High Dynamic Range Image Reconstruction from Saturated Images of Metallic Objects

This study considers a method for reconstructing a high dynamic range (HDR) original image from a single saturated low dynamic range (LDR) image of metallic objects. A deep neural network approach was adopted for the direct mapping of an 8-bit LDR image to HDR. An HDR image database was first constr...

Full description

Saved in:
Bibliographic Details
Published inJournal of imaging Vol. 10; no. 4; p. 92
Main Authors Tominaga, Shoji, Horiuchi, Takahiko
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study considers a method for reconstructing a high dynamic range (HDR) original image from a single saturated low dynamic range (LDR) image of metallic objects. A deep neural network approach was adopted for the direct mapping of an 8-bit LDR image to HDR. An HDR image database was first constructed using a large number of various metallic objects with different shapes. Each captured HDR image was clipped to create a set of 8-bit LDR images. All pairs of HDR and LDR images were used to train and test the network. Subsequently, a convolutional neural network (CNN) was designed in the form of a deep U-Net-like architecture. The network consisted of an encoder, a decoder, and a skip connection to maintain high image resolution. The CNN algorithm was constructed using the learning functions in MATLAB. The entire network consisted of 32 layers and 85,900 learnable parameters. The performance of the proposed method was examined in experiments using a test image set. The proposed method was also compared with other methods and confirmed to be significantly superior in terms of reconstruction accuracy, histogram fitting, and psychological evaluation.
AbstractList This study considers a method for reconstructing a high dynamic range (HDR) original image from a single saturated low dynamic range (LDR) image of metallic objects. A deep neural network approach was adopted for the direct mapping of an 8-bit LDR image to HDR. An HDR image database was first constructed using a large number of various metallic objects with different shapes. Each captured HDR image was clipped to create a set of 8-bit LDR images. All pairs of HDR and LDR images were used to train and test the network. Subsequently, a convolutional neural network (CNN) was designed in the form of a deep U-Net-like architecture. The network consisted of an encoder, a decoder, and a skip connection to maintain high image resolution. The CNN algorithm was constructed using the learning functions in MATLAB. The entire network consisted of 32 layers and 85,900 learnable parameters. The performance of the proposed method was examined in experiments using a test image set. The proposed method was also compared with other methods and confirmed to be significantly superior in terms of reconstruction accuracy, histogram fitting, and psychological evaluation.
Audience Academic
Author Tominaga, Shoji
Horiuchi, Takahiko
Author_xml – sequence: 1
  givenname: Shoji
  surname: Tominaga
  fullname: Tominaga, Shoji
  organization: Department of Business and Informatics, Nagano University, Ueda 386-0032, Japan
– sequence: 2
  givenname: Takahiko
  orcidid: 0000-0002-8197-6499
  surname: Horiuchi
  fullname: Horiuchi, Takahiko
  organization: Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38667990$$D View this record in MEDLINE/PubMed
BookMark eNpdkUFv1DAQhSNUREvpnROKxIXLFjvj9cbHqgW6UlFFAYlbNLHHwVFiF9s59N_jNqVCPVi2Rt9745n3ujrwwVNVveXsFECxj6ObcXB-4IwJxlTzojpqgMNGAPw6-O99WJ2kNDLGuGrKUa-qQ2il3CnFjqpvl274XV_ceZydrm_QD1Tviy_VN6SDTzkuOrvgaxvDXH_HvETMZFYm1cHWXynjNBXxdT-SzulN9dLilOjk8T6ufn7-9OP8cnN1_WV_fna10aLZ5Q1wAokatewJDfQW2oZMy8UWJPSmZ7ZtjGTUWJQMVN8KvZWGi0KA1dLCcbVffU3AsbuNZRvxrgvouodCiEOHMTs9UVdseOnaGuJMiFapXqPtrRacFBqJxevD6nUbw5-FUu5mlzRNE3oKS-qAiZ2Ctm12BX3_DB3DEn2Z9IEqW5ZsW6jTlRqw9Hfehhzvh0VDZc8lR-tK_ayYbmXJD4qArQIdQ0qR7NNEnHX3cXfP4y6Sd48_WfqZzJPgX7jwF4LTp9w
Cites_doi 10.1145/3130800.3130834
10.1111/cgf.13340
10.1145/3130800.3130816
10.1167/14.9.12
10.1038/s41562-021-01097-6
10.1007/978-3-030-01216-8_37
10.3390/s21154985
10.1145/3386569.3392403
10.1002/col.5080190408
10.1364/JOSAA.409454
10.1364/JOSAA.14.001007
10.1016/j.visres.2014.10.026
10.1163/22134808-bja10003
10.1167/jov.21.12.14
10.1145/1618452.1618506
10.1145/3528233.3530729
10.1109/CVPR42600.2020.00172
10.2352/CIC.2023.31.1.26
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID NPM
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.3390/jimaging10040092
DatabaseName PubMed
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2313-433X
ExternalDocumentID oai_doaj_org_article_60e1c428de1044899bcafbfc41e9ad6a
A793561003
10_3390_jimaging10040092
38667990
Genre Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GrantInformation_xml – fundername: Grant-in-Aid for Scientific Research (C)
  grantid: 20K11893
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
NPM
OK1
P62
PGMZT
PIMPY
PROAC
RPM
AAYXX
AFPKN
CITATION
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c427t-31e36acac6bead3bf382ed8145363bdb0f82d60e2fa6039b84c56d148143fc6f3
IEDL.DBID BENPR
ISSN 2313-433X
IngestDate Tue Oct 22 14:55:46 EDT 2024
Sat Oct 26 05:33:08 EDT 2024
Sat Oct 26 06:22:51 EDT 2024
Tue Jun 25 19:22:33 EDT 2024
Thu Sep 26 16:50:44 EDT 2024
Tue Oct 29 09:21:11 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords saturated low dynamic range images
material appearance
reconstruction of saturated gloss
LDR-to-HDR mapping
high dynamic range image reconstruction
human psychological experiments
HDR image database
deep neural network approach
metallic objects
gloss perception
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-31e36acac6bead3bf382ed8145363bdb0f82d60e2fa6039b84c56d148143fc6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8197-6499
OpenAccessLink https://www.proquest.com/docview/3047001605?pq-origsite=%requestingapplication%
PMID 38667990
PQID 3047001605
PQPubID 2059558
ParticipantIDs doaj_primary_oai_doaj_org_article_60e1c428de1044899bcafbfc41e9ad6a
proquest_miscellaneous_3047938827
proquest_journals_3047001605
gale_infotracacademiconefile_A793561003
crossref_primary_10_3390_jimaging10040092
pubmed_primary_38667990
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of imaging
PublicationTitleAlternate J Imaging
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Cheeseman (ref_15) 2021; 38
Eilertsen (ref_8) 2017; 36
Sharan (ref_3) 2014; 14
ref_12
Chadwick (ref_13) 2015; 109
ref_23
ref_11
ref_22
ref_20
Marnerides (ref_9) 2018; 37
Ronneberger (ref_21) 2015; Volume 9351
ref_1
Spence (ref_14) 2020; 33
Romero (ref_24) 1997; 5
ref_2
Storrs (ref_16) 2021; 5
Prokott (ref_17) 2021; 21
Santos (ref_10) 2020; 39
ref_18
Masia (ref_6) 2009; 28
Endo (ref_7) 2017; 36
ref_5
ref_4
Tominaga (ref_19) 1994; 19
References_xml – volume: 36
  start-page: 177
  year: 2017
  ident: ref_7
  article-title: Deep reverse tone mapping
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3130800.3130834
  contributor:
    fullname: Endo
– volume: 37
  start-page: 37
  year: 2018
  ident: ref_9
  article-title: ExpandNet: A deep convolutional neural network for high dynamic range expansion from low dynamic range content
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.13340
  contributor:
    fullname: Marnerides
– ident: ref_4
– volume: 36
  start-page: 178
  year: 2017
  ident: ref_8
  article-title: HDR image reconstruction from a single exposure using deep CNNs
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3130800.3130816
  contributor:
    fullname: Eilertsen
– ident: ref_2
– volume: 14
  start-page: 12
  year: 2014
  ident: ref_3
  article-title: Accuracy and speed of material categorization in real-world images
  publication-title: J. Vis.
  doi: 10.1167/14.9.12
  contributor:
    fullname: Sharan
– volume: 5
  start-page: 1402
  year: 2021
  ident: ref_16
  article-title: Unsupervised learning predicts human perception and misperception of gloss
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-021-01097-6
  contributor:
    fullname: Storrs
– ident: ref_5
  doi: 10.1007/978-3-030-01216-8_37
– ident: ref_20
  doi: 10.3390/s21154985
– volume: 39
  start-page: 80
  year: 2020
  ident: ref_10
  article-title: Single image HDR reconstruction using a CNN with masked features and perceptual loss
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3386569.3392403
  contributor:
    fullname: Santos
– volume: 19
  start-page: 277
  year: 1994
  ident: ref_19
  article-title: Dichromatic reflection models for a variety of materials
  publication-title: Color Res. Appl.
  doi: 10.1002/col.5080190408
  contributor:
    fullname: Tominaga
– volume: 38
  start-page: 203
  year: 2021
  ident: ref_15
  article-title: Scaling and discriminability of perceived gloss
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.409454
  contributor:
    fullname: Cheeseman
– volume: 5
  start-page: 1007
  year: 1997
  ident: ref_24
  article-title: Linear bases for representation of natural and artificial illuminants
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.14.001007
  contributor:
    fullname: Romero
– volume: 109
  start-page: 221
  year: 2015
  ident: ref_13
  article-title: The perception of gloss: A review
  publication-title: Vis. Res.
