Metal-Air Batteries—A Review
Metal–air batteries are a promising technology that could be used in several applications, from portable devices to large-scale energy storage applications. This work is a comprehensive review of the recent progress made in metal-air batteries MABs. It covers the theoretical considerations and mecha...
Saved in:
Published in | Energies (Basel) Vol. 14; no. 21; p. 7373 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal–air batteries are a promising technology that could be used in several applications, from portable devices to large-scale energy storage applications. This work is a comprehensive review of the recent progress made in metal-air batteries MABs. It covers the theoretical considerations and mechanisms of MABs, electrochemical performance, and the progress made in the development of different structures of MABs. The operational concepts and recent developments in MABs are thoroughly discussed, with a particular focus on innovative materials design and cell structures. The classical research on traditional MABs was chosen and contrasted with metal–air flow systems, demonstrating the merits associated with the latter in terms of achieving higher energy density and efficiency, along with stability. Furthermore, the recent applications of MABs were discussed. Finally, a broad overview of challenges/opportunities and potential directions for commercializing this technology is carefully discussed. The primary focus of this investigation is to present a concise summary and to establish future directions in the development of MABs from traditional static to advanced flow technologies. A systematic analysis of this subject from a material and chemistry standpoint is presented as well. |
---|---|
AbstractList | Metal–air batteries are a promising technology that could be used in several applications, from portable devices to large-scale energy storage applications. This work is a comprehensive review of the recent progress made in metal-air batteries MABs. It covers the theoretical considerations and mechanisms of MABs, electrochemical performance, and the progress made in the development of different structures of MABs. The operational concepts and recent developments in MABs are thoroughly discussed, with a particular focus on innovative materials design and cell structures. The classical research on traditional MABs was chosen and contrasted with metal–air flow systems, demonstrating the merits associated with the latter in terms of achieving higher energy density and efficiency, along with stability. Furthermore, the recent applications of MABs were discussed. Finally, a broad overview of challenges/opportunities and potential directions for commercializing this technology is carefully discussed. The primary focus of this investigation is to present a concise summary and to establish future directions in the development of MABs from traditional static to advanced flow technologies. A systematic analysis of this subject from a material and chemistry standpoint is presented as well. |
Author | Sayed, Enas Taha Elsaid, Khaled Rahman, Shek Mohammod Atiqure Alami, Abdul Hai Jamal, Aisha Olabi, Abdul Ghani Abdelkareem, Mohammad Ali Wilberforce, Tabbi Shah, Sheikh Khaleduzzaman |
Author_xml | – sequence: 1 givenname: Abdul Ghani surname: Olabi fullname: Olabi, Abdul Ghani – sequence: 2 givenname: Enas Taha surname: Sayed fullname: Sayed, Enas Taha – sequence: 3 givenname: Tabbi surname: Wilberforce fullname: Wilberforce, Tabbi – sequence: 4 givenname: Aisha surname: Jamal fullname: Jamal, Aisha – sequence: 5 givenname: Abdul Hai orcidid: 0000-0001-9986-4324 surname: Alami fullname: Alami, Abdul Hai – sequence: 6 givenname: Khaled orcidid: 0000-0003-2948-2624 surname: Elsaid fullname: Elsaid, Khaled – sequence: 7 givenname: Shek Mohammod Atiqure orcidid: 0000-0002-8747-916X surname: Rahman fullname: Rahman, Shek Mohammod Atiqure – sequence: 8 givenname: Sheikh Khaleduzzaman orcidid: 0000-0001-8806-2529 surname: Shah fullname: Shah, Sheikh Khaleduzzaman – sequence: 9 givenname: Mohammad Ali orcidid: 0000-0003-3248-9843 surname: Abdelkareem fullname: Abdelkareem, Mohammad Ali |
BookMark | eNptkN1KAzEQhYMoWGtvfAApeCesJpnsZnNZiz-FiiB6HbL5kZR1U7Op4p0P4RP6JEYrKuLczDB8c85wdtBmFzqL0B7BRwACH9uOMEo4cNhAAyJEVRDMYfPXvI1Gfb_AuQAIAAzQ_qVNqi0mPo5PVEo2etu_vbxOxtf20dunXbTlVNvb0Vcfotuz05vpRTG_Op9NJ_NCM8pTARQ4cZxk69I1DaZCK1waoaEWxBnjKBXGVpRbXTHhDHaGMaUcMOywowaGaLbWNUEt5DL6exWfZVBefi5CvJMqJq9bKyljpib5sFaclZjXVXajta4JcY2mTdY6WGstY3hY2T7JRVjFLr8vaSkqTCvOeaYO15SOoe-jdd-uBMuPOOVPnBnGf2Dtk0o-dCkq3_538g50qHZI |
CitedBy_id | crossref_primary_10_1016_j_egyr_2023_12_067 crossref_primary_10_2298_HEMIND220201002D crossref_primary_10_3390_magnetochemistry8120176 crossref_primary_10_1016_j_rechem_2023_101041 crossref_primary_10_1093_oxfmat_itac005 crossref_primary_10_1002_slct_202401617 crossref_primary_10_1016_j_rechem_2023_101048 crossref_primary_10_1002_EXP_20240054 crossref_primary_10_1016_j_coche_2022_100835 crossref_primary_10_1016_j_renene_2024_121966 crossref_primary_10_1016_j_est_2023_108694 crossref_primary_10_1088_2632_959X_ad585c crossref_primary_10_1016_j_cej_2024_152805 crossref_primary_10_1016_j_asej_2023_102210 crossref_primary_10_1016_j_rser_2024_114675 crossref_primary_10_1016_j_nxener_2024_100202 crossref_primary_10_1149_1945_7111_ad1c16 crossref_primary_10_3390_batteries9030185 crossref_primary_10_1016_j_carbon_2024_119537 crossref_primary_10_1016_j_cplett_2023_140996 crossref_primary_10_1016_j_memori_2023_100097 crossref_primary_10_1016_j_electacta_2023_142964 crossref_primary_10_3390_en15134930 crossref_primary_10_5796_electrochemistry_24_00053 crossref_primary_10_1002_cssc_202402412 crossref_primary_10_1039_D2RA06741B crossref_primary_10_3390_en17225768 crossref_primary_10_1016_j_ensm_2025_104009 crossref_primary_10_3390_met12020290 crossref_primary_10_3390_molecules28104193 crossref_primary_10_3390_batteries11010035 crossref_primary_10_1016_j_ifacol_2024_08_349 crossref_primary_10_3390_en17010140 crossref_primary_10_1016_j_jpowsour_2023_233349 crossref_primary_10_1016_j_pmatsci_2024_101322 crossref_primary_10_1007_s41918_024_00235_8 crossref_primary_10_1016_j_egyr_2024_04_041 crossref_primary_10_3390_batteries8120270 crossref_primary_10_1016_j_energy_2022_126408 crossref_primary_10_3390_en15114052 crossref_primary_10_1016_j_est_2025_116272 crossref_primary_10_1016_j_asems_2022_100037 crossref_primary_10_1021_acsaem_4c01118 crossref_primary_10_1021_acsomega_3c05385 crossref_primary_10_1002_admt_202201762 crossref_primary_10_3390_app14146263 crossref_primary_10_1016_j_matlet_2022_132438 crossref_primary_10_3390_batteries8110244 crossref_primary_10_1016_j_jallcom_2025_179617 crossref_primary_10_1016_j_matlet_2023_134237 crossref_primary_10_1002_aenm_202403406 crossref_primary_10_1016_j_ensm_2024_103538 crossref_primary_10_1051_e3sconf_202454011010 crossref_primary_10_1016_j_commatsci_2025_113721 crossref_primary_10_1016_j_cej_2024_151106 crossref_primary_10_1016_j_rineng_2024_103598 crossref_primary_10_1021_acs_chemrev_4c00553 crossref_primary_10_1016_j_est_2022_106075 crossref_primary_10_1021_acs_chemrev_4c00155 crossref_primary_10_1002_cey2_276 crossref_primary_10_3390_batteries9120580 crossref_primary_10_3390_en18040974 crossref_primary_10_1002_adma_202308326 crossref_primary_10_1038_s41598_022_26546_8 crossref_primary_10_1002_celc_202200222 crossref_primary_10_1016_j_oceram_2024_100667 crossref_primary_10_1016_j_jpowsour_2024_235140 crossref_primary_10_1002_inf2_12388 crossref_primary_10_1149_1945_7111_ad35ec crossref_primary_10_1155_2023_5514803 crossref_primary_10_1016_j_jallcom_2025_178784 crossref_primary_10_1016_j_jelechem_2023_117800 crossref_primary_10_1088_1361_6463_ac7bb5 crossref_primary_10_1080_24701556_2024_2354481 crossref_primary_10_1149_1945_7111_ac9f7b crossref_primary_10_1016_j_cej_2023_143706 crossref_primary_10_1039_D3FD00080J crossref_primary_10_1016_j_microc_2024_111972 crossref_primary_10_1002_er_7934 crossref_primary_10_1007_s40820_024_01328_1 crossref_primary_10_1016_j_energy_2022_123617 crossref_primary_10_1002_anie_202304366 crossref_primary_10_1021_acs_energyfuels_2c02453 crossref_primary_10_1016_j_jallcom_2022_166932 crossref_primary_10_1016_j_mtcomm_2024_111320 crossref_primary_10_1021_acsami_4c16113 crossref_primary_10_3390_surfaces6030015 crossref_primary_10_3390_en16031415 crossref_primary_10_3390_ma15020458 crossref_primary_10_4028_p_Ps19eu crossref_primary_10_1016_j_est_2024_111974 crossref_primary_10_3390_batteries9020135 crossref_primary_10_3390_designs8040061 crossref_primary_10_3390_ma17102429 crossref_primary_10_1002_ange_202304366 crossref_primary_10_1016_j_egyr_2024_06_007 crossref_primary_10_1016_j_energy_2022_123987 |
Cites_doi | 10.20944/preprints201906.0077.v1 10.1016/j.jpowsour.2020.228900 10.1002/aenm.201700869 10.1016/j.ensm.2021.04.022 10.1039/C9TA05094A 10.1149/2.062310jes 10.1109/ACCESS.2020.2988011 10.1007/s10668-021-01322-2 10.1016/j.jenvman.2020.111415 10.1002/celc.201900518 10.3390/app9142787 10.1016/j.jpowsour.2013.01.141 10.1016/j.jpowsour.2013.09.029 10.3390/en13092275 10.1039/C3CS60248F 10.1038/srep07665 10.1016/j.jpowsour.2013.11.020 10.1002/9781119713173 10.1016/j.chemosphere.2021.130001 10.1016/j.mtadv.2019.100031 10.1002/advs.201700691 10.5772/intechopen.77109 10.1016/j.ijhydene.2018.02.170 10.1021/jz1005384 10.1002/cjce.23616 10.1016/j.jpowsour.2016.09.142 10.1021/acs.jpcc.6b06674 10.1016/j.scitotenv.2020.141803 10.1016/j.jpowsour.2014.12.049 10.1016/j.matchemphys.2018.07.037 10.1016/j.cej.2021.131888 10.1016/j.scitotenv.2020.141989 10.1016/j.jenvman.2021.111999 10.1039/C4TA04721D 10.3390/en14113244 10.1007/s10800-013-0620-8 10.1073/pnas.1901329116 10.1016/j.renene.2019.12.071 10.1039/c3ee24299d 10.1007/s10971-013-3247-7 10.1016/j.energy.2021.119849 10.1039/C3MH00059A 10.1021/acsenergylett.7b00168 10.1021/jz300243r 10.1016/j.est.2017.12.004 10.1016/j.jclepro.2021.126008 10.1016/j.electacta.2017.10.063 10.1016/j.nanoen.2018.03.013 10.1016/j.jiec.2015.08.004 10.1016/j.nanoen.2016.06.033 10.1002/9783527807666 10.1007/978-0-387-34445-4 10.1016/j.electacta.2016.12.120 10.1016/j.cej.2017.11.069 10.1007/s11837-017-2404-9 10.1149/1.1836378 10.1016/j.scitotenv.2020.141046 10.1016/j.enconman.2021.114434 10.3390/su12125078 10.1016/j.wasman.2011.10.034 10.1016/j.ssnmr.2021.101731 10.1007/978-1-4615-0531-0_9 10.3390/en14175241 10.1533/9780857097378 10.1039/C6TA04510C 10.1016/j.jpowsour.2019.226919 10.1016/j.matt.2019.05.008 10.1039/C7MH00358G 10.1016/j.jpowsour.2014.03.149 10.1016/j.energy.2020.118954 10.1039/C9TA04735B 10.1016/j.memsci.2019.117739 10.3390/batteries4010005 10.1016/j.jpowsour.2020.229445 10.1002/smtd.201700231 10.1016/j.rser.2020.110085 10.1016/j.joule.2021.05.016 10.1002/aenm.202000089 10.1021/ja312059q 10.1007/s10800-018-1233-z 10.1016/j.matchemphys.2020.123101 10.1016/B978-1-78242-013-2.00012-1 10.1039/C4CS00015C 10.1007/s42452-020-2925-7 10.1016/j.jpowsour.2010.02.070 10.1109/ACCESS.2020.2964896 10.1021/acsami.8b04974 10.1016/j.mtchem.2019.03.006 10.1149/2.0521711jes 10.1016/j.pecs.2019.100805 10.1016/j.matpr.2021.01.002 10.1002/cplu.201402238 10.1016/j.ssi.2011.12.002 10.1149/2.0431607jes 10.1007/s12209-019-00231-w 10.3390/buildings11090383 10.1016/0378-7753(79)80001-4 10.1016/j.gee.2017.06.006 10.1002/er.3294 10.1016/j.ijhydene.2018.01.140 10.1016/j.elecom.2020.106713 10.1002/advs.201902866 10.1016/j.rser.2017.05.001 10.6000/1929-6002.2013.02.04.1 10.1002/er.5179 10.1016/j.ensm.2020.03.015 10.1016/j.electacta.2020.137592 10.3389/fenrg.2018.00069 10.1016/j.apenergy.2014.04.095 10.1002/er.5791 10.1016/j.jpowsour.2018.11.042 10.1016/j.elecom.2015.10.004 10.1002/adfm.201706675 10.1016/j.jpowsour.2021.229722 10.1016/j.ensm.2019.12.011 10.1039/C4CP02533D 10.1039/C5CY01656H 10.1002/aenm.201801396 10.1039/C8EE01419A 10.1016/j.coesh.2020.01.002 10.1016/j.jpowsour.2012.01.105 10.1016/j.energy.2020.118987 10.1016/j.apenergy.2021.116690 10.1039/c3cc43477j 10.1016/j.electacta.2019.135021 10.1016/j.jpowsour.2014.09.177 10.1021/acsenergylett.9b01939 10.1016/j.ijhydene.2017.02.136 10.1016/j.rser.2021.111626 10.1016/j.nanoen.2017.06.045 10.3390/en13174514 10.1021/acs.nanolett.0c01670 10.1039/C6NR02622B 10.1016/j.cej.2020.128006 10.1051/e3sconf/201913606035 10.1016/j.coelec.2017.10.014 10.1016/j.electacta.2021.138133 10.1016/j.scitotenv.2020.144243 10.1126/science.abd3352 10.1149/2.0711706jes 10.1016/j.scitotenv.2020.143203 10.1016/j.jelechem.2021.115112 10.1109/EPEC.2009.5420955 10.1016/j.procbio.2020.11.002 10.1007/s41918-020-00065-4 10.3762/bjnano.6.105 10.1021/acsami.8b13751 10.1038/s41586-021-03482-7 10.1149/2.086202jes 10.1002/chem.201804339 10.1039/C4TA02176B 10.1016/j.aej.2021.06.025 10.1016/j.rser.2021.111771 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/en14217373 |
