High Dynamic Range Image Reconstruction from Saturated Images of Metallic Objects
This study considers a method for reconstructing a high dynamic range (HDR) original image from a single saturated low dynamic range (LDR) image of metallic objects. A deep neural network approach was adopted for the direct mapping of an 8-bit LDR image to HDR. An HDR image database was first constr...
Saved in:
Published in | Journal of imaging Vol. 10; no. 4; p. 92 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study considers a method for reconstructing a high dynamic range (HDR) original image from a single saturated low dynamic range (LDR) image of metallic objects. A deep neural network approach was adopted for the direct mapping of an 8-bit LDR image to HDR. An HDR image database was first constructed using a large number of various metallic objects with different shapes. Each captured HDR image was clipped to create a set of 8-bit LDR images. All pairs of HDR and LDR images were used to train and test the network. Subsequently, a convolutional neural network (CNN) was designed in the form of a deep U-Net-like architecture. The network consisted of an encoder, a decoder, and a skip connection to maintain high image resolution. The CNN algorithm was constructed using the learning functions in MATLAB. The entire network consisted of 32 layers and 85,900 learnable parameters. The performance of the proposed method was examined in experiments using a test image set. The proposed method was also compared with other methods and confirmed to be significantly superior in terms of reconstruction accuracy, histogram fitting, and psychological evaluation. |
---|---|
AbstractList | This study considers a method for reconstructing a high dynamic range (HDR) original image from a single saturated low dynamic range (LDR) image of metallic objects. A deep neural network approach was adopted for the direct mapping of an 8-bit LDR image to HDR. An HDR image database was first constructed using a large number of various metallic objects with different shapes. Each captured HDR image was clipped to create a set of 8-bit LDR images. All pairs of HDR and LDR images were used to train and test the network. Subsequently, a convolutional neural network (CNN) was designed in the form of a deep U-Net-like architecture. The network consisted of an encoder, a decoder, and a skip connection to maintain high image resolution. The CNN algorithm was constructed using the learning functions in MATLAB. The entire network consisted of 32 layers and 85,900 learnable parameters. The performance of the proposed method was examined in experiments using a test image set. The proposed method was also compared with other methods and confirmed to be significantly superior in terms of reconstruction accuracy, histogram fitting, and psychological evaluation. |
Audience | Academic |
Author | Tominaga, Shoji Horiuchi, Takahiko |
Author_xml | – sequence: 1 givenname: Shoji surname: Tominaga fullname: Tominaga, Shoji organization: Department of Business and Informatics, Nagano University, Ueda 386-0032, Japan – sequence: 2 givenname: Takahiko orcidid: 0000-0002-8197-6499 surname: Horiuchi fullname: Horiuchi, Takahiko organization: Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38667990$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUFv1DAQhSNUREvpnROKxIXLFjvj9cbHqgW6UlFFAYlbNLHHwVFiF9s59N_jNqVCPVi2Rt9745n3ujrwwVNVveXsFECxj6ObcXB-4IwJxlTzojpqgMNGAPw6-O99WJ2kNDLGuGrKUa-qQ2il3CnFjqpvl274XV_ceZydrm_QD1Tviy_VN6SDTzkuOrvgaxvDXH_HvETMZFYm1cHWXynjNBXxdT-SzulN9dLilOjk8T6ufn7-9OP8cnN1_WV_fna10aLZ5Q1wAokatewJDfQW2oZMy8UWJPSmZ7ZtjGTUWJQMVN8KvZWGi0KA1dLCcbVffU3AsbuNZRvxrgvouodCiEOHMTs9UVdseOnaGuJMiFapXqPtrRacFBqJxevD6nUbw5-FUu5mlzRNE3oKS-qAiZ2Ctm12BX3_DB3DEn2Z9IEqW5ZsW6jTlRqw9Hfehhzvh0VDZc8lR-tK_ayYbmXJD4qArQIdQ0qR7NNEnHX3cXfP4y6Sd48_WfqZzJPgX7jwF4LTp9w |
