Metal-Air Batteries—A Review

Metal–air batteries are a promising technology that could be used in several applications, from portable devices to large-scale energy storage applications. This work is a comprehensive review of the recent progress made in metal-air batteries MABs. It covers the theoretical considerations and mecha...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 14; no. 21; p. 7373
Main Authors Olabi, Abdul Ghani, Sayed, Enas Taha, Wilberforce, Tabbi, Jamal, Aisha, Alami, Abdul Hai, Elsaid, Khaled, Rahman, Shek Mohammod Atiqure, Shah, Sheikh Khaleduzzaman, Abdelkareem, Mohammad Ali
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal–air batteries are a promising technology that could be used in several applications, from portable devices to large-scale energy storage applications. This work is a comprehensive review of the recent progress made in metal-air batteries MABs. It covers the theoretical considerations and mechanisms of MABs, electrochemical performance, and the progress made in the development of different structures of MABs. The operational concepts and recent developments in MABs are thoroughly discussed, with a particular focus on innovative materials design and cell structures. The classical research on traditional MABs was chosen and contrasted with metal–air flow systems, demonstrating the merits associated with the latter in terms of achieving higher energy density and efficiency, along with stability. Furthermore, the recent applications of MABs were discussed. Finally, a broad overview of challenges/opportunities and potential directions for commercializing this technology is carefully discussed. The primary focus of this investigation is to present a concise summary and to establish future directions in the development of MABs from traditional static to advanced flow technologies. A systematic analysis of this subject from a material and chemistry standpoint is presented as well.
AbstractList Metal–air batteries are a promising technology that could be used in several applications, from portable devices to large-scale energy storage applications. This work is a comprehensive review of the recent progress made in metal-air batteries MABs. It covers the theoretical considerations and mechanisms of MABs, electrochemical performance, and the progress made in the development of different structures of MABs. The operational concepts and recent developments in MABs are thoroughly discussed, with a particular focus on innovative materials design and cell structures. The classical research on traditional MABs was chosen and contrasted with metal–air flow systems, demonstrating the merits associated with the latter in terms of achieving higher energy density and efficiency, along with stability. Furthermore, the recent applications of MABs were discussed. Finally, a broad overview of challenges/opportunities and potential directions for commercializing this technology is carefully discussed. The primary focus of this investigation is to present a concise summary and to establish future directions in the development of MABs from traditional static to advanced flow technologies. A systematic analysis of this subject from a material and chemistry standpoint is presented as well.
Author Sayed, Enas Taha
Elsaid, Khaled
Rahman, Shek Mohammod Atiqure
Alami, Abdul Hai
Jamal, Aisha
Olabi, Abdul Ghani
Abdelkareem, Mohammad Ali
Wilberforce, Tabbi
Shah, Sheikh Khaleduzzaman
Author_xml – sequence: 1
  givenname: Abdul Ghani
  surname: Olabi
  fullname: Olabi, Abdul Ghani
– sequence: 2
  givenname: Enas Taha
  surname: Sayed
  fullname: Sayed, Enas Taha
– sequence: 3
  givenname: Tabbi
  surname: Wilberforce
  fullname: Wilberforce, Tabbi
– sequence: 4
  givenname: Aisha
  surname: Jamal
  fullname: Jamal, Aisha
– sequence: 5
  givenname: Abdul Hai
  orcidid: 0000-0001-9986-4324
  surname: Alami
  fullname: Alami, Abdul Hai
– sequence: 6
  givenname: Khaled
  orcidid: 0000-0003-2948-2624
  surname: Elsaid
  fullname: Elsaid, Khaled
– sequence: 7
  givenname: Shek Mohammod Atiqure
  orcidid: 0000-0002-8747-916X
  surname: Rahman
  fullname: Rahman, Shek Mohammod Atiqure
– sequence: 8
  givenname: Sheikh Khaleduzzaman
  orcidid: 0000-0001-8806-2529
  surname: Shah
  fullname: Shah, Sheikh Khaleduzzaman
– sequence: 9
  givenname: Mohammad Ali
  orcidid: 0000-0003-3248-9843
  surname: Abdelkareem
  fullname: Abdelkareem, Mohammad Ali
BookMark eNptkN1KAzEQhYMoWGtvfAApeCesJpnsZnNZiz-FiiB6HbL5kZR1U7Op4p0P4RP6JEYrKuLczDB8c85wdtBmFzqL0B7BRwACH9uOMEo4cNhAAyJEVRDMYfPXvI1Gfb_AuQAIAAzQ_qVNqi0mPo5PVEo2etu_vbxOxtf20dunXbTlVNvb0Vcfotuz05vpRTG_Op9NJ_NCM8pTARQ4cZxk69I1DaZCK1waoaEWxBnjKBXGVpRbXTHhDHaGMaUcMOywowaGaLbWNUEt5DL6exWfZVBefi5CvJMqJq9bKyljpib5sFaclZjXVXajta4JcY2mTdY6WGstY3hY2T7JRVjFLr8vaSkqTCvOeaYO15SOoe-jdd-uBMuPOOVPnBnGf2Dtk0o-dCkq3_538g50qHZI
CitedBy_id crossref_primary_10_1016_j_egyr_2023_12_067
crossref_primary_10_2298_HEMIND220201002D
crossref_primary_10_3390_magnetochemistry8120176
crossref_primary_10_1016_j_rechem_2023_101041
crossref_primary_10_1093_oxfmat_itac005
crossref_primary_10_1002_slct_202401617
crossref_primary_10_1016_j_rechem_2023_101048
crossref_primary_10_1002_EXP_20240054
crossref_primary_10_1016_j_coche_2022_100835
crossref_primary_10_1016_j_renene_2024_121966
crossref_primary_10_1016_j_est_2023_108694
crossref_primary_10_1088_2632_959X_ad585c
crossref_primary_10_1016_j_cej_2024_152805
crossref_primary_10_1016_j_asej_2023_102210
crossref_primary_10_1016_j_rser_2024_114675
crossref_primary_10_1016_j_nxener_2024_100202
crossref_primary_10_1149_1945_7111_ad1c16
crossref_primary_10_3390_batteries9030185
crossref_primary_10_1016_j_carbon_2024_119537
crossref_primary_10_1016_j_cplett_2023_140996
crossref_primary_10_1016_j_memori_2023_100097
crossref_primary_10_1016_j_electacta_2023_142964
crossref_primary_10_3390_en15134930
crossref_primary_10_5796_electrochemistry_24_00053
crossref_primary_10_1002_cssc_202402412
crossref_primary_10_1039_D2RA06741B
crossref_primary_10_3390_en17225768
crossref_primary_10_1016_j_ensm_2025_104009
crossref_primary_10_3390_met12020290
crossref_primary_10_3390_molecules28104193
crossref_primary_10_3390_batteries11010035
crossref_primary_10_1016_j_ifacol_2024_08_349
crossref_primary_10_3390_en17010140
crossref_primary_10_1016_j_jpowsour_2023_233349
crossref_primary_10_1016_j_pmatsci_2024_101322
crossref_primary_10_1007_s41918_024_00235_8
crossref_primary_10_1016_j_egyr_2024_04_041
crossref_primary_10_3390_batteries8120270
crossref_primary_10_1016_j_energy_2022_126408
crossref_primary_10_3390_en15114052
crossref_primary_10_1016_j_est_2025_116272
crossref_primary_10_1016_j_asems_2022_100037
crossref_primary_10_1021_acsaem_4c01118
crossref_primary_10_1021_acsomega_3c05385
crossref_primary_10_1002_admt_202201762
crossref_primary_10_3390_app14146263
crossref_primary_10_1016_j_matlet_2022_132438
crossref_primary_10_3390_batteries8110244
crossref_primary_10_1016_j_jallcom_2025_179617
crossref_primary_10_1016_j_matlet_2023_134237
crossref_primary_10_1002_aenm_202403406
crossref_primary_10_1016_j_ensm_2024_103538
crossref_primary_10_1051_e3sconf_202454011010
crossref_primary_10_1016_j_commatsci_2025_113721
crossref_primary_10_1016_j_cej_2024_151106
crossref_primary_10_1016_j_rineng_2024_103598
crossref_primary_10_1021_acs_chemrev_4c00553
crossref_primary_10_1016_j_est_2022_106075
crossref_primary_10_1021_acs_chemrev_4c00155
crossref_primary_10_1002_cey2_276
crossref_primary_10_3390_batteries9120580
crossref_primary_10_3390_en18040974
crossref_primary_10_1002_adma_202308326
crossref_primary_10_1038_s41598_022_26546_8
crossref_primary_10_1002_celc_202200222
crossref_primary_10_1016_j_oceram_2024_100667
crossref_primary_10_1016_j_jpowsour_2024_235140
crossref_primary_10_1002_inf2_12388
crossref_primary_10_1149_1945_7111_ad35ec
crossref_primary_10_1155_2023_5514803
crossref_primary_10_1016_j_jallcom_2025_178784
crossref_primary_10_1016_j_jelechem_2023_117800
crossref_primary_10_1088_1361_6463_ac7bb5
crossref_primary_10_1080_24701556_2024_2354481
crossref_primary_10_1149_1945_7111_ac9f7b
crossref_primary_10_1016_j_cej_2023_143706
crossref_primary_10_1039_D3FD00080J
crossref_primary_10_1016_j_microc_2024_111972
crossref_primary_10_1002_er_7934
crossref_primary_10_1007_s40820_024_01328_1
crossref_primary_10_1016_j_energy_2022_123617
crossref_primary_10_1002_anie_202304366
crossref_primary_10_1021_acs_energyfuels_2c02453
crossref_primary_10_1016_j_jallcom_2022_166932
crossref_primary_10_1016_j_mtcomm_2024_111320
crossref_primary_10_1021_acsami_4c16113
crossref_primary_10_3390_surfaces6030015
crossref_primary_10_3390_en16031415
crossref_primary_10_3390_ma15020458
crossref_primary_10_4028_p_Ps19eu
crossref_primary_10_1016_j_est_2024_111974
crossref_primary_10_3390_batteries9020135
crossref_primary_10_3390_designs8040061
crossref_primary_10_3390_ma17102429
crossref_primary_10_1002_ange_202304366
crossref_primary_10_1016_j_egyr_2024_06_007
crossref_primary_10_1016_j_energy_2022_123987
Cites_doi 10.20944/preprints201906.0077.v1
10.1016/j.jpowsour.2020.228900
10.1002/aenm.201700869
10.1016/j.ensm.2021.04.022
10.1039/C9TA05094A
10.1149/2.062310jes
10.1109/ACCESS.2020.2988011
10.1007/s10668-021-01322-2
10.1016/j.jenvman.2020.111415
10.1002/celc.201900518
10.3390/app9142787
10.1016/j.jpowsour.2013.01.141
10.1016/j.jpowsour.2013.09.029
10.3390/en13092275
10.1039/C3CS60248F
10.1038/srep07665
10.1016/j.jpowsour.2013.11.020
10.1002/9781119713173
10.1016/j.chemosphere.2021.130001
10.1016/j.mtadv.2019.100031
10.1002/advs.201700691
10.5772/intechopen.77109
10.1016/j.ijhydene.2018.02.170
10.1021/jz1005384
10.1002/cjce.23616
10.1016/j.jpowsour.2016.09.142
10.1021/acs.jpcc.6b06674
10.1016/j.scitotenv.2020.141803
10.1016/j.jpowsour.2014.12.049
10.1016/j.matchemphys.2018.07.037
10.1016/j.cej.2021.131888
10.1016/j.scitotenv.2020.141989
10.1016/j.jenvman.2021.111999
10.1039/C4TA04721D
10.3390/en14113244
10.1007/s10800-013-0620-8
10.1073/pnas.1901329116
10.1016/j.renene.2019.12.071
10.1039/c3ee24299d
10.1007/s10971-013-3247-7
10.1016/j.energy.2021.119849
10.1039/C3MH00059A
10.1021/acsenergylett.7b00168
10.1021/jz300243r
10.1016/j.est.2017.12.004
10.1016/j.jclepro.2021.126008
10.1016/j.electacta.2017.10.063
10.1016/j.nanoen.2018.03.013
10.1016/j.jiec.2015.08.004
10.1016/j.nanoen.2016.06.033
10.1002/9783527807666
10.1007/978-0-387-34445-4
10.1016/j.electacta.2016.12.120
10.1016/j.cej.2017.11.069
10.1007/s11837-017-2404-9
10.1149/1.1836378
10.1016/j.scitotenv.2020.141046
10.1016/j.enconman.2021.114434
10.3390/su12125078
10.1016/j.wasman.2011.10.034
10.1016/j.ssnmr.2021.101731
10.1007/978-1-4615-0531-0_9
10.3390/en14175241
10.1533/9780857097378
10.1039/C6TA04510C
10.1016/j.jpowsour.2019.226919
10.1016/j.matt.2019.05.008
10.1039/C7MH00358G
10.1016/j.jpowsour.2014.03.149
10.1016/j.energy.2020.118954
10.1039/C9TA04735B
10.1016/j.memsci.2019.117739
10.3390/batteries4010005
10.1016/j.jpowsour.2020.229445
10.1002/smtd.201700231
10.1016/j.rser.2020.110085
10.1016/j.joule.2021.05.016
10.1002/aenm.202000089
10.1021/ja312059q
10.1007/s10800-018-1233-z
10.1016/j.matchemphys.2020.123101
10.1016/B978-1-78242-013-2.00012-1
10.1039/C4CS00015C
10.1007/s42452-020-2925-7
10.1016/j.jpowsour.2010.02.070
10.1109/ACCESS.2020.2964896
10.1021/acsami.8b04974
10.1016/j.mtchem.2019.03.006
10.1149/2.0521711jes
10.1016/j.pecs.2019.100805
10.1016/j.matpr.2021.01.002
10.1002/cplu.201402238
10.1016/j.ssi.2011.12.002
10.1149/2.0431607jes
10.1007/s12209-019-00231-w
10.3390/buildings11090383
10.1016/0378-7753(79)80001-4
10.1016/j.gee.2017.06.006
10.1002/er.3294
10.1016/j.ijhydene.2018.01.140
10.1016/j.elecom.2020.106713
10.1002/advs.201902866
10.1016/j.rser.2017.05.001
10.6000/1929-6002.2013.02.04.1
10.1002/er.5179
10.1016/j.ensm.2020.03.015
10.1016/j.electacta.2020.137592
10.3389/fenrg.2018.00069
10.1016/j.apenergy.2014.04.095
10.1002/er.5791
10.1016/j.jpowsour.2018.11.042
10.1016/j.elecom.2015.10.004
10.1002/adfm.201706675
10.1016/j.jpowsour.2021.229722
10.1016/j.ensm.2019.12.011
10.1039/C4CP02533D
10.1039/C5CY01656H
10.1002/aenm.201801396
10.1039/C8EE01419A
10.1016/j.coesh.2020.01.002
10.1016/j.jpowsour.2012.01.105
10.1016/j.energy.2020.118987
10.1016/j.apenergy.2021.116690
10.1039/c3cc43477j
10.1016/j.electacta.2019.135021
10.1016/j.jpowsour.2014.09.177
10.1021/acsenergylett.9b01939
10.1016/j.ijhydene.2017.02.136
10.1016/j.rser.2021.111626
10.1016/j.nanoen.2017.06.045
10.3390/en13174514
10.1021/acs.nanolett.0c01670
10.1039/C6NR02622B
10.1016/j.cej.2020.128006
10.1051/e3sconf/201913606035
10.1016/j.coelec.2017.10.014
10.1016/j.electacta.2021.138133
10.1016/j.scitotenv.2020.144243
10.1126/science.abd3352
10.1149/2.0711706jes
10.1016/j.scitotenv.2020.143203
10.1016/j.jelechem.2021.115112
10.1109/EPEC.2009.5420955
10.1016/j.procbio.2020.11.002
10.1007/s41918-020-00065-4
10.3762/bjnano.6.105
10.1021/acsami.8b13751
10.1038/s41586-021-03482-7
10.1149/2.086202jes
10.1002/chem.201804339
10.1039/C4TA02176B
10.1016/j.aej.2021.06.025
10.1016/j.rser.2021.111771
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en14217373
DatabaseName CrossRef
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_244d8140f8a745078629c28c811fbc2b
10_3390_en14217373
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c427t-32371f713735fbb029ca05d9c3891fddf229de627ec649fd0fd44aaf340f0f2d3
IEDL.DBID DOA
ISSN 1996-1073
IngestDate Wed Aug 27 01:29:13 EDT 2025
Mon Jun 30 11:13:53 EDT 2025
Tue Jul 01 01:18:29 EDT 2025
Thu Apr 24 22:56:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-32371f713735fbb029ca05d9c3891fddf229de627ec649fd0fd44aaf340f0f2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2948-2624
0000-0002-8747-916X
0000-0003-3248-9843
0000-0001-9986-4324
0000-0001-8806-2529
OpenAccessLink https://doaj.org/article/244d8140f8a745078629c28c811fbc2b
PQID 2596026777
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_244d8140f8a745078629c28c811fbc2b
proquest_journals_2596026777
crossref_primary_10_3390_en14217373
crossref_citationtrail_10_3390_en14217373
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Cheng (ref_21) 2019; 4
Zhang (ref_6) 2021; 493
Wang (ref_102) 2014; 43
Pan (ref_116) 2018; 5
Cohn (ref_79) 2010; 195
Narayanan (ref_84) 2012; 216
ref_12
Lai (ref_141) 2021; 214
ref_99
Zhao (ref_161) 2018; 334
Imanishi (ref_71) 2019; 4
ref_132
ref_135
ref_95
ref_19
Sayed (ref_155) 2020; 748
Zhang (ref_29) 2014; 251
Liu (ref_60) 2018; 10
ref_16
Danner (ref_43) 2014; 264
Olabi (ref_5) 2021; 214
Ahmed (ref_144) 2020; 8
Sayed (ref_157) 2021; 275
Adebayo (ref_136) 2021; 23
Xie (ref_118) 2020; 596
Sahgong (ref_33) 2015; 61
Zhao (ref_108) 2018; 43
Abdelkareem (ref_103) 2020; 77
Shinde (ref_152) 2022; 428
Rahman (ref_25) 2013; 160
Liu (ref_30) 2021; 417
Liu (ref_48) 2018; 2
Christensen (ref_77) 2011; 159
Sun (ref_162) 2019; 7
McKerracher (ref_51) 2015; 80
ref_23
ref_120
Palacin (ref_90) 2019; 7
Abdelkareem (ref_131) 2021; 752
Zhang (ref_22) 2021; 289
Abdelkareem (ref_104) 2021; 45
Abraham (ref_39) 1996; 143
Sun (ref_122) 2021; 378
Fan (ref_150) 2020; 26
Gauthier (ref_11) 2021; 113
Gelman (ref_78) 2014; 2
ref_158
ref_70
Zhang (ref_109) 2019; 97
Otaegui (ref_74) 2014; 247
Girishkumar (ref_37) 2010; 1
Mladenova (ref_10) 2021; 887
Li (ref_28) 2017; 7
Wang (ref_107) 2016; 6
Zhao (ref_61) 2018; 218
Komilis (ref_54) 2012; 32
Qu (ref_119) 2017; 39
Ren (ref_85) 2013; 135
Hannan (ref_17) 2017; 78
ref_160
Zhang (ref_124) 2019; 6
Elavarasan (ref_134) 2020; 8
Cheng (ref_121) 2018; 47
Li (ref_52) 2014; 43
Leong (ref_36) 2022; 154
Srimuk (ref_156) 2020; 115
ref_147
Tan (ref_110) 2015; 278
Tran (ref_114) 2019; 327
Bansal (ref_35) 2020; 2
Reinsberg (ref_81) 2016; 120
ref_140
ref_142
ref_87
Adelhelm (ref_34) 2015; 6
ref_86
ref_143
Vegge (ref_44) 2017; 6
Li (ref_27) 2016; 27
Cai (ref_100) 2017; 4
Mohsin (ref_139) 2021; 284
Zhang (ref_2) 2021; 493
Durmus (ref_80) 2017; 225
Khan (ref_59) 2017; 257
Sayed (ref_128) 2021; 221
Pei (ref_45) 2014; 128
Chen (ref_7) 2020; 134
Gasteiger (ref_24) 2016; 163
Zhang (ref_148) 2020; 149
Mainar (ref_97) 2018; 15
ref_58
Najam (ref_66) 2019; 438
ref_56
(ref_138) 2021; 151
ref_55
Sumathi (ref_65) 2014; 69
Han (ref_112) 2018; 8
Kang (ref_57) 2012; 206
Mutlu (ref_68) 2017; 42
Salameh (ref_151) 2021; 244
Wang (ref_105) 2016; 8
Irfan (ref_149) 2021; 292
Ye (ref_117) 2020; 28
Chawla (ref_69) 2019; 12
Wilberforce (ref_126) 2021; 761
Abdelkareem (ref_127) 2021; 769
Liu (ref_13) 2020; 27
Nagy (ref_14) 2021; 368
Bi (ref_32) 2020; 20
Durmus (ref_50) 2020; 10
Maghrabie (ref_133) 2021; 45
Liu (ref_154) 2017; 2
Sumboja (ref_46) 2016; 332
(ref_53) 2018; 11
Shiga (ref_82) 2013; 49
Liu (ref_113) 2018; 28
Rahman (ref_72) 2014; 44
Rabaia (ref_137) 2021; 754
Horstmann (ref_42) 2013; 6
Mokhtar (ref_31) 2015; 32
Chen (ref_62) 2018; 24
Hammer (ref_125) 2015; 273
McCloskey (ref_40) 2012; 3
ref_111
Li (ref_18) 2017; 69
Han (ref_89) 2018; 43
Zha (ref_98) 2013; 2
Cai (ref_9) 2020; 251
Nazir (ref_145) 2020; 13
Ghahari (ref_159) 2019; 412
Lin (ref_73) 2021; 39
Zhang (ref_3) 2020; 44
Han (ref_88) 2021; 101
Sankarasubramanian (ref_96) 2019; 116
Offer (ref_115) 2018; 6
Gittleman (ref_130) 2021; 5
Jung (ref_106) 2015; 5
Hameer (ref_153) 2015; 39
Yu (ref_94) 2017; 2
Jung (ref_76) 2016; 4
Pichler (ref_123) 2018; 48
Iqbal (ref_146) 2021; 277
ref_47
Wang (ref_75) 2019; 1
Jiao (ref_129) 2021; 595
McKerracher (ref_64) 2017; 164
Blurton (ref_38) 1979; 4
Khan (ref_93) 2020; 7
ref_101
ref_1
Lai (ref_63) 2018; 10
Das (ref_83) 2014; 2
Lopes (ref_20) 2020; 369
ref_49
Kumar (ref_8) 2021; 43
Marini (ref_15) 2021; 482
Kar (ref_92) 2014; 16
Mori (ref_91) 2020; 3
ref_4
Egan (ref_67) 2013; 236
Zhang (ref_26) 2014; 1
Monroe (ref_41) 2017; 164
References_xml – ident: ref_58
  doi: 10.20944/preprints201906.0077.v1
– volume: 482
  start-page: 228900
  year: 2021
  ident: ref_15
  article-title: Rational design of a low-cost, durable and efficient bifunctional oxygen electrode for rechargeable metal-air batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228900
– volume: 7
  start-page: 1700869
  year: 2017
  ident: ref_28
  article-title: Current progress on rechargeable magnesium–air battery
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700869
– volume: 39
  start-page: 225
  year: 2021
  ident: ref_73
  article-title: High-performance Li-air battery after limiting inter-electrode crosstalk
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.04.022
– volume: 7
  start-page: 18183
  year: 2019
  ident: ref_162
  article-title: Recent advances and challenges in divalent and multivalent metal electrodes for metal–air batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA05094A
– volume: 160
  start-page: A1759
  year: 2013
  ident: ref_25
  article-title: High energy density metal-air batteries: A review
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.062310jes
– volume: 8
  start-page: 74432
  year: 2020
  ident: ref_134
  article-title: A comprehensive review on renewable energy development, challenges, and policies of leading Indian states with an international perspective
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988011
– volume: 23
  start-page: 16057
  year: 2021
  ident: ref_136
  article-title: Impact of renewable energy consumption, globalization, and technological innovation on environmental degradation in Japan: Application of wavelet tools
  publication-title: Environ. Dev. Sustain.
  doi: 10.1007/s10668-021-01322-2
– volume: 277
  start-page: 111415
  year: 2021
  ident: ref_146
  article-title: Evaluation of the nanofluid-assisted desalination through solar stills in the last decade
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2020.111415
– volume: 6
  start-page: 3175
  year: 2019
  ident: ref_124
  article-title: Polarization Effects of a Rayon and Polyacrylonitrile Based Graphite Felt for Iron-Chromium Redox Flow Batteries
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201900518
– ident: ref_16
  doi: 10.3390/app9142787
– ident: ref_132
– ident: ref_1
– volume: 236
  start-page: 293
  year: 2013
  ident: ref_67
  article-title: Developments in electrode materials and electrolytes for aluminium–air batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.01.141
– volume: 247
  start-page: 749
  year: 2014
  ident: ref_74
  article-title: Performance and stability of a liquid anode high-temperature metal–air battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.09.029
– ident: ref_120
  doi: 10.3390/en13092275
– volume: 43
  start-page: 7746
  year: 2014
  ident: ref_102
  article-title: Oxygen electrocatalysts in metal–air batteries: From aqueous to nonaqueous electrolytes
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60248F
– volume: 5
  start-page: 7665
  year: 2015
  ident: ref_106
  article-title: One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries
  publication-title: Sci. Rep.
  doi: 10.1038/srep07665
– ident: ref_4
– volume: 251
  start-page: 470
  year: 2014
  ident: ref_29
  article-title: All-solid-state Al–air batteries with polymer alkaline gel electrolyte
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.11.020
– ident: ref_140
  doi: 10.1002/9781119713173
– volume: 275
  start-page: 130001
  year: 2021
  ident: ref_157
  article-title: Faradic capacitive deionization (FCDI) for desalination and ion removal from wastewater
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130001
– volume: 4
  start-page: 100031
  year: 2019
  ident: ref_71
  article-title: Perspectives and challenges of rechargeable lithium–air batteries
  publication-title: Mater. Today Adv.
  doi: 10.1016/j.mtadv.2019.100031
– volume: 5
  start-page: 1700691
  year: 2018
  ident: ref_116
  article-title: Advanced architectures and relatives of air electrodes in Zn–air batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700691
– ident: ref_101
  doi: 10.5772/intechopen.77109
– volume: 43
  start-page: 7764
  year: 2018
  ident: ref_89
  article-title: Microbial electrolysis cell powered by an aluminum-air battery for hydrogen generation, in-situ coagulant production and wastewater treatment
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2018.02.170
– volume: 1
  start-page: 2193
  year: 2010
  ident: ref_37
  article-title: Lithium− air battery: Promise and challenges
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz1005384
– volume: 97
  start-page: 2984
  year: 2019
  ident: ref_109
  article-title: Design and fabrication of non-noble metal catalyst-based air-cathodes for metal-air battery
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.23616
– volume: 332
  start-page: 330
  year: 2016
  ident: ref_46
  article-title: Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.09.142
– volume: 120
  start-page: 22179
  year: 2016
  ident: ref_81
  article-title: Calcium–Oxygen Batteries as a Promising Alternative to Sodium–Oxygen Batteries
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b06674
– volume: 752
  start-page: 141803
  year: 2021
  ident: ref_131
  article-title: Environmental aspects of fuel cells: A review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141803
– volume: 278
  start-page: 133
  year: 2015
  ident: ref_110
  article-title: Discharge product morphology versus operating temperature in non-aqueous lithium-air batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.12.049
– volume: 218
  start-page: 256
  year: 2018
  ident: ref_61
  article-title: Effect of phosphate and vanadate as electrolyte additives on the performance of Mg-air batteries
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2018.07.037
– volume: 428
  start-page: 131888
  year: 2022
  ident: ref_152
  article-title: Nitridation-induced in situ coupling of Ni-Co4N particles in nitrogen-doped carbon nanosheets for hybrid supercapacitors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131888
– volume: 754
  start-page: 141989
  year: 2021
  ident: ref_137
  article-title: Environmental impacts of solar energy systems: A review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141989
– volume: 284
  start-page: 111999
  year: 2021
  ident: ref_139
  article-title: Assessing the impact of transition from nonrenewable to renewable energy consumption on economic growth-environmental nexus from developing Asian economies
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.111999
– volume: 2
  start-page: 20237
  year: 2014
  ident: ref_78
  article-title: Aluminum–air battery based on an ionic liquid electrolyte
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04721D
– ident: ref_143
  doi: 10.3390/en14113244
– volume: 44
  start-page: 5
  year: 2014
  ident: ref_72
  article-title: A review of high energy density lithium–air battery technology
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-013-0620-8
– volume: 116
  start-page: 14899
  year: 2019
  ident: ref_96
  article-title: Tuning anion solvation energetics enhances potassium–oxygen battery performance
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1901329116
– volume: 149
  start-page: 577
  year: 2020
  ident: ref_148
  article-title: Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.12.071
– ident: ref_47
– volume: 6
  start-page: 1299
  year: 2013
  ident: ref_42
  article-title: Precipitation in aqueous lithium–oxygen batteries: A model-based analysis
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee24299d
– ident: ref_86
– volume: 69
  start-page: 480
  year: 2014
  ident: ref_65
  article-title: Polyacrylamide-methanesulfonic acid gel polymer electrolytes for tin-air battery
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-013-3247-7
– volume: 221
  start-page: 119849
  year: 2021
  ident: ref_128
  article-title: Graphitic carbon nitride/carbon brush composite as a novel anode for yeast-based microbial fuel cells
  publication-title: Energy
  doi: 10.1016/j.energy.2021.119849
– volume: 1
  start-page: 196
  year: 2014
  ident: ref_26
  article-title: Magnesium–air batteries: From principle to application
  publication-title: Mater. Horiz.
  doi: 10.1039/C3MH00059A
– volume: 2
  start-page: 1050
  year: 2017
  ident: ref_94
  article-title: A voltage-enhanced, low-cost aqueous iron–air battery enabled with a mediator-ion solid electrolyte
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00168
– volume: 3
  start-page: 997
  year: 2012
  ident: ref_40
  article-title: Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz300243r
– volume: 15
  start-page: 304
  year: 2018
  ident: ref_97
  article-title: An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2017.12.004
– volume: 292
  start-page: 126008
  year: 2021
  ident: ref_149
  article-title: An assessment of consumers’ willingness to utilize solar energy in China: End-users’ perspective
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126008
– volume: 257
  start-page: 328
  year: 2017
  ident: ref_59
  article-title: Three-dimensional SnS2 nanopetals for hybrid sodium-air batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.10.063
– volume: 47
  start-page: 361
  year: 2018
  ident: ref_121
  article-title: Efficient unitary oxygen electrode for air-based flow batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.013
– volume: 32
  start-page: 1
  year: 2015
  ident: ref_31
  article-title: Recent developments in materials for aluminum–air batteries: A review
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2015.08.004
– volume: 27
  start-page: 8
  year: 2016
  ident: ref_27
  article-title: Mixed-phase mullite electrocatalyst for pH-neutral oxygen reduction in magnesium-air batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.06.033
– ident: ref_49
  doi: 10.1002/9783527807666
– ident: ref_56
  doi: 10.1007/978-0-387-34445-4
– volume: 225
  start-page: 215
  year: 2017
  ident: ref_80
  article-title: Long run discharge, performance and efficiency of primary Silicon–air cells with alkaline electrolyte
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.12.120
– volume: 334
  start-page: 1270
  year: 2018
  ident: ref_161
  article-title: Biomass-derived N-doped porous carbon as electrode materials for Zn-air battery powered capacitive deionization
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.11.069
– volume: 69
  start-page: 1484
  year: 2017
  ident: ref_18
  article-title: Toward low-cost, high-energy density, and high-power density lithium-ion batteries
  publication-title: Jom
  doi: 10.1007/s11837-017-2404-9
– volume: 143
  start-page: 1
  year: 1996
  ident: ref_39
  article-title: A polymer electrolyte-based rechargeable lithium/oxygen battery
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1836378
– volume: 748
  start-page: 141046
  year: 2020
  ident: ref_155
  article-title: Recent progress in environmentally friendly bio-electrochemical devices for simultaneous water desalination and wastewater treatment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141046
– volume: 244
  start-page: 114434
  year: 2021
  ident: ref_151
  article-title: Optimal selection and management of hybrid renewable energy System: Neom city as a case study
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.114434
– ident: ref_135
  doi: 10.3390/su12125078
– volume: 32
  start-page: 372
  year: 2012
  ident: ref_54
  article-title: Revisiting the elemental composition and the calorific value of the organic fraction of municipal solid wastes
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2011.10.034
– volume: 113
  start-page: 101731
  year: 2021
  ident: ref_11
  article-title: Operando NMR characterization of a metal-air battery using a double-compartment cell design
  publication-title: Solid State Nucl. Magn. Reson.
  doi: 10.1016/j.ssnmr.2021.101731
– volume: 45
  start-page: 101151
  year: 2021
  ident: ref_133
  article-title: Building-integrated photovoltaic/thermal (BIPVT) systems: Applications and challenges
  publication-title: Sustain. Energy Technol. Assess.
– ident: ref_55
  doi: 10.1007/978-1-4615-0531-0_9
– ident: ref_142
  doi: 10.3390/en14175241
– ident: ref_70
  doi: 10.1533/9780857097378
– volume: 4
  start-page: 14050
  year: 2016
  ident: ref_76
  article-title: Rechargeable lithium–air batteries: A perspective on the development of oxygen electrodes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04510C
– volume: 438
  start-page: 226919
  year: 2019
  ident: ref_66
  article-title: Enhancing by nano-engineering: Hierarchical architectures as oxygen reduction/evolution reactions for zinc-air batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.226919
– volume: 1
  start-page: 565
  year: 2019
  ident: ref_75
  article-title: Materials design for rechargeable metal-air batteries
  publication-title: Matter
  doi: 10.1016/j.matt.2019.05.008
– volume: 4
  start-page: 945
  year: 2017
  ident: ref_100
  article-title: Recent advances in air electrodes for Zn–air batteries: Electrocatalysis and structural design
  publication-title: Mater. Horiz.
  doi: 10.1039/C7MH00358G
– volume: 264
  start-page: 320
  year: 2014
  ident: ref_43
  article-title: Reaction and transport in Ag/Ag2O gas diffusion electrodes of aqueous Li–O2 batteries: Experiments and modeling
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.03.149
– ident: ref_160
– ident: ref_95
– volume: 214
  start-page: 118954
  year: 2021
  ident: ref_141
  article-title: Economic and financial appraisal of novel large-scale energy storage technologies
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118954
– volume: 7
  start-page: 20519
  year: 2019
  ident: ref_90
  article-title: Rechargeable aqueous electrolyte batteries: From univalent to multivalent cation chemistry
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04735B
– volume: 596
  start-page: 117739
  year: 2020
  ident: ref_118
  article-title: A sandwich-type composite polymer electrolyte for all-solid-state lithium metal batteries with high areal capacity and cycling stability
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.117739
– ident: ref_23
  doi: 10.3390/batteries4010005
– volume: 493
  start-page: 229445
  year: 2021
  ident: ref_2
  article-title: Cost-effective iron-based aqueous redox flow batteries for large-scale energy storage application: A review
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.229445
– volume: 2
  start-page: 1700231
  year: 2018
  ident: ref_48
  article-title: Flexible metal–air batteries: Progress, challenges, and perspectives
  publication-title: Small Methods
  doi: 10.1002/smtd.201700231
– volume: 134
  start-page: 110085
  year: 2020
  ident: ref_7
  article-title: A review on recent advancement of nano-structured-fiber-based metal-air batteries and future perspective
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110085
– volume: 5
  start-page: 1660
  year: 2021
  ident: ref_130
  article-title: Proton conductors for heavy-duty vehicle fuel cells
  publication-title: Joule
  doi: 10.1016/j.joule.2021.05.016
– volume: 10
  start-page: 2000089
  year: 2020
  ident: ref_50
  article-title: Side by Side Battery Technologies with Lithium-Ion Based Batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000089
– volume: 135
  start-page: 2923
  year: 2013
  ident: ref_85
  article-title: A low-overpotential potassium–oxygen battery based on potassium superoxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312059q
– volume: 48
  start-page: 1043
  year: 2018
  ident: ref_123
  article-title: The impact of operating conditions on component and electrode development for zinc-air flow batteries
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-018-1233-z
– volume: 251
  start-page: 123101
  year: 2020
  ident: ref_9
  article-title: Performance of metal borides as anode in metal boride-air battery
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2020.123101
– ident: ref_111
  doi: 10.1016/B978-1-78242-013-2.00012-1
– volume: 43
  start-page: 5257
  year: 2014
  ident: ref_52
  article-title: Recent advances in zinc–air batteries
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00015C
– volume: 2
  start-page: 1
  year: 2020
  ident: ref_35
  article-title: Silicon–air batteries: Progress, applications and challenges
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-2925-7
– volume: 195
  start-page: 4963
  year: 2010
  ident: ref_79
  article-title: Study and development of non-aqueous silicon-air battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.02.070
– volume: 8
  start-page: 10857
  year: 2020
  ident: ref_144
  article-title: Grid integration challenges of wind energy: A review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2964896
– volume: 10
  start-page: 19730
  year: 2018
  ident: ref_60
  article-title: High-performance and recyclable Al-air coin cells based on eco-friendly chitosan hydrogel membranes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b04974
– volume: 12
  start-page: 324
  year: 2019
  ident: ref_69
  article-title: Recent advances in air-battery chemistries
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2019.03.006
– volume: 164
  start-page: E3547
  year: 2017
  ident: ref_41
  article-title: Does oxygen transport affect the cell voltages of metal/air batteries?
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0521711jes
– volume: 77
  start-page: 100805
  year: 2020
  ident: ref_103
  article-title: Nonprecious anodic catalysts for low-molecular-hydrocarbon fuel cells: Theoretical consideration and current progress
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2019.100805
– volume: 43
  start-page: 2839
  year: 2021
  ident: ref_8
  article-title: Application of bifunctional catalysts and metal organic frameworks in metal air batteries for renewable power conversion applications
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2021.01.002
– volume: 80
  start-page: 323
  year: 2015
  ident: ref_51
  article-title: A review of the iron–air secondary battery for energy storage
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201402238
– volume: 216
  start-page: 105
  year: 2012
  ident: ref_84
  article-title: Materials challenges and technical approaches for realizing inexpensive and robust iron–air batteries for large-scale energy storage
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2011.12.002
– volume: 163
  start-page: X3
  year: 2016
  ident: ref_24
  article-title: Erratum: Review—Electromobility: Batteries or Fuel Cells? [J. Electrochem. Soc., 162, A2605 (2015)]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0431607jes
– volume: 26
  start-page: 92
  year: 2020
  ident: ref_150
  article-title: Battery technologies for grid-level large-scale electrical energy storage
  publication-title: Trans. Tianjin Univ.
  doi: 10.1007/s12209-019-00231-w
– ident: ref_147
  doi: 10.3390/buildings11090383
– volume: 4
  start-page: 263
  year: 1979
  ident: ref_38
  article-title: Metal/air batteries: Their status and potential—A review
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(79)80001-4
– volume: 2
  start-page: 246
  year: 2017
  ident: ref_154
  article-title: A comprehensive review on recent progress in aluminum–air batteries
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2017.06.006
– volume: 39
  start-page: 1179
  year: 2015
  ident: ref_153
  article-title: A review of large-scale electrical energy storage
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.3294
– volume: 43
  start-page: 5001
  year: 2018
  ident: ref_108
  article-title: PdCo bimetallic nano-electrocatalyst as effective air-cathode for aqueous metal-air batteries
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.01.140
– volume: 115
  start-page: 106713
  year: 2020
  ident: ref_156
  article-title: High-performance ion removal via zinc–air desalination
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2020.106713
– volume: 7
  start-page: 1902866
  year: 2020
  ident: ref_93
  article-title: Can hybrid Na–air batteries outperform nonaqueous Na–O2 batteries?
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201902866
– volume: 78
  start-page: 834
  year: 2017
  ident: ref_17
  article-title: A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.05.001
– volume: 2
  start-page: 293
  year: 2013
  ident: ref_98
  article-title: Review on air cathode in Li-air batteries
  publication-title: J. Technol. Innov. Renew. Energy
  doi: 10.6000/1929-6002.2013.02.04.1
– volume: 44
  start-page: 3839
  year: 2020
  ident: ref_3
  article-title: Investigations on physicochemical properties and electrochemical performance of graphite felt and carbon felt for iron-chromium redox flow battery
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5179
– volume: 28
  start-page: 364
  year: 2020
  ident: ref_117
  article-title: Recent advances in flexible fiber-shaped metal-air batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.03.015
– volume: 368
  start-page: 137592
  year: 2021
  ident: ref_14
  article-title: Environmentally friendly Zn-air rechargeable battery with heavy metal free charcoal based air cathode
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.137592
– volume: 6
  start-page: 69
  year: 2018
  ident: ref_115
  article-title: New opportunities for air cathode batteries; in-situ neutron diffraction measurements
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2018.00069
– volume: 128
  start-page: 315
  year: 2014
  ident: ref_45
  article-title: Technologies for extending zinc–air battery’s cyclelife: A review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.04.095
– volume: 45
  start-page: 1587
  year: 2021
  ident: ref_104
  article-title: Co-decorated reduced graphene/titanium nitride composite as an active oxygen reduction reaction catalyst with superior stability
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5791
– volume: 412
  start-page: 197
  year: 2019
  ident: ref_159
  article-title: Metal-air desalination battery: Concurrent energy generation and water desalination
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.11.042
– volume: 61
  start-page: 53
  year: 2015
  ident: ref_33
  article-title: Rechargeable aqueous Na–air batteries: Highly improved voltage efficiency by use of catalysts
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2015.10.004
– volume: 28
  start-page: 1706675
  year: 2018
  ident: ref_113
  article-title: Controllable urchin-like NiCo2S4 microsphere synergized with sulfur-doped graphene as bifunctional catalyst for superior rechargeable Zn–air battery
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706675
– volume: 493
  start-page: 229722
  year: 2021
  ident: ref_6
  article-title: Nanostructured arrays for metal–ion battery and metal–air battery applications
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.229722
– volume: 27
  start-page: 478
  year: 2020
  ident: ref_13
  article-title: Aqueous metal-air batteries: Fundamentals and applications
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.12.011
– volume: 16
  start-page: 18658
  year: 2014
  ident: ref_92
  article-title: Ionic liquid electrolytes as a platform for rechargeable metal–air batteries: A perspective
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP02533D
– volume: 6
  start-page: 434
  year: 2016
  ident: ref_107
  article-title: Hydrangea-like NiCo2S4 hollow microspheres as an advanced bifunctional electrocatalyst for aqueous metal/air batteries
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C5CY01656H
– volume: 8
  start-page: 1801396
  year: 2018
  ident: ref_112
  article-title: Metal–air batteries: From static to flow system
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801396
– volume: 11
  start-page: 2696
  year: 2018
  ident: ref_53
  article-title: Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01419A
– volume: 13
  start-page: 85
  year: 2020
  ident: ref_145
  article-title: Potential environmental impacts of wind energy development: A global perspective
  publication-title: Curr. Opin. Environ. Sci. Health
  doi: 10.1016/j.coesh.2020.01.002
– volume: 206
  start-page: 310
  year: 2012
  ident: ref_57
  article-title: A novel way to calculate energy efficiency for rechargeable batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.01.105
– volume: 214
  start-page: 118987
  year: 2021
  ident: ref_5
  article-title: Critical review of energy storage systems
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118987
– volume: 289
  start-page: 116690
  year: 2021
  ident: ref_22
  article-title: Chloride ions as an electrolyte additive for high performance vanadium redox flow batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116690
– volume: 49
  start-page: 9152
  year: 2013
  ident: ref_82
  article-title: A rechargeable non-aqueous Mg–O2 battery
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc43477j
– volume: 327
  start-page: 135021
  year: 2019
  ident: ref_114
  article-title: A study of alkaline gel polymer electrolytes for rechargeable zinc–air batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.135021
– volume: 273
  start-page: 1163
  year: 2015
  ident: ref_125
  article-title: Study of an unitised bidirectional vanadium/air redox flow battery comprising a two-layered cathode
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.09.177
– volume: 4
  start-page: 3028
  year: 2019
  ident: ref_21
  article-title: Redox targeting-based vanadium redox-flow battery
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01939
– volume: 42
  start-page: 23315
  year: 2017
  ident: ref_68
  article-title: Al-6013-T6 and Al-7075-T7351 alloy anodes for aluminium-air battery
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.02.136
– volume: 151
  start-page: 111626
  year: 2021
  ident: ref_138
  article-title: Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111626
– volume: 39
  start-page: 101
  year: 2017
  ident: ref_119
  article-title: Electrochemical approach to prepare integrated air electrodes for highly stretchable zinc-air battery array with tunable output voltage and current for wearable electronics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.06.045
– ident: ref_19
  doi: 10.3390/en13174514
– volume: 20
  start-page: 4681
  year: 2020
  ident: ref_32
  article-title: From sodium–oxygen to sodium–air battery: Enabled by sodium peroxide dihydrate
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c01670
– volume: 8
  start-page: 11398
  year: 2016
  ident: ref_105
  article-title: Synergistically enhanced activity of graphene quantum dots/graphene hydrogel composites: A novel all-carbon hybrid electrocatalyst for metal/air batteries
  publication-title: Nanoscale
  doi: 10.1039/C6NR02622B
– volume: 417
  start-page: 128006
  year: 2021
  ident: ref_30
  article-title: High energy efficiency of Al-based anodes for Al-air battery by simultaneous addition of Mn and Sb
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.128006
– ident: ref_87
  doi: 10.1051/e3sconf/201913606035
– volume: 6
  start-page: 100
  year: 2017
  ident: ref_44
  article-title: Lithium–oxygen batteries: At a crossroads?
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2017.10.014
– volume: 378
  start-page: 138133
  year: 2021
  ident: ref_122
  article-title: An efficient barrier toward vanadium crossover in redox flow batteries: The bilayer [Nafion/(WO3)x] hybrid inorganic-organic membrane
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.138133
– volume: 769
  start-page: 144243
  year: 2021
  ident: ref_127
  article-title: Fuel cells for carbon capture applications
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.144243
– volume: 369
  start-page: 923
  year: 2020
  ident: ref_20
  article-title: Past, present, and future of lead–acid batteries
  publication-title: Science
  doi: 10.1126/science.abd3352
– ident: ref_158
– volume: 164
  start-page: A1148
  year: 2017
  ident: ref_64
  article-title: A rechargeable, aqueous iron air battery with nanostructured electrodes capable of high energy density operation
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0711706jes
– volume: 761
  start-page: 143203
  year: 2021
  ident: ref_126
  article-title: Progress in carbon capture technologies
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.143203
– volume: 887
  start-page: 115112
  year: 2021
  ident: ref_10
  article-title: Monolithic carbon-free gas diffusion electrodes for secondary metal-air batteries
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2021.115112
– ident: ref_99
  doi: 10.1109/EPEC.2009.5420955
– volume: 101
  start-page: 104
  year: 2021
  ident: ref_88
  article-title: Combined microbial electrolysis cell–iron-air battery system for hydrogen production and swine wastewater treatment
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2020.11.002
– volume: 3
  start-page: 344
  year: 2020
  ident: ref_91
  article-title: Recent developments for aluminum–air batteries
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-020-00065-4
– volume: 6
  start-page: 1016
  year: 2015
  ident: ref_34
  article-title: From lithium to sodium: Cell chemistry of room temperature sodium–air and sodium–sulfur batteries
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.6.105
– volume: 10
  start-page: 38093
  year: 2018
  ident: ref_63
  article-title: Restricting growth of Ni3Fe nanoparticles on heteroatom-doped carbon nanotube/graphene nanosheets as air-electrode electrocatalyst for Zn–air battery
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b13751
– volume: 595
  start-page: 361
  year: 2021
  ident: ref_129
  article-title: Designing the next generation of proton-exchange membrane fuel cells
  publication-title: Nature
  doi: 10.1038/s41586-021-03482-7
– volume: 159
  start-page: R1
  year: 2011
  ident: ref_77
  article-title: A critical review of Li/air batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.086202jes
– volume: 24
  start-page: 18413
  year: 2018
  ident: ref_62
  article-title: Cobalt-Based Metal–Organic Framework Nanoarrays as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries
  publication-title: Chem. A Eur. J.
  doi: 10.1002/chem.201804339
– volume: 2
  start-page: 12623
  year: 2014
  ident: ref_83
  article-title: Sodium–oxygen batteries: A new class of metal–air batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA02176B
– ident: ref_12
  doi: 10.1016/j.aej.2021.06.025
– volume: 154
  start-page: 111771
  year: 2022
  ident: ref_36
  article-title: Rechargeable Zn-air batteries: Recent trends and future perspectives
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111771
SSID ssj0000331333
Score 2.5920036
SecondaryResourceType review_article
Snippet Metal–air batteries are a promising technology that could be used in several applications, from portable devices to large-scale energy storage applications....
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 7373
SubjectTerms Aluminum
applications
Batteries
cell design
challenges
Efficiency
Electricity
Electrodes
Electrolytes
Energy storage
Lithium
metal-air battery
metal–air flow batteries
Power plants
Solvents
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEA3aXvQgfmK1lgW9eAjdTbLN7klasRTBImKhtyUfOyLItrb17o_wF_pLnOymraJ4zc5lJ8nMe5PkDSEXOIzAAYBqoWLqJM2pzpmiGPiksanFpFqqfQ47g5G4HcdjX3Cb-2uVy5hYBmo7Ma5G3kaYXnZLkvJq-kpd1yh3uupbaGySOobgBMlXvXczvH9YVVlCzpGE8UqXlCO_b-dFJBCGc8l_ZKJSsP9XPC6TTH-X7Hh0GHSr6dwjG3mxT7a_aQYekNZdjniZdp9nQaWNiVT38_2jG1RV_kMy6t88Xg-ob3JAjWByQTnjMgKkipLHoHXIUqPC2KbGHSCCtcBYavMOk7npiBRsCFYIpYCLEEJglh-RWjEp8mMS6Ehb3LKKscgKZcIUJIBVkdWJ5jZhDXK5_OHMeAVw14jiJUMm4JyTrZ3TIOcr22mle_GnVc_5bWXhtKrLgcnsKfNLP0MAYZ2uFiRKCoSfyKFSwxKTRBFow3SDNJdez_wGmmfr6T75__Mp2WLumkn5PLBJaovZW36GOGGhW34xfAG3VryI
  priority: 102
  providerName: ProQuest
Title Metal-Air Batteries—A Review
URI https://www.proquest.com/docview/2596026777
https://doaj.org/article/244d8140f8a745078629c28c811fbc2b
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60XvQgPrFaQ0AvHpYmu5tucmylDwSLiIXewj5BkCq13v0R_kJ_ibObWCsKXrzksAwkO5Od-b7s5huAcxxG4OAcUVxmxEuaE2WpJJj4hDaFwaIa1D7HndGEX02z6UqrL38mrJIHrhzXxvJjvCqTy6XgCF4QgRea5jpPU6c0VT77Ys1bIVMhBzOG5ItVeqQMeX3bzlKO8JsJ9q0CBaH-H3k4FJfBDmzXqDDuVk-zC2t2tgdbK1qB-xBdW8TJpHs_jytNTKS4769v3bj6un8Ak0H_7nJE6uYGRHMqFoRRJlKHFFGwzCmV4KxkkplC-41DZ4yjtDC2Q4XVHV44kzjDuZSOoSsSRw07hMbscWaPIFapMrhUJaWp4VInhRPOGZkalStmctqEi88Jl7pW_vYNKB5KZADeOeWXc5pwtrR9qvQufrXqeb8tLbxGdRjAyJV15Mq_IteE1qfXy3rhPJfIxkJTLCGO_-MeJ7BJ_SGU8PNgCxqL-Ys9RRSxUBGs54NhBBu9_vjmNgqvD16H0_QD7dHF_A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TgMxEB1xFECBOEU4wkpAQWGxazvxboFQOEI4K5DoFp8ICSUQghAdH8F38FF8CeM9EhCIjtYereTZOd74eAOwjsMIHJwjissa8ZTmRFkqCQY-oU1iMKlmbJ_n9dYlP76qXQ3Be_kWxl-rLGNiFqhNR_s98i2E6Vm3JCF27h-I7xrlT1fLFhq5WZzYl2cs2R63j_bx_25Q2jy42GuRoqsA0ZyKHmGUichhbSZYzSkV0kTLsGYS7U_snDGO0sTYOhVW13niTOgM51I6xkMXOmoYfncYRjljifeouHnY39MJGcOSj-UsqDgfbtl2xBH0M8G-5b2sPcCP6J-ltOYUTBZYNGjkxjMNQ7Y9AxNfGApnoXpmEZ2Txm03yJk4sbD-eH1rBPmZwhxc_svi52Gk3WnbBQhUpAwGCElpZLjUYeKEc0ZGRsWKmZhWYLNccKoLvnHf9uIuxbrDKycdKKcCa33Z-5xl41epXa-3voRnxs4GOt2btHC0FOGK8SxeLpaCI9jFii3RNNZxFDmlqarAcqn1tHDXx3RgXIt_T6_CWOvi7DQ9PTo_WYJx6i-4ZA8Tl2Gk132yK4hQeqqamUUA1_9th5-j-PiO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB61qYTKoSqliNCSrlQ4cLDitZ1494CqpG3UF1GFWqm3xa9BSCgpaRDixo_g1_Bz-ksY7yMtAnHr1WtZ8ux45vv8-AbgFTUTcEBkVpkei5LmzAZhGAU-7XzuKamWap_j_tGlOrnqXS3Br-YtTLxW2cTEMlD7qYt75F2C6WW1JK27WF-LOD8Y7V1_YbGCVDxpbcppVC5yGr5_I_p28_b4gP71ayFGhxf7R6yuMMCcEnrOpJA6ReJpWvbQWi5yZ3jP5y6e3qH3KETuQ1_o4PoqR8_RK2UMSsWRo_CSxl2GFU2siLdgZXg4Pn-_2OHhUhIBlJUmqpQ574ZJqogCSC3_yIJlsYC_ckGZ4EbrsFYj02RQudITWAqTDXh8T6_wKXTeBcLqbPBpllS6nESzb3_8HCTVCcMmXD7I9J9BazKdhOeQ2NR6ChdGiNQr43iOGtGb1NvMSp-JNrxpJly4Wn08FsH4XBALicYp7ozTht1F3-tKc-OfvYbRboseUSe7bJjOPhb1sisIvPio6YWZ0YqgL_G33InMZWmK1gnbhu3G6kW9eG-KO1d78f_PO_CIfLA4Ox6fbsGqiLddyleK29Caz76GlwRX5rZT-0UCHx7aFX8DMJn-IA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-Air+Batteries%E2%80%94A+Review&rft.jtitle=Energies+%28Basel%29&rft.au=Olabi%2C+Abdul+Ghani&rft.au=Sayed%2C+Enas+Taha&rft.au=Wilberforce%2C+Tabbi&rft.au=Jamal%2C+Aisha&rft.date=2021-11-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=14&rft.issue=21&rft.spage=7373&rft_id=info:doi/10.3390%2Fen14217373&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en14217373
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon