Camellia oil authentication: A comparative analysis and recent analytical techniques developed for its assessment. A review

Camellia oil is obtained from the camellia seed with various cultivated species (Camellia. oleifera (C. oleifera), C. meiocarpa, C. vietnamensis, C. yuhsienensis, C. chekiangoleosa, C. semiserrata, C. reticulata, C. gigantocarpa, C. octopetala, C. semiserrata var. abliflora etc.), by widely used col...

Full description

Saved in:
Bibliographic Details
Published inTrends in food science & technology Vol. 97; pp. 88 - 99
Main Authors Shi, Ting, Wu, Gangcheng, Jin, Qingzhe, Wang, Xingguo
Format Journal Article
LanguageEnglish
Published Cambridge Elsevier Ltd 01.03.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Camellia oil is obtained from the camellia seed with various cultivated species (Camellia. oleifera (C. oleifera), C. meiocarpa, C. vietnamensis, C. yuhsienensis, C. chekiangoleosa, C. semiserrata, C. reticulata, C. gigantocarpa, C. octopetala, C. semiserrata var. abliflora etc.), by widely used cold press extraction. As the earliest specie with high oil yield (40–60%) in China, C. oleifera, has become the most commonly available seed for camellia oil manufacturing. Because of its high nutritional and economic value, camellia oil is frequently adulterated with other cheap oils. Additionally, its quality is also susceptible to different species or regions, and various extraction technologies. These factors result in the incorrect labeling of camellia oil, and destabilize the local camellia oil market economies. Therefore, a rapid and accurate method should be prerequisite to authenticate camellia oil. The officially recommended methods are tedious, and destructive to detect camellia oil adulteration. Therefore, various rapid, precise, and non-destructive techniques should be developed for camellia oil authentication. This present review provides a critical overview of these existing analytical methods in the past few years. The mass-chromatographic, spectroscopy techniques, and other techniques including electronic noses (e-noses), isotope-ratio mass spectrometry (IRMS), differential scanning calorimetry (DSC), ion mobility spectrometry (IMS) and DNA, have been used for camellia oil authentication. Compared with the traditional chromatographic methods, infrared spectroscopy (IR), Fourier transformed (FT)-Raman, nuclear magnetic resonance (NMR), and fluorescence spectroscopy, combined with chemometrics, respectively, are efficient alternative analytical techniques for camellia oil quality control. •Camellia oil is frequently adulterated with other cheap oils.•Camellia oil quality is susceptible to different species and extraction methods.•Various rapid and non-destructive techniques could authenticate camellia oil.•Spectroscopy with chemometrics is efficient for camellia oil authentication.
AbstractList Camellia oil is obtained from the camellia seed with various cultivated species (Camellia. oleifera (C. oleifera), C. meiocarpa, C. vietnamensis, C. yuhsienensis, C. chekiangoleosa, C. semiserrata, C. reticulata, C. gigantocarpa, C. octopetala, C. semiserrata var. abliflora etc.), by widely used cold press extraction. As the earliest specie with high oil yield (40–60%) in China, C. oleifera, has become the most commonly available seed for camellia oil manufacturing. Because of its high nutritional and economic value, camellia oil is frequently adulterated with other cheap oils. Additionally, its quality is also susceptible to different species or regions, and various extraction technologies. These factors result in the incorrect labeling of camellia oil, and destabilize the local camellia oil market economies. Therefore, a rapid and accurate method should be prerequisite to authenticate camellia oil.The officially recommended methods are tedious, and destructive to detect camellia oil adulteration. Therefore, various rapid, precise, and non-destructive techniques should be developed for camellia oil authentication. This present review provides a critical overview of these existing analytical methods in the past few years.The mass-chromatographic, spectroscopy techniques, and other techniques including electronic noses (e-noses), isotope-ratio mass spectrometry (IRMS), differential scanning calorimetry (DSC), ion mobility spectrometry (IMS) and DNA, have been used for camellia oil authentication. Compared with the traditional chromatographic methods, infrared spectroscopy (IR), Fourier transformed (FT)-Raman, nuclear magnetic resonance (NMR), and fluorescence spectroscopy, combined with chemometrics, respectively, are efficient alternative analytical techniques for camellia oil quality control.
Camellia oil is obtained from the camellia seed with various cultivated species (Camellia. oleifera (C. oleifera), C. meiocarpa, C. vietnamensis, C. yuhsienensis, C. chekiangoleosa, C. semiserrata, C. reticulata, C. gigantocarpa, C. octopetala, C. semiserrata var. abliflora etc.), by widely used cold press extraction. As the earliest specie with high oil yield (40–60%) in China, C. oleifera, has become the most commonly available seed for camellia oil manufacturing. Because of its high nutritional and economic value, camellia oil is frequently adulterated with other cheap oils. Additionally, its quality is also susceptible to different species or regions, and various extraction technologies. These factors result in the incorrect labeling of camellia oil, and destabilize the local camellia oil market economies. Therefore, a rapid and accurate method should be prerequisite to authenticate camellia oil. The officially recommended methods are tedious, and destructive to detect camellia oil adulteration. Therefore, various rapid, precise, and non-destructive techniques should be developed for camellia oil authentication. This present review provides a critical overview of these existing analytical methods in the past few years. The mass-chromatographic, spectroscopy techniques, and other techniques including electronic noses (e-noses), isotope-ratio mass spectrometry (IRMS), differential scanning calorimetry (DSC), ion mobility spectrometry (IMS) and DNA, have been used for camellia oil authentication. Compared with the traditional chromatographic methods, infrared spectroscopy (IR), Fourier transformed (FT)-Raman, nuclear magnetic resonance (NMR), and fluorescence spectroscopy, combined with chemometrics, respectively, are efficient alternative analytical techniques for camellia oil quality control. •Camellia oil is frequently adulterated with other cheap oils.•Camellia oil quality is susceptible to different species and extraction methods.•Various rapid and non-destructive techniques could authenticate camellia oil.•Spectroscopy with chemometrics is efficient for camellia oil authentication.
Background Camellia oil is obtained from the camellia seed with various cultivated species (Camellia. oleifera (C. oleifera), C. meiocarpa, C. vietnamensis, C. yuhsienensis, C. chekiangoleosa, C. semiserrata, C. reticulata, C. gigantocarpa, C. octopetala, C. semiserrata var. abliflora etc.), by widely used cold press extraction. As the earliest specie with high oil yield (40–60%) in China, C. oleifera, has become the most commonly available seed for camellia oil manufacturing. Because of its high nutritional and economic value, camellia oil is frequently adulterated with other cheap oils. Additionally, its quality is also susceptible to different species or regions, and various extraction technologies. These factors result in the incorrect labeling of camellia oil, and destabilize the local camellia oil market economies. Therefore, a rapid and accurate method should be prerequisite to authenticate camellia oil. Scope and approach The officially recommended methods are tedious, and destructive to detect camellia oil adulteration. Therefore, various rapid, precise, and non-destructive techniques should be developed for camellia oil authentication. This present review provides a critical overview of these existing analytical methods in the past few years. Key findings and conclusion The mass-chromatographic, spectroscopy techniques, and other techniques including electronic noses (e-noses), isotope-ratio mass spectrometry (IRMS), differential scanning calorimetry (DSC), ion mobility spectrometry (IMS) and DNA, have been used for camellia oil authentication. Compared with the traditional chromatographic methods, infrared spectroscopy (IR), Fourier transformed (FT)-Raman, nuclear magnetic resonance (NMR), and fluorescence spectroscopy, combined with chemometrics, respectively, are efficient alternative analytical techniques for camellia oil quality control.
Author Wang, Xingguo
Wu, Gangcheng
Jin, Qingzhe
Shi, Ting
Author_xml – sequence: 1
  givenname: Ting
  surname: Shi
  fullname: Shi, Ting
– sequence: 2
  givenname: Gangcheng
  surname: Wu
  fullname: Wu, Gangcheng
– sequence: 3
  givenname: Qingzhe
  surname: Jin
  fullname: Jin, Qingzhe
– sequence: 4
  givenname: Xingguo
  surname: Wang
  fullname: Wang, Xingguo
  email: wangxg1002@gmail.com
BookMark eNp9kc1u1DAUhS1UJKYDL8DKEhs2Sf2XOEFsqlGBSpXYwNq649yoHiXxYHsGVbw8NwyrLrryj77P8j3nml0tcUHG3ktRSyHbm0NdwphrJZSohayFaF6xjexsX2nR6Cu2Eb0ylVLGvGHXOR8EEbppNuzPDmacpgA8honDqTziUoKHEuLyid9yH-cjJDqekcMC01MOmTYDT-iJvNytwsQL-scl_Dph5gOecYpHHPgYEw-FlJwx55mUml5NeA74-y17PcKU8d3_dct-frn7sftWPXz_er-7fai8UbZUWtphr8cWaJTRKtP7UYG3Lah-b_eote5gaMZeofHQ-MEq3fUosQWE1jRab9nHy7vHFNfvFTeH7GlqWDCeslNGCNNTQh2hH56hh3hKNCNR2lqtWtP2RKkL5VPMOeHojinMkJ6cFG7twx3c2odb-3BCujXtLeueST6UfzmXBGF6Wf18UZFSouSSyz7g4nEIVENxQwwv6X8BDQWqWA
CitedBy_id crossref_primary_10_3389_fphar_2023_1225515
crossref_primary_10_1016_j_crfs_2024_100732
crossref_primary_10_1016_j_ijbiomac_2024_137384
crossref_primary_10_1016_j_tifs_2023_104211
crossref_primary_10_1016_j_foodchem_2024_139046
crossref_primary_10_1016_j_foodcont_2021_108565
crossref_primary_10_1016_j_bios_2024_116098
crossref_primary_10_1016_j_indcrop_2022_114943
crossref_primary_10_1016_j_chemolab_2020_104165
crossref_primary_10_1007_s12161_024_02658_x
crossref_primary_10_1016_j_ijbiomac_2023_126134
crossref_primary_10_1016_j_foodchem_2023_137306
crossref_primary_10_1093_fqsafe_fyad034
crossref_primary_10_3390_foods13182894
crossref_primary_10_1016_j_lwt_2024_116822
crossref_primary_10_1016_j_fochx_2024_102127
crossref_primary_10_3389_fsens_2022_901628
crossref_primary_10_3390_foods11223644
crossref_primary_10_1016_j_jfca_2023_105730
crossref_primary_10_1016_j_jfca_2024_106926
crossref_primary_10_3390_molecules26164738
crossref_primary_10_1080_10408398_2021_1922872
crossref_primary_10_1016_j_foodchem_2024_142279
crossref_primary_10_1016_j_indcrop_2021_114499
crossref_primary_10_1016_j_indcrop_2021_113824
crossref_primary_10_47836_ifrj_29_6_17
crossref_primary_10_1016_j_crfs_2024_100753
crossref_primary_10_1016_j_foodhyd_2021_107063
crossref_primary_10_1016_j_foodchem_2021_131534
crossref_primary_10_1016_j_jiec_2024_11_055
crossref_primary_10_1016_j_fochx_2022_100558
crossref_primary_10_1016_j_indcrop_2020_113193
crossref_primary_10_1016_j_foodchem_2024_140888
crossref_primary_10_3390_foods11244047
crossref_primary_10_1016_j_foodchem_2024_141217
crossref_primary_10_3390_horticulturae8111077
crossref_primary_10_1016_j_foodres_2020_110057
crossref_primary_10_3390_biology13060438
crossref_primary_10_1002_fsn3_2209
crossref_primary_10_1002_jsfa_12117
crossref_primary_10_3389_fmicb_2022_918339
crossref_primary_10_3389_fpls_2022_932926
crossref_primary_10_1016_j_fochx_2024_101619
crossref_primary_10_1016_j_jfca_2022_104804
crossref_primary_10_1016_j_ifset_2024_103579
crossref_primary_10_3390_foods11152232
crossref_primary_10_5650_jos_ess22114
crossref_primary_10_1016_j_foodchem_2025_143526
crossref_primary_10_1080_03650340_2021_1872783
crossref_primary_10_1016_j_fbio_2023_102960
crossref_primary_10_1016_j_foodchem_2024_140629
crossref_primary_10_1016_j_foodchem_2025_143181
crossref_primary_10_1016_j_lwt_2022_113349
crossref_primary_10_1016_j_foodcont_2023_109744
crossref_primary_10_1016_j_foodchem_2021_130388
crossref_primary_10_1016_j_foodchem_2021_131997
crossref_primary_10_3390_molecules25225485
crossref_primary_10_1016_j_lwt_2021_110911
crossref_primary_10_1016_j_fochx_2024_101629
crossref_primary_10_3389_fnut_2022_1023711
crossref_primary_10_1111_jfpp_14696
crossref_primary_10_3390_foods13244182
crossref_primary_10_1111_1750_3841_16677
crossref_primary_10_1016_j_foodchem_2024_141314
crossref_primary_10_1080_07373937_2024_2321197
crossref_primary_10_3390_foods12020374
crossref_primary_10_1016_j_lwt_2022_114396
crossref_primary_10_3390_plants10101984
crossref_primary_10_1016_j_foodchem_2023_137109
crossref_primary_10_1016_j_indcrop_2024_118392
crossref_primary_10_1002_ejlt_202200212
crossref_primary_10_1016_j_scienta_2024_113903
crossref_primary_10_1016_j_lwt_2024_116348
crossref_primary_10_3389_fnut_2021_667744
crossref_primary_10_1021_acs_jafc_0c07321
crossref_primary_10_3389_fnut_2024_1440279
crossref_primary_10_1016_j_fbio_2023_103081
crossref_primary_10_1016_j_lwt_2021_111959
crossref_primary_10_1016_j_tifs_2025_104889
crossref_primary_10_1111_jfpp_15670
crossref_primary_10_1007_s00216_023_05029_3
crossref_primary_10_1016_j_foodhyd_2023_108473
crossref_primary_10_1016_j_jfca_2023_105494
crossref_primary_10_1016_j_lwt_2022_114040
crossref_primary_10_1111_ijfs_16958
crossref_primary_10_1016_j_fochx_2025_102384
crossref_primary_10_1016_j_tifs_2021_09_025
crossref_primary_10_1016_j_talanta_2022_123733
crossref_primary_10_3390_pr10081489
crossref_primary_10_3390_cosmetics8040114
crossref_primary_10_3389_fnut_2022_1053315
crossref_primary_10_3390_horticulturae10101047
crossref_primary_10_1007_s10895_025_04229_7
crossref_primary_10_1111_1750_3841_16293
crossref_primary_10_3389_fnut_2022_993334
crossref_primary_10_3390_foods14040677
crossref_primary_10_1016_j_foodchem_2020_128959
crossref_primary_10_1016_j_foodchem_2024_140206
crossref_primary_10_1021_acs_jnatprod_2c00929
crossref_primary_10_1016_j_foodchem_2024_142501
crossref_primary_10_3390_f12121712
crossref_primary_10_3390_cimb47020092
crossref_primary_10_1016_j_foodcont_2022_109275
crossref_primary_10_1111_jfbc_13649
crossref_primary_10_1016_j_indcrop_2024_119662
crossref_primary_10_1016_j_foodcont_2024_111033
crossref_primary_10_1016_j_foodchem_2022_134198
crossref_primary_10_1080_05704928_2023_2204946
crossref_primary_10_1021_acs_analchem_3c01101
crossref_primary_10_47836_ifrj_30_1_15
crossref_primary_10_1016_j_indcrop_2023_116419
crossref_primary_10_3390_horticulturae8060494
crossref_primary_10_1016_j_fbio_2022_101855
crossref_primary_10_1016_j_foodres_2022_111159
crossref_primary_10_1016_j_jare_2024_10_010
crossref_primary_10_1016_j_foodcont_2021_108332
crossref_primary_10_3390_horticulturae10050450
crossref_primary_10_1016_j_foodchem_2023_137090
Cites_doi 10.1105/tpc.140930
10.1111/j.1750-3841.2012.02622.x
10.1016/j.trac.2017.09.004
10.1002/ejlt.201800431
10.1080/10408398.2016.1225666
10.1016/j.arabjc.2017.12.025
10.1016/j.jfoodeng.2017.06.006
10.2174/0929867311320210003
10.1016/j.talanta.2018.08.092
10.1016/j.foodchem.2019.04.109
10.1016/j.foodchem.2016.02.086
10.1016/j.foodchem.2018.07.200
10.3390/molecules23020241
10.1016/j.saa.2019.117208
10.1016/j.foodchem.2014.02.016
10.1016/j.chemphyslip.2011.06.005
10.1016/j.lwt.2019.03.018
10.1016/j.vibspec.2018.10.003
10.1016/j.lwt.2019.108261
10.1038/s41598-018-32223-6
10.1016/j.foodres.2015.07.044
10.1016/j.trac.2014.02.006
10.1016/j.aca.2012.12.003
10.1016/j.foodcont.2018.08.024
10.1016/j.fuproc.2018.02.014
10.1016/j.trac.2017.07.015
10.1016/j.talanta.2018.08.074
10.1016/j.talanta.2018.12.026
10.1002/jccs.200600078
10.1016/j.chemphyslip.2012.03.004
10.1016/j.lwt.2017.03.026
10.1016/j.foodchem.2005.04.015
10.1016/j.rser.2012.07.003
10.1016/j.foodchem.2009.04.088
10.1039/c2cs35138b
10.1016/j.foodchem.2009.02.068
10.1016/j.foodres.2012.11.029
10.1111/1541-4337.12408
10.25165/j.ijabe.20181105.3656
10.1016/j.ejrs.2017.02.001
10.1016/j.foodchem.2019.04.073
10.1016/j.tifs.2018.01.013
10.1016/j.jhydrol.2016.12.014
10.1016/j.foodchem.2018.03.065
10.1080/10942912.2015.1021929
10.1016/j.foodchem.2017.09.061
10.1016/j.foodchem.2013.08.013
10.1016/j.foodres.2017.09.089
10.1016/S0021-9673(00)00355-1
10.1016/j.tifs.2016.10.014
10.1016/j.foodchem.2016.08.051
10.1016/j.foodres.2009.12.006
10.1016/j.petrol.2019.02.045
10.1007/s11746-010-1564-3
10.1002/ejlt.200501224
10.1016/j.foodchem.2015.02.079
10.1016/j.tifs.2017.12.006
10.2174/2212798410901010001
10.1016/j.foodchem.2017.04.110
10.1016/j.saa.2019.03.099
10.1016/j.saa.2006.09.014
10.1016/j.foodchem.2019.02.072
10.1007/s11746-013-2209-0
10.1016/j.foodchem.2005.12.039
10.1016/j.foodcont.2017.06.034
10.1007/s10973-016-5606-4
10.1016/j.lwt.2019.04.075
10.1016/j.compag.2018.03.002
10.1016/j.aca.2016.01.025
10.1016/j.tifs.2016.12.007
10.1080/19476337.2018.1466834
10.1016/j.foodchem.2019.03.067
10.1002/ejlt.201500463
10.1142/S1793545818500062
10.1016/j.foodres.2013.08.041
10.1016/j.foodchem.2017.11.013
10.1177/156482650402500402
10.1016/j.foodchem.2018.11.095
10.5507/bp.2011.052
10.1007/s12161-016-0587-2
10.1002/jsfa.9424
10.1016/j.talanta.2016.08.005
10.1016/j.indcrop.2018.10.004
10.1016/j.chemolab.2016.03.028
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Mar 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 2020
DBID AAYXX
CITATION
7QO
7QR
7ST
7T7
8FD
C1K
F28
FR3
P64
SOI
7S9
L.6
DOI 10.1016/j.tifs.2020.01.005
DatabaseName CrossRef
Biotechnology Research Abstracts
Chemoreception Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Biotechnology Research Abstracts
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Biotechnology Research Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-3053
EndPage 99
ExternalDocumentID 10_1016_j_tifs_2020_01_005
S0924224419306995
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
WH7
WUQ
XFK
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7QO
7QR
7ST
7T7
8FD
C1K
EFKBS
F28
FR3
P64
SOI
7S9
L.6
ID FETCH-LOGICAL-c427t-317db3f6a305f7249cf2ac76a29b7be3338ad5f92e4ca5cd72389e1e6aea64533
IEDL.DBID .~1
ISSN 0924-2244
IngestDate Fri Jul 11 10:05:54 EDT 2025
Wed Aug 13 06:50:13 EDT 2025
Thu Apr 24 23:05:24 EDT 2025
Tue Jul 01 04:02:36 EDT 2025
Fri Feb 23 02:48:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Spectroscopy techniques
Chromatographic techniques
Authentication
Camellia oil
Chemometrics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-317db3f6a305f7249cf2ac76a29b7be3338ad5f92e4ca5cd72389e1e6aea64533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2377326469
PQPubID 2045388
PageCount 12
ParticipantIDs proquest_miscellaneous_2400490928
proquest_journals_2377326469
crossref_primary_10_1016_j_tifs_2020_01_005
crossref_citationtrail_10_1016_j_tifs_2020_01_005
elsevier_sciencedirect_doi_10_1016_j_tifs_2020_01_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Trends in food science & technology
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Zhu, Wang, Chen (bib88) 2017; 216
Liu, Hu, Liu, Zhang, Chen, He (bib44) 2017; 119
Shi, Zhu, Zhou, Huo, Long, Zeng (bib60) 2019; 287
Peris, Escuder-Gilabert (bib52) 2016; 58
Guo, Xu, Yuan, Wu, Wang (bib25) 2010; 87
Sales, Portoles, Johnsen, Danielsen, Beltran (bib57) 2019; 271
Hemmateenejad, Akhond, Samari (bib30) 2007; 67
Xie, Liu, Yu, Song, Hu (bib75) 2013; 90
Rosa, Coqueiro, Março, Valderrama (bib55) 2018; 273
Dais, Hatzakis (bib17) 2013; 765
Majchrzak, Wojnowski, Dymerski, Gebicki, Namiesnik (bib46) 2018; 246
Yang, Li, Wang, Zou, Peng, Yin (bib77) 2019; 121
Cheng, Yang, Wang, Zhou, Yan, Teng (bib12) 2018; 11
Ozulku, Yildirim, Toker, Karasu, Durak (bib50) 2017; 82
Weng, Weng, Chen (bib72) 2006; 53
Dou, Mao, Zhang, Xie, Chen, Yu (bib18) 2018; 23
Chu, Wang, Li, Zhao, Jiang (bib14) 2018; 11
Shi, Zhu, Chen, Yan, Chen, Wu (bib59) 2018; 242
Hu, He, Zhang, Yang, Liu (bib32) 2019; 191
Camin, Boner, Bontempo, Fauhl-Hassek, Kelly, Riedl (bib7) 2017; 61
Chen, Chen, Lu (bib10) 2018; 8
Sabah, Talebkeikhah, Agin, Talebkeikhah, Hasheminasab (bib56) 2019; 177
Hu, Chen, Gao, Li, Du, Fu (bib31) 2019; 99
Nunes (bib49) 2014; 60
Wallingford, Yuhas, Du, Zhai, Popkin (bib66) 2004; 25
Mohamed, Saleh, Belal, Gad (bib47) 2017; 21
Parker, Limer, Watson, Defernez, Williamson, Kemsley (bib51) 2014; 57
Yuan, Wang, Chen, Ye, Zhou (bib80) 2015; 19
Hai, Wang (bib28) 2006; 108
Gerhardt, Schwolow, Rohn, Perez-Cacho, Galan-Soldevilla, Arce (bib21) 2019; 278
Hatzakis (bib29) 2019; 18
Wang, Zeng, Del Mar Contreras, Wang (bib69) 2017; 102
Ellis, Brewster, Dunn, William, Golovanov, Royston (bib19) 2012; 41
Wu, Ma, Zhang, Li, Li, Zhang (bib74) 2016; 204
Wu, Li, Li, Liu, Zhang, Xiao (bib73) 2018; 174
Li, Huang, Huang, Teng, Xia, Wei (bib42) 2016; 126
Cui, Lisa, Wenfeng, Ruchun (bib16) 2014; 39
Šmejkalová, Piccolo (bib62) 2010; 118
Ai, Bin, Zhang, Huang, Wang, Liang (bib1) 2014; 143
Kumar, Tarai, Mishra (bib40) 2017; 97
Siasos, Tousoulis, Tsigkou, Kokkou, Oikonomou, Vavuranakis (bib61) 2013; 20
Zeb (bib81) 2012; 165
Kamaleldin, Moazzami (bib36) 2009; 1
Zhang (bib82) 2012; 16
Zhu, Zhou, Duncan, Lv, Liao, Feng (bib89) 2017; 545
Cao, Ruan, Chen, Hong, Cai (bib9) 2017; 96
Kremmyda, Tvrzicka, Stankova, Zak (bib39) 2011; 155
Guadalupe, María Teresa (bib24) 2011; 164
Rohman, Man (bib54) 2010; 43
Zhong, Danny, Andrea, Paul, Kevin (bib84) 2007; 100
Gurdeniz, Ozen (bib26) 2009; 116
Zhou, Jiang, Zhao, Zhang, Gu, Pan (bib85) 2017; 84
Li, Zhu, Zhang, Li, Su, Shan (bib45) 2012; 77
Yin, Zhou, Chen, Han, Zheng, Younis (bib79) 2019; 221
Gómez-Caravaca, Maggio, Cerretani (bib22) 2016; 913
Wang, Wu, Long, Hu, Cheng, Chen (bib68) 2019; 293
Bingning, Haixia, Qiaojiao, Jie, Yanwen (bib6) 2015; 181
Akbar, Kuanar, Patnaik, Mishra, Nayak (bib2) 2018; 148
Aparicio, Aparicio-Ruíz (bib3) 2000; 881
Yang, Zhang, Li, Yu, Mao, Wang (bib78) 2018; 74
Wang, Zeng, Verardo, Contreras (bib70) 2017; 233
Bing (bib5) 2012; 27
Karpas, Zeev (bib37) 2013; 54
Cheng, Liu, Tao, Wang, Li, Teng (bib11) 2017; 11
Lang, Yang, Dou, Wang, Zhang, Li (bib41) 2019; 107
Uitterhaegen, Evon (bib65) 2017; 212
Robards, Prenzler, Ryan, Zhong, Moreau, Kamaleldin (bib53) 2009
Zhang, Wang, Yang, Mao, Jiang, Wang (bib83) 2019; 289
Cao, Li, Liu, Liu, Fan, Deng (bib8) 2016; 10
Farahani, Benvidi, Rezaeinasab, Abbasi, Abdollahi-Alibeik, Rezaeipoor-Anari (bib20) 2019; 192
Wei, Sun, Jiang, Zhang, Hong, Jin (bib71) 2019; 112
de Santana, Borges Neto, Poppi (bib58) 2019; 293
Gu, Sun (bib27) 2019; 218
Granato, Santos, Escher, Ferreira, Maggio (bib23) 2018; 72
Li, Kong, Shi, Shen (bib43) 2016; 155
Zhuang, Zhang, Wang, Li (bib87) 2018; 126
Jimenez-Carvelo, Lozano, Olivieri (bib35) 2019; 96
Karuk Elmas, Arslan, Akin, Kenar, Janssen, Yilmaz (bib38) 2019; 196
Wang, Lee, Wang, He (bib67) 2006; 95
Bajoub, Bendini, Fernández-Gutiérrez, Carrasco-Pancorbo (bib4) 2018; 58
Chen, Lin, Tan (bib13) 2018
Jiang, Wu, Yuan, Lamu, Wang, Zhang (bib34) 2018; 11
Taofiq, Calhelha, Heleno, Barros, Martins, Santos-Buelga (bib64) 2015; 76
Zhou, Shi, Pan, Liu, Long, Ge (bib86) 2019; 110
Xue-Hui, Chen, Wang, Cheng, Zhou (bib76) 2007
Clouse (bib15) 2002; 14
Su, Shih, Lin (bib63) 2014; 156
Hui, Geng, Tong, Lu, Chen (bib33) 2018; 16
Navarro-Reig, Jaumot, Beek, Vivó-Truyols, Tauler (bib48) 2016; 160
Li (10.1016/j.tifs.2020.01.005_bib43) 2016; 155
Hai (10.1016/j.tifs.2020.01.005_bib28) 2006; 108
Camin (10.1016/j.tifs.2020.01.005_bib7) 2017; 61
Li (10.1016/j.tifs.2020.01.005_bib45) 2012; 77
Zhang (10.1016/j.tifs.2020.01.005_bib82) 2012; 16
Cheng (10.1016/j.tifs.2020.01.005_bib11) 2017; 11
Xie (10.1016/j.tifs.2020.01.005_bib75) 2013; 90
Yin (10.1016/j.tifs.2020.01.005_bib79) 2019; 221
Liu (10.1016/j.tifs.2020.01.005_bib44) 2017; 119
Siasos (10.1016/j.tifs.2020.01.005_bib61) 2013; 20
Zhou (10.1016/j.tifs.2020.01.005_bib86) 2019; 110
Wang (10.1016/j.tifs.2020.01.005_bib67) 2006; 95
Granato (10.1016/j.tifs.2020.01.005_bib23) 2018; 72
Lang (10.1016/j.tifs.2020.01.005_bib41) 2019; 107
Nunes (10.1016/j.tifs.2020.01.005_bib49) 2014; 60
Wu (10.1016/j.tifs.2020.01.005_bib73) 2018; 174
Zeb (10.1016/j.tifs.2020.01.005_bib81) 2012; 165
Ellis (10.1016/j.tifs.2020.01.005_bib19) 2012; 41
Su (10.1016/j.tifs.2020.01.005_bib63) 2014; 156
Li (10.1016/j.tifs.2020.01.005_bib42) 2016; 126
Chen (10.1016/j.tifs.2020.01.005_bib13) 2018
Chu (10.1016/j.tifs.2020.01.005_bib14) 2018; 11
Zhu (10.1016/j.tifs.2020.01.005_bib89) 2017; 545
Yang (10.1016/j.tifs.2020.01.005_bib77) 2019; 121
Dais (10.1016/j.tifs.2020.01.005_bib17) 2013; 765
Bajoub (10.1016/j.tifs.2020.01.005_bib4) 2018; 58
Cao (10.1016/j.tifs.2020.01.005_bib9) 2017; 96
Hatzakis (10.1016/j.tifs.2020.01.005_bib29) 2019; 18
Gómez-Caravaca (10.1016/j.tifs.2020.01.005_bib22) 2016; 913
Yuan (10.1016/j.tifs.2020.01.005_bib80) 2015; 19
Uitterhaegen (10.1016/j.tifs.2020.01.005_bib65) 2017; 212
Navarro-Reig (10.1016/j.tifs.2020.01.005_bib48) 2016; 160
Shi (10.1016/j.tifs.2020.01.005_bib60) 2019; 287
Zhou (10.1016/j.tifs.2020.01.005_bib85) 2017; 84
Ozulku (10.1016/j.tifs.2020.01.005_bib50) 2017; 82
Dou (10.1016/j.tifs.2020.01.005_bib18) 2018; 23
Farahani (10.1016/j.tifs.2020.01.005_bib20) 2019; 192
Kamaleldin (10.1016/j.tifs.2020.01.005_bib36) 2009; 1
Šmejkalová (10.1016/j.tifs.2020.01.005_bib62) 2010; 118
Zhang (10.1016/j.tifs.2020.01.005_bib83) 2019; 289
Akbar (10.1016/j.tifs.2020.01.005_bib2) 2018; 148
Rohman (10.1016/j.tifs.2020.01.005_bib54) 2010; 43
Kremmyda (10.1016/j.tifs.2020.01.005_bib39) 2011; 155
Karpas (10.1016/j.tifs.2020.01.005_bib37) 2013; 54
Gerhardt (10.1016/j.tifs.2020.01.005_bib21) 2019; 278
Chen (10.1016/j.tifs.2020.01.005_bib10) 2018; 8
Wang (10.1016/j.tifs.2020.01.005_bib68) 2019; 293
Wang (10.1016/j.tifs.2020.01.005_bib69) 2017; 102
Wang (10.1016/j.tifs.2020.01.005_bib70) 2017; 233
Hu (10.1016/j.tifs.2020.01.005_bib32) 2019; 191
Yang (10.1016/j.tifs.2020.01.005_bib78) 2018; 74
Zhong (10.1016/j.tifs.2020.01.005_bib84) 2007; 100
Parker (10.1016/j.tifs.2020.01.005_bib51) 2014; 57
Zhu (10.1016/j.tifs.2020.01.005_bib88) 2017; 216
Sales (10.1016/j.tifs.2020.01.005_bib57) 2019; 271
Gu (10.1016/j.tifs.2020.01.005_bib27) 2019; 218
Gurdeniz (10.1016/j.tifs.2020.01.005_bib26) 2009; 116
Bingning (10.1016/j.tifs.2020.01.005_bib6) 2015; 181
Wu (10.1016/j.tifs.2020.01.005_bib74) 2016; 204
Hemmateenejad (10.1016/j.tifs.2020.01.005_bib30) 2007; 67
Ai (10.1016/j.tifs.2020.01.005_bib1) 2014; 143
Rosa (10.1016/j.tifs.2020.01.005_bib55) 2018; 273
Guadalupe (10.1016/j.tifs.2020.01.005_bib24) 2011; 164
Hui (10.1016/j.tifs.2020.01.005_bib33) 2018; 16
Peris (10.1016/j.tifs.2020.01.005_bib52) 2016; 58
Jimenez-Carvelo (10.1016/j.tifs.2020.01.005_bib35) 2019; 96
Wei (10.1016/j.tifs.2020.01.005_bib71) 2019; 112
Taofiq (10.1016/j.tifs.2020.01.005_bib64) 2015; 76
Clouse (10.1016/j.tifs.2020.01.005_bib15) 2002; 14
Cui (10.1016/j.tifs.2020.01.005_bib16) 2014; 39
de Santana (10.1016/j.tifs.2020.01.005_bib58) 2019; 293
Majchrzak (10.1016/j.tifs.2020.01.005_bib46) 2018; 246
Cao (10.1016/j.tifs.2020.01.005_bib8) 2016; 10
Hu (10.1016/j.tifs.2020.01.005_bib31) 2019; 99
Shi (10.1016/j.tifs.2020.01.005_bib59) 2018; 242
Cheng (10.1016/j.tifs.2020.01.005_bib12) 2018; 11
Weng (10.1016/j.tifs.2020.01.005_bib72) 2006; 53
Wallingford (10.1016/j.tifs.2020.01.005_bib66) 2004; 25
Robards (10.1016/j.tifs.2020.01.005_bib53) 2009
Bing (10.1016/j.tifs.2020.01.005_bib5) 2012; 27
Karuk Elmas (10.1016/j.tifs.2020.01.005_bib38) 2019; 196
Guo (10.1016/j.tifs.2020.01.005_bib25) 2010; 87
Zhuang (10.1016/j.tifs.2020.01.005_bib87) 2018; 126
Kumar (10.1016/j.tifs.2020.01.005_bib40) 2017; 97
Mohamed (10.1016/j.tifs.2020.01.005_bib47) 2017; 21
Aparicio (10.1016/j.tifs.2020.01.005_bib3) 2000; 881
Jiang (10.1016/j.tifs.2020.01.005_bib34) 2018; 11
Sabah (10.1016/j.tifs.2020.01.005_bib56) 2019; 177
Xue-Hui (10.1016/j.tifs.2020.01.005_bib76) 2007
References_xml – volume: 21
  start-page: 1
  year: 2017
  end-page: 14
  ident: bib47
  article-title: Application of near-infrared reflectance for quantitative assessment of soil properties
  publication-title: Egyptian Journal of Remote Sensing & Space Science
– volume: 148
  start-page: 160
  year: 2018
  end-page: 178
  ident: bib2
  article-title: Application of Artificial Neural Network modeling for optimization and prediction of essential oil yield in turmeric (Curcuma longa L.)
  publication-title: Computers and Electronics in Agriculture
– volume: 11
  start-page: 1850006
  year: 2018
  ident: bib14
  article-title: Identifying camellia oil adulteration with selected vegetable oils by characteristic near-infrared spectral regions
  publication-title: Journal of Innovative Optical Health Sciences
– volume: 97
  start-page: 216
  year: 2017
  end-page: 243
  ident: bib40
  article-title: Unconventional steady-state fluorescence spectroscopy as an analytical technique for analyses of complex-multifluorophoric mixtures
  publication-title: TRAC Trends in Analytical Chemistry
– volume: 96
  start-page: 22
  year: 2019
  end-page: 28
  ident: bib35
  article-title: Comparative chemometric analysis of fluorescence and near infrared spectroscopies for authenticity confirmation and geographical origin of Argentinean extra virgin olive oils
  publication-title: Food Control
– volume: 19
  start-page: 300
  year: 2015
  end-page: 313
  ident: bib80
  article-title: Identification and detection of AdulteratedCamellia OleiferaAbel. Oils by near infrared transmittance spectroscopy
  publication-title: International Journal of Food Properties
– volume: 27
  start-page: 111
  year: 2012
  end-page: 115
  ident: bib5
  article-title: Research on the detection of adulteration of virgin camellia oil based on dielectric spectroscopy method
  publication-title: Journal of the Chinese Cereals & Oils Association
– volume: 287
  start-page: 46
  year: 2019
  end-page: 54
  ident: bib60
  article-title: H NMR combined with PLS for the rapid determination of squalene and sterols in vegetable oils
  publication-title: Food Chemistry
– volume: 58
  start-page: 40
  year: 2016
  end-page: 54
  ident: bib52
  article-title: Electronic noses and tongues to assess food authenticity and adulteration
  publication-title: Trends in Food Science & Technology
– volume: 204
  start-page: 334
  year: 2016
  end-page: 342
  ident: bib74
  article-title: Simultaneous determination of phenolic compounds in sesame oil using LC-MS/MS combined with magnetic carboxylated multi-walled carbon nanotubes
  publication-title: Food Chemistry
– volume: 271
  start-page: 488
  year: 2019
  end-page: 496
  ident: bib57
  article-title: Olive oil quality classification and measurement of its organoleptic attributes by untargeted GC-MS and multivariate statistical-based approach
  publication-title: Food Chemistry
– volume: 216
  start-page: 268
  year: 2017
  end-page: 274
  ident: bib88
  article-title: Rapid detection of peanut oil adulteration using low-field nuclear magnetic resonance and chemometrics
  publication-title: Food Chemistry
– volume: 99
  start-page: 2285
  year: 2019
  end-page: 2291
  ident: bib31
  article-title: Fusion of near‐infrared and fluorescence spectroscopy for untargeted fraud detection of Chinese tea seed oil using chemometric methods
  publication-title: Journal of the Science of Food and Agriculture
– volume: 174
  start-page: 88
  year: 2018
  end-page: 94
  ident: bib73
  article-title: Simultaneous extraction of oil and tea saponin from Camellia oleifera Abel. seeds under subcritical water conditions
  publication-title: Fuel Processing Technology
– volume: 60
  start-page: 255
  year: 2014
  end-page: 261
  ident: bib49
  article-title: Vibrational spectroscopy and chemometrics to assess authenticity, adulteration and intrinsic quality parameters of edible oils and fats
  publication-title: Food Research International
– volume: 118
  start-page: 153
  year: 2010
  end-page: 158
  ident: bib62
  article-title: High-power gradient diffusion NMR spectroscopy for the rapid assessment of extra-virgin olive oil adulteration
  publication-title: Food Chemistry
– volume: 116
  start-page: 519
  year: 2009
  end-page: 525
  ident: bib26
  article-title: Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data
  publication-title: Food Chemistry
– volume: 54
  start-page: 1146
  year: 2013
  end-page: 1151
  ident: bib37
  article-title: Applications of ion mobility spectrometry (IMS) in the field of foodomics
  publication-title: Food Research International
– volume: 143
  start-page: 472
  year: 2014
  end-page: 478
  ident: bib1
  article-title: Application of random forests to select premium quality vegetable oils by their fatty acid composition
  publication-title: Food Chemistry
– volume: 95
  start-page: 529
  year: 2006
  end-page: 536
  ident: bib67
  article-title: Feasibility study of quantifying and discriminating soybean oil adulteration in camellia oils by attenuated total reflectance MIR and fiber optic diffuse reflectance NIR
  publication-title: Food Chemistry
– volume: 913
  start-page: 1
  year: 2016
  end-page: 21
  ident: bib22
  article-title: Chemometric applications to assess quality and critical parameters of virgin and extra-virgin olive oil. A review
  publication-title: Analytica Chimica Acta
– volume: 102
  start-page: 184
  year: 2017
  end-page: 194
  ident: bib69
  article-title: Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil
  publication-title: Food Research International
– volume: 72
  start-page: 83
  year: 2018
  end-page: 90
  ident: bib23
  article-title: Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective
  publication-title: Trends in Food Science & Technology
– volume: 108
  start-page: 116
  year: 2006
  end-page: 124
  ident: bib28
  article-title: Detection of adulteration in camellia seed oil and sesame oil using an electronic nose
  publication-title: European Journal of Lipid Science and Technology
– volume: 293
  start-page: 323
  year: 2019
  end-page: 332
  ident: bib58
  article-title: Random forest as one-class classifier and infrared spectroscopy for food adulteration detection
  publication-title: Food Chemistry
– start-page: 139
  year: 2007
  end-page: 141
  ident: bib76
  article-title: Study on technology of supercritical CO
  publication-title: Food Science and Technology
– volume: 246
  start-page: 192
  year: 2018
  end-page: 201
  ident: bib46
  article-title: Electronic noses in classification and quality control of edible oils: A review
  publication-title: Food Chemistry
– volume: 160
  start-page: 624
  year: 2016
  end-page: 635
  ident: bib48
  article-title: Chemometric analysis of comprehensive LC×LC-MS data: Resolution of triacylglycerol structural isomers in corn oil
  publication-title: Talanta
– volume: 20
  start-page: 2641
  year: 2013
  end-page: 2660
  ident: bib61
  article-title: Flavonoids in atherosclerosis: An overview of their mechanisms of action
  publication-title: Current Medicinal Chemistry
– volume: 1
  start-page: 1
  year: 2009
  end-page: 14
  ident: bib36
  article-title: Plant sterols and stanols as cholesterol-lowering ingredients in functional foods
  publication-title: Recent Patents on Food, Nutrition & Agriculture
– volume: 164
  start-page: 607
  year: 2011
  end-page: 624
  ident: bib24
  article-title: Current and new insights on phytosterol oxides in plant sterol-enriched food
  publication-title: Chemistry and Physics of Lipids
– volume: 155
  start-page: 195
  year: 2011
  end-page: 218
  ident: bib39
  article-title: Fatty acids as biocompounds: Their role in human metabolism, health and disease: A review. Part 2: Fatty acid physiological roles and applications in human health and disease
  publication-title: Biomedical Papers-Olomouc
– volume: 84
  start-page: 562
  year: 2017
  end-page: 571
  ident: bib85
  article-title: Changes in physicochemical properties and protein structure of surimi enhanced with camellia tea oil
  publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology
– volume: 14
  start-page: 1995
  year: 2002
  end-page: 2000
  ident: bib15
  article-title: Arabidopsis mutants reveal multiple roles for sterols in plant development
  publication-title: Plant Cell
– volume: 18
  start-page: 189
  year: 2019
  end-page: 220
  ident: bib29
  article-title: Nuclear magnetic resonance (NMR) spectroscopy in food science: A comprehensive review
  publication-title: Comprehensive Reviews in Food Science and Food Safety
– volume: 100
  start-page: 1544
  year: 2007
  end-page: 1551
  ident: bib84
  article-title: Endogenous biophenol, fatty acid and volatile profiles of selected oils
  publication-title: Food Chemistry
– volume: 74
  start-page: 26
  year: 2018
  end-page: 32
  ident: bib78
  article-title: A review of chemical composition and nutritional properties of minor vegetable oils in China
  publication-title: Trends in Food Science & Technology
– volume: 82
  start-page: 212
  year: 2017
  end-page: 216
  ident: bib50
  article-title: Rapid detection of adulteration of cold pressed sesame oil adultered with hazelnut, canola, and sunflower oils using ATR-FTIR spectroscopy combined with chemometric
  publication-title: Food Control
– volume: 61
  start-page: 176
  year: 2017
  end-page: 187
  ident: bib7
  article-title: Stable isotope techniques for verifying the declared geographical origin of food in legal cases
  publication-title: Trends in Food Science & Technology
– volume: 121
  year: 2019
  ident: bib77
  article-title: A novel aqueous extraction for camellia oil by emulsified oil: A frozen/thawed method
  publication-title: European Journal of Lipid Science and Technology
– volume: 278
  start-page: 720
  year: 2019
  end-page: 728
  ident: bib21
  article-title: Quality assessment of olive oils based on temperature-ramped HS-GC-IMS and sensory evaluation: Comparison of different processing approaches by LDA, kNN, and SVM
  publication-title: Food Chemistry
– volume: 43
  start-page: 886
  year: 2010
  end-page: 892
  ident: bib54
  article-title: Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil
  publication-title: Food Research International
– volume: 23
  start-page: 241
  year: 2018
  ident: bib18
  article-title: Multispecies adulteration detection of camellia oil by chemical markers
  publication-title: Molecules
– volume: 76
  start-page: 821
  year: 2015
  end-page: 827
  ident: bib64
  article-title: The contribution of phenolic acids to the anti-inflammatory activity of mushrooms: Screening in phenolic extracts, individual parent molecules and synthesized glucuronated and methylated derivatives
  publication-title: Food Research International
– volume: 96
  start-page: 201
  year: 2017
  end-page: 211
  ident: bib9
  article-title: Recent developments and applications of mass spectrometry for the quality and safety assessment of cooking oil
  publication-title: TRAC Trends in Analytical Chemistry
– start-page: 178
  year: 2018
  end-page: 183
  ident: bib13
  article-title: Fast quantitative detection of sesame oil adulteration by near-infrared spectroscopy and chemometric models
  publication-title: Vibrational Spectroscopy
– volume: 191
  start-page: 324
  year: 2019
  end-page: 332
  ident: bib32
  article-title: Safety analysis of edible oil products via Raman spectroscopy
  publication-title: Talanta
– volume: 41
  start-page: 5706
  year: 2012
  end-page: 5727
  ident: bib19
  article-title: Fingerprinting food: Current technologies for the detection of food adulteration and contamination
  publication-title: Chemical Society Reviews
– volume: 242
  start-page: 308
  year: 2018
  end-page: 315
  ident: bib59
  article-title: H NMR combined with chemometrics for the rapid detection of adulteration in camellia oils
  publication-title: Food Chemistry
– volume: 39
  start-page: 67
  year: 2014
  end-page: 70
  ident: bib16
  article-title: Electrical conductivity measurement in identification of authentic oil-tea camellia seed oil
  publication-title: China Oils and Fats
– volume: 16
  start-page: 6048
  year: 2012
  end-page: 6058
  ident: bib82
  article-title: Review on analysis of biodiesel with infrared spectroscopy
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 765
  start-page: 1
  year: 2013
  end-page: 27
  ident: bib17
  article-title: Quality assessment and authentication of virgin olive oil by NMR spectroscopy: A critical review
  publication-title: Analytica Chimica Acta
– volume: 221
  start-page: 117208
  year: 2019
  ident: bib79
  article-title: A review of the application of near-infrared spectroscopy to rare traditional Chinese medicine
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
– volume: 16
  start-page: 747
  year: 2018
  end-page: 754
  ident: bib33
  article-title: Second-derivative laser-induced fluorescence spectroscopy combined with chemometrics for authentication of the adulteration of camellia oil
  publication-title: CyTA - Journal of Food
– volume: 53
  start-page: 597
  year: 2006
  end-page: 603
  ident: bib72
  article-title: Authentication of camellia oleifera Abel oil by near infrared Fourier transform Raman spectroscopy
  publication-title: Journal of the Chinese Chemical Society
– volume: 181
  start-page: 25
  year: 2015
  end-page: 30
  ident: bib6
  article-title: Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: A comparative study
  publication-title: Food Chemistry
– volume: 10
  start-page: 649
  year: 2016
  end-page: 658
  ident: bib8
  article-title: Combined application of fluorescence spectroscopy and chemometrics analysis in oxidative deterioration of edible oils
  publication-title: Food Analytical Methods
– volume: 156
  start-page: 369
  year: 2014
  end-page: 373
  ident: bib63
  article-title: Chemical composition of seed oils in native Taiwanese Camellia species
  publication-title: Food Chemistry
– volume: 177
  start-page: 236
  year: 2019
  end-page: 249
  ident: bib56
  article-title: Application of decision tree, artificial neural networks, and adaptive neuro-fuzzy inference system on predicting lost circulation: A case study from Marun oil field
  publication-title: Journal of Petroleum Science and Engineering
– volume: 25
  start-page: 330
  year: 2004
  end-page: 336
  ident: bib66
  article-title: Fatty acids in Chinese edible oils: Value of direct analysis as a basis for labeling
  publication-title: Food and Nutrition Bulletin
– volume: 233
  start-page: 302
  year: 2017
  end-page: 310
  ident: bib70
  article-title: Fatty acid and sterol composition of tea seed oils: Their comparison by the "FancyTiles" approach
  publication-title: Food Chemistry
– year: 2009
  ident: bib53
  article-title: Camellia oil and tea oil
– volume: 90
  start-page: 641
  year: 2013
  end-page: 646
  ident: bib75
  article-title: Rapid detection and quantification by GC–MS of camellia seed oil adulterated with soybean oil
  publication-title: Journal of the American Oil Chemists Society
– volume: 881
  start-page: 93
  year: 2000
  end-page: 104
  ident: bib3
  article-title: Authentication of vegetable oils by chromatographic techniques
  publication-title: Journal of Chromatography A
– volume: 155
  start-page: 145
  year: 2016
  end-page: 150
  ident: bib43
  article-title: A combination of chemometrics methods and GC–MS for the classification of edible vegetable oils
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 126
  start-page: 340
  year: 2018
  end-page: 346
  ident: bib87
  article-title: The effect of alternative solvents to n-hexane on the green extraction of Litsea cubeba kernel oils as new oil sources
  publication-title: Industrial Crops and Products
– volume: 119
  start-page: 1500463
  year: 2017
  ident: bib44
  article-title: Rapid detection and separation of olive oil andCamelliaoil based on ion mobility spectrometry fingerprints and chemometric models
  publication-title: European Journal of Lipid Science and Technology
– volume: 289
  start-page: 313
  year: 2019
  end-page: 319
  ident: bib83
  article-title: Simultaneous determination of tocopherols, carotenoids and phytosterols in edible vegetable oil by ultrasound-assisted saponification, LLE and LC-MS/MS
  publication-title: Food Chemistry
– volume: 87
  start-page: 839
  year: 2010
  end-page: 848
  ident: bib25
  article-title: Characterization and authentication of significant Chinese edible oilseed oils by stable carbon isotope analysis
  publication-title: Journal of the American Oil Chemists Society
– volume: 11
  start-page: 815
  year: 2018
  end-page: 826
  ident: bib12
  article-title: New method for effective identification of adulterated Camellia oil basing on Camellia oleifera-specific DNA
  publication-title: Arabian Journal of Chemistry
– volume: 192
  start-page: 439
  year: 2019
  end-page: 447
  ident: bib20
  article-title: Potentiality of PARAFAC approaches for simultaneous determination of N-acetylcysteine and acetaminophen based on the second-order data obtained from differential pulse voltammetry
  publication-title: Talanta
– volume: 126
  start-page: 1735
  year: 2016
  end-page: 1746
  ident: bib42
  article-title: Comparison of GC and DSC monitoring the adulteration of camellia oil with selected vegetable oils
  publication-title: Journal of Thermal Analysis and Calorimetry
– volume: 77
  start-page: 374
  year: 2012
  end-page: 380
  ident: bib45
  article-title: Authentication of pure camellia oil by using near infrared spectroscopy and pattern recognition techniques
  publication-title: Journal of Food Science
– volume: 8
  start-page: 13784
  year: 2018
  ident: bib10
  article-title: A novel method for detection of camellia oil adulteration based on time-resolved emission fluorescence
  publication-title: Scientific Reports
– volume: 196
  start-page: 22
  year: 2019
  end-page: 31
  ident: bib38
  article-title: Synchronous fluorescence spectroscopy combined with chemometrics for rapid assessment of cold-pressed grape seed oil adulteration: Qualitative and quantitative study
  publication-title: Talanta
– volume: 293
  start-page: 348
  year: 2019
  end-page: 357
  ident: bib68
  article-title: Rapid identification and quantification of cheaper vegetable oil adulteration in camellia oil by using excitation-emission matrix fluorescence spectroscopy combined with chemometrics
  publication-title: Food Chemistry
– volume: 273
  start-page: 52
  year: 2018
  end-page: 56
  ident: bib55
  article-title: Thermal rice oil degradation evaluated by UV-Vis-NIR and PARAFAC
  publication-title: Food Chemistry
– volume: 58
  start-page: 832
  year: 2018
  end-page: 857
  ident: bib4
  article-title: Olive oil authentication: A comparative analysis of regulatory frameworks with especial emphasis on quality and authenticity indices, and recent analytical techniques developed for their assessment. A review
  publication-title: Critical Reviews in Food Science and Nutrition
– volume: 11
  start-page: 230
  year: 2018
  end-page: 235
  ident: bib34
  article-title: Physicochemical properties, flavor intensity and oxidative stability of different camellia oils
  publication-title: International Journal of Agricultural and Biological Engineering
– volume: 545
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib89
  article-title: Integrating real-time and manual monitored data to predict hillslope soil moisture dynamics with high spatio-temporal resolution using linear and non-linear models
  publication-title: Journal of Hydrology
– volume: 67
  start-page: 958
  year: 2007
  end-page: 965
  ident: bib30
  article-title: A comparative study between PCR and PLS in simultaneous spectrophotometric determination of diphenylamine, aniline, and phenol: Effect of wavelength selection
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
– volume: 112
  start-page: 108261
  year: 2019
  ident: bib71
  article-title: Triacylglycerols fingerprint of edible vegetable oils by ultra-performance liquid chromatography-Q-ToF-MS
  publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology
– volume: 11
  start-page: 815
  year: 2017
  end-page: 826
  ident: bib11
  article-title: New method for effective identification of adulterated Camellia oil basing on Camellia oleifera -specific DNA
  publication-title: Arabian Journal of Chemistry
– volume: 218
  start-page: 27
  year: 2019
  end-page: 32
  ident: bib27
  article-title: Enhancing the fluorescence spectrum of frying oil using a nanoscale probe
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
– volume: 107
  start-page: 221
  year: 2019
  end-page: 227
  ident: bib41
  article-title: Simultaneous determination of 19 phenolic compounds in oilseeds using magnetic solid phase extraction and LC-MS/MS
  publication-title: Lebensmittel-Wissenschaft & Technologie
– volume: 212
  start-page: 190
  year: 2017
  end-page: 200
  ident: bib65
  article-title: Twin-screw extrusion technology for vegetable oil extraction: A review
  publication-title: Journal of Food Engineering
– volume: 165
  start-page: 608
  year: 2012
  end-page: 614
  ident: bib81
  article-title: Triacylglycerols composition, oxidation and oxidation compounds in camellia oil using liquid chromatography–mass spectrometry
  publication-title: Chemistry and Physics of Lipids
– volume: 110
  start-page: 175
  year: 2019
  end-page: 181
  ident: bib86
  article-title: Effectively improve the quality of camellia oil by the combination of supercritical fluid extraction and molecular distillation (SFE-MD)
  publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology
– volume: 57
  start-page: 147
  year: 2014
  end-page: 158
  ident: bib51
  article-title: 60 MHz
  publication-title: Trends in Analytical Chemistry
– volume: 14
  start-page: 1995
  issue: 9
  year: 2002
  ident: 10.1016/j.tifs.2020.01.005_bib15
  article-title: Arabidopsis mutants reveal multiple roles for sterols in plant development
  publication-title: Plant Cell
  doi: 10.1105/tpc.140930
– volume: 77
  start-page: 374
  issue: 4
  year: 2012
  ident: 10.1016/j.tifs.2020.01.005_bib45
  article-title: Authentication of pure camellia oil by using near infrared spectroscopy and pattern recognition techniques
  publication-title: Journal of Food Science
  doi: 10.1111/j.1750-3841.2012.02622.x
– volume: 97
  start-page: 216
  year: 2017
  ident: 10.1016/j.tifs.2020.01.005_bib40
  article-title: Unconventional steady-state fluorescence spectroscopy as an analytical technique for analyses of complex-multifluorophoric mixtures
  publication-title: TRAC Trends in Analytical Chemistry
  doi: 10.1016/j.trac.2017.09.004
– volume: 121
  issue: 4
  year: 2019
  ident: 10.1016/j.tifs.2020.01.005_bib77
  article-title: A novel aqueous extraction for camellia oil by emulsified oil: A frozen/thawed method
  publication-title: European Journal of Lipid Science and Technology
  doi: 10.1002/ejlt.201800431
– volume: 58
  start-page: 832
  issue: 5
  year: 2018
  ident: 10.1016/j.tifs.2020.01.005_bib4
  article-title: Olive oil authentication: A comparative analysis of regulatory frameworks with especial emphasis on quality and authenticity indices, and recent analytical techniques developed for their assessment. A review
  publication-title: Critical Reviews in Food Science and Nutrition
  doi: 10.1080/10408398.2016.1225666
– volume: 39
  start-page: 67
  issue: 4
  year: 2014
  ident: 10.1016/j.tifs.2020.01.005_bib16
  article-title: Electrical conductivity measurement in identification of authentic oil-tea camellia seed oil
  publication-title: China Oils and Fats
– volume: 11
  start-page: 815
  issue: 6
  year: 2017
  ident: 10.1016/j.tifs.2020.01.005_bib11
  article-title: New method for effective identification of adulterated Camellia oil basing on Camellia oleifera -specific DNA
  publication-title: Arabian Journal of Chemistry
  doi: 10.1016/j.arabjc.2017.12.025
– volume: 212
  start-page: 190
  year: 2017
  ident: 10.1016/j.tifs.2020.01.005_bib65
  article-title: Twin-screw extrusion technology for vegetable oil extraction: A review
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2017.06.006
– volume: 20
  start-page: 2641
  issue: 21
  year: 2013
  ident: 10.1016/j.tifs.2020.01.005_bib61
  article-title: Flavonoids in atherosclerosis: An overview of their mechanisms of action
  publication-title: Current Medicinal Chemistry
  doi: 10.2174/0929867311320210003
– volume: 192
  start-page: 439
  year: 2019
  ident: 10.1016/j.tifs.2020.01.005_bib20
  article-title: Potentiality of PARAFAC approaches for simultaneous determination of N-acetylcysteine and acetaminophen based on the second-order data obtained from differential pulse voltammetry
  publication-title: Talanta
  doi: 10.1016/j.talanta.2018.08.092
– year: 2009
  ident: 10.1016/j.tifs.2020.01.005_bib53
– volume: 293
  start-page: 348
  year: 2019
  ident: 10.1016/j.tifs.2020.01.005_bib68
  article-title: Rapid identification and quantification of cheaper vegetable oil adulteration in camellia oil by using excitation-emission matrix fluorescence spectroscopy combined with chemometrics
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2019.04.109
– volume: 204
  start-page: 334
  year: 2016
  ident: 10.1016/j.tifs.2020.01.005_bib74
  article-title: Simultaneous determination of phenolic compounds in sesame oil using LC-MS/MS combined with magnetic carboxylated multi-walled carbon nanotubes
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2016.02.086
– volume: 271
  start-page: 488
  year: 2019
  ident: 10.1016/j.tifs.2020.01.005_bib57
  article-title: Olive oil quality classification and measurement of its organoleptic attributes by untargeted GC-MS and multivariate statistical-based approach
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2018.07.200
– volume: 23
  start-page: 241
  issue: 2
  year: 2018
  ident: 10.1016/j.tifs.2020.01.005_bib18
  article-title: Multispecies adulteration detection of camellia oil by chemical markers
  publication-title: Molecules
  doi: 10.3390/molecules23020241
– volume: 221
  start-page: 117208
  year: 2019
  ident: 10.1016/j.tifs.2020.01.005_bib79
  article-title: A review of the application of near-infrared spectroscopy to rare traditional Chinese medicine
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
  doi: 10.1016/j.saa.2019.117208
– volume: 156
  start-page: 369
  year: 2014
  ident: 10.1016/j.tifs.2020.01.005_bib63
  article-title: Chemical composition of seed oils in native Taiwanese Camellia species
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2014.02.016
– volume: 164
  start-page: 607
  issue: 6
  year: 2011
  ident: 10.1016/j.tifs.2020.01.005_bib24
  article-title: Current and new insights on phytosterol oxides in plant sterol-enriched food
  publication-title: Chemistry and Physics of Lipids
  doi: 10.1016/j.chemphyslip.2011.06.005
– volume: 107
  start-page: 221
  year: 2019
  ident: 10.1016/j.tifs.2020.01.005_bib41
  article-title: Simultaneous determination of 19 phenolic compounds in oilseeds using magnetic solid phase extraction and LC-MS/MS
  publication-title: Lebensmittel-Wissenschaft & Technologie
  doi: 10.1016/j.lwt.2019.03.018
– volume: 11
  start-page: 815
  issue: 6
  year: 2018
  ident: 10.1016/j.tifs.2020.01.005_bib12
  article-title: New method for effective identification of adulterated Camellia oil basing on Camellia oleifera-specific DNA
  publication-title: Arabian Journal of Chemistry
  doi: 10.1016/j.arabjc.2017.12.025
– start-page: 178
  issue: 99
  year: 2018
  ident: 10.1016/j.tifs.2020.01.005_bib13
  article-title: Fast quantitative detection of sesame oil adulteration by near-infrared spectroscopy and chemometric models
  publication-title: Vibrational Spectroscopy
  doi: 10.1016/j.vibspec.2018.10.003
– volume: 112
  start-page: 108261
  year: 2019
  ident: 10.1016/j.tifs.2020.01.005_bib71
  article-title: Triacylglycerols fingerprint of edible vegetable oils by ultra-performance liquid chromatography-Q-ToF-MS
  publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology
  doi: 10.1016/j.lwt.2019.108261
– volume: 8
  start-page: 13784
  issue: 1
  year: 2018
  ident: 10.1016/j.tifs.2020.01.005_bib10
  article-title: A novel method for detection of camellia oil adulteration based on time-resolved emission fluorescence
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-32223-6
– volume: 76
  start-page: 821
  year: 2015
  ident: 10.1016/j.tifs.2020.01.005_bib64
  article-title: The contribution of phenolic acids to the anti-inflammatory activity of mushrooms: Screening in phenolic extracts, individual parent molecules and synthesized glucuronated and methylated derivatives
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2015.07.044
– volume: 57
  start-page: 147
  issue: 100
  year: 2014
  ident: 10.1016/j.tifs.2020.01.005_bib51
  article-title: 60 MHz 1H NMR spectroscopy for the analysis of edible oils
  publication-title: Trends in Analytical Chemistry
  doi: 10.1016/j.trac.2014.02.006
– volume: 765
  start-page: 1
  year: 2013
  ident: 10.1016/j.tifs.2020.01.005_bib17
  article-title: Quality assessment and authentication of virgin olive oil by NMR spectroscopy: A critical review
  publication-title: Analytica Chimica Acta
  doi: 10.1016/j.aca.2012.12.003
– volume: 96
  start-page: 22
  year: 2019
  ident: 10.1016/j.tifs.2020.01.005_bib35
  article-title: Comparative chemometric analysis of fluorescence and near infrared spectroscopies for authenticity confirmation and geographical origin of Argentinean extra virgin olive oils
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2018.08.024
– volume: 174
  start-page: 88
  year: 2018
  ident: 10.1016/j.tifs.2020.01.005_bib73
  article-title: Simultaneous extraction of oil and tea saponin from Camellia oleifera Abel. seeds under subcritical water conditions
  publication-title: Fuel Processing Technology
  doi: 10.1016/j.fuproc.2018.02.014
– volume: 96
  start-page: 201
  year: 2017
  ident: 10.1016/j.tifs.2020.01.005_bib9
  article-title: Recent developments and applications of mass spectrometry for the quality and safety assessment of cooking oil
  publication-title: TRAC Trends in Analytical Chemistry
  doi: 10.1016/j.trac.2017.07.015
– volume: 191
  start-page: 324
  year: 2019
  ident: 10.1016/j.tifs.2020.01.005_bib32
  article-title: Safety analysis of edible oil products via Raman spectroscopy
  publication-title: Talanta
  doi: 10.1016/j.talanta.2018.08.074
– volume: 196
  start-page: 22
  year: 2019
  ident: 10.1016/j.tifs.2020.01.005_bib38
  article-title: Synchronous fluorescence spectroscopy combined with chemometrics for rapid assessment of cold-pressed grape seed oil adulteration: Qualitative and quantitative study
  publication-title: Talanta
  doi: 10.1016/j.talanta.2018.12.026
– volume: 53
  start-page: 597
  issue: 3
  year: 2006
  ident: 10.1016/j.tifs.2020.01.005_bib72
  article-title: Authentication of camellia oleifera Abel oil by near infrared Fourier transform Raman spectroscopy
  publication-title: Journal of the Chinese Chemical Society
  doi: 10.1002/jccs.200600078
– volume: 165
  start-page: 608
  issue: 5
  year: 2012
  ident: 10.1016/j.tifs.2020.01.005_bib81
  article-title: Triacylglycerols composition, oxidation and oxidation compounds in camellia oil using liquid chromatography–mass spectrometry
  publication-title: Chemistry and Physics of Lipids
  doi: 10.1016/j.chemphyslip.2012.03.004
– volume: 84
  start-page: 562
  year: 2017
  ident: 10.1016/j.tifs.2020.01.005_bib85
  article-title: Changes in physicochemical properties and protein structure of surimi enhanced with camellia tea oil
  publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology
  doi: 10.1016/j.lwt.2017.03.026
– volume: 95
  start-page: 529
  issue: 3
  year: 2006
  ident: 10.1016/j.tifs.2020.01.005_bib67
  article-title: Feasibility study of quantifying and discriminating soybean oil adulteration in camellia oils by attenuated total reflectance MIR and fiber optic diffuse reflectance NIR
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2005.04.015
– volume: 27
  start-page: 111
  issue: 12
  year: 2012
  ident: 10.1016/j.tifs.2020.01.005_bib5
  article-title: Research on the detection of adulteration of virgin camellia oil based on dielectric spectroscopy method
  publication-title: Journal of the Chinese Cereals & Oils Association
– volume: 16
  start-page: 6048
  issue: 8
  year: 2012
  ident: 10.1016/j.tifs.2020.01.005_bib82
  article-title: Review on analysis of biodiesel with infrared spectroscopy
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2012.07.003
– volume: 118
  start-page: 153
  issue: 1
  year: 2010
  ident: 10.1016/j.tifs.2020.01.005_bib62
  article-title: High-power gradient diffusion NMR spectroscopy for the rapid assessment of extra-virgin olive oil adulteration
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2009.04.088
– volume: 41
  start-page: 5706
  issue: 17
  year: 2012
  ident: 10.1016/j.tifs.2020.01.005_bib19
  article-title: Fingerprinting food: Current technologies for the detection of food adulteration and contamination
  publication-title: Chemical Society Reviews
  doi: 10.1039/c2cs35138b
– volume: 116
  start-page: 519
  issue: 2
  year: 2009
  ident: 10.1016/j.tifs.2020.01.005_bib26
  article-title: Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2009.02.068
– volume: 54
  start-page: 1146
  issue: 1
  year: 2013
  ident: 10.1016/j.tifs.2020.01.005_bib37
  article-title: Applications of ion mobility spectrometry (IMS) in the field of foodomics
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2012.11.029
– volume: 18
  start-page: 189
  issue: 1
  year: 2019
  ident: 10.1016/j.tifs.2020.01.005_bib29
  article-title: Nuclear magnetic resonance (NMR) spectroscopy in food science: A comprehensive review
  publication-title: Comprehensive Reviews in Food Science and Food Safety
  doi: 10.1111/1541-4337.12408
– volume: 11
  start-page: 230
  issue: 5
  year: 2018
  ident: 10.1016/j.tifs.2020.01.005_bib34
  article-title: Physicochemical properties, flavor intensity and oxidative stability of different camellia oils
  publication-title: International Journal of Agricultural and Biological Engineering
  doi: 10.25165/j.ijabe.20181105.3656
– volume: 21
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.tifs.2020.01.005_bib47
  article-title: Application of near-infrared reflectance for quantitative assessment of soil properties
  publication-title: Egyptian Journal of Remote Sensing & Space Science
  doi: 10.1016/j.ejrs.2017.02.001
– volume: 293
  start-page: 323
  year: 2019
  ident: 10.1016/j.tifs.2020.01.005_bib58
  article-title: Random forest as one-class classifier and infrared spectroscopy for food adulteration detection
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2019.04.073
– volume: 74
  start-page: 26
  year: 2018
  ident: 10.1016/j.tifs.2020.01.005_bib78
  article-title: A review of chemical composition and nutritional properties of minor vegetable oils in China
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2018.01.013
– volume: 545
  start-page: 1
  year: 2017
  ident: 10.1016/j.tifs.2020.01.005_bib89
  article-title: Integrating real-time and manual monitored data to predict hillslope soil moisture dynamics with high spatio-temporal resolution using linear and non-linear models
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2016.12.014
– volume: 273
  start-page: 52
  year: 2018
  ident: 10.1016/j.tifs.2020.01.005_bib55
  article-title: Thermal rice oil degradation evaluated by UV-Vis-NIR and PARAFAC
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2018.03.065
– volume: 19
  start-page: 300
  issue: 2
  year: 2015
  ident: 10.1016/j.tifs.2020.01.005_bib80
  article-title: Identification and detection of AdulteratedCamellia OleiferaAbel. Oils by near infrared transmittance spectroscopy
  publication-title: International Journal of Food Properties
  doi: 10.1080/10942912.2015.1021929
– volume: 242
  start-page: 308
  year: 2018
  ident: 10.1016/j.tifs.2020.01.005_bib59
  article-title: 1H NMR combined with chemometrics for the rapid detection of adulteration in camellia oils
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2017.09.061
– volume: 143
  start-page: 472
  issue: 2
  year: 2014
  ident: 10.1016/j.tifs.2020.01.005_bib1
  article-title: Application of random forests to select premium quality vegetable oils by their fatty acid composition
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2013.08.013
– volume: 102
  start-page: 184
  year: 2017
  ident: 10.1016/j.tifs.2020.01.005_bib69
  article-title: Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2017.09.089
– start-page: 139
  year: 2007
  ident: 10.1016/j.tifs.2020.01.005_bib76
  article-title: Study on technology of supercritical CO2 extraction of the camellia oils
  publication-title: Food Science and Technology
– volume: 881
  start-page: 93
  issue: 1–2
  year: 2000
  ident: 10.1016/j.tifs.2020.01.005_bib3
  article-title: Authentication of vegetable oils by chromatographic techniques
  publication-title: Journal of Chromatography A
  doi: 10.1016/S0021-9673(00)00355-1
– volume: 58
  start-page: 40
  year: 2016
  ident: 10.1016/j.tifs.2020.01.005_bib52
  article-title: Electronic noses and tongues to assess food authenticity and adulteration
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2016.10.014
– volume: 216
  start-page: 268
  year: 2017
  ident: 10.1016/j.tifs.2020.01.005_bib88
  article-title: Rapid detection of peanut oil adulteration using low-field nuclear magnetic resonance and chemometrics
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2016.08.051
– volume: 43
  start-page: 886
  issue: 3
  year: 2010
  ident: 10.1016/j.tifs.2020.01.005_bib54
  article-title: Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2009.12.006
– volume: 177
  start-page: 236
  year: 2019
  ident: 10.1016/j.tifs.2020.01.005_bib56
  article-title: Application of decision tree, artificial neural networks, and adaptive neuro-fuzzy inference system on predicting lost circulation: A case study from Marun oil field
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2019.02.045
– volume: 87
  start-page: 839
  issue: 8
  year: 2010
  ident: 10.1016/j.tifs.2020.01.005_bib25
  article-title: Characterization and authentication of significant Chinese edible oilseed oils by stable carbon isotope analysis
  publication-title: Journal of the American Oil Chemists Society
  doi: 10.1007/s11746-010-1564-3
– volume: 108
  start-page: 116
  issue: 2
  year: 2006
  ident: 10.1016/j.tifs.2020.01.005_bib28
  article-title: Detection of adulteration in camellia seed oil and sesame oil using an electronic nose
  publication-title: European Journal of Lipid Science and Technology
  doi: 10.1002/ejlt.200501224
– volume: 181
  start-page: 25
  year: 2015
  ident: 10.1016/j.tifs.2020.01.005_bib6
  article-title: Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: A comparative study
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2015.02.079
– volume: 72
  start-page: 83
  year: 2018
  ident: 10.1016/j.tifs.2020.01.005_bib23
  article-title: Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2017.12.006
– volume: 1
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.tifs.2020.01.005_bib36
  article-title: Plant sterols and stanols as cholesterol-lowering ingredients in functional foods
  publication-title: Recent Patents on Food, Nutrition & Agriculture
  doi: 10.2174/2212798410901010001
– volume: 233
  start-page: 302
  year: 2017
  ident: 10.1016/j.tifs.2020.01.005_bib70
  article-title: Fatty acid and sterol composition of tea seed oils: Their comparison by the "FancyTiles" approach
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2017.04.110
– volume: 218
  start-page: 27
  year: 2019
  ident: 10.1016/j.tifs.2020.01.005_bib27
  article-title: Enhancing the fluorescence spectrum of frying oil using a nanoscale probe
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
  doi: 10.1016/j.saa.2019.03.099
– volume: 67
  start-page: 958
  issue: 3–4
  year: 2007
  ident: 10.1016/j.tifs.2020.01.005_bib30
  article-title: A comparative study between PCR and PLS in simultaneous spectrophotometric determination of diphenylamine, aniline, and phenol: Effect of wavelength selection
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
  doi: 10.1016/j.saa.2006.09.014
– volume: 287
  start-page: 46
  year: 2019
  ident: 10.1016/j.tifs.2020.01.005_bib60
  article-title: 1H NMR combined with PLS for the rapid determination of squalene and sterols in vegetable oils
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2019.02.072
– volume: 90
  start-page: 641
  issue: 5
  year: 2013
  ident: 10.1016/j.tifs.2020.01.005_bib75
  article-title: Rapid detection and quantification by GC–MS of camellia seed oil adulterated with soybean oil
  publication-title: Journal of the American Oil Chemists Society
  doi: 10.1007/s11746-013-2209-0
– volume: 100
  start-page: 1544
  issue: 4
  year: 2007
  ident: 10.1016/j.tifs.2020.01.005_bib84
  article-title: Endogenous biophenol, fatty acid and volatile profiles of selected oils
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2005.12.039
– volume: 82
  start-page: 212
  year: 2017
  ident: 10.1016/j.tifs.2020.01.005_bib50
  article-title: Rapid detection of adulteration of cold pressed sesame oil adultered with hazelnut, canola, and sunflower oils using ATR-FTIR spectroscopy combined with chemometric
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2017.06.034
– volume: 126
  start-page: 1735
  issue: 3
  year: 2016
  ident: 10.1016/j.tifs.2020.01.005_bib42
  article-title: Comparison of GC and DSC monitoring the adulteration of camellia oil with selected vegetable oils
  publication-title: Journal of Thermal Analysis and Calorimetry
  doi: 10.1007/s10973-016-5606-4
– volume: 110
  start-page: 175
  year: 2019
  ident: 10.1016/j.tifs.2020.01.005_bib86
  article-title: Effectively improve the quality of camellia oil by the combination of supercritical fluid extraction and molecular distillation (SFE-MD)
  publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology
  doi: 10.1016/j.lwt.2019.04.075
– volume: 148
  start-page: 160
  year: 2018
  ident: 10.1016/j.tifs.2020.01.005_bib2
  article-title: Application of Artificial Neural Network modeling for optimization and prediction of essential oil yield in turmeric (Curcuma longa L.)
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.03.002
– volume: 913
  start-page: 1
  year: 2016
  ident: 10.1016/j.tifs.2020.01.005_bib22
  article-title: Chemometric applications to assess quality and critical parameters of virgin and extra-virgin olive oil. A review
  publication-title: Analytica Chimica Acta
  doi: 10.1016/j.aca.2016.01.025
– volume: 61
  start-page: 176
  year: 2017
  ident: 10.1016/j.tifs.2020.01.005_bib7
  article-title: Stable isotope techniques for verifying the declared geographical origin of