DatabaseName | CrossRef ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_244d8140f8a745078629c28c811fbc2b 10_3390_en14217373 |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c427t-32371f713735fbb029ca05d9c3891fddf229de627ec649fd0fd44aaf340f0f2d3 |
IEDL.DBID | DOA |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 01:29:13 EDT 2025 Mon Jun 30 11:13:53 EDT 2025 Tue Jul 01 01:18:29 EDT 2025 Thu Apr 24 22:56:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-32371f713735fbb029ca05d9c3891fddf229de627ec649fd0fd44aaf340f0f2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2948-2624 0000-0002-8747-916X 0000-0003-3248-9843 0000-0001-9986-4324 0000-0001-8806-2529 |
OpenAccessLink | https://doaj.org/article/244d8140f8a745078629c28c811fbc2b |
PQID | 2596026777 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_244d8140f8a745078629c28c811fbc2b proquest_journals_2596026777 crossref_primary_10_3390_en14217373 crossref_citationtrail_10_3390_en14217373 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Cheng (ref_21) 2019; 4 Zhang (ref_6) 2021; 493 Wang (ref_102) 2014; 43 Pan (ref_116) 2018; 5 Cohn (ref_79) 2010; 195 Narayanan (ref_84) 2012; 216 ref_12 Lai (ref_141) 2021; 214 ref_99 Zhao (ref_161) 2018; 334 Imanishi (ref_71) 2019; 4 ref_132 ref_135 ref_95 ref_19 Sayed (ref_155) 2020; 748 Zhang (ref_29) 2014; 251 Liu (ref_60) 2018; 10 ref_16 Danner (ref_43) 2014; 264 Olabi (ref_5) 2021; 214 Ahmed (ref_144) 2020; 8 Sayed (ref_157) 2021; 275 Adebayo (ref_136) 2021; 23 Xie (ref_118) 2020; 596 Sahgong (ref_33) 2015; 61 Zhao (ref_108) 2018; 43 Abdelkareem (ref_103) 2020; 77 Shinde (ref_152) 2022; 428 Rahman (ref_25) 2013; 160 Liu (ref_30) 2021; 417 Liu (ref_48) 2018; 2 Christensen (ref_77) 2011; 159 Sun (ref_162) 2019; 7 McKerracher (ref_51) 2015; 80 ref_23 ref_120 Palacin (ref_90) 2019; 7 Abdelkareem (ref_131) 2021; 752 Zhang (ref_22) 2021; 289 Abdelkareem (ref_104) 2021; 45 Abraham (ref_39) 1996; 143 Sun (ref_122) 2021; 378 Fan (ref_150) 2020; 26 Gauthier (ref_11) 2021; 113 Gelman (ref_78) 2014; 2 ref_158 ref_70 Zhang (ref_109) 2019; 97 Otaegui (ref_74) 2014; 247 Girishkumar (ref_37) 2010; 1 Mladenova (ref_10) 2021; 887 Li (ref_28) 2017; 7 Wang (ref_107) 2016; 6 Zhao (ref_61) 2018; 218 Komilis (ref_54) 2012; 32 Qu (ref_119) 2017; 39 Ren (ref_85) 2013; 135 Hannan (ref_17) 2017; 78 ref_160 Zhang (ref_124) 2019; 6 Elavarasan (ref_134) 2020; 8 Cheng (ref_121) 2018; 47 Li (ref_52) 2014; 43 Leong (ref_36) 2022; 154 Srimuk (ref_156) 2020; 115 ref_147 Tan (ref_110) 2015; 278 Tran (ref_114) 2019; 327 Bansal (ref_35) 2020; 2 Reinsberg (ref_81) 2016; 120 ref_140 ref_142 ref_87 Adelhelm (ref_34) 2015; 6 ref_86 ref_143 Vegge (ref_44) 2017; 6 Li (ref_27) 2016; 27 Cai (ref_100) 2017; 4 Mohsin (ref_139) 2021; 284 Zhang (ref_2) 2021; 493 Durmus (ref_80) 2017; 225 Khan (ref_59) 2017; 257 Sayed (ref_128) 2021; 221 Pei (ref_45) 2014; 128 Chen (ref_7) 2020; 134 Gasteiger (ref_24) 2016; 163 Zhang (ref_148) 2020; 149 Mainar (ref_97) 2018; 15 ref_58 Najam (ref_66) 2019; 438 ref_56 (ref_138) 2021; 151 ref_55 Sumathi (ref_65) 2014; 69 Han (ref_112) 2018; 8 Kang (ref_57) 2012; 206 Mutlu (ref_68) 2017; 42 Salameh (ref_151) 2021; 244 Wang (ref_105) 2016; 8 Irfan (ref_149) 2021; 292 Ye (ref_117) 2020; 28 Chawla (ref_69) 2019; 12 Wilberforce (ref_126) 2021; 761 Abdelkareem (ref_127) 2021; 769 Liu (ref_13) 2020; 27 Nagy (ref_14) 2021; 368 Bi (ref_32) 2020; 20 Durmus (ref_50) 2020; 10 Maghrabie (ref_133) 2021; 45 Liu (ref_154) 2017; 2 Sumboja (ref_46) 2016; 332 (ref_53) 2018; 11 Shiga (ref_82) 2013; 49 Liu (ref_113) 2018; 28 Rahman (ref_72) 2014; 44 Rabaia (ref_137) 2021; 754 Horstmann (ref_42) 2013; 6 Mokhtar (ref_31) 2015; 32 Chen (ref_62) 2018; 24 Hammer (ref_125) 2015; 273 McCloskey (ref_40) 2012; 3 ref_111 Li (ref_18) 2017; 69 Han (ref_89) 2018; 43 Zha (ref_98) 2013; 2 Cai (ref_9) 2020; 251 Nazir (ref_145) 2020; 13 Ghahari (ref_159) 2019; 412 Lin (ref_73) 2021; 39 Zhang (ref_3) 2020; 44 Han (ref_88) 2021; 101 Sankarasubramanian (ref_96) 2019; 116 Offer (ref_115) 2018; 6 Gittleman (ref_130) 2021; 5 Jung (ref_106) 2015; 5 Hameer (ref_153) 2015; 39 Yu (ref_94) 2017; 2 Jung (ref_76) 2016; 4 Pichler (ref_123) 2018; 48 Iqbal (ref_146) 2021; 277 ref_47 Wang (ref_75) 2019; 1 Jiao (ref_129) 2021; 595 McKerracher (ref_64) 2017; 164 Blurton (ref_38) 1979; 4 Khan (ref_93) 2020; 7 ref_101 ref_1 Lai (ref_63) 2018; 10 Das (ref_83) 2014; 2 Lopes (ref_20) 2020; 369 ref_49 Kumar (ref_8) 2021; 43 Marini (ref_15) 2021; 482 Kar (ref_92) 2014; 16 Mori (ref_91) 2020; 3 ref_4 Egan (ref_67) 2013; 236 Zhang (ref_26) 2014; 1 Monroe (ref_41) 2017; 164 |
References_xml | – ident: ref_58 doi: 10.20944/preprints201906.0077.v1 – volume: 482 start-page: 228900 year: 2021 ident: ref_15 article-title: Rational design of a low-cost, durable and efficient bifunctional oxygen electrode for rechargeable metal-air batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228900 – volume: 7 start-page: 1700869 year: 2017 ident: ref_28 article-title: Current progress on rechargeable magnesium–air battery publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700869 – volume: 39 start-page: 225 year: 2021 ident: ref_73 article-title: High-performance Li-air battery after limiting inter-electrode crosstalk publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.04.022 – volume: 7 start-page: 18183 year: 2019 ident: ref_162 article-title: Recent advances and challenges in divalent and multivalent metal electrodes for metal–air batteries publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05094A – volume: 160 start-page: A1759 year: 2013 ident: ref_25 article-title: High energy density metal-air batteries: A review publication-title: J. Electrochem. Soc. doi: 10.1149/2.062310jes – volume: 8 start-page: 74432 year: 2020 ident: ref_134 article-title: A comprehensive review on renewable energy development, challenges, and policies of leading Indian states with an international perspective publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2988011 – volume: 23 start-page: 16057 year: 2021 ident: ref_136 article-title: Impact of renewable energy consumption, globalization, and technological innovation on environmental degradation in Japan: Application of wavelet tools publication-title: Environ. Dev. Sustain. doi: 10.1007/s10668-021-01322-2 – volume: 277 start-page: 111415 year: 2021 ident: ref_146 article-title: Evaluation of the nanofluid-assisted desalination through solar stills in the last decade publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.111415 – volume: 6 start-page: 3175 year: 2019 ident: ref_124 article-title: Polarization Effects of a Rayon and Polyacrylonitrile Based Graphite Felt for Iron-Chromium Redox Flow Batteries publication-title: ChemElectroChem doi: 10.1002/celc.201900518 – ident: ref_16 doi: 10.3390/app9142787 – ident: ref_132 – ident: ref_1 – volume: 236 start-page: 293 year: 2013 ident: ref_67 article-title: Developments in electrode materials and electrolytes for aluminium–air batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.01.141 – volume: 247 start-page: 749 year: 2014 ident: ref_74 article-title: Performance and stability of a liquid anode high-temperature metal–air battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.09.029 – ident: ref_120 doi: 10.3390/en13092275 – volume: 43 start-page: 7746 year: 2014 ident: ref_102 article-title: Oxygen electrocatalysts in metal–air batteries: From aqueous to nonaqueous electrolytes publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60248F – volume: 5 start-page: 7665 year: 2015 ident: ref_106 article-title: One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries publication-title: Sci. Rep. doi: 10.1038/srep07665 – ident: ref_4 – volume: 251 start-page: 470 year: 2014 ident: ref_29 article-title: All-solid-state Al–air batteries with polymer alkaline gel electrolyte publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.11.020 – ident: ref_140 doi: 10.1002/9781119713173 – volume: 275 start-page: 130001 year: 2021 ident: ref_157 article-title: Faradic capacitive deionization (FCDI) for desalination and ion removal from wastewater publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130001 – volume: 4 start-page: 100031 year: 2019 ident: ref_71 article-title: Perspectives and challenges of rechargeable lithium–air batteries publication-title: Mater. Today Adv. doi: 10.1016/j.mtadv.2019.100031 – volume: 5 start-page: 1700691 year: 2018 ident: ref_116 article-title: Advanced architectures and relatives of air electrodes in Zn–air batteries publication-title: Adv. Sci. doi: 10.1002/advs.201700691 – ident: ref_101 doi: 10.5772/intechopen.77109 – volume: 43 start-page: 7764 year: 2018 ident: ref_89 article-title: Microbial electrolysis cell powered by an aluminum-air battery for hydrogen generation, in-situ coagulant production and wastewater treatment publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2018.02.170 – volume: 1 start-page: 2193 year: 2010 ident: ref_37 article-title: Lithium− air battery: Promise and challenges publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz1005384 – volume: 97 start-page: 2984 year: 2019 ident: ref_109 article-title: Design and fabrication of non-noble metal catalyst-based air-cathodes for metal-air battery publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.23616 – volume: 332 start-page: 330 year: 2016 ident: ref_46 article-title: Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.09.142 – volume: 120 start-page: 22179 year: 2016 ident: ref_81 article-title: Calcium–Oxygen Batteries as a Promising Alternative to Sodium–Oxygen Batteries publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b06674 – volume: 752 start-page: 141803 year: 2021 ident: ref_131 article-title: Environmental aspects of fuel cells: A review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141803 – volume: 278 start-page: 133 year: 2015 ident: ref_110 article-title: Discharge product morphology versus operating temperature in non-aqueous lithium-air batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.12.049 – volume: 218 start-page: 256 year: 2018 ident: ref_61 article-title: Effect of phosphate and vanadate as electrolyte additives on the performance of Mg-air batteries publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2018.07.037 – volume: 428 start-page: 131888 year: 2022 ident: ref_152 article-title: Nitridation-induced in situ coupling of Ni-Co4N particles in nitrogen-doped carbon nanosheets for hybrid supercapacitors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131888 – volume: 754 start-page: 141989 year: 2021 ident: ref_137 article-title: Environmental impacts of solar energy systems: A review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141989 – volume: 284 start-page: 111999 year: 2021 ident: ref_139 article-title: Assessing the impact of transition from nonrenewable to renewable energy consumption on economic growth-environmental nexus from developing Asian economies publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.111999 – volume: 2 start-page: 20237 year: 2014 ident: ref_78 article-title: Aluminum–air battery based on an ionic liquid electrolyte publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04721D – ident: ref_143 doi: 10.3390/en14113244 – volume: 44 start-page: 5 year: 2014 ident: ref_72 article-title: A review of high energy density lithium–air battery technology publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-013-0620-8 – volume: 116 start-page: 14899 year: 2019 ident: ref_96 article-title: Tuning anion solvation energetics enhances potassium–oxygen battery performance publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1901329116 – volume: 149 start-page: 577 year: 2020 ident: ref_148 article-title: Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis publication-title: Renew. Energy doi: 10.1016/j.renene.2019.12.071 – ident: ref_47 – volume: 6 start-page: 1299 year: 2013 ident: ref_42 article-title: Precipitation in aqueous lithium–oxygen batteries: A model-based analysis publication-title: Energy Environ. Sci. doi: 10.1039/c3ee24299d – ident: ref_86 – volume: 69 start-page: 480 year: 2014 ident: ref_65 article-title: Polyacrylamide-methanesulfonic acid gel polymer electrolytes for tin-air battery publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-013-3247-7 – volume: 221 start-page: 119849 year: 2021 ident: ref_128 article-title: Graphitic carbon nitride/carbon brush composite as a novel anode for yeast-based microbial fuel cells publication-title: Energy doi: 10.1016/j.energy.2021.119849 – volume: 1 start-page: 196 year: 2014 ident: ref_26 article-title: Magnesium–air batteries: From principle to application publication-title: Mater. Horiz. doi: 10.1039/C3MH00059A – volume: 2 start-page: 1050 year: 2017 ident: ref_94 article-title: A voltage-enhanced, low-cost aqueous iron–air battery enabled with a mediator-ion solid electrolyte publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00168 – volume: 3 start-page: 997 year: 2012 ident: ref_40 article-title: Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz300243r – volume: 15 start-page: 304 year: 2018 ident: ref_97 article-title: An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc publication-title: J. Energy Storage doi: 10.1016/j.est.2017.12.004 – volume: 292 start-page: 126008 year: 2021 ident: ref_149 article-title: An assessment of consumers’ willingness to utilize solar energy in China: End-users’ perspective publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126008 – volume: 257 start-page: 328 year: 2017 ident: ref_59 article-title: Three-dimensional SnS2 nanopetals for hybrid sodium-air batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.10.063 – volume: 47 start-page: 361 year: 2018 ident: ref_121 article-title: Efficient unitary oxygen electrode for air-based flow batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.013 – volume: 32 start-page: 1 year: 2015 ident: ref_31 article-title: Recent developments in materials for aluminum–air batteries: A review publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2015.08.004 – volume: 27 start-page: 8 year: 2016 ident: ref_27 article-title: Mixed-phase mullite electrocatalyst for pH-neutral oxygen reduction in magnesium-air batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.06.033 – ident: ref_49 doi: 10.1002/9783527807666 – ident: ref_56 doi: 10.1007/978-0-387-34445-4 – volume: 225 start-page: 215 year: 2017 ident: ref_80 article-title: Long run discharge, performance and efficiency of primary Silicon–air cells with alkaline electrolyte publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.12.120 – volume: 334 start-page: 1270 year: 2018 ident: ref_161 article-title: Biomass-derived N-doped porous carbon as electrode materials for Zn-air battery powered capacitive deionization publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.11.069 – volume: 69 start-page: 1484 year: 2017 ident: ref_18 article-title: Toward low-cost, high-energy density, and high-power density lithium-ion batteries publication-title: Jom doi: 10.1007/s11837-017-2404-9 – volume: 143 start-page: 1 year: 1996 ident: ref_39 article-title: A polymer electrolyte-based rechargeable lithium/oxygen battery publication-title: J. Electrochem. Soc. doi: 10.1149/1.1836378 – volume: 748 start-page: 141046 year: 2020 ident: ref_155 article-title: Recent progress in environmentally friendly bio-electrochemical devices for simultaneous water desalination and wastewater treatment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141046 – volume: 244 start-page: 114434 year: 2021 ident: ref_151 article-title: Optimal selection and management of hybrid renewable energy System: Neom city as a case study publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.114434 – ident: ref_135 doi: 10.3390/su12125078 – volume: 32 start-page: 372 year: 2012 ident: ref_54 article-title: Revisiting the elemental composition and the calorific value of the organic fraction of municipal solid wastes publication-title: Waste Manag. doi: 10.1016/j.wasman.2011.10.034 – volume: 113 start-page: 101731 year: 2021 ident: ref_11 article-title: Operando NMR characterization of a metal-air battery using a double-compartment cell design publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/j.ssnmr.2021.101731 – volume: 45 start-page: 101151 year: 2021 ident: ref_133 article-title: Building-integrated photovoltaic/thermal (BIPVT) systems: Applications and challenges publication-title: Sustain. Energy Technol. Assess. – ident: ref_55 doi: 10.1007/978-1-4615-0531-0_9 – ident: ref_142 doi: 10.3390/en14175241 – ident: ref_70 doi: 10.1533/9780857097378 – volume: 4 start-page: 14050 year: 2016 ident: ref_76 article-title: Rechargeable lithium–air batteries: A perspective on the development of oxygen electrodes publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04510C – volume: 438 start-page: 226919 year: 2019 ident: ref_66 article-title: Enhancing by nano-engineering: Hierarchical architectures as oxygen reduction/evolution reactions for zinc-air batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.226919 – volume: 1 start-page: 565 year: 2019 ident: ref_75 article-title: Materials design for rechargeable metal-air batteries publication-title: Matter doi: 10.1016/j.matt.2019.05.008 – volume: 4 start-page: 945 year: 2017 ident: ref_100 article-title: Recent advances in air electrodes for Zn–air batteries: Electrocatalysis and structural design publication-title: Mater. Horiz. doi: 10.1039/C7MH00358G – volume: 264 start-page: 320 year: 2014 ident: ref_43 article-title: Reaction and transport in Ag/Ag2O gas diffusion electrodes of aqueous Li–O2 batteries: Experiments and modeling publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.03.149 – ident: ref_160 – ident: ref_95 – volume: 214 start-page: 118954 year: 2021 ident: ref_141 article-title: Economic and financial appraisal of novel large-scale energy storage technologies publication-title: Energy doi: 10.1016/j.energy.2020.118954 – volume: 7 start-page: 20519 year: 2019 ident: ref_90 article-title: Rechargeable aqueous electrolyte batteries: From univalent to multivalent cation chemistry publication-title: J. Mater. Chem. A doi: 10.1039/C9TA04735B – volume: 596 start-page: 117739 year: 2020 ident: ref_118 article-title: A sandwich-type composite polymer electrolyte for all-solid-state lithium metal batteries with high areal capacity and cycling stability publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117739 – ident: ref_23 doi: 10.3390/batteries4010005 – volume: 493 start-page: 229445 year: 2021 ident: ref_2 article-title: Cost-effective iron-based aqueous redox flow batteries for large-scale energy storage application: A review publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.229445 – volume: 2 start-page: 1700231 year: 2018 ident: ref_48 article-title: Flexible metal–air batteries: Progress, challenges, and perspectives publication-title: Small Methods doi: 10.1002/smtd.201700231 – volume: 134 start-page: 110085 year: 2020 ident: ref_7 article-title: A review on recent advancement of nano-structured-fiber-based metal-air