Cites_doi | 10.1145/3130800.3130834 10.1111/cgf.13340 10.1145/3130800.3130816 10.1167/14.9.12 10.1038/s41562-021-01097-6 10.1007/978-3-030-01216-8_37 10.3390/s21154985 10.1145/3386569.3392403 10.1002/col.5080190408 10.1364/JOSAA.409454 10.1364/JOSAA.14.001007 10.1016/j.visres.2014.10.026 10.1163/22134808-bja10003 10.1167/jov.21.12.14 10.1145/1618452.1618506 10.1145/3528233.3530729 10.1109/CVPR42600.2020.00172 10.2352/CIC.2023.31.1.26 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | NPM AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS 7X8 DOA |
DOI | 10.3390/jimaging10040092 |
DatabaseName | PubMed CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2313-433X |
ExternalDocumentID | oai_doaj_org_article_60e1c428de1044899bcafbfc41e9ad6a A793561003 10_3390_jimaging10040092 38667990 |
Genre | Journal Article |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GrantInformation_xml | – fundername: Grant-in-Aid for Scientific Research (C) grantid: 20K11893 |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU GROUPED_DOAJ HCIFZ IAO ITC KQ8 MODMG M~E NPM OK1 P62 PGMZT PIMPY PROAC RPM AAYXX AFPKN CITATION ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c427t-31e36acac6bead3bf382ed8145363bdb0f82d60e2fa6039b84c56d148143fc6f3 |
IEDL.DBID | BENPR |
ISSN | 2313-433X |
IngestDate | Tue Oct 22 14:55:46 EDT 2024 Sat Oct 26 05:33:08 EDT 2024 Sat Oct 26 06:22:51 EDT 2024 Tue Jun 25 19:22:33 EDT 2024 Thu Sep 26 16:50:44 EDT 2024 Tue Oct 29 09:21:11 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | saturated low dynamic range images material appearance reconstruction of saturated gloss LDR-to-HDR mapping high dynamic range image reconstruction human psychological experiments HDR image database deep neural network approach metallic objects gloss perception |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-31e36acac6bead3bf382ed8145363bdb0f82d60e2fa6039b84c56d148143fc6f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8197-6499 |
OpenAccessLink | https://www.proquest.com/docview/3047001605?pq-origsite=%requestingapplication% |
PMID | 38667990 |
PQID | 3047001605 |
PQPubID | 2059558 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_60e1c428de1044899bcafbfc41e9ad6a proquest_miscellaneous_3047938827 proquest_journals_3047001605 gale_infotracacademiconefile_A793561003 crossref_primary_10_3390_jimaging10040092 pubmed_primary_38667990 |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Journal of imaging |
PublicationTitleAlternate | J Imaging |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Cheeseman (ref_15) 2021; 38 Eilertsen (ref_8) 2017; 36 Sharan (ref_3) 2014; 14 ref_12 Chadwick (ref_13) 2015; 109 ref_23 ref_11 ref_22 ref_20 Marnerides (ref_9) 2018; 37 Ronneberger (ref_21) 2015; Volume 9351 ref_1 Spence (ref_14) 2020; 33 Romero (ref_24) 1997; 5 ref_2 Storrs (ref_16) 2021; 5 Prokott (ref_17) 2021; 21 Santos (ref_10) 2020; 39 ref_18 Masia (ref_6) 2009; 28 Endo (ref_7) 2017; 36 ref_5 ref_4 Tominaga (ref_19) 1994; 19 |
References_xml | – volume: 36 start-page: 177 year: 2017 ident: ref_7 article-title: Deep reverse tone mapping publication-title: ACM Trans. Graph. doi: 10.1145/3130800.3130834 contributor: fullname: Endo – volume: 37 start-page: 37 year: 2018 ident: ref_9 article-title: ExpandNet: A deep convolutional neural network for high dynamic range expansion from low dynamic range content publication-title: Comput. Graph. Forum doi: 10.1111/cgf.13340 contributor: fullname: Marnerides – ident: ref_4 – volume: 36 start-page: 178 year: 2017 ident: ref_8 article-title: HDR image reconstruction from a single exposure using deep CNNs publication-title: ACM Trans. Graph. doi: 10.1145/3130800.3130816 contributor: fullname: Eilertsen – ident: ref_2 – volume: 14 start-page: 12 year: 2014 ident: ref_3 article-title: Accuracy and speed of material categorization in real-world images publication-title: J. Vis. doi: 10.1167/14.9.12 contributor: fullname: Sharan – volume: 5 start-page: 1402 year: 2021 ident: ref_16 article-title: Unsupervised learning predicts human perception and misperception of gloss publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-021-01097-6 contributor: fullname: Storrs – ident: ref_5 doi: 10.1007/978-3-030-01216-8_37 – ident: ref_20 doi: 10.3390/s21154985 – volume: 39 start-page: 80 year: 2020 ident: ref_10 article-title: Single image HDR reconstruction using a CNN with masked features and perceptual loss publication-title: ACM Trans. Graph. doi: 10.1145/3386569.3392403 contributor: fullname: Santos – volume: 19 start-page: 277 year: 1994 ident: ref_19 article-title: Dichromatic reflection models for a variety of materials publication-title: Color Res. Appl. doi: 10.1002/col.5080190408 contributor: fullname: Tominaga – volume: 38 start-page: 203 year: 2021 ident: ref_15 article-title: Scaling and discriminability of perceived gloss publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.409454 contributor: fullname: Cheeseman – volume: 5 start-page: 1007 year: 1997 ident: ref_24 article-title: Linear bases for representation of natural and artificial illuminants publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.14.001007 contributor: fullname: Romero – volume: 109 start-page: 221 year: 2015 ident: ref_13 article-title: The perception of gloss: A review publication-title: Vis. Res. doi: 10.1016/j.visres.2014.10.026 contributor: fullname: Chadwick – volume: 33 start-page: 737 year: 2020 ident: ref_14 article-title: Shitsukan—The Multisensory Perception of Quality publication-title: Multisensory Res. doi: 10.1163/22134808-bja10003 contributor: fullname: Spence – volume: 21 start-page: 14 year: 2021 ident: ref_17 article-title: Gloss perception: Searching for a deep neural network that behaves like humans publication-title: J. Vis. doi: 10.1167/jov.21.12.14 contributor: fullname: Prokott – ident: ref_1 – volume: 28 start-page: 160 year: 2009 ident: ref_6 article-title: Evaluation of reverse tone mapping through varying exposure conditions publication-title: ACM Trans. Graph. doi: 10.1145/1618452.1618506 contributor: fullname: Masia – ident: ref_22 – ident: ref_23 – ident: ref_11 doi: 10.1145/3528233.3530729 – volume: Volume 9351 start-page: 234 year: 2015 ident: ref_21 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference contributor: fullname: Ronneberger – ident: ref_12 doi: 10.1109/CVPR42600.2020.00172 – ident: ref_18 doi: 10.2352/CIC.2023.31.1.26 |
SSID | ssj0001920199 |
Score | 2.305474 |
Snippet | This study considers a method for reconstructing a high dynamic range (HDR) original image from a single saturated low dynamic range (LDR) image of metallic... |
SourceID | doaj proquest gale crossref pubmed |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 92 |
SubjectTerms | Algorithms Analysis Artificial neural networks Cellular telephones deep neural network approach Digital cameras Dynamic range Evaluation high dynamic range image reconstruction Image databases Image processing Image reconstruction Image resolution Light Lighting Machine learning material appearance Metal products metallic objects Neural networks Properties reconstruction of saturated gloss saturated low dynamic range images |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB2hnuCA2AmbjISEOER14sRNjmVTQSqITerNijcJBC2i5f-ZidtSyoELh1wSR3LeeHkvtt8AHAnudSkzjIDnJiYHsLiqChm3cp_zxHJv67Mw3RvZecque3lvJtUX7QkL9sABuKbkLjHIka1D4ZChOtCm8tqbLHFlZWWgRrycEVMvgbfgVYZ1SYG6vvny_Fan_UnqZlumP-ah2q7_96A8RzXrKedyBZbHXJG1Qx1XYcH112BpxkFwHe5onwY7D2nl2T2dFGBXWAXHSFd-u8MyOkbCHsjFE8mlDWWGbOBZ1yH9fsWXbzX9khluwNPlxeNZJx5nSYgRltYIB1EnZGUqIzW2CqG9KFJniyTLhRTaau6L1CKKqa8kF6UuMpNLiyoImZI30otNaPQHfbcNzKDMxv5phMOZ2xYIdYEMTaNi1LoU0kRwMsFMvQczDIUigvBV8_hGcEqgTsuRjXV9A4OrxsFVfwU3gmMKiaLONvqgjwxnBrC6ZFul2ji6EAHkIoK9SdTUuBcOFS0p1om08wgOp4-x_9CiSNV3g89QphSoM1oRbIVoT-ssCilbOF3v_Me37MJiirCGXT970MAG4PaR0Iz0Qd12vwBIjfPq priority: 102 providerName: Directory of Open Access Journals |
Title | High Dynamic Range Image Reconstruction from Saturated Images of Metallic Objects |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38667990 https://www.proquest.com/docview/3047001605 https://search.proquest.com/docview/3047938827 https://doaj.org/article/60e1c428de1044899bcafbfc41e9ad6a |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R7QUOFeUZKCsjISEOUZM48dqnqqVdClILFCr1ZvmJQGVTusv_74yd3YUicU2cyJ73Z3tmAF7xKlolWuRArFxJFcBKY6QoJ13sqtpX0adcmJNTcXzefrjoLoYNt_lwrXJpE5Oh9r2jPfJdOh5KTZG7vatfJXWNotPVoYXGBmw2iBSaEWweHJ1-Olvvsih0cErl80mO-H73x_efqf1PncRXNX_5o1S2_1_jfCvkTK5neh-2hpiR7Wcmb8OdMHsA9_6oJPgQPtN9DXaY28uzM8oYYO9xCoERvlxXiWWUTsK-UDVPDDJ9HjNnfWQnAcPwS_z4o6WtmfkjOJ8efX17XA7dEkrXNpMFGtPAhXHGCYvSwW3ksgle1m3HBbfeVlE2XlShiUZUXFnZuk54REMYMUUnIn8Mo1k_C0-BOYTbqKeOB_TgXirrJEZqFpGjtYoLV8CbJc30VS6KoRFMEH31bfoWcEBEXY2jctbpQX_9TQ_aoXFaNa5C-oDosEUIaJ2JNrq2Dsp4YQp4TSzRpHSLa1pkzh3A6VL5Kr2PVoYCwYoXsLPkmh60ca7XslPAy9Vr1CM6HDGz0P_OYxRHvDEp4Enm9mrOXAoxQbf97P8_fw53GyRYvtezAyNkbXiBIcvCjmFDTt-NB-kcJ-B_Azip7U0 |
link.rule.ids | 315,783,787,867,2109,12779,21402,27938,27939,33387,33388,33758,33759,43614,43819,74371,74638 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BOUAPiHdTChgJCXGImsSJ1z6h8li20C0CWqk3y0_UCjZtd_n_zNjZXSgS18SJ7BnP4xt7ZgBe8CpaJVrkQKxcSRXASmOkKEdd7KraV9GnXJjpoZgctx9PupMh4DYfrlUudWJS1L53FCPfpeOh1BS5e31-UVLXKDpdHVpoXIcbLUdDQ5ni4w_rGItC86ZUPp3kiO53z05_puY_ddq8qvnLGqWi_f-q5isOZzI84ztwe_AY2V5m8V24Fmb3YPOPOoL34Qvd1mDvcnN59pXyBdg-TiEwQpfrGrGMkknYN6rliS6mz2PmrI9sGtAJ_4Eff7YUmJk_gOPx-6O3k3LolVC6thktUJUGLowzTljcG9xGLpvgZd12XHDrbRVl40UVmmhExZWVreuERyyE_lJ0IvKHsDHrZ2ELmEOwjVLqeED77aWyTqKfZhE3Wqu4cAW8WtJMn-eSGBqhBNFXX6VvAW-IqKtxVMw6Pegvv-tBNjROq8ZVSB8QG7YIAK0z0UbX1kEZL0wBL4klmkRucUmLzJkDOF0qXqX3UMeQG1jxAnaWXNODLM71eucU8Hz1GqWIjkbMLPS_8hjFEW2MCniUub2aM5dCjNBob___58_g5uRoeqAP9g8_PYZbDRIv3_DZgQ1kc3iCzsvCPk079Ddn8ez9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkL0gHg3tICRkBCHaJM4cewTamlXLdClFCr1ZvmJQLAp3eX_dybx7kKRuCZOZM_7s8czAC95Ea0SNXIgFi6nCmC5MVLkbRObovRF9P1dmOOpODyr35035yn_aZ7SKpc2sTfUvnO0Rz6m46G-KXIzjikt4mR_8ubiV04dpOikNbXTuAkbbY1SNYKNvYPpyel6x0Whs1NqOKvkiPXH37_97FsBlb0oq-ov39SX8P_XUF8LP3s3NLkLd1L8yHYHht-DG2F2Hzb_qCr4AD5R7gbbH1rNs1O6PcCOcAqBEdZcV4xldLWEfabKnhhw-mHMnHWRHQcMyX_gxx8tbdPMH8LZ5ODL28M8dU7IXV21CzSsgQvjjBMWJYXbyGUVvCzrhgtuvS2irLwoQhWNKLiysnaN8IiMMHqKTkT-CEazbha2gDmE3qizjgf05l4q6yRGbRZRpLWKC5fB6yXN9MVQIEMjsCD66uv0zWCPiLoaR6Wt-wfd5VedNEXjtEpchfQBkWKNcNA6E210dRmU8cJk8IpYokkBF5e0yOEeAU6XSlnpXbQ4FBQWPIOdJdd00sy5XstRBi9Wr1Gn6KDEzEL3exijOGKPNoPHA7dXc-ZSiBZd-JP___w53ELx1B-Opu-34XaFtBvSfXZghFwOTzGSWdhnSUSvAJLV8qA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Dynamic+Range+Image+Reconstruction+from+Saturated+Images+of+Metallic+Objects&rft.jtitle=Journal+of+imaging&rft.au=Tominaga%2C+Shoji&rft.au=Horiuchi%2C+Takahiko&rft.date=2024-04-01&rft.eissn=2313-433X&rft.volume=10&rft.issue=4&rft_id=info:doi/10.3390%2Fjimaging10040092&rft_id=info%3Apmid%2F38667990&rft.externalDocID=38667990 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-433X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-433X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-433X&client=summon |