The monotonicity of ratios involving arc tangent function with applications

In this paper, we investigate the monotonicity of the functions on (0, ∞) for > 0, which not only gives relative errors of known bounds with quadratic for arctan , but also yields some new accurate bounds. Moreover, the known bounds are extended and a more accurate estimate for arctan is presente...

Full description

Saved in:
Bibliographic Details
Published inOpen mathematics (Warsaw, Poland) Vol. 17; no. 1; pp. 1450 - 1467
Main Authors Yang, Zhen-Hang, Tin, King-Fung, Gao, Qin
Format Journal Article
LanguageEnglish
Published Warsaw De Gruyter 01.01.2019
De Gruyter Poland
Subjects
Online AccessGet full text
ISSN2391-5455
2391-5455
DOI10.1515/math-2019-0098

Cover

Abstract In this paper, we investigate the monotonicity of the functions on (0, ∞) for > 0, which not only gives relative errors of known bounds with quadratic for arctan , but also yields some new accurate bounds. Moreover, the known bounds are extended and a more accurate estimate for arctan is presented.
AbstractList In this paper, we investigate the monotonicity of the functions on (0, ∞) for > 0, which not only gives relative errors of known bounds with quadratic for arctan , but also yields some new accurate bounds. Moreover, the known bounds are extended and a more accurate estimate for arctan is presented.
In this paper, we investigate the monotonicity of the functions
In this paper, we investigate the monotonicity of the functions $$\begin{array}{} \begin{split}{} \displaystyle x &\mapsto &\frac{1}{x}\left( 1-a+\sqrt{\frac{2}{3}ax^{2}+a^{2}}\right) \arctan x, \\ x &\mapsto &\frac{1}{x}\left( \frac{4}{\pi ^{2}}+\sqrt{\frac{4}{\pi ^{2}}% x^{2}+a}\right) \arctan x \end{split} \end{array}$$ on (0, ∞) for a > 0, which not only gives relative errors of known bounds with quadratic for arctan x , but also yields some new accurate bounds. Moreover, the known bounds are extended and a more accurate estimate for arctan x is presented.
In this paper, we investigate the monotonicity of the functionsx↦1x1−a+23ax2+a2arctan⁡x,x↦1x4π2+4π2x2+aarctan⁡xon (0, ∞) for a > 0, which not only gives relative errors of known bounds with quadratic for arctan x, but also yields some new accurate bounds. Moreover, the known bounds are extended and a more accurate estimate for arctan x is presented.
Author Gao, Qin
Yang, Zhen-Hang
Tin, King-Fung
Author_xml – sequence: 1
  givenname: Zhen-Hang
  surname: Yang
  fullname: Yang, Zhen-Hang
  email: yzhkm@163.com
  organization: Zhejiang Society for Electric Power, 310014, Hangzhou, P. R. China
– sequence: 2
  givenname: King-Fung
  surname: Tin
  fullname: Tin, King-Fung
  email: tinkf_hbu@126.com
  organization: College of Science and Technology, North China Electric Power University, Ruixiang Street 282, 071051, Baoding, P. R. China
– sequence: 3
  givenname: Qin
  surname: Gao
  fullname: Gao, Qin
  email: nknkmdk@gmail.com
  organization: College of Science and Technology, North China Electric Power University, Ruixiang Street 282, 071051, Baoding, P. R. China
BookMark eNp1kc1PxCAQxYnRRF29eibxXAUKbTl4MMavaOJlPZMphV02XVgpq9n_XuoaNUZPTIb5vXk8DtGuD94gdELJGRVUnC8hzQtGqCwIkc0OOmClpIXgQuz-qPfR8TAsCCGZITWlB-hhOjd4GXxIwTvt0gYHiyMkFwbs_GvoX52fYYgaJ_Az4xO2a6_ztcdvLs0xrFa90-O8H47QnoV-MMef5wQ931xPr-6Kx6fb-6vLx0JzVqeCZzdAaEmJBgDW8KpjujW50dWtsFKItiulJU3DKkF117WybZtadrKqmG1FOUH3W90uwEKtoltC3KgATn00QpwpiMnp3qj8aCsJNUzzkkNVNkzXzDTGgC61ZTZrnW61VjG8rM2Q1CKso8_2Fcsw44TxOk-dbad0DMMQjf3aSoka81dj_mrMX435Z4D_AnK2HymlCK7_H7vYYm_QJxM7M4vrTS6-Tf0N0vyXXJDyHSsPoFE
CitedBy_id crossref_primary_10_3390_axioms11060262
crossref_primary_10_1007_s13398_021_01152_x
crossref_primary_10_3934_math_2020466
Cites_doi 10.1186/s13660-018-1704-0
10.1090/proc/14199
10.1155/2009/930294
10.4064/cm136-2-8
10.1016/j.jmaa.2015.03.043
10.1186/s13660-016-1157-2
10.1186/s13662-018-1545-7
10.1186/s13660-017-1312-4
10.1080/00029890.1966.11970755
10.1007/s13398-018-0609-6
10.1155/2011/840206
10.1016/j.jmaa.2014.05.034
10.2298/AADM1801244N
10.1186/s13660-018-1734-7
10.2307/2314285
ContentType Journal Article
Copyright 2019. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M2P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1515/math-2019-0098
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2391-5455
EndPage 1467
ExternalDocumentID oai_doaj_org_article_545f901e2c434a6382c72e8eeac3cf2f
10_1515_math_2019_0098
10_1515_math_2019_00981711450
GroupedDBID 5VS
88I
AAFWJ
ABFKT
ABUWG
ACGFS
ADBBV
AENEX
AFBDD
AFKRA
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
DWQXO
EBS
EJD
GNUQQ
GROUPED_DOAJ
HCIFZ
K7-
KQ8
M2P
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PUEGO
QD8
Y2W
AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c427t-4391a01310caaa2846d2cbe131d7b5f955bd39f0882651cddb9bb879d9662fb53
IEDL.DBID 8FG
ISSN 2391-5455
IngestDate Wed Aug 27 01:21:53 EDT 2025
Fri Jul 25 07:46:50 EDT 2025
Thu Apr 24 23:00:36 EDT 2025
Tue Jul 01 04:05:17 EDT 2025
Sat Sep 06 17:04:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 Public License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-4391a01310caaa2846d2cbe131d7b5f955bd39f0882651cddb9bb879d9662fb53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2545240247?pq-origsite=%requestingapplication%
PQID 2545240247
PQPubID 5000747
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_545f901e2c434a6382c72e8eeac3cf2f
proquest_journals_2545240247
crossref_primary_10_1515_math_2019_0098
crossref_citationtrail_10_1515_math_2019_0098
walterdegruyter_journals_10_1515_math_2019_00981711450
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Warsaw
PublicationPlace_xml – name: Warsaw
PublicationTitle Open mathematics (Warsaw, Poland)
PublicationYear 2019
Publisher De Gruyter
De Gruyter Poland
Publisher_xml – name: De Gruyter
– name: De Gruyter Poland
References Tian, J.-F.; Ha, M.-H.; Wang, C. (j_math-2019-0098_ref_017) 2018; 12
Malesevic, B.; Makragic, M. (j_math-2019-0098_ref_029) 2016; 10
Alirezaei, G. (j_math-2019-0098_ref_009)
Shafer, R.E. (j_math-2019-0098_ref_001) 1966; 73
Biernacki, M.; Krzyz, J. (j_math-2019-0098_ref_024) 1995; 9
Tian, J.-F. (j_math-2019-0098_ref_014) 2018; 2018
Qi, F.; Zhang, S.-Q.; Guo, B.-N. (j_math-2019-0098_ref_003) 2009; 2009
Tian, J.-F.; Zhu, Y.-R.; Cheung, W.-S. (j_math-2019-0098_ref_016) 2019; 113
Malešević, B.; Rašajski, M.; Lutovac, T. (j_math-2019-0098_ref_006) 2018; 2018
Anderson, G.D.; Vamanamurthy, M.; Vuorinen, M. (j_math-2019-0098_ref_023) 2016; 113
Chen, C.-P.; Cheung, W.-S.; Wang, W. (j_math-2019-0098_ref_004) 2011; 2011
Malešević, B.; Lutovac, T.; Rašajski, M.; Mortici, C. (j_math-2019-0098_ref_027) 2018; 2018
Yang, Z.-H.; Tian, J.-F. (j_math-2019-0098_ref_018) 2018; 146
Yang, Z.-H.; Zhang, W.; Chu, Y.-M. (j_math-2019-0098_ref_022) 2017; 20
Wang, M.K.; Zhang, W.; Chu, Y.M. (j_math-2019-0098_ref_015) 2019; 39
Zhu, L. (j_math-2019-0098_ref_008) 2008; 2
Mortici, C. (j_math-2019-0098_ref_026) 2011; 14
Shafer, R.E.; Grinstein, L.S.; Marsh, D.C.B.; Konhauser, J.D.E. (j_math-2019-0098_ref_002) 1967; 74
Yang, Z.-H. (j_math-2019-0098_ref_019)
Yang, Z.-H.; Chu, Y.-M.; Wang, M.-K. (j_math-2019-0098_ref_021) 2015; 428
Gasull, A.; Utzet, F. (j_math-2019-0098_ref_013) 2014; 420
Mortici, C.; Srivastava, H.M. (j_math-2019-0098_ref_005) 2014; 136
Sun, J.-L.; Chen, C.-P. (j_math-2019-0098_ref_011) 2016; 2016
Yang, Z.-H.; Chu, Y.-M. (j_math-2019-0098_ref_020) 2017; 20
Shafer, R.E. (j_math-2019-0098_ref_007) 1977
Nenezic, M.; Zhu, L. (j_math-2019-0098_ref_028) 2018; 12
Qiao, Q.-X.; Chen, C.-P. (j_math-2019-0098_ref_012) 2018; 2018
Nishizawa, Y. (j_math-2019-0098_ref_010) 2017; 2017
(ref461) 2018; 146
(ref321) 2011; 2011
(ref101) 2016; 2016
(ref311) 2009; 2009
(ref331) 2014; 136
(ref231) 1995; 9
(ref211) 2017; 20
(ref91) 2017; 2017
(ref571) 2016; 10
(ref341) 2018; 2018
(ref361) 2008; 2
(ref251) 2011; 14
(ref271) 2018; 12
(ref111) 2018; 2018
(ref131) 2018; 2018
ref371
(ref11) 1967; 74
(ref421) 2018; 2018
(ref391) 2016; 2016
(ref281) 2016; 10
ref181
(ref221) 2016; 113
(ref551) 2018; 2018
(ref441) 2019; 113
ref81
(ref451) 2018; 12
(ref511) 2016; 113
(ref401) 2018; 2018
(ref61) 1977
(ref01) 1966; 73
(ref41) 2014; 136
(ref491) 2015; 428
(ref161) 2018; 12
(ref481) 2017; 20
(ref541) 2011; 14
(ref151) 2019; 113
(ref171) 2018; 146
(ref381) 2017; 2017
(ref561) 2018; 12
(ref201) 2015; 428
(ref351) 1977
(ref71) 2008; 2
(ref21) 2009; 2009
ref471
(ref291) 1966; 73
(ref301) 1967; 74
(ref121) 2014; 420
(ref431) 2019; 39
(ref411) 2014; 420
(ref241) 1965
(ref261) 2018; 2018
(ref51) 2018; 2018
(ref191) 2017; 20
(ref501) 2017; 20
(ref521) 1995; 9
(ref31) 2011; 2011
(ref141) 2019; 39
(ref531) 1965
References_xml – volume: 420
  start-page: 1832
  year: 2014
  end-page: 1853
  ident: j_math-2019-0098_ref_013
  article-title: Approximating Mills ratio
  publication-title: J. Math. Anal. Appl.
– volume: 10
  start-page: 849
  year: 2016
  end-page: 876
  ident: j_math-2019-0098_ref_029
  article-title: A method for proving some inequalities on mixed trigonometric polynomial functions
  publication-title: J. Math. Inequal.
– volume: 39
  start-page: 1440
  year: 2019
  end-page: 1450
  ident: j_math-2019-0098_ref_015
  article-title: Monotonicity, convexity and inequalities involving the generalized elliptic integrals
  publication-title: Acta Math. Sci. Ser. B (Engl. Ed.)
– volume: 2018
  start-page: 4178629
  year: 2018
  ident: j_math-2019-0098_ref_006
  article-title: Refined estimates and generalizations of inequalities related to the arctangent function and Shafer’s inequality
  publication-title: Math. Probl. Eng.
– volume: 2011
  start-page: 840206
  year: 2011
  ident: j_math-2019-0098_ref_004
  article-title: On Shafer and Carlson inequalities
  publication-title: J. Inequal. Appl.
– volume: 146
  start-page: 4707
  year: 2018
  end-page: 4721
  ident: j_math-2019-0098_ref_018
  article-title: A class of completely mixed monotonic functions involving the gamma function with applications
  publication-title: Proc. Amer. Math. Soc.
– ident: j_math-2019-0098_ref_019
  article-title: A new way to prove L’Hospital monotone rules with applications
  publication-title: arXiv:1409.6408 [math.CA]
– volume: 2016
  start-page: 212
  year: 2016
  ident: j_math-2019-0098_ref_011
  article-title: Shafer-type inequalities for inverse trigonometric functions and Gauss lemniscate functions
  publication-title: J. Inequal. Appl.
– volume: 20
  start-page: 729
  year: 2017
  end-page: 735
  ident: j_math-2019-0098_ref_020
  article-title: A monotonicity property involving the generalized elliptic integral of the first kind
  publication-title: Math. Inequal. Appl.
– volume: 2018
  start-page: 111
  year: 2018
  ident: j_math-2019-0098_ref_014
  article-title: Triple Diamond-Alpha integral and Hölder-type inequalities
  publication-title: J. Inequal. Appl.
– start-page: 96 577
  year: 1977
  end-page: 97 598
  ident: j_math-2019-0098_ref_007
  article-title: Analytic inequalities obtained by quadratic approximation
  publication-title: Publ. Elektroteh. Fak. Univ. Beogr. Ser. Mat. Fiz.
– volume: 12
  start-page: 459
  year: 2018
  end-page: 471
  ident: j_math-2019-0098_ref_017
  article-title: Improvements of generalized Hölder’s inequalities and their applications
  publication-title: J. Math. Inequal.
– volume: 136
  start-page: 263
  year: 2014
  end-page: 270
  ident: j_math-2019-0098_ref_005
  article-title: Estimates for the arctangent function related to Shafer’s inequality
  publication-title: Colloq. Math.
– volume: 113
  start-page: 2189
  year: 2019
  end-page: 2200
  ident: j_math-2019-0098_ref_016
  article-title: N-tuple Diamond-Alpha integral and inequalities on time scales
  publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.
– volume: 9
  start-page: 135
  year: 1995
  end-page: 145
  ident: j_math-2019-0098_ref_024
  article-title: On the monotonicity of certain functionals in the theory of analytic functions
  publication-title: Ann. Univ. Mariae Curie-Sklodowska
– volume: 2018
  start-page: 141
  year: 2018
  ident: j_math-2019-0098_ref_012
  article-title: Approximations to inverse tangent function
  publication-title: J. Inequal. Appl.
– volume: 428
  start-page: 587
  year: 2015
  end-page: 604
  ident: j_math-2019-0098_ref_021
  article-title: Monotonicity criterion for the quotient of power series with applications
  publication-title: J. Math. Anal. Appl.
– volume: 2017
  start-page: 40
  year: 2017
  ident: j_math-2019-0098_ref_010
  article-title: Refined quadratic estimations of Shafer’s inequality
  publication-title: J. Inequal. Appl.
– volume: 20
  start-page: 1107
  year: 2017
  end-page: 1120
  ident: j_math-2019-0098_ref_022
  article-title: Sharp Gautschi inequality for parameter 0 < p < 1 with applications
  publication-title: Math. Inequal. Appl.
– volume: 12
  start-page: 244
  year: 2018
  end-page: 256
  ident: j_math-2019-0098_ref_028
  article-title: Some improvements of Jordan-Steckin and Becker-Stark inequalities
  publication-title: Appl. Anal. Discr. Math.
– volume: 2
  start-page: 571
  year: 2008
  end-page: 574
  ident: j_math-2019-0098_ref_008
  article-title: On a quadratic estimate of Shafer
  publication-title: J. Math. Inequal.
– volume: 113
  start-page: 805
  year: 2016
  end-page: 816
  ident: j_math-2019-0098_ref_023
  article-title: Monotonicity rules in calculus
  publication-title: Amer. Math. Monthly
– volume: 14
  start-page: 535
  year: 2011
  end-page: 541
  ident: j_math-2019-0098_ref_026
  article-title: The natural approach of Wilker-Cusa-Huygens inequalities
  publication-title: Math. Inequal. Appl.
– ident: j_math-2019-0098_ref_009
  article-title: A sharp double inequality for the inverse tangent function
  publication-title: arXiv:1307.4983v1
– volume: 2018
  start-page: 90
  year: 2018
  ident: j_math-2019-0098_ref_027
  article-title: Extensions of the natural approach to refinements, and generalizations of some trigonometric inequalities
  publication-title: Adv. Differ. Equ.
– volume: 73
  start-page: 309
  year: 1966
  ident: j_math-2019-0098_ref_001
  article-title: Elementary problems: E 1867
  publication-title: Amer. Math. Monthly
– volume: 2009
  start-page: 930294
  year: 2009
  ident: j_math-2019-0098_ref_003
  article-title: Sharpening and generalizations of Shafer’s inequality for the arc tangent function
  publication-title: J. Inequal. Appl.
– volume: 74
  start-page: 726
  year: 1967
  end-page: 727
  ident: j_math-2019-0098_ref_002
  article-title: Problems and solutions: Solutions of elementary problems: E1867
  publication-title: Amer. Math. Monthly
– volume: 2018
  start-page: 111
  year: 2018
  ident: ref421
  article-title: Triple Diamond-Alpha integral and Hölder-type inequalities
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-018-1704-0
– volume: 20
  start-page: 729
  year: 2017
  ident: ref481
  article-title: A monotonicity property involving the generalized elliptic integral of the first kind
  publication-title: Math. Inequal. Appl.
– volume: 146
  start-page: 4707
  year: 2018
  ident: ref171
  article-title: A class of completely mixed monotonic functions involving the gamma function with applications
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/proc/14199
– ident: ref181
  article-title: A new way to prove L’Hospital monotone rules with applications
  publication-title: arXiv:1409.6408 [math.CA]
– volume: 2009
  start-page: 930294
  year: 2009
  ident: ref21
  article-title: Sharpening and generalizations of Shafer’s inequality for the arc tangent function
  publication-title: J. Inequal. Appl.
  doi: 10.1155/2009/930294
– volume: 9
  start-page: 135
  year: 1995
  ident: ref231
  article-title: On the monotonicity of certain functionals in the theory of analytic functions
  publication-title: Ann. Univ. Mariae Curie-Sklodowska
– volume: 136
  start-page: 263
  year: 2014
  ident: ref331
  article-title: Estimates for the arctangent function related to Shafer’s inequality
  publication-title: Colloq. Math.
  doi: 10.4064/cm136-2-8
– volume: 428
  start-page: 587
  year: 2015
  ident: ref491
  article-title: Monotonicity criterion for the quotient of power series with applications
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2015.03.043
– volume: 2016
  start-page: 212
  year: 2016
  ident: ref101
  article-title: Shafer-type inequalities for inverse trigonometric functions and Gauss lemniscate functions
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-016-1157-2
– volume-title: Graphs and Mathematical Tables
  year: 1965
  ident: ref531
– volume: 2
  start-page: 571
  year: 2008
  ident: ref71
  article-title: On a quadratic estimate of Shafer
  publication-title: J. Math. Inequal.
– volume: 2018
  start-page: 111
  year: 2018
  ident: ref131
  article-title: Triple Diamond-Alpha integral and Hölder-type inequalities
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-018-1704-0
– volume: 2018
  start-page: 90
  year: 2018
  ident: ref261
  article-title: Extensions of the natural approach to refinements, and generalizations of some trigonometric inequalities
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-018-1545-7
– volume: 2017
  start-page: 40
  year: 2017
  ident: ref381
  article-title: Refined quadratic estimations of Shafer’s inequality
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-017-1312-4
– volume: 73
  start-page: 309
  year: 1966
  ident: ref01
  article-title: Elementary problems: E 1867
  publication-title: Amer. Math. Monthly
  doi: 10.1080/00029890.1966.11970755
– volume: 14
  start-page: 535
  year: 2011
  ident: ref541
  article-title: The natural approach of Wilker-Cusa-Huygens inequalities
  publication-title: Math. Inequal. Appl.
– volume: 2018
  start-page: 90
  year: 2018
  ident: ref551
  article-title: Extensions of the natural approach to refinements, and generalizations of some trigonometric inequalities
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-018-1545-7
– volume: 2009
  start-page: 930294
  year: 2009
  ident: ref311
  article-title: Sharpening and generalizations of Shafer’s inequality for the arc tangent function
  publication-title: J. Inequal. Appl.
  doi: 10.1155/2009/930294
– volume: 113
  start-page: 2189
  year: 2019
  ident: ref441
  article-title: N-tuple Diamond-Alpha integral and inequalities on time scales
  publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.
  doi: 10.1007/s13398-018-0609-6
– volume-title: Graphs and Mathematical Tables
  year: 1965
  ident: ref241
– volume: 12
  start-page: 459
  year: 2018
  ident: ref161
  article-title: Improvements of generalized Hölder’s inequalities and their applications
  publication-title: J. Math. Inequal.
– ident: ref371
  article-title: A sharp double inequality for the inverse tangent function
  publication-title: arXiv:1307.4983v1
– volume: 73
  start-page: 309
  year: 1966
  ident: ref291
  article-title: Elementary problems: E 1867
  publication-title: Amer. Math. Monthly
  doi: 10.1080/00029890.1966.11970755
– volume: 428
  start-page: 587
  year: 2015
  ident: ref201
  article-title: Monotonicity criterion for the quotient of power series with applications
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2015.03.043
– volume: 2016
  start-page: 212
  year: 2016
  ident: ref391
  article-title: Shafer-type inequalities for inverse trigonometric functions and Gauss lemniscate functions
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-016-1157-2
– start-page: 96
  year: 1977
  ident: ref61
  article-title: Analytic inequalities obtained by quadratic approximation
  publication-title: Publ. Elektroteh. Fak. Univ. Beogr. Ser. Mat. Fiz.
– volume: 146
  start-page: 4707
  year: 2018
  ident: ref461
  article-title: A class of completely mixed monotonic functions involving the gamma function with applications
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/proc/14199
– volume: 2011
  start-page: 840206
  year: 2011
  ident: ref321
  article-title: On Shafer and Carlson inequalities
  publication-title: J. Inequal. Appl.
  doi: 10.1155/2011/840206
– volume: 39
  start-page: 1440
  year: 2019
  ident: ref431
  article-title: Monotonicity, convexity and inequalities involving the generalized elliptic integrals
  publication-title: Acta Math. Sci. Ser. B (Engl. Ed.)
– volume: 2
  start-page: 571
  year: 2008
  ident: ref361
  article-title: On a quadratic estimate of Shafer
  publication-title: J. Math. Inequal.
– volume: 9
  start-page: 135
  year: 1995
  ident: ref521
  article-title: On the monotonicity of certain functionals in the theory of analytic functions
  publication-title: Ann. Univ. Mariae Curie-Sklodowska
– volume: 420
  start-page: 1832
  year: 2014
  ident: ref121
  article-title: Approximating Mills ratio
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2014.05.034
– volume: 2018
  start-page: 4178629
  year: 2018
  ident: ref341
  article-title: Refined estimates and generalizations of inequalities related to the arctangent function and Shafer’s inequality
  publication-title: Math. Probl. Eng.
– volume: 2011
  start-page: 840206
  year: 2011
  ident: ref31
  article-title: On Shafer and Carlson inequalities
  publication-title: J. Inequal. Appl.
  doi: 10.1155/2011/840206
– volume: 12
  start-page: 459
  year: 2018
  ident: ref451
  article-title: Improvements of generalized Hölder’s inequalities and their applications
  publication-title: J. Math. Inequal.
– volume: 39
  start-page: 1440
  year: 2019
  ident: ref141
  article-title: Monotonicity, convexity and inequalities involving the generalized elliptic integrals
  publication-title: Acta Math. Sci. Ser. B (Engl. Ed.)
– volume: 10
  start-page: 849
  year: 2016
  ident: ref281
  article-title: A method for proving some inequalities on mixed trigonometric polynomial functions
  publication-title: J. Math. Inequal.
– volume: 10
  start-page: 849
  year: 2016
  ident: ref571
  article-title: A method for proving some inequalities on mixed trigonometric polynomial functions
  publication-title: J. Math. Inequal.
– volume: 420
  start-page: 1832
  year: 2014
  ident: ref411
  article-title: Approximating Mills ratio
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2014.05.034
– start-page: 96
  year: 1977
  ident: ref351
  article-title: Analytic inequalities obtained by quadratic approximation
  publication-title: Publ. Elektroteh. Fak. Univ. Beogr. Ser. Mat. Fiz.
– volume: 113
  start-page: 2189
  year: 2019
  ident: ref151
  article-title: N-tuple Diamond-Alpha integral and inequalities on time scales
  publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.
  doi: 10.1007/s13398-018-0609-6
– volume: 20
  start-page: 729
  year: 2017
  ident: ref191
  article-title: A monotonicity property involving the generalized elliptic integral of the first kind
  publication-title: Math. Inequal. Appl.
– volume: 2018
  start-page: 4178629
  year: 2018
  ident: ref51
  article-title: Refined estimates and generalizations of inequalities related to the arctangent function and Shafer’s inequality
  publication-title: Math. Probl. Eng.
– volume: 20
  start-page: 1107
  year: 2017
  ident: ref211
  article-title: Sharp Gautschi inequality for parameter 0 < p < 1 with applications
  publication-title: Math. Inequal. Appl.
– volume: 14
  start-page: 535
  year: 2011
  ident: ref251
  article-title: The natural approach of Wilker-Cusa-Huygens inequalities
  publication-title: Math. Inequal. Appl.
– volume: 12
  start-page: 244
  year: 2018
  ident: ref561
  article-title: Some improvements of Jordan-Steckin and Becker-Stark inequalities
  publication-title: Appl. Anal. Discr. Math.
  doi: 10.2298/AADM1801244N
– volume: 136
  start-page: 263
  year: 2014
  ident: ref41
  article-title: Estimates for the arctangent function related to Shafer’s inequality
  publication-title: Colloq. Math.
  doi: 10.4064/cm136-2-8
– volume: 12
  start-page: 244
  year: 2018
  ident: ref271
  article-title: Some improvements of Jordan-Steckin and Becker-Stark inequalities
  publication-title: Appl. Anal. Discr. Math.
  doi: 10.2298/AADM1801244N
– volume: 2018
  start-page: 141
  year: 2018
  ident: ref401
  article-title: Approximations to inverse tangent function
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-018-1734-7
– volume: 20
  start-page: 1107
  year: 2017
  ident: ref501
  article-title: Sharp Gautschi inequality for parameter 0 < p < 1 with applications
  publication-title: Math. Inequal. Appl.
– volume: 74
  start-page: 726
  year: 1967
  ident: ref11
  article-title: Problems and solutions: Solutions of elementary problems: E1867
  publication-title: Amer. Math. Monthly
  doi: 10.2307/2314285
– volume: 113
  start-page: 805
  year: 2016
  ident: ref511
  article-title: Monotonicity rules in calculus
  publication-title: Amer. Math. Monthly
– volume: 2018
  start-page: 141
  year: 2018
  ident: ref111
  article-title: Approximations to inverse tangent function
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-018-1734-7
– volume: 2017
  start-page: 40
  year: 2017
  ident: ref91
  article-title: Refined quadratic estimations of Shafer’s inequality
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-017-1312-4
– ident: ref471
  article-title: A new way to prove L’Hospital monotone rules with applications
  publication-title: arXiv:1409.6408 [math.CA]
– ident: ref81
  article-title: A sharp double inequality for the inverse tangent function
  publication-title: arXiv:1307.4983v1
– volume: 74
  start-page: 726
  year: 1967
  ident: ref301
  article-title: Problems and solutions: Solutions of elementary problems: E1867
  publication-title: Amer. Math. Monthly
  doi: 10.2307/2314285
– volume: 113
  start-page: 805
  year: 2016
  ident: ref221
  article-title: Monotonicity rules in calculus
  publication-title: Amer. Math. Monthly
SSID ssj0001510711
Score 2.1259134
Snippet In this paper, we investigate the monotonicity of the functions on (0, ∞) for > 0, which not only gives relative errors of known bounds with quadratic for...
In this paper, we investigate the monotonicity of the functions $$\begin{array}{} \begin{split}{} \displaystyle x &\mapsto &\frac{1}{x}\left(...
In this paper, we investigate the monotonicity of the functionsx↦1x1−a+23ax2+a2arctan⁡x,x↦1x4π2+4π2x2+aarctan⁡xon (0, ∞) for a > 0, which not only gives...
In this paper, we investigate the monotonicity of the functions
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1450
SubjectTerms absolute error
arctangent function
Primary 33B10
relative error
Secondary 26D05
sharp bounds
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz0UnxitsgfBU2iy2Tz2qGIpSj1Z6G3ZpwqSSpsi_ntnkrS2onjxGoawzHzZb2Y38w0hF5EpuDKFRfDakGepDRWwcmgt58xnTgiLN7qjh2w45neTdLI26gv_CWvkgRvH9YHhPXCWY4YnXAFamMmZKxxsGInxzOPuG4lorZhq-oOhrInjVqUROLsP-d8zQAJbdiJRbLBQLda_kWF23-u7auueZouPank3WlPOYJd021yRXjVr3CNbrtwnO6OV0Or8gNxDmCkgaVqhxC1k1HTqaR3UOX0pYevB8wIKYKaVqruoKBIZBoPiCSxdv78-JOPB7ePNMGznI4SGs7wKsWlWoV5OZJRSwDOZZUY7eGBzDV5LU20T4TGJztLYWKuF1kUuLJQ4zOs0OSKdclq6Y0LhRda53CsBQdI2EwzyOFfYPDOxibwOSLj0lzSteDjOsHiVWESAfyX6V6J_Jfo3IJcr-7dGNuNXy2t0_8oK5a7rBwAC2YJA_gWCgPSWwZPtNziXDMenQ3nM84Bk3wL6ZfXzqmIAD0-jk_9Y3CnZbnCH5zY90qlmC3cGmUylz2vQfgLu_PLi
  priority: 102
  providerName: Directory of Open Access Journals
Title The monotonicity of ratios involving arc tangent function with applications
URI https://www.degruyter.com/doi/10.1515/math-2019-0098
https://www.proquest.com/docview/2545240247
https://doaj.org/article/545f901e2c434a6382c72e8eeac3cf2f
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB-0fdGHUr_wtD3yIPi0dDeX_chTsaVnUVpELPQtJJmkCuW23m0R__vO5HJ3raivyxDCzC8zk5nNbwDelb5T1nfI4MVCNTUWlqJygaiUjE3QGrmje3benF6oT5f1ZS64LfJvlSufmBw19p5r5AeSh2HTZUe1hzc_C54axd3VPELjMWxXFGkY593046bGQoBrqypzNVLkPqAs8DsBgx_ulLp7EIsSZf-DPHPnV-pYY7ia3_4eVh3SFHimu7CTM0bxYWniZ_AozJ7D07M13eriBXwmYwvaYD8w0S3l1aKPIpl2IX7MyAFx1UAQpMVg01sqweGMTSK4Divud7FfwsX05NvxaZGnJBReyXYo-OmsZdac0ltrKdo0KL0L9AFbV0dd1w4nOnIq3dSVR3Taua7VSBcdGV09eQVbs34WXoOghTCENlpNpnLYaEnZXOiwbXzly-hGUKz0ZXymEOdJFteGrxKkX8P6Naxfw_odwfu1_M2SPOOfkkes_rUUk16nD_38yuQzZAgBkdKXIL2aKEuOQ_pWhi5Q7Jj4KOMI9lbGM_kkLswGNyNo_jDoRurvu6oIPKou3_x_3bfwZIkorsvswdYwvw37lKkMbpzgOIbto5PzL1_H6b5_B_ny7Gc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB2hcKA9IAqtmhbaPbTiZGFv1h97QKhQUGhIhBBI3Lb7SStVMU2MEH-K39gZx05KBb1xtVaW9fbtzNsZzwzAp9gWQtvCEXldJLLURRq9cuScEDxkXkpHGd3hKOtfiG-X6eUS3Le1MPRbZWsTa0PtSksx8h1Ow7DxsiPyvevfEU2NouxqO0JjRouBv7vFK9t09_gr7u9nzo8Ozw_6UTNVILKC51VEpaaauszEVmuN1jlz3BqPD1xu0iDT1LieDCQ9szSxzhlpTJFLhxcDHgxNiUCTvyyoorUDy_uHo9OzRVQHKZ4nSdMdErXCDurOH0hFKhWKZfHA-9VDAh4o29XbOkfu_NXk5q5qc7K1qztag9VGo7IvM1K9giU_XoeXw3mD1-kGDJBeDCEpK2qti0qelYHVZJqyn2M0eRSnYIgWq3RdvcXIgRIJGEV-2d9589dw8SwIvoHOuBz7t8DwRc77PGiJ5DAukxz1oy9cntnExsF0IWrxUrZpWk6zM34purwgvorwVYSvIny7sD1ffz1r1_Hkyn2Cf76K2mzXD8rJlWpOrULOBRRMnlvRExpNFbc594VHb9WzgYcubLabp5qzP1ULpnYh-2dDF6se_6oEySPS-N3_3_sRVvrnwxN1cjwavIcXM3ZRVGgTOtXkxm-hTqrMh4acDL4_93n4A_eoJ_o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BVkJwqHiKLQV8QOIUbeJ1nPhYHstCaUGCStws22O3SGhT7WZV8e-ZyWbTlseFqzWJrPnGns9j-zPAizzUyoUaOXgxU7rEzFFWzhCVkklHY5B3dI-O9fxEffhWbk8TrvpjlRhPl-uf7UYhdYJNWHOhbNAaoAw8ITZ3RgDzBZzc1JNzTDdhR2sj6xHsHMzfffl0WWihqKuKohds_PPjawmp0-2_RjZ3L7pt66FPV7LP7C7s9rRRHGxwvgc34uI-3DkaNFdXD-CQEBcUVE3LardErkWTRIfvSnxf0CzEpQNBcS1a112oEpzTGBfBxVhxdSv7IZzM3n59Pc_6pxKyoGTVZnx_1rF0Th6cc5RyNMrgIzVg5ctkytLj1CTm07osAqI33teVQVrtyOTL6SMYLZpFfAyCfoQxVskZwssj-ZQoXayx0qEIefJjyLb-sqHXEefnLH5YXk-Qfy3717J_Lft3DC8H-_ONgsY_LV-x-wcrVr7uGprlqe0HkiXGl4jDRBnUVDmaPWSoZKwjJZBpSDKNYX8Lnu2H48pKfkmdVsqqGoP-DdBLq7_3qqDgUWW-978fPodbn9_M7Mf3x4dP4PYm7LiCsw-jdrmOT4nTtP5ZH7W_AMzC9Vg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+monotonicity+of+ratios+involving+arc+tangent+function+with+applications&rft.jtitle=Open+mathematics+%28Warsaw%2C+Poland%29&rft.au=Yang%2C+Zhen-Hang&rft.au=Tin%2C+King-Fung&rft.au=Gao%2C+Qin&rft.date=2019-01-01&rft.pub=De+Gruyter&rft.eissn=2391-5455&rft.volume=17&rft.issue=1&rft.spage=1450&rft.epage=1467&rft_id=info:doi/10.1515%2Fmath-2019-0098&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_math_2019_00981711450
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2391-5455&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2391-5455&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2391-5455&client=summon