batteries and future perspective publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110085 – volume: 5 start-page: 1660 year: 2021 ident: ref_130 article-title: Proton conductors for heavy-duty vehicle fuel cells publication-title: Joule doi: 10.1016/j.joule.2021.05.016 – volume: 10 start-page: 2000089 year: 2020 ident: ref_50 article-title: Side by Side Battery Technologies with Lithium-Ion Based Batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000089 – volume: 135 start-page: 2923 year: 2013 ident: ref_85 article-title: A low-overpotential potassium–oxygen battery based on potassium superoxide publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312059q – volume: 48 start-page: 1043 year: 2018 ident: ref_123 article-title: The impact of operating conditions on component and electrode development for zinc-air flow batteries publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-018-1233-z – volume: 251 start-page: 123101 year: 2020 ident: ref_9 article-title: Performance of metal borides as anode in metal boride-air battery publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2020.123101 – ident: ref_111 doi: 10.1016/B978-1-78242-013-2.00012-1 – volume: 43 start-page: 5257 year: 2014 ident: ref_52 article-title: Recent advances in zinc–air batteries publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00015C – volume: 2 start-page: 1 year: 2020 ident: ref_35 article-title: Silicon–air batteries: Progress, applications and challenges publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-2925-7 – volume: 195 start-page: 4963 year: 2010 ident: ref_79 article-title: Study and development of non-aqueous silicon-air battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.02.070 – volume: 8 start-page: 10857 year: 2020 ident: ref_144 article-title: Grid integration challenges of wind energy: A review publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2964896 – volume: 10 start-page: 19730 year: 2018 ident: ref_60 article-title: High-performance and recyclable Al-air coin cells based on eco-friendly chitosan hydrogel membranes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b04974 – volume: 12 start-page: 324 year: 2019 ident: ref_69 article-title: Recent advances in air-battery chemistries publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2019.03.006 – volume: 164 start-page: E3547 year: 2017 ident: ref_41 article-title: Does oxygen transport affect the cell voltages of metal/air batteries? publication-title: J. Electrochem. Soc. doi: 10.1149/2.0521711jes – volume: 77 start-page: 100805 year: 2020 ident: ref_103 article-title: Nonprecious anodic catalysts for low-molecular-hydrocarbon fuel cells: Theoretical consideration and current progress publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2019.100805 – volume: 43 start-page: 2839 year: 2021 ident: ref_8 article-title: Application of bifunctional catalysts and metal organic frameworks in metal air batteries for renewable power conversion applications publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2021.01.002 – volume: 80 start-page: 323 year: 2015 ident: ref_51 article-title: A review of the iron–air secondary battery for energy storage publication-title: ChemPlusChem doi: 10.1002/cplu.201402238 – volume: 216 start-page: 105 year: 2012 ident: ref_84 article-title: Materials challenges and technical approaches for realizing inexpensive and robust iron–air batteries for large-scale energy storage publication-title: Solid State Ion. doi: 10.1016/j.ssi.2011.12.002 – volume: 163 start-page: X3 year: 2016 ident: ref_24 article-title: Erratum: Review—Electromobility: Batteries or Fuel Cells? [J. Electrochem. Soc., 162, A2605 (2015)] publication-title: J. Electrochem. Soc. doi: 10.1149/2.0431607jes – volume: 26 start-page: 92 year: 2020 ident: ref_150 article-title: Battery technologies for grid-level large-scale electrical energy storage publication-title: Trans. Tianjin Univ. doi: 10.1007/s12209-019-00231-w – ident: ref_147 doi: 10.3390/buildings11090383 – volume: 4 start-page: 263 year: 1979 ident: ref_38 article-title: Metal/air batteries: Their status and potential—A review publication-title: J. Power Sources doi: 10.1016/0378-7753(79)80001-4 – volume: 2 start-page: 246 year: 2017 ident: ref_154 article-title: A comprehensive review on recent progress in aluminum–air batteries publication-title: Green Energy Environ. doi: 10.1016/j.gee.2017.06.006 – volume: 39 start-page: 1179 year: 2015 ident: ref_153 article-title: A review of large-scale electrical energy storage publication-title: Int. J. Energy Res. doi: 10.1002/er.3294 – volume: 43 start-page: 5001 year: 2018 ident: ref_108 article-title: PdCo bimetallic nano-electrocatalyst as effective air-cathode for aqueous metal-air batteries publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.01.140 – volume: 115 start-page: 106713 year: 2020 ident: ref_156 article-title: High-performance ion removal via zinc–air desalination publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2020.106713 – volume: 7 start-page: 1902866 year: 2020 ident: ref_93 article-title: Can hybrid Na–air batteries outperform nonaqueous Na–O2 batteries? publication-title: Adv. Sci. doi: 10.1002/advs.201902866 – volume: 78 start-page: 834 year: 2017 ident: ref_17 article-title: A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.05.001 – volume: 2 start-page: 293 year: 2013 ident: ref_98 article-title: Review on air cathode in Li-air batteries publication-title: J. Technol. Innov. Renew. Energy doi: 10.6000/1929-6002.2013.02.04.1 – volume: 44 start-page: 3839 year: 2020 ident: ref_3 article-title: Investigations on physicochemical properties and electrochemical performance of graphite felt and carbon felt for iron-chromium redox flow battery publication-title: Int. J. Energy Res. doi: 10.1002/er.5179 – volume: 28 start-page: 364 year: 2020 ident: ref_117 article-title: Recent advances in flexible fiber-shaped metal-air batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.03.015 – volume: 368 start-page: 137592 year: 2021 ident: ref_14 article-title: Environmentally friendly Zn-air rechargeable battery with heavy metal free charcoal based air cathode publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.137592 – volume: 6 start-page: 69 year: 2018 ident: ref_115 article-title: New opportunities for air cathode batteries; in-situ neutron diffraction measurements publication-title: Front. Energy Res. doi: 10.3389/fenrg.2018.00069 – volume: 128 start-page: 315 year: 2014 ident: ref_45 article-title: Technologies for extending zinc–air battery’s cyclelife: A review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.04.095 – volume: 45 start-page: 1587 year: 2021 ident: ref_104 article-title: Co-decorated reduced graphene/titanium nitride composite as an active oxygen reduction reaction catalyst with superior stability publication-title: Int. J. Energy Res. doi: 10.1002/er.5791 – volume: 412 start-page: 197 year: 2019 ident: ref_159 article-title: Metal-air desalination battery: Concurrent energy generation and water desalination publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.11.042 – volume: 61 start-page: 53 year: 2015 ident: ref_33 article-title: Rechargeable aqueous Na–air batteries: Highly improved voltage efficiency by use of catalysts publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2015.10.004 – volume: 28 start-page: 1706675 year: 2018 ident: ref_113 article-title: Controllable urchin-like NiCo2S4 microsphere synergized with sulfur-doped graphene as bifunctional catalyst for superior rechargeable Zn–air battery publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706675 – volume: 493 start-page: 229722 year: 2021 ident: ref_6 article-title: Nanostructured arrays for metal–ion battery and metal–air battery applications publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.229722 – volume: 27 start-page: 478 year: 2020 ident: ref_13 article-title: Aqueous metal-air batteries: Fundamentals and applications publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.12.011 – volume: 16 start-page: 18658 year: 2014 ident: ref_92 article-title: Ionic liquid electrolytes as a platform for rechargeable metal–air batteries: A perspective publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP02533D – volume: 6 start-page: 434 year: 2016 ident: ref_107 article-title: Hydrangea-like NiCo2S4 hollow microspheres as an advanced bifunctional electrocatalyst for aqueous metal/air batteries publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY01656H – volume: 8 start-page: 1801396 year: 2018 ident: ref_112 article-title: Metal–air batteries: From static to flow system publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801396 – volume: 11 start-page: 2696 year: 2018 ident: ref_53 article-title: Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01419A – volume: 13 start-page: 85 year: 2020 ident: ref_145 article-title: Potential environmental impacts of wind energy development: A global perspective publication-title: Curr. Opin. Environ. Sci. Health doi: 10.1016/j.coesh.2020.01.002 – volume: 206 start-page: 310 year: 2012 ident: ref_57 article-title: A novel way to calculate energy efficiency for rechargeable batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.01.105 – volume: 214 start-page: 118987 year: 2021 ident: ref_5 article-title: Critical review of energy storage systems publication-title: Energy doi: 10.1016/j.energy.2020.118987 – volume: 289 start-page: 116690 year: 2021 ident: ref_22 article-title: Chloride ions as an electrolyte additive for high performance vanadium redox flow batteries publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116690 – volume: 49 start-page: 9152 year: 2013 ident: ref_82 article-title: A rechargeable non-aqueous Mg–O2 battery publication-title: Chem. Commun. doi: 10.1039/c3cc43477j – volume: 327 start-page: 135021 year: 2019 ident: ref_114 article-title: A study of alkaline gel polymer electrolytes for rechargeable zinc–air batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.135021 – volume: 273 start-page: 1163 year: 2015 ident: ref_125 article-title: Study of an unitised bidirectional vanadium/air redox flow battery comprising a two-layered cathode publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.09.177 – volume: 4 start-page: 3028 year: 2019 ident: ref_21 article-title: Redox targeting-based vanadium redox-flow battery publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01939 – volume: 42 start-page: 23315 year: 2017 ident: ref_68 article-title: Al-6013-T6 and Al-7075-T7351 alloy anodes for aluminium-air battery publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.02.136 – volume: 151 start-page: 111626 year: 2021 ident: ref_138 article-title: Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111626 – volume: 39 start-page: 101 year: 2017 ident: ref_119 article-title: Electrochemical approach to prepare integrated air electrodes for highly stretchable zinc-air battery array with tunable output voltage and current for wearable electronics publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.06.045 – ident: ref_19 doi: 10.3390/en13174514 – volume: 20 start-page: 4681 year: 2020 ident: ref_32 article-title: From sodium–oxygen to sodium–air battery: Enabled by sodium peroxide dihydrate publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c01670 – volume: 8 start-page: 11398 year: 2016 ident: ref_105 article-title: Synergistically enhanced activity of graphene quantum dots/graphene hydrogel composites: A novel all-carbon hybrid electrocatalyst for metal/air batteries publication-title: Nanoscale doi: 10.1039/C6NR02622B – volume: 417 start-page: 128006 year: 2021 ident: ref_30 article-title: High energy efficiency of Al-based anodes for Al-air battery by simultaneous addition of Mn and Sb publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128006 – ident: ref_87 doi: 10.1051/e3sconf/201913606035 – volume: 6 start-page: 100 year: 2017 ident: ref_44 article-title: Lithium–oxygen batteries: At a crossroads? publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2017.10.014 – volume: 378 start-page: 138133 year: 2021 ident: ref_122 article-title: An efficient barrier toward vanadium crossover in redox flow batteries: The bilayer [Nafion/(WO3)x] hybrid inorganic-organic membrane publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.138133 – volume: 769 start-page: 144243 year: 2021 ident: ref_127 article-title: Fuel cells for carbon capture applications publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.144243 – volume: 369 start-page: 923 year: 2020 ident: ref_20 article-title: Past, present, and future of lead–acid batteries publication-title: Science doi: 10.1126/science.abd3352 – ident: ref_158 – volume: 164 start-page: A1148 year: 2017 ident: ref_64 article-title: A rechargeable, aqueous iron air battery with nanostructured electrodes capable of high energy density operation publication-title: J. Electrochem. Soc. doi: 10.1149/2.0711706jes – volume: 761 start-page: 143203 year: 2021 ident: ref_126 article-title: Progress in carbon capture technologies publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.143203 – volume: 887 start-page: 115112 year: 2021 ident: ref_10 article-title: Monolithic carbon-free gas diffusion electrodes for secondary metal-air batteries publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2021.115112 – ident: ref_99 doi: 10.1109/EPEC.2009.5420955 – volume: 101 start-page: 104 year: 2021 ident: ref_88 article-title: Combined microbial electrolysis cell–iron-air battery system for hydrogen production and swine wastewater treatment publication-title: Process Biochem. doi: 10.1016/j.procbio.2020.11.002 – volume: 3 start-page: 344 year: 2020 ident: ref_91 article-title: Recent developments for aluminum–air batteries publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-020-00065-4 – volume: 6 start-page: 1016 year: 2015 ident: ref_34 article-title: From lithium to sodium: Cell chemistry of room temperature sodium–air and sodium–sulfur batteries publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.6.105 – volume: 10 start-page: 38093 year: 2018 ident: ref_63 article-title: Restricting growth of Ni3Fe nanoparticles on heteroatom-doped carbon nanotube/graphene nanosheets as air-electrode electrocatalyst for Zn–air battery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b13751 – volume: 595 start-page: 361 year: 2021 ident: ref_129 article-title: Designing the next generation of proton-exchange membrane fuel cells publication-title: Nature doi: 10.1038/s41586-021-03482-7 – volume: 159 start-page: R1 year: 2011 ident: ref_77 article-title: A critical review of Li/air batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.086202jes – volume: 24 start-page: 18413 year: 2018 ident: ref_62 article-title: Cobalt-Based Metal–Organic Framework Nanoarrays as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries publication-title: Chem. A Eur. J. doi: 10.1002/chem.201804339 – volume: 2 start-page: 12623 year: 2014 ident: ref_83 article-title: Sodium–oxygen batteries: A new class of metal–air batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA02176B – ident: ref_12 doi: 10.1016/j.aej.2021.06.025 – volume: 154 start-page: 111771 year: 2022 ident: ref_36 article-title: Rechargeable Zn-air batteries: Recent trends and future perspectives publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111771 |
SSID | ssj0000331333 |
Score | 2.5920036 |
SecondaryResourceType | review_article |
Snippet | Metal–air batteries are a promising technology that could be used in several applications, from portable devices to large-scale energy storage applications.... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 7373 |
SubjectTerms | Aluminum applications Batteries cell design challenges Efficiency Electricity Electrodes Electrolytes Energy storage Lithium metal-air battery metal–air flow batteries Power plants Solvents |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEA3aXvQgfmK1lgW9eAjdTbLN7klasRTBImKhtyUfOyLItrb17o_wF_pLnOymraJ4zc5lJ8nMe5PkDSEXOIzAAYBqoWLqJM2pzpmiGPiksanFpFqqfQ47g5G4HcdjX3Cb-2uVy5hYBmo7Ma5G3kaYXnZLkvJq-kpd1yh3uupbaGySOobgBMlXvXczvH9YVVlCzpGE8UqXlCO_b-dFJBCGc8l_ZKJSsP9XPC6TTH-X7Hh0GHSr6dwjG3mxT7a_aQYekNZdjniZdp9nQaWNiVT38_2jG1RV_kMy6t88Xg-ob3JAjWByQTnjMgKkipLHoHXIUqPC2KbGHSCCtcBYavMOk7npiBRsCFYIpYCLEEJglh-RWjEp8mMS6Ehb3LKKscgKZcIUJIBVkdWJ5jZhDXK5_OHMeAVw14jiJUMm4JyTrZ3TIOcr22mle_GnVc_5bWXhtKrLgcnsKfNLP0MAYZ2uFiRKCoSfyKFSwxKTRBFow3SDNJdez_wGmmfr6T75__Mp2WLumkn5PLBJaovZW36GOGGhW34xfAG3VryI priority: 102 providerName: ProQuest |
Title | Metal-Air Batteries—A Review |
URI | https://www.proquest.com/docview/2596026777 https://doaj.org/article/244d8140f8a745078629c28c811fbc2b |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60XvQgPrFaQ0AvHpYmu5tucmylDwSLiIXewj5BkCq13v0R_kJ_ibObWCsKXrzksAwkO5Od-b7s5huAcxxG4OAcUVxmxEuaE2WpJJj4hDaFwaIa1D7HndGEX02z6UqrL38mrJIHrhzXxvJjvCqTy6XgCF4QgRea5jpPU6c0VT77Ys1bIVMhBzOG5ItVeqQMeX3bzlKO8JsJ9q0CBaH-H3k4FJfBDmzXqDDuVk-zC2t2tgdbK1qB-xBdW8TJpHs_jytNTKS4769v3bj6un8Ak0H_7nJE6uYGRHMqFoRRJlKHFFGwzCmV4KxkkplC-41DZ4yjtDC2Q4XVHV44kzjDuZSOoSsSRw07hMbscWaPIFapMrhUJaWp4VInhRPOGZkalStmctqEi88Jl7pW_vYNKB5KZADeOeWXc5pwtrR9qvQufrXqeb8tLbxGdRjAyJV15Mq_IteE1qfXy3rhPJfIxkJTLCGO_-MeJ7BJ_SGU8PNgCxqL-Ys9RRSxUBGs54NhBBu9_vjmNgqvD16H0_QD7dHF_A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TgMxEB1xFECBOEU4wkpAQWGxazvxboFQOEI4K5DoFp8ICSUQghAdH8F38FF8CeM9EhCIjtYereTZOd74eAOwjsMIHJwjissa8ZTmRFkqCQY-oU1iMKlmbJ_n9dYlP76qXQ3Be_kWxl-rLGNiFqhNR_s98i2E6Vm3JCF27h-I7xrlT1fLFhq5WZzYl2cs2R63j_bx_25Q2jy42GuRoqsA0ZyKHmGUichhbSZYzSkV0kTLsGYS7U_snDGO0sTYOhVW13niTOgM51I6xkMXOmoYfncYRjljifeouHnY39MJGcOSj-UsqDgfbtl2xBH0M8G-5b2sPcCP6J-ltOYUTBZYNGjkxjMNQ7Y9AxNfGApnoXpmEZ2Txm03yJk4sbD-eH1rBPmZwhxc_svi52Gk3WnbBQhUpAwGCElpZLjUYeKEc0ZGRsWKmZhWYLNccKoLvnHf9uIuxbrDKycdKKcCa33Z-5xl41epXa-3voRnxs4GOt2btHC0FOGK8SxeLpaCI9jFii3RNNZxFDmlqarAcqn1tHDXx3RgXIt_T6_CWOvi7DQ9PTo_WYJx6i-4ZA8Tl2Gk132yK4hQeqqamUUA1_9th5-j-PiO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB61qYTKoSqliNCSrlQ4cLDitZ1494CqpG3UF1GFWqm3xa9BSCgpaRDixo_g1_Bz-ksY7yMtAnHr1WtZ8ux45vv8-AbgFTUTcEBkVpkei5LmzAZhGAU-7XzuKamWap_j_tGlOrnqXS3Br-YtTLxW2cTEMlD7qYt75F2C6WW1JK27WF-LOD8Y7V1_YbGCVDxpbcppVC5yGr5_I_p28_b4gP71ayFGhxf7R6yuMMCcEnrOpJA6ReJpWvbQWi5yZ3jP5y6e3qH3KETuQ1_o4PoqR8_RK2UMSsWRo_CSxl2GFU2siLdgZXg4Pn-_2OHhUhIBlJUmqpQ574ZJqogCSC3_yIJlsYC_ckGZ4EbrsFYj02RQudITWAqTDXh8T6_wKXTeBcLqbPBpllS6nESzb3_8HCTVCcMmXD7I9J9BazKdhOeQ2NR6ChdGiNQr43iOGtGb1NvMSp-JNrxpJly4Wn08FsH4XBALicYp7ozTht1F3-tKc-OfvYbRboseUSe7bJjOPhb1sisIvPio6YWZ0YqgL_G33InMZWmK1gnbhu3G6kW9eG-KO1d78f_PO_CIfLA4Ox6fbsGqiLddyleK29Caz76GlwRX5rZT-0UCHx7aFX8DMJn-IA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-Air+Batteries%E2%80%94A+Review&rft.jtitle=Energies+%28Basel%29&rft.au=Olabi%2C+Abdul+Ghani&rft.au=Sayed%2C+Enas+Taha&rft.au=Wilberforce%2C+Tabbi&rft.au=Jamal%2C+Aisha&rft.date=2021-11-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=14&rft.issue=21&rft.spage=7373&rft_id=info:doi/10.3390%2Fen14217373&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en14217373 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |