Skeleton-Based Online Action Prediction Using Scale Selection Network

Action prediction is to recognize the class label of an ongoing activity when only a part of it is observed. In this paper, we focus on online action prediction in streaming 3D skeleton sequences. A dilated convolutional network is introduced to model the motion dynamics in temporal dimension via a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 42; no. 6; pp. 1453 - 1467
Main Authors Liu, Jun, Shahroudy, Amir, Wang, Gang, Duan, Ling-Yu, Kot, Alex C.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Action prediction is to recognize the class label of an ongoing activity when only a part of it is observed. In this paper, we focus on online action prediction in streaming 3D skeleton sequences. A dilated convolutional network is introduced to model the motion dynamics in temporal dimension via a sliding window over the temporal axis. Since there are significant temporal scale variations in the observed part of the ongoing action at different time steps, a novel window scale selection method is proposed to make our network focus on the performed part of the ongoing action and try to suppress the possible incoming interference from the previous actions at each step. An activation sharing scheme is also proposed to handle the overlapping computations among the adjacent time steps, which enables our framework to run more efficiently. Moreover, to enhance the performance of our framework for action prediction with the skeletal input data, a hierarchy of dilated tree convolutions are also designed to learn the multi-level structured semantic representations over the skeleton joints at each frame. Our proposed approach is evaluated on four challenging datasets. The extensive experiments demonstrate the effectiveness of our method for skeleton-based online action prediction.
AbstractList Action prediction is to recognize the class label of an ongoing activity when only a part of it is observed. In this paper, we focus on online action prediction in streaming 3D skeleton sequences. A dilated convolutional network is introduced to model the motion dynamics in temporal dimension via a sliding window over the temporal axis. Since there are significant temporal scale variations in the observed part of the ongoing action at different time steps, a novel window scale selection method is proposed to make our network focus on the performed part of the ongoing action and try to suppress the possible incoming interference from the previous actions at each step. An activation sharing scheme is also proposed to handle the overlapping computations among the adjacent time steps, which enables our framework to run more efficiently. Moreover, to enhance the performance of our framework for action prediction with the skeletal input data, a hierarchy of dilated tree convolutions are also designed to learn the multi-level structured semantic representations over the skeleton joints at each frame. Our proposed approach is evaluated on four challenging datasets. The extensive experiments demonstrate the effectiveness of our method for skeleton-based online action prediction.
Action prediction is to recognize the class label of an ongoing activity when only a part of it is observed. In this paper, we focus on online action prediction in streaming 3D skeleton sequences. A dilated convolutional network is introduced to model the motion dynamics in temporal dimension via a sliding window over the temporal axis. Since there are significant temporal scale variations in the observed part of the ongoing action at different time steps, a novel window scale selection method is proposed to make our network focus on the performed part of the ongoing action and try to suppress the possible incoming interference from the previous actions at each step. An activation sharing scheme is also proposed to handle the overlapping computations among the adjacent time steps, which enables our framework to run more efficiently. Moreover, to enhance the performance of our framework for action prediction with the skeletal input data, a hierarchy of dilated tree convolutions are also designed to learn the multi-level structured semantic representations over the skeleton joints at each frame. Our proposed approach is evaluated on four challenging datasets. The extensive experiments demonstrate the effectiveness of our method for skeleton-based online action prediction.Action prediction is to recognize the class label of an ongoing activity when only a part of it is observed. In this paper, we focus on online action prediction in streaming 3D skeleton sequences. A dilated convolutional network is introduced to model the motion dynamics in temporal dimension via a sliding window over the temporal axis. Since there are significant temporal scale variations in the observed part of the ongoing action at different time steps, a novel window scale selection method is proposed to make our network focus on the performed part of the ongoing action and try to suppress the possible incoming interference from the previous actions at each step. An activation sharing scheme is also proposed to handle the overlapping computations among the adjacent time steps, which enables our framework to run more efficiently. Moreover, to enhance the performance of our framework for action prediction with the skeletal input data, a hierarchy of dilated tree convolutions are also designed to learn the multi-level structured semantic representations over the skeleton joints at each frame. Our proposed approach is evaluated on four challenging datasets. The extensive experiments demonstrate the effectiveness of our method for skeleton-based online action prediction.
Author Duan, Ling-Yu
Shahroudy, Amir
Kot, Alex C.
Wang, Gang
Liu, Jun
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0002-4365-4165
  surname: Liu
  fullname: Liu, Jun
  email: jliu029@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
– sequence: 2
  givenname: Amir
  orcidid: 0000-0002-1045-6437
  surname: Shahroudy
  fullname: Shahroudy, Amir
  email: amirsh@chalmers.se
  organization: Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
– sequence: 3
  givenname: Gang
  orcidid: 0000-0002-1816-1457
  surname: Wang
  fullname: Wang, Gang
  email: wanggang@ntu.edu.sg
  organization: Alibaba Group, Hangzhou, China
– sequence: 4
  givenname: Ling-Yu
  orcidid: 0000-0002-4491-2023
  surname: Duan
  fullname: Duan, Ling-Yu
  email: lingyu@pku.edu.cn
  organization: National Engineering Laboratory for Video Technology, Peking University, Beijing, China
– sequence: 5
  givenname: Alex C.
  orcidid: 0000-0001-6262-8125
  surname: Kot
  fullname: Kot, Alex C.
  email: eackot@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30762531$$D View this record in MEDLINE/PubMed
https://research.chalmers.se/publication/517262$$DView record from Swedish Publication Index
BookMark eNp9kUFv1DAQhS1URLcLfwAkFIkLlyz22HHs41IVqFRopW3PluOMqdtsstiJKv49XrLsoQdOtqzvPc-8d0ZO-qFHQt4yumKM6k-3N-vvlyugTK9AaaUr8YIsgElaatBwQhaUSSiVAnVKzlJ6oJSJivJX5JTTWkLF2YJcbB6xw3Hoy882YVtc913osVi7MQx9cROxDfP1LoX-Z7FxtsNikyXz6w8cn4b4-Jq89LZL-OZwLsndl4vb82_l1fXXy_P1VekE1GPJBaDiChu0HDyDxlLmwTfeNcxZ5NQj1hyQUam8U7zSSnHeVqKRVrdS8yXZzL7pCXdTY3YxbG38bQYbTMSENrp74-5tt8WYTEJT1w26RoPhVAsjci5G27oy3AvPW8k5yCq7fpxdd3H4NWEazTYkh11nexymZABAM1ZzKjP64Rn6MEyxzzsbEDlfClU2XZL3B2pqttgex_wXewZgBlwcUorojwijZt-t-dut2XdrDt1mkXomcmG0-xrGaEP3f-m7WRoQ8fiXknlkIfkfGTmvbg
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3201227
crossref_primary_10_1007_s11042_022_11919_y
crossref_primary_10_1109_ACCESS_2020_3014445
crossref_primary_10_1109_TPAMI_2022_3183112
crossref_primary_10_3390_biomimetics9030123
crossref_primary_10_1016_j_neucom_2022_03_069
crossref_primary_10_3390_ai5030083
crossref_primary_10_1049_csy2_70005
crossref_primary_10_3390_s23146279
crossref_primary_10_1109_TCSVT_2021_3101847
crossref_primary_10_1109_TCSVT_2024_3429182
crossref_primary_10_1016_j_neucom_2020_12_020
crossref_primary_10_3390_app14146335
crossref_primary_10_1016_j_patcog_2024_110733
crossref_primary_10_1109_TCSVT_2021_3124562
crossref_primary_10_26599_TST_2021_9010068
crossref_primary_10_1109_JSEN_2024_3388154
crossref_primary_10_1016_j_neucom_2020_10_096
crossref_primary_10_1016_j_jvcir_2022_103531
crossref_primary_10_1109_TMM_2019_2953814
crossref_primary_10_3390_data5040104
crossref_primary_10_1109_TPAMI_2022_3157033
crossref_primary_10_1016_j_engappai_2023_106855
crossref_primary_10_1016_j_eswa_2023_123061
crossref_primary_10_1016_j_jvcir_2025_104389
crossref_primary_10_1109_TPAMI_2022_3161735
crossref_primary_10_1109_TCSVT_2020_3015051
crossref_primary_10_1109_TCDS_2021_3103960
crossref_primary_10_1109_TIP_2021_3104182
crossref_primary_10_1109_ACCESS_2021_3102671
crossref_primary_10_1145_3639470
crossref_primary_10_1109_TCSVT_2020_3021409
crossref_primary_10_1109_ACCESS_2020_3012557
crossref_primary_10_3390_s20174871
crossref_primary_10_34133_cbsystems_0100
crossref_primary_10_1016_j_neunet_2024_107114
crossref_primary_10_34133_cbsystems_0102
crossref_primary_10_1109_TPAMI_2022_3170511
crossref_primary_10_1109_JIOT_2020_3042986
crossref_primary_10_1017_S0263574722000169
crossref_primary_10_1080_13682199_2023_2190927
crossref_primary_10_1109_TMM_2021_3050642
crossref_primary_10_1109_TPAMI_2019_2916873
crossref_primary_10_1007_s10489_021_02764_x
crossref_primary_10_1049_ipr2_12472
crossref_primary_10_1007_s12204_023_2619_6
crossref_primary_10_1007_s11263_020_01354_7
crossref_primary_10_1109_TIP_2021_3129117
crossref_primary_10_1109_TMM_2022_3198011
crossref_primary_10_1016_j_neucom_2020_03_126
crossref_primary_10_1007_s44196_023_00292_9
crossref_primary_10_1109_TPAMI_2022_3177813
crossref_primary_10_1109_TMM_2021_3119177
crossref_primary_10_1109_TIP_2020_2987425
crossref_primary_10_3390_app10030966
crossref_primary_10_1049_ipr2_12469
crossref_primary_10_1109_ACCESS_2019_2945632
crossref_primary_10_1109_TPAMI_2020_3034233
crossref_primary_10_1016_j_patcog_2023_109595
crossref_primary_10_1109_TMM_2021_3139768
crossref_primary_10_3233_ICA_210652
crossref_primary_10_1007_s40747_022_00914_3
crossref_primary_10_1109_TMM_2021_3137745
crossref_primary_10_1109_TPAMI_2021_3059923
crossref_primary_10_1016_j_engappai_2023_107488
crossref_primary_10_1109_ACCESS_2019_2956538
crossref_primary_10_1109_TASE_2020_3045880
crossref_primary_10_1109_TMM_2020_2978637
crossref_primary_10_1109_ACCESS_2023_3309420
crossref_primary_10_1109_TIP_2022_3193290
crossref_primary_10_1109_TIP_2023_3279991
crossref_primary_10_1016_j_patcog_2022_108645
crossref_primary_10_1007_s00138_023_01386_2
crossref_primary_10_1016_j_neucom_2020_07_135
crossref_primary_10_1109_TIP_2019_2937757
crossref_primary_10_1109_LSP_2021_3049691
crossref_primary_10_1117_1_JEI_28_4_043018
crossref_primary_10_3390_app10041482
Cites_doi 10.1109/ICCV.2017.317
10.1109/CVPR.2017.106
10.1007/978-3-319-46487-9_50
10.1109/LSP.2017.2690339
10.1109/CVPR.2016.90
10.1109/TPAMI.2017.2771306
10.1007/978-3-319-46478-7_23
10.1016/j.patcog.2016.05.019
10.1007/978-3-319-46448-0_17
10.1109/ICCV.2013.342
10.5244/C.25.65
10.1109/CVPR.2016.119
10.1007/s11263-013-0683-3
10.1109/ICCV.2017.610
10.1109/CVPR.2017.390
10.1109/CVPR.2016.115
10.1109/ICIP.2017.8296967
10.1109/WACV.2015.138
10.1109/WACV.2014.6836044
10.1109/CVPR.2013.343
10.1109/TPAMI.2017.2712608
10.1109/TPAMI.2016.2640292
10.24963/ijcai.2017/342
10.1016/j.cviu.2017.01.011
10.1109/ICPR.2014.772
10.1109/ACPR.2015.7486569
10.1109/ICCV.2017.621
10.1109/TMM.2017.2778559
10.1145/2964284.2967191
10.1016/j.jvcir.2013.03.001
10.1109/WACV.2017.24
10.1007/978-3-319-10602-1_39
10.1109/CVPR.2017.391
10.1109/TPAMI.2015.2505295
10.5244/C.31.52
10.1109/WACV.2017.25
10.1109/ICCV.2017.233
10.1109/CVPRW.2012.6239234
10.1109/CVPR.2017.155
10.1109/ICCV.2013.389
10.1109/TPAMI.2013.198
10.1007/978-3-642-33718-5_21
10.1109/CVPR.2018.00871
10.1016/j.patrec.2014.04.011
10.1109/TCYB.2013.2265378
10.1007/978-3-319-46478-7_13
10.1109/CVPRW.2012.6239175
10.5244/C.31.92
10.1109/CVPR.2017.486
10.1109/CVPRW.2017.207
10.1109/CVPR.2014.82
10.1109/TPAMI.2008.260
10.1109/CVPRW.2012.6239233
10.1109/ICCV.2015.365
10.1109/TIP.2017.2785279
10.1109/ICCV.2011.6126349
10.1109/ICCV.2015.460
10.1109/CVPR.2006.200
10.1007/978-3-319-48881-3_28
10.1109/CVPR.2017.137
10.3758/BF03212378
10.1016/B978-0-12-813445-0.00005-8
10.1109/ICCV.2015.169
10.1016/j.patcog.2015.11.019
10.1109/WACV.2017.29
10.1109/CVPR.2016.293
10.1109/TPAMI.2013.2297321
10.1145/2522848.2532595
10.1109/CVPR.2017.678
10.1109/ICCV.2017.392
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ADTPV
AOWAS
F1S
DOI 10.1109/TPAMI.2019.2898954
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Chalmers tekniska högskola
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
Technology Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1467
ExternalDocumentID oai_research_chalmers_se_77becb92_3094_4929_9a75_3f4f3d633265
30762531
10_1109_TPAMI_2019_2898954
8640046
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Research Foundation Singapore
  funderid: 10.13039/501100001381
– fundername: Infocomm Media Development Authority, Singapore
– fundername: National Natural Science Foundation of China
  grantid: 61661146005; U1611461
  funderid: 10.13039/501100001809
– fundername: National Basic Research Program of China (973 Program)
  grantid: 2015CB351806
  funderid: 10.13039/501100012166
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ADTPV
AOWAS
F1S
ID FETCH-LOGICAL-c427t-342e838ebea32f12ba01f2fbfcb1cae30fee732e1068fc83598833d54b6a9d693
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Thu Aug 21 06:35:21 EDT 2025
Fri Jul 11 16:36:05 EDT 2025
Mon Jun 30 07:04:41 EDT 2025
Mon Jul 21 05:57:16 EDT 2025
Tue Jul 01 03:18:24 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
Wed Aug 27 02:39:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-342e838ebea32f12ba01f2fbfcb1cae30fee732e1068fc83598833d54b6a9d693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4365-4165
0000-0002-1816-1457
0000-0002-1045-6437
0000-0001-6262-8125
0000-0002-4491-2023
PMID 30762531
PQID 2400102563
PQPubID 85458
PageCount 15
ParticipantIDs crossref_primary_10_1109_TPAMI_2019_2898954
ieee_primary_8640046
proquest_miscellaneous_2229117306
swepub_primary_oai_research_chalmers_se_77becb92_3094_4929_9a75_3f4f3d633265
pubmed_primary_30762531
crossref_citationtrail_10_1109_TPAMI_2019_2898954
proquest_journals_2400102563
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
ref58
ref14
ref53
li (ref68) 2017
ref52
ref55
ref11
ref54
ref10
li (ref41) 2018
ref17
ref16
ref19
oneata (ref22) 2014
ref51
ref50
liu (ref84) 2017
han (ref8) 2013; 43
collobert (ref86) 2011
ref46
ref45
ref48
ref47
ref42
ref85
yan (ref43) 2018
ref44
ref49
ioffe (ref87) 2015
lea (ref59) 2016
ref7
yu (ref34) 2014
ref9
ref4
ref3
ref6
ref5
ref82
he (ref80) 2016
ref40
ref83
ref79
ref35
van den oord (ref75) 2016
ref37
ref36
ref31
ref30
ref77
ref33
ref32
ref2
ref1
ref38
yu (ref78) 2016
ref71
ref70
ref73
ref72
dauphin (ref76) 2017
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref66
liu (ref81) 2017
ref65
ref21
zhu (ref39) 2016
du (ref18) 2015
ref28
ref27
ref29
ref60
lecun (ref74) 1995
ref62
ref61
References_xml – ident: ref66
  doi: 10.1109/ICCV.2017.317
– ident: ref82
  doi: 10.1109/CVPR.2017.106
– ident: ref19
  doi: 10.1007/978-3-319-46487-9_50
– ident: ref44
  doi: 10.1109/LSP.2017.2690339
– ident: ref79
  doi: 10.1109/CVPR.2016.90
– ident: ref12
  doi: 10.1109/TPAMI.2017.2771306
– ident: ref37
  doi: 10.1007/978-3-319-46478-7_23
– start-page: 630
  year: 2016
  ident: ref80
  article-title: Identity mappings in deep residual networks
  publication-title: Proc Eur Conf Comput Vis
– ident: ref27
  doi: 10.1016/j.patcog.2016.05.019
– ident: ref1
  doi: 10.1007/978-3-319-46448-0_17
– ident: ref24
  doi: 10.1109/ICCV.2013.342
– ident: ref23
  doi: 10.5244/C.25.65
– ident: ref70
  doi: 10.1109/CVPR.2016.119
– year: 2017
  ident: ref68
  article-title: Skeleton boxes: Solving skeleton based action detection with a single deep convolutional neural network
  publication-title: ArXiv
– ident: ref25
  doi: 10.1007/s11263-013-0683-3
– ident: ref60
  doi: 10.1109/ICCV.2017.610
– ident: ref4
  doi: 10.1109/CVPR.2017.390
– ident: ref40
  doi: 10.1109/CVPR.2016.115
– ident: ref13
  doi: 10.1109/ICIP.2017.8296967
– ident: ref61
  doi: 10.1109/WACV.2015.138
– ident: ref17
  doi: 10.1109/WACV.2014.6836044
– ident: ref2
  doi: 10.1109/CVPR.2013.343
– ident: ref77
  doi: 10.1109/TPAMI.2017.2712608
– ident: ref35
  doi: 10.1109/TPAMI.2016.2640292
– ident: ref7
  doi: 10.24963/ijcai.2017/342
– start-page: 448
  year: 2015
  ident: ref87
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc 32nd Int Conf Mach Learn
– ident: ref9
  doi: 10.1016/j.cviu.2017.01.011
– year: 2014
  ident: ref22
  article-title: The lear submission at thumos 2014
– ident: ref32
  doi: 10.1109/ICPR.2014.772
– ident: ref47
  doi: 10.1109/ACPR.2015.7486569
– year: 2016
  ident: ref75
  article-title: Wavenet: A generative model for raw audio
  publication-title: CoRR
– ident: ref16
  doi: 10.1109/ICCV.2017.621
– ident: ref54
  doi: 10.1109/TMM.2017.2778559
– ident: ref46
  doi: 10.1145/2964284.2967191
– ident: ref28
  doi: 10.1016/j.jvcir.2013.03.001
– ident: ref14
  doi: 10.1109/WACV.2017.24
– start-page: 1414
  year: 2017
  ident: ref81
  article-title: Manifold warp segmentation of human action
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref50
  doi: 10.1007/978-3-319-10602-1_39
– ident: ref85
  doi: 10.1109/CVPR.2017.391
– ident: ref31
  doi: 10.1109/TPAMI.2015.2505295
– ident: ref64
  doi: 10.5244/C.31.52
– ident: ref69
  doi: 10.1109/WACV.2017.25
– year: 2016
  ident: ref59
  article-title: Temporal convolutional networks for action segmentation and detection
  publication-title: ArXiv
– ident: ref6
  doi: 10.1109/ICCV.2017.233
– year: 2017
  ident: ref76
  article-title: Language modeling with gated convolutional networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref33
  doi: 10.1109/CVPRW.2012.6239234
– ident: ref63
  doi: 10.1109/CVPR.2017.155
– ident: ref56
  doi: 10.1109/ICCV.2013.389
– ident: ref29
  doi: 10.1109/TPAMI.2013.198
– year: 2018
  ident: ref43
  article-title: Spatial temporal graph convolutional networks for skeleton-based action recognition
  publication-title: ArXiv
– ident: ref55
  doi: 10.1007/978-3-642-33718-5_21
– ident: ref72
  doi: 10.1109/CVPR.2018.00871
– ident: ref26
  doi: 10.1016/j.patrec.2014.04.011
– volume: 43
  start-page: 1318
  year: 2013
  ident: ref8
  article-title: Enhanced computer vision with microsoft kinect sensor: A review
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2265378
– ident: ref67
  doi: 10.1007/978-3-319-46478-7_13
– start-page: 50
  year: 2014
  ident: ref34
  article-title: Discriminative orderlet mining for real-time recognition of human-object interaction
  publication-title: Proc Asian Conf Comput Vis
– year: 2017
  ident: ref84
  article-title: Pku-mmd: A large scale benchmark for continuous multi-modal human action understanding
  publication-title: ArXiv
– ident: ref49
  doi: 10.1109/CVPRW.2012.6239175
– ident: ref62
  doi: 10.5244/C.31.92
– year: 1995
  ident: ref74
  article-title: Convolutional networks for images, speech, and time series
  publication-title: The Handbook of Brain Theory and Neural Networks
– ident: ref48
  doi: 10.1109/CVPR.2017.486
– ident: ref42
  doi: 10.1109/CVPRW.2017.207
– ident: ref30
  doi: 10.1109/CVPR.2014.82
– ident: ref21
  doi: 10.1109/TPAMI.2008.260
– ident: ref36
  doi: 10.1109/CVPRW.2012.6239233
– ident: ref52
  doi: 10.1109/ICCV.2015.365
– ident: ref15
  doi: 10.1109/TIP.2017.2785279
– ident: ref51
  doi: 10.1109/ICCV.2011.6126349
– ident: ref11
  doi: 10.1109/ICCV.2015.460
– ident: ref20
  doi: 10.1109/CVPR.2006.200
– ident: ref3
  doi: 10.1007/978-3-319-48881-3_28
– start-page: 3697
  year: 2016
  ident: ref39
  article-title: Co-occurrence feature learning for skeleton based action recognition using regularized deep lstm networks
  publication-title: Proc 13th AAAI Conf Artif Intell
– ident: ref45
  doi: 10.1109/CVPR.2017.137
– ident: ref5
  doi: 10.3758/BF03212378
– year: 2011
  ident: ref86
  article-title: Torch7: A matlab-like environment for machine learning
  publication-title: Proc NIPSW
– ident: ref38
  doi: 10.1016/B978-0-12-813445-0.00005-8
– year: 2018
  ident: ref41
  article-title: Spatio-temporal graph convolution for skeleton based action recognition
  publication-title: ArXiv
– ident: ref83
  doi: 10.1109/ICCV.2015.169
– ident: ref10
  doi: 10.1016/j.patcog.2015.11.019
– year: 2016
  ident: ref78
  article-title: Multi-scale context aggregation by dilated convolutions
  publication-title: Proc Int Conf Learn Representations
– ident: ref71
  doi: 10.1109/WACV.2017.29
– ident: ref57
  doi: 10.1109/CVPR.2016.293
– ident: ref53
  doi: 10.1109/TPAMI.2013.2297321
– ident: ref73
  doi: 10.1145/2522848.2532595
– ident: ref65
  doi: 10.1109/CVPR.2017.678
– ident: ref58
  doi: 10.1109/ICCV.2017.392
– start-page: 1110
  year: 2015
  ident: ref18
  article-title: Hierarchical recurrent neural network for skeleton based action recognition
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
SSID ssj0014503
Score 2.5940976
Snippet Action prediction is to recognize the class label of an ongoing activity when only a part of it is observed. In this paper, we focus on online action...
SourceID swepub
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1453
SubjectTerms Action prediction
dilated convolution
Microsoft Windows
Pattern recognition
Real-time systems
scale selection
Skeleton
skeleton data
sliding window
Task analysis
Three-dimensional displays
Videos
Title Skeleton-Based Online Action Prediction Using Scale Selection Network
URI https://ieeexplore.ieee.org/document/8640046
https://www.ncbi.nlm.nih.gov/pubmed/30762531
https://www.proquest.com/docview/2400102563
https://www.proquest.com/docview/2229117306
https://research.chalmers.se/publication/517262
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4BT-NhQGEjwKYg8balNLbjxI9lAnUTrZAAiTcrdmwhgVpE2xf-eu6cH4IKTTxEipKL1eTuemf77vsATpwXtiq8TLwXIsEIbZPCc5sIkUtZVcyajBqFxxM5uhX_7rK7Nfjd9cI450LxmevTadjLr2Z2SUtlp4Uki5PrsI4Tt7pXq9sxEFlgQcYMBj0cpxFtg8xAnd5cDcd_qYpL9RmxJWZExoO2jak_T9_Fo0Cw8lGuuQIkGoLPxRaM259d15w89JcL07cvK4iOn32vbfjaZKHxsDabHVhz0x5stQwPcePwPdh8A1e4C-fXDxikiHP4DGNfFdcwpfEwtEbEV8-05xNOQx0CjoLBJ74ORDt0dVJXnO_B7cX5zZ9R0tAwJFawfJFwwVzBC9R2yZlPmSkHqWfeeGtSWzo-8M7lnDmcXBbeFgQJWHBeZcLIUlVS8W-wMZ1N3T7EOUMJYxUeqSi5xGTZ4lg5yhPEko8gbZWhbYNRTlQZjzrMVQZKB11q0qVudBnBr-6Zpxqh47_Su_T9O8nm00dw1OpcN04811Rem1JOyCM47m6j-9GeSjl1syXKMIbhAv8mcYjvta10Y7cmFsFlbTzdHcL0bsCc7rW9D0w5cz13Os_Rp4xi-KwSWmDuqlWZZ5p74XklOSbb2cHHr3AIXxitBYQVoiPYWDwv3Q9MmBbmZ_CUVyyfDiM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB5V5QAcKLT8pBQIEpxQthvbcZIDhwVa7dLdVaVupd5M7NiqVLRbdXeF4Fl4Fd6NGceJoKq4VeIQKUocK4nH82PPfB_AG-uEqQsnE-eESNBCm6Rw3CRC5FLWNTM6o0LhyVQOT8Xns-xsA352tTDWWp98Znt06vfy64VZ01LZfiFJ4mRIoTyy379hgLZ8P_qEo_mWscOD2cdhEjgEEiNYvkq4YLbgBb5qxZlLma76qWNOO6NTU1ned9bmnFmMjApnCsKzKzivM6FlVdaSoJZQwd9BPyNjTXVYt0chMs-7jD4T6hQMXNqSnH65PzseTEaUN1b2GPEzZkT_g7MJgw2e_mUBPaXLTd7tNehSb-4Ot-BX-6OaLJeL3nqle-bHNQzJ__VPPoQHwc-OB83EeAQbdr4NWy2HRRxU2jbc_wOQcQcOTi7QDBOr8ge07nXcALHGA1_8ER9f0a6WP_WZFtgLmtf4xFMJ0dVpk1P_GE5v5dOewOZ8MbfPIM4ZttCmxCMVFZcYDhjsK8f2BCLlIkjbwVcmoLATGchX5aOxfqm87CiSHRVkJ4J33TOXDQbJP1vv0Hh3LcNQR7DXypgKamqpKIE4Ja-XR_C6u40KhnaNqrldrLENY2gQ0RBgF08b2ez6bkU6gnEjrN0dQi0PcFXnypx7LqClWlqV56g1dMnw2VIogd65Kqs8U9wJx2vJMZzIdm_-hFdwdzibjNV4ND16DvcYrXz49bA92Fxdre0LdA9X-qWfpTF8uW1h_g1LwGz4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skeleton-Based+Online+Action+Prediction+Using+Scale+Selection+Network&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Liu%2C+Jun&rft.au=Shahroudy%2C+Amir&rft.au=Wang%2C+Gang&rft.au=Duan%2C+Ling+Yu&rft.date=2020-06-01&rft.issn=0162-8828&rft.volume=42&rft.issue=6&rft.spage=1453&rft_id=info:doi/10.1109%2FTPAMI.2019.2898954&rft.externalDocID=oai_research_chalmers_se_77becb92_3094_4929_9a75_3f4f3d633265
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon