION 3V. 7XB 8FE 8FG 8FK JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c427t-4391a01310caaa2846d2cbe131d7b5f955bd39f0882651cddb9bb879d9662fb53 |
IEDL.DBID | 8FG |
ISSN | 2391-5455 |
IngestDate | Wed Aug 27 01:21:53 EDT 2025 Fri Jul 25 07:46:50 EDT 2025 Thu Apr 24 23:00:36 EDT 2025 Tue Jul 01 04:05:17 EDT 2025 Sat Sep 06 17:04:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 Public License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-4391a01310caaa2846d2cbe131d7b5f955bd39f0882651cddb9bb879d9662fb53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2545240247?pq-origsite=%requestingapplication% |
PQID | 2545240247 |
PQPubID | 5000747 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_545f901e2c434a6382c72e8eeac3cf2f proquest_journals_2545240247 crossref_primary_10_1515_math_2019_0098 crossref_citationtrail_10_1515_math_2019_0098 walterdegruyter_journals_10_1515_math_2019_00981711450 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Warsaw |
PublicationPlace_xml | – name: Warsaw |
PublicationTitle | Open mathematics (Warsaw, Poland) |
PublicationYear | 2019 |
Publisher | De Gruyter De Gruyter Poland |
Publisher_xml | – name: De Gruyter – name: De Gruyter Poland |
References | Tian, J.-F.; Ha, M.-H.; Wang, C. (j_math-2019-0098_ref_017) 2018; 12 Malesevic, B.; Makragic, M. (j_math-2019-0098_ref_029) 2016; 10 Alirezaei, G. (j_math-2019-0098_ref_009) Shafer, R.E. (j_math-2019-0098_ref_001) 1966; 73 Biernacki, M.; Krzyz, J. (j_math-2019-0098_ref_024) 1995; 9 Tian, J.-F. (j_math-2019-0098_ref_014) 2018; 2018 Qi, F.; Zhang, S.-Q.; Guo, B.-N. (j_math-2019-0098_ref_003) 2009; 2009 Tian, J.-F.; Zhu, Y.-R.; Cheung, W.-S. (j_math-2019-0098_ref_016) 2019; 113 Malešević, B.; Rašajski, M.; Lutovac, T. (j_math-2019-0098_ref_006) 2018; 2018 Anderson, G.D.; Vamanamurthy, M.; Vuorinen, M. (j_math-2019-0098_ref_023) 2016; 113 Chen, C.-P.; Cheung, W.-S.; Wang, W. (j_math-2019-0098_ref_004) 2011; 2011 Malešević, B.; Lutovac, T.; Rašajski, M.; Mortici, C. (j_math-2019-0098_ref_027) 2018; 2018 Yang, Z.-H.; Tian, J.-F. (j_math-2019-0098_ref_018) 2018; 146 Yang, Z.-H.; Zhang, W.; Chu, Y.-M. (j_math-2019-0098_ref_022) 2017; 20 Wang, M.K.; Zhang, W.; Chu, Y.M. (j_math-2019-0098_ref_015) 2019; 39 Zhu, L. (j_math-2019-0098_ref_008) 2008; 2 Mortici, C. (j_math-2019-0098_ref_026) 2011; 14 Shafer, R.E.; Grinstein, L.S.; Marsh, D.C.B.; Konhauser, J.D.E. (j_math-2019-0098_ref_002) 1967; 74 Yang, Z.-H. (j_math-2019-0098_ref_019) Yang, Z.-H.; Chu, Y.-M.; Wang, M.-K. (j_math-2019-0098_ref_021) 2015; 428 Gasull, A.; Utzet, F. (j_math-2019-0098_ref_013) 2014; 420 Mortici, C.; Srivastava, H.M. (j_math-2019-0098_ref_005) 2014; 136 Sun, J.-L.; Chen, C.-P. (j_math-2019-0098_ref_011) 2016; 2016 Yang, Z.-H.; Chu, Y.-M. (j_math-2019-0098_ref_020) 2017; 20 Shafer, R.E. (j_math-2019-0098_ref_007) 1977 Nenezic, M.; Zhu, L. (j_math-2019-0098_ref_028) 2018; 12 Qiao, Q.-X.; Chen, C.-P. (j_math-2019-0098_ref_012) 2018; 2018 Nishizawa, Y. (j_math-2019-0098_ref_010) 2017; 2017 (ref461) 2018; 146 (ref321) 2011; 2011 (ref101) 2016; 2016 (ref311) 2009; 2009 (ref331) 2014; 136 (ref231) 1995; 9 (ref211) 2017; 20 (ref91) 2017; 2017 (ref571) 2016; 10 (ref341) 2018; 2018 (ref361) 2008; 2 (ref251) 2011; 14 (ref271) 2018; 12 (ref111) 2018; 2018 (ref131) 2018; 2018 ref371 (ref11) 1967; 74 (ref421) 2018; 2018 (ref391) 2016; 2016 (ref281) 2016; 10 ref181 (ref221) 2016; 113 (ref551) 2018; 2018 (ref441) 2019; 113 ref81 (ref451) 2018; 12 (ref511) 2016; 113 (ref401) 2018; 2018 (ref61) 1977 (ref01) 1966; 73 (ref41) 2014; 136 (ref491) 2015; 428 (ref161) 2018; 12 (ref481) 2017; 20 (ref541) 2011; 14 (ref151) 2019; 113 (ref171) 2018; 146 (ref381) 2017; 2017 (ref561) 2018; 12 (ref201) 2015; 428 (ref351) 1977 (ref71) 2008; 2 (ref21) 2009; 2009 ref471 (ref291) 1966; 73 (ref301) 1967; 74 (ref121) 2014; 420 (ref431) 2019; 39 (ref411) 2014; 420 (ref241) 1965 (ref261) 2018; 2018 (ref51) 2018; 2018 (ref191) 2017; 20 (ref501) 2017; 20 (ref521) 1995; 9 (ref31) 2011; 2011 (ref141) 2019; 39 (ref531) 1965 |
References_xml | – volume: 420 start-page: 1832 year: 2014 end-page: 1853 ident: j_math-2019-0098_ref_013 article-title: Approximating Mills ratio publication-title: J. Math. Anal. Appl. – volume: 10 start-page: 849 year: 2016 end-page: 876 ident: j_math-2019-0098_ref_029 article-title: A method for proving some inequalities on mixed trigonometric polynomial functions publication-title: J. Math. Inequal. – volume: 39 start-page: 1440 year: 2019 end-page: 1450 ident: j_math-2019-0098_ref_015 article-title: Monotonicity, convexity and inequalities involving the generalized elliptic integrals publication-title: Acta Math. Sci. Ser. B (Engl. Ed.) – volume: 2018 start-page: 4178629 year: 2018 ident: j_math-2019-0098_ref_006 article-title: Refined estimates and generalizations of inequalities related to the arctangent function and Shafer’s inequality publication-title: Math. Probl. Eng. – volume: 2011 start-page: 840206 year: 2011 ident: j_math-2019-0098_ref_004 article-title: On Shafer and Carlson inequalities publication-title: J. Inequal. Appl. – volume: 146 start-page: 4707 year: 2018 end-page: 4721 ident: j_math-2019-0098_ref_018 article-title: A class of completely mixed monotonic functions involving the gamma function with applications publication-title: Proc. Amer. Math. Soc. – ident: j_math-2019-0098_ref_019 article-title: A new way to prove L’Hospital monotone rules with applications publication-title: arXiv:1409.6408 [math.CA] – volume: 2016 start-page: 212 year: 2016 ident: j_math-2019-0098_ref_011 article-title: Shafer-type inequalities for inverse trigonometric functions and Gauss lemniscate functions publication-title: J. Inequal. Appl. – volume: 20 start-page: 729 year: 2017 end-page: 735 ident: j_math-2019-0098_ref_020 article-title: A monotonicity property involving the generalized elliptic integral of the first kind publication-title: Math. Inequal. Appl. – volume: 2018 start-page: 111 year: 2018 ident: j_math-2019-0098_ref_014 article-title: Triple Diamond-Alpha integral and Hölder-type inequalities publication-title: J. Inequal. Appl. – start-page: 96 577 year: 1977 end-page: 97 598 ident: j_math-2019-0098_ref_007 article-title: Analytic inequalities obtained by quadratic approximation publication-title: Publ. Elektroteh. Fak. Univ. Beogr. Ser. Mat. Fiz. – volume: 12 start-page: 459 year: 2018 end-page: 471 ident: j_math-2019-0098_ref_017 article-title: Improvements of generalized Hölder’s inequalities and their applications publication-title: J. Math. Inequal. – volume: 136 start-page: 263 year: 2014 end-page: 270 ident: j_math-2019-0098_ref_005 article-title: Estimates for the arctangent function related to Shafer’s inequality publication-title: Colloq. Math. – volume: 113 start-page: 2189 year: 2019 end-page: 2200 ident: j_math-2019-0098_ref_016 article-title: N-tuple Diamond-Alpha integral and inequalities on time scales publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. – volume: 9 start-page: 135 year: 1995 end-page: 145 ident: j_math-2019-0098_ref_024 article-title: On the monotonicity of certain functionals in the theory of analytic functions publication-title: Ann. Univ. Mariae Curie-Sklodowska – volume: 2018 start-page: 141 year: 2018 ident: j_math-2019-0098_ref_012 article-title: Approximations to inverse tangent function publication-title: J. Inequal. Appl. – volume: 428 start-page: 587 year: 2015 end-page: 604 ident: j_math-2019-0098_ref_021 article-title: Monotonicity criterion for the quotient of power series with applications publication-title: J. Math. Anal. Appl. – volume: 2017 start-page: 40 year: 2017 ident: j_math-2019-0098_ref_010 article-title: Refined quadratic estimations of Shafer’s inequality publication-title: J. Inequal. Appl. – volume: 20 start-page: 1107 year: 2017 end-page: 1120 ident: j_math-2019-0098_ref_022 article-title: Sharp Gautschi inequality for parameter 0 < p < 1 with applications publication-title: Math. Inequal. Appl. – volume: 12 start-page: 244 year: 2018 end-page: 256 ident: j_math-2019-0098_ref_028 article-title: Some improvements of Jordan-Steckin and Becker-Stark inequalities publication-title: Appl. Anal. Discr. Math. – volume: 2 start-page: 571 year: 2008 end-page: 574 ident: j_math-2019-0098_ref_008 article-title: On a quadratic estimate of Shafer publication-title: J. Math. Inequal. – volume: 113 start-page: 805 year: 2016 end-page: 816 ident: j_math-2019-0098_ref_023 article-title: Monotonicity rules in calculus publication-title: Amer. Math. Monthly – volume: 14 start-page: 535 year: 2011 end-page: 541 ident: j_math-2019-0098_ref_026 article-title: The natural approach of Wilker-Cusa-Huygens inequalities publication-title: Math. Inequal. Appl. – ident: j_math-2019-0098_ref_009 article-title: A sharp double inequality for the inverse tangent function publication-title: arXiv:1307.4983v1 – volume: 2018 start-page: 90 year: 2018 ident: j_math-2019-0098_ref_027 article-title: Extensions of the natural approach to refinements, and generalizations of some trigonometric inequalities publication-title: Adv. Differ. Equ. – volume: 73 start-page: 309 year: 1966 ident: j_math-2019-0098_ref_001 article-title: Elementary problems: E 1867 publication-title: Amer. Math. Monthly – volume: 2009 start-page: 930294 year: 2009 ident: j_math-2019-0098_ref_003 article-title: Sharpening and generalizations of Shafer’s inequality for the arc tangent function publication-title: J. Inequal. Appl. – volume: 74 start-page: 726 year: 1967 end-page: 727 ident: j_math-2019-0098_ref_002 article-title: Problems and solutions: Solutions of elementary problems: E1867 publication-title: Amer. Math. Monthly – volume: 2018 start-page: 111 year: 2018 ident: ref421 article-title: Triple Diamond-Alpha integral and Hölder-type inequalities publication-title: J. Inequal. Appl. doi: 10.1186/s13660-018-1704-0 – volume: 20 start-page: 729 year: 2017 ident: ref481 article-title: A monotonicity property involving the generalized elliptic integral of the first kind publication-title: Math. Inequal. Appl. – volume: 146 start-page: 4707 year: 2018 ident: ref171 article-title: A class of completely mixed monotonic functions involving the gamma function with applications publication-title: Proc. Amer. Math. Soc. doi: 10.1090/proc/14199 – ident: ref181 article-title: A new way to prove L’Hospital monotone rules with applications publication-title: arXiv:1409.6408 [math.CA] – volume: 2009 start-page: 930294 year: 2009 ident: ref21 article-title: Sharpening and generalizations of Shafer’s inequality for the arc tangent function publication-title: J. Inequal. Appl. doi: 10.1155/2009/930294 – volume: 9 start-page: 135 year: 1995 ident: ref231 article-title: On the monotonicity of certain functionals in the theory of analytic functions publication-title: Ann. Univ. Mariae Curie-Sklodowska – volume: 136 start-page: 263 year: 2014 ident: ref331 article-title: Estimates for the arctangent function related to Shafer’s inequality publication-title: Colloq. Math. doi: 10.4064/cm136-2-8 – volume: 428 start-page: 587 year: 2015 ident: ref491 article-title: Monotonicity criterion for the quotient of power series with applications publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2015.03.043 – volume: 2016 start-page: 212 year: 2016 ident: ref101 article-title: Shafer-type inequalities for inverse trigonometric functions and Gauss lemniscate functions publication-title: J. Inequal. Appl. doi: 10.1186/s13660-016-1157-2 – volume-title: Graphs and Mathematical Tables year: 1965 ident: ref531 – volume: 2 start-page: 571 year: 2008 ident: ref71 article-title: On a quadratic estimate of Shafer publication-title: J. Math. Inequal. – volume: 2018 start-page: 111 year: 2018 ident: ref131 article-title: Triple Diamond-Alpha integral and Hölder-type inequalities publication-title: J. Inequal. Appl. doi: 10.1186/s13660-018-1704-0 – volume: 2018 start-page: 90 year: 2018 ident: ref261 article-title: Extensions of the natural approach to refinements, and generalizations of some trigonometric inequalities publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-018-1545-7 – volume: 2017 start-page: 40 year: 2017 ident: ref381 article-title: Refined quadratic estimations of Shafer’s inequality publication-title: J. Inequal. Appl. doi: 10.1186/s13660-017-1312-4 – volume: 73 start-page: 309 year: 1966 ident: ref01 article-title: Elementary problems: E 1867 publication-title: Amer. Math. Monthly doi: 10.1080/00029890.1966.11970755 – volume: 14 start-page: 535 year: 2011 ident: ref541 article-title: The natural approach of Wilker-Cusa-Huygens inequalities publication-title: Math. Inequal. Appl. – volume: 2018 start-page: 90 year: 2018 ident: ref551 article-title: Extensions of the natural approach to refinements, and generalizations of some trigonometric inequalities publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-018-1545-7 – volume: 2009 start-page: 930294 year: 2009 ident: ref311 article-title: Sharpening and generalizations of Shafer’s inequality for the arc tangent function publication-title: J. Inequal. Appl. doi: 10.1155/2009/930294 – volume: 113 start-page: 2189 year: 2019 ident: ref441 article-title: N-tuple Diamond-Alpha integral and inequalities on time scales publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. doi: 10.1007/s13398-018-0609-6 – volume-title: Graphs and Mathematical Tables year: 1965 ident: ref241 – volume: 12 start-page: 459 year: 2018 ident: ref161 article-title: Improvements of generalized Hölder’s inequalities and their applications publication-title: J. Math. Inequal. – ident: ref371 article-title: A sharp double inequality for the inverse tangent function publication-title: arXiv:1307.4983v1 – volume: 73 start-page: 309 year: 1966 ident: ref291 article-title: Elementary problems: E 1867 publication-title: Amer. Math. Monthly doi: 10.1080/00029890.1966.11970755 – volume: 428 start-page: 587 year: 2015 ident: ref201 article-title: Monotonicity criterion for the quotient of power series with applications publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2015.03.043 – volume: 2016 start-page: 212 year: 2016 ident: ref391 article-title: Shafer-type inequalities for inverse trigonometric functions and Gauss lemniscate functions publication-title: J. Inequal. Appl. doi: 10.1186/s13660-016-1157-2 – start-page: 96 year: 1977 ident: ref61 article-title: Analytic inequalities obtained by quadratic approximation publication-title: Publ. Elektroteh. Fak. Univ. Beogr. Ser. Mat. Fiz. – volume: 146 start-page: 4707 year: 2018 ident: ref461 article-title: A class of completely mixed monotonic functions involving the gamma function with applications publication-title: Proc. Amer. Math. Soc. doi: 10.1090/proc/14199 – volume: 2011 start-page: 840206 year: 2011 ident: ref321 article-title: On Shafer and Carlson inequalities publication-title: J. Inequal. Appl. doi: 10.1155/2011/840206 – volume: 39 start-page: 1440 year: 2019 ident: ref431 article-title: Monotonicity, convexity and inequalities involving the generalized elliptic integrals publication-title: Acta Math. Sci. Ser. B (Engl. Ed.) – volume: 2 start-page: 571 year: 2008 ident: ref361 article-title: On a quadratic estimate of Shafer publication-title: J. Math. Inequal. – volume: 9 start-page: 135 year: 1995 ident: ref521 article-title: On the monotonicity of certain functionals in the theory of analytic functions publication-title: Ann. Univ. Mariae Curie-Sklodowska – volume: 420 start-page: 1832 year: 2014 ident: ref121 article-title: Approximating Mills ratio publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2014.05.034 – volume: 2018 start-page: 4178629 year: 2018 ident: ref341 article-title: Refined estimates and generalizations of inequalities related to the arctangent function and Shafer’s inequality publication-title: Math. Probl. Eng. – volume: 2011 start-page: 840206 year: 2011 ident: ref31 article-title: On Shafer and Carlson inequalities publication-title: J. Inequal. Appl. doi: 10.1155/2011/840206 – volume: 12 start-page: 459 year: 2018 ident: ref451 article-title: Improvements of generalized Hölder’s inequalities and their applications publication-title: J. Math. Inequal. – volume: 39 start-page: 1440 year: 2019 ident: ref141 article-title: Monotonicity, convexity and inequalities involving the generalized elliptic integrals publication-title: Acta Math. Sci. Ser. B (Engl. Ed.) – volume: 10 start-page: 849 year: 2016 ident: ref281 article-title: A method for proving some inequalities on mixed trigonometric polynomial functions publication-title: J. Math. Inequal. – volume: 10 start-page: 849 year: 2016 ident: ref571 article-title: A method for proving some inequalities on mixed trigonometric polynomial functions publication-title: J. Math. Inequal. – volume: 420 start-page: 1832 year: 2014 ident: ref411 article-title: Approximating Mills ratio publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2014.05.034 – start-page: 96 year: 1977 ident: ref351 article-title: Analytic inequalities obtained by quadratic approximation publication-title: Publ. Elektroteh. Fak. Univ. Beogr. Ser. Mat. Fiz. – volume: 113 start-page: 2189 year: 2019 ident: ref151 article-title: N-tuple Diamond-Alpha integral and inequalities on time scales publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. doi: 10.1007/s13398-018-0609-6 – volume: 20 start-page: 729 year: 2017 ident: ref191 article-title: A monotonicity property involving the generalized elliptic integral of the first kind publication-title: Math. Inequal. Appl. – volume: 2018 start-page: 4178629 year: 2018 ident: ref51 article-title: Refined estimates and generalizations of inequalities related to the arctangent function and Shafer’s inequality publication-title: Math. Probl. Eng. – volume: 20 start-page: 1107 year: 2017 ident: ref211 article-title: Sharp Gautschi inequality for parameter 0 < p < 1 with applications publication-title: Math. Inequal. Appl. – volume: 14 start-page: 535 year: 2011 ident: ref251 article-title: The natural approach of Wilker-Cusa-Huygens inequalities publication-title: Math. Inequal. Appl. – volume: 12 start-page: 244 year: 2018 ident: ref561 article-title: Some improvements of Jordan-Steckin and Becker-Stark inequalities publication-title: Appl. Anal. Discr. Math. doi: 10.2298/AADM1801244N – volume: 136 start-page: 263 year: 2014 ident: ref41 article-title: Estimates for the arctangent function related to Shafer’s inequality publication-title: Colloq. Math. doi: 10.4064/cm136-2-8 – volume: 12 start-page: 244 year: 2018 ident: ref271 article-title: Some improvements of Jordan-Steckin and Becker-Stark inequalities publication-title: Appl. Anal. Discr. Math. doi: 10.2298/AADM1801244N – volume: 2018 start-page: 141 year: 2018 ident: ref401 article-title: Approximations to inverse tangent function publication-title: J. Inequal. Appl. doi: 10.1186/s13660-018-1734-7 – volume: 20 start-page: 1107 year: 2017 ident: ref501 article-title: Sharp Gautschi inequality for parameter 0 < p < 1 with applications publication-title: Math. Inequal. Appl. – volume: 74 start-page: 726 year: 1967 ident: ref11 article-title: Problems and solutions: Solutions of elementary problems: E1867 publication-title: Amer. Math. Monthly doi: 10.2307/2314285 – volume: 113 start-page: 805 year: 2016 ident: ref511 article-title: Monotonicity rules in calculus publication-title: Amer. Math. Monthly – volume: 2018 start-page: 141 year: 2018 ident: ref111 article-title: Approximations to inverse tangent function publication-title: J. Inequal. Appl. doi: 10.1186/s13660-018-1734-7 – volume: 2017 start-page: 40 year: 2017 ident: ref91 article-title: Refined quadratic estimations of Shafer’s inequality publication-title: J. Inequal. Appl. doi: 10.1186/s13660-017-1312-4 – ident: ref471 article-title: A new way to prove L’Hospital monotone rules with applications publication-title: arXiv:1409.6408 [math.CA] – ident: ref81 article-title: A sharp double inequality for the inverse tangent function publication-title: arXiv:1307.4983v1 – volume: 74 start-page: 726 year: 1967 ident: ref301 article-title: Problems and solutions: Solutions of elementary problems: E1867 publication-title: Amer. Math. Monthly doi: 10.2307/2314285 – volume: 113 start-page: 805 year: 2016 ident: ref221 article-title: Monotonicity rules in calculus publication-title: Amer. Math. Monthly |
SSID | ssj0001510711 |
Score | 2.1259134 |
Snippet | In this paper, we investigate the monotonicity of the functions
on (0, ∞) for
> 0, which not only gives relative errors of known bounds with quadratic for... In this paper, we investigate the monotonicity of the functions $$\begin{array}{} \begin{split}{} \displaystyle x &\mapsto &\frac{1}{x}\left(... In this paper, we investigate the monotonicity of the functionsx↦1x1−a+23ax2+a2arctanx,x↦1x4π2+4π2x2+aarctanxon (0, ∞) for a > 0, which not only gives... In this paper, we investigate the monotonicity of the functions |
SourceID | doaj proquest crossref walterdegruyter |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1450 |
SubjectTerms | absolute error arctangent function Primary 33B10 relative error Secondary 26D05 sharp bounds |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz0UnxitsgfBU2iy2Tz2qGIpSj1Z6G3ZpwqSSpsi_ntnkrS2onjxGoawzHzZb2Y38w0hF5EpuDKFRfDakGepDRWwcmgt58xnTgiLN7qjh2w45neTdLI26gv_CWvkgRvH9YHhPXCWY4YnXAFamMmZKxxsGInxzOPuG4lorZhq-oOhrInjVqUROLsP-d8zQAJbdiJRbLBQLda_kWF23-u7auueZouPank3WlPOYJd021yRXjVr3CNbrtwnO6OV0Or8gNxDmCkgaVqhxC1k1HTqaR3UOX0pYevB8wIKYKaVqruoKBIZBoPiCSxdv78-JOPB7ePNMGznI4SGs7wKsWlWoV5OZJRSwDOZZUY7eGBzDV5LU20T4TGJztLYWKuF1kUuLJQ4zOs0OSKdclq6Y0LhRda53CsBQdI2EwzyOFfYPDOxibwOSLj0lzSteDjOsHiVWESAfyX6V6J_Jfo3IJcr-7dGNuNXy2t0_8oK5a7rBwAC2YJA_gWCgPSWwZPtNziXDMenQ3nM84Bk3wL6ZfXzqmIAD0-jk_9Y3CnZbnCH5zY90qlmC3cGmUylz2vQfgLu_PLi priority: 102 providerName: Directory of Open Access Journals |
Title | The monotonicity of ratios involving arc tangent function with applications |
URI | https://www.degruyter.com/doi/10.1515/math-2019-0098 https://www.proquest.com/docview/2545240247 https://doaj.org/article/545f901e2c434a6382c72e8eeac3cf2f |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB-0fdGHUr_wtD3yIPi0dDeX_chTsaVnUVpELPQtJJmkCuW23m0R__vO5HJ3raivyxDCzC8zk5nNbwDelb5T1nfI4MVCNTUWlqJygaiUjE3QGrmje3benF6oT5f1ZS64LfJvlSufmBw19p5r5AeSh2HTZUe1hzc_C54axd3VPELjMWxXFGkY593046bGQoBrqypzNVLkPqAs8DsBgx_ulLp7EIsSZf-DPHPnV-pYY7ia3_4eVh3SFHimu7CTM0bxYWniZ_AozJ7D07M13eriBXwmYwvaYD8w0S3l1aKPIpl2IX7MyAFx1UAQpMVg01sqweGMTSK4Divud7FfwsX05NvxaZGnJBReyXYo-OmsZdac0ltrKdo0KL0L9AFbV0dd1w4nOnIq3dSVR3Taua7VSBcdGV09eQVbs34WXoOghTCENlpNpnLYaEnZXOiwbXzly-hGUKz0ZXymEOdJFteGrxKkX8P6Naxfw_odwfu1_M2SPOOfkkes_rUUk16nD_38yuQzZAgBkdKXIL2aKEuOQ_pWhi5Q7Jj4KOMI9lbGM_kkLswGNyNo_jDoRurvu6oIPKou3_x_3bfwZIkorsvswdYwvw37lKkMbpzgOIbto5PzL1_H6b5_B_ny7Gc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB2hcKA9IAqtmhbaPbTiZGFv1h97QKhQUGhIhBBI3Lb7SStVMU2MEH-K39gZx05KBb1xtVaW9fbtzNsZzwzAp9gWQtvCEXldJLLURRq9cuScEDxkXkpHGd3hKOtfiG-X6eUS3Le1MPRbZWsTa0PtSksx8h1Ow7DxsiPyvevfEU2NouxqO0JjRouBv7vFK9t09_gr7u9nzo8Ozw_6UTNVILKC51VEpaaauszEVmuN1jlz3BqPD1xu0iDT1LieDCQ9szSxzhlpTJFLhxcDHgxNiUCTvyyoorUDy_uHo9OzRVQHKZ4nSdMdErXCDurOH0hFKhWKZfHA-9VDAh4o29XbOkfu_NXk5q5qc7K1qztag9VGo7IvM1K9giU_XoeXw3mD1-kGDJBeDCEpK2qti0qelYHVZJqyn2M0eRSnYIgWq3RdvcXIgRIJGEV-2d9589dw8SwIvoHOuBz7t8DwRc77PGiJ5DAukxz1oy9cntnExsF0IWrxUrZpWk6zM34purwgvorwVYSvIny7sD1ffz1r1_Hkyn2Cf76K2mzXD8rJlWpOrULOBRRMnlvRExpNFbc594VHb9WzgYcubLabp5qzP1ULpnYh-2dDF6se_6oEySPS-N3_3_sRVvrnwxN1cjwavIcXM3ZRVGgTOtXkxm-hTqrMh4acDL4_93n4A_eoJ_o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BVkJwqHiKLQV8QOIUbeJ1nPhYHstCaUGCStws22O3SGhT7WZV8e-ZyWbTlseFqzWJrPnGns9j-zPAizzUyoUaOXgxU7rEzFFWzhCVkklHY5B3dI-O9fxEffhWbk8TrvpjlRhPl-uf7UYhdYJNWHOhbNAaoAw8ITZ3RgDzBZzc1JNzTDdhR2sj6xHsHMzfffl0WWihqKuKohds_PPjawmp0-2_RjZ3L7pt66FPV7LP7C7s9rRRHGxwvgc34uI-3DkaNFdXD-CQEBcUVE3LardErkWTRIfvSnxf0CzEpQNBcS1a112oEpzTGBfBxVhxdSv7IZzM3n59Pc_6pxKyoGTVZnx_1rF0Th6cc5RyNMrgIzVg5ctkytLj1CTm07osAqI33teVQVrtyOTL6SMYLZpFfAyCfoQxVskZwssj-ZQoXayx0qEIefJjyLb-sqHXEefnLH5YXk-Qfy3717J_Lft3DC8H-_ONgsY_LV-x-wcrVr7uGprlqe0HkiXGl4jDRBnUVDmaPWSoZKwjJZBpSDKNYX8Lnu2H48pKfkmdVsqqGoP-DdBLq7_3qqDgUWW-978fPodbn9_M7Mf3x4dP4PYm7LiCsw-jdrmOT4nTtP5ZH7W_AMzC9Vg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+monotonicity+of+ratios+involving+arc+tangent+function+with+applications&rft.jtitle=Open+mathematics+%28Warsaw%2C+Poland%29&rft.au=Yang%2C+Zhen-Hang&rft.au=Tin%2C+King-Fung&rft.au=Gao%2C+Qin&rft.date=2019-01-01&rft.pub=De+Gruyter&rft.eissn=2391-5455&rft.volume=17&rft.issue=1&rft.spage=1450&rft.epage=1467&rft_id=info:doi/10.1515%2Fmath-2019-0098&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_math_2019_00981711450 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2391-5455&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2391-5455&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2391-5455&client=summon |