  doi: 10.1016/j.visres.2014.10.026
  contributor:
    fullname: Chadwick
– volume: 33
  start-page: 737
  year: 2020
  ident: ref_14
  article-title: Shitsukan—The Multisensory Perception of Quality
  publication-title: Multisensory Res.
  doi: 10.1163/22134808-bja10003
  contributor:
    fullname: Spence
– volume: 21
  start-page: 14
  year: 2021
  ident: ref_17
  article-title: Gloss perception: Searching for a deep neural network that behaves like humans
  publication-title: J. Vis.
  doi: 10.1167/jov.21.12.14
  contributor:
    fullname: Prokott
– ident: ref_1
– volume: 28
  start-page: 160
  year: 2009
  ident: ref_6
  article-title: Evaluation of reverse tone mapping through varying exposure conditions
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1618452.1618506
  contributor:
    fullname: Masia
– ident: ref_22
– ident: ref_23
– ident: ref_11
  doi: 10.1145/3528233.3530729
– volume: Volume 9351
  start-page: 234
  year: 2015
  ident: ref_21
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference
  contributor:
    fullname: Ronneberger
– ident: ref_12
  doi: 10.1109/CVPR42600.2020.00172
– ident: ref_18
  doi: 10.2352/CIC.2023.31.1.26
SSID ssj0001920199
Score 2.305474
Snippet This study considers a method for reconstructing a high dynamic range (HDR) original image from a single saturated low dynamic range (LDR) image of metallic...
SourceID doaj
proquest
gale
crossref
pubmed
SourceType Open Website
Aggregation Database
Index Database
StartPage 92
SubjectTerms Algorithms
Analysis
Artificial neural networks
Cellular telephones
deep neural network approach
Digital cameras
Dynamic range
Evaluation
high dynamic range image reconstruction
Image databases
Image processing
Image reconstruction
Image resolution
Light
Lighting
Machine learning
material appearance
Metal products
metallic objects
Neural networks
Properties
reconstruction of saturated gloss
saturated low dynamic range images
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB2hnuCA2AmbjISEOER14sRNjmVTQSqITerNijcJBC2i5f-ZidtSyoELh1wSR3LeeHkvtt8AHAnudSkzjIDnJiYHsLiqChm3cp_zxHJv67Mw3RvZecque3lvJtUX7QkL9sABuKbkLjHIka1D4ZChOtCm8tqbLHFlZWWgRrycEVMvgbfgVYZ1SYG6vvny_Fan_UnqZlumP-ah2q7_96A8RzXrKedyBZbHXJG1Qx1XYcH112BpxkFwHe5onwY7D2nl2T2dFGBXWAXHSFd-u8MyOkbCHsjFE8mlDWWGbOBZ1yH9fsWXbzX9khluwNPlxeNZJx5nSYgRltYIB1EnZGUqIzW2CqG9KFJniyTLhRTaau6L1CKKqa8kF6UuMpNLiyoImZI30otNaPQHfbcNzKDMxv5phMOZ2xYIdYEMTaNi1LoU0kRwMsFMvQczDIUigvBV8_hGcEqgTsuRjXV9A4OrxsFVfwU3gmMKiaLONvqgjwxnBrC6ZFul2ji6EAHkIoK9SdTUuBcOFS0p1om08wgOp4-x_9CiSNV3g89QphSoM1oRbIVoT-ssCilbOF3v_Me37MJiirCGXT970MAG4PaR0Iz0Qd12vwBIjfPq
  priority: 102
  providerName: Directory of Open Access Journals
Title High Dynamic Range Image Reconstruction from Saturated Images of Metallic Objects
URI https://www.ncbi.nlm.nih.gov/pubmed/38667990
https://www.proquest.com/docview/3047001605
https://search.proquest.com/docview/3047938827
https://doaj.org/article/60e1c428de1044899bcafbfc41e9ad6a
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R7QUOFeUZKCsjISEOUZM48dqnqqVdClILFCr1ZvmJQGVTusv_74yd3YUicU2cyJ73Z3tmAF7xKlolWuRArFxJFcBKY6QoJ13sqtpX0adcmJNTcXzefrjoLoYNt_lwrXJpE5Oh9r2jPfJdOh5KTZG7vatfJXWNotPVoYXGBmw2iBSaEWweHJ1-Olvvsih0cErl80mO-H73x_efqf1PncRXNX_5o1S2_1_jfCvkTK5neh-2hpiR7Wcmb8OdMHsA9_6oJPgQPtN9DXaY28uzM8oYYO9xCoERvlxXiWWUTsK-UDVPDDJ9HjNnfWQnAcPwS_z4o6WtmfkjOJ8efX17XA7dEkrXNpMFGtPAhXHGCYvSwW3ksgle1m3HBbfeVlE2XlShiUZUXFnZuk54REMYMUUnIn8Mo1k_C0-BOYTbqKeOB_TgXirrJEZqFpGjtYoLV8CbJc30VS6KoRFMEH31bfoWcEBEXY2jctbpQX_9TQ_aoXFaNa5C-oDosEUIaJ2JNrq2Dsp4YQp4TSzRpHSLa1pkzh3A6VL5Kr2PVoYCwYoXsLPkmh60ca7XslPAy9Vr1CM6HDGz0P_OYxRHvDEp4Enm9mrOXAoxQbf97P8_fw53GyRYvtezAyNkbXiBIcvCjmFDTt-NB-kcJ-B_Azip7U0
link.rule.ids 315,783,787,867,2109,12779,21402,27938,27939,33387,33388,33758,33759,43614,43819,74371,74638
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BOUAPiHdTChgJCXGImsSJ1z6h8li20C0CWqk3y0_UCjZtd_n_zNjZXSgS18SJ7BnP4xt7ZgBe8CpaJVrkQKxcSRXASmOkKEdd7KraV9GnXJjpoZgctx9PupMh4DYfrlUudWJS1L53FCPfpeOh1BS5e31-UVLXKDpdHVpoXIcbLUdDQ5ni4w_rGItC86ZUPp3kiO53z05_puY_ddq8qvnLGqWi_f-q5isOZzI84ztwe_AY2V5m8V24Fmb3YPOPOoL34Qvd1mDvcnN59pXyBdg-TiEwQpfrGrGMkknYN6rliS6mz2PmrI9sGtAJ_4Eff7YUmJk_gOPx-6O3k3LolVC6thktUJUGLowzTljcG9xGLpvgZd12XHDrbRVl40UVmmhExZWVreuERyyE_lJ0IvKHsDHrZ2ELmEOwjVLqeED77aWyTqKfZhE3Wqu4cAW8WtJMn-eSGBqhBNFXX6VvAW-IqKtxVMw6Pegvv-tBNjROq8ZVSB8QG7YIAK0z0UbX1kEZL0wBL4klmkRucUmLzJkDOF0qXqX3UMeQG1jxAnaWXNODLM71eucU8Hz1GqWIjkbMLPS_8hjFEW2MCniUub2aM5dCjNBob___58_g5uRoeqAP9g8_PYZbDRIv3_DZgQ1kc3iCzsvCPk079Ddn8ez9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkL0gHg3tICRkBCHaJM4cewTamlXLdClFCr1ZvmJQLAp3eX_dybx7kKRuCZOZM_7s8czAC95Ea0SNXIgFi6nCmC5MVLkbRObovRF9P1dmOOpODyr35035yn_aZ7SKpc2sTfUvnO0Rz6m46G-KXIzjikt4mR_8ubiV04dpOikNbXTuAkbbY1SNYKNvYPpyel6x0Whs1NqOKvkiPXH37_97FsBlb0oq-ov39SX8P_XUF8LP3s3NLkLd1L8yHYHht-DG2F2Hzb_qCr4AD5R7gbbH1rNs1O6PcCOcAqBEdZcV4xldLWEfabKnhhw-mHMnHWRHQcMyX_gxx8tbdPMH8LZ5ODL28M8dU7IXV21CzSsgQvjjBMWJYXbyGUVvCzrhgtuvS2irLwoQhWNKLiysnaN8IiMMHqKTkT-CEazbha2gDmE3qizjgf05l4q6yRGbRZRpLWKC5fB6yXN9MVQIEMjsCD66uv0zWCPiLoaR6Wt-wfd5VedNEXjtEpchfQBkWKNcNA6E210dRmU8cJk8IpYokkBF5e0yOEeAU6XSlnpXbQ4FBQWPIOdJdd00sy5XstRBi9Wr1Gn6KDEzEL3exijOGKPNoPHA7dXc-ZSiBZd-JP___w53ELx1B-Opu-34XaFtBvSfXZghFwOTzGSWdhnSUSvAJLV8qA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Dynamic+Range+Image+Reconstruction+from+Saturated+Images+of+Metallic+Objects&rft.jtitle=Journal+of+imaging&rft.au=Tominaga%2C+Shoji&rft.au=Horiuchi%2C+Takahiko&rft.date=2024-04-01&rft.eissn=2313-433X&rft.volume=10&rft.issue=4&rft_id=info:doi/10.3390%2Fjimaging10040092&rft_id=info%3Apmid%2F38667990&rft.externalDocID=38667990
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-433X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-433X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-433X&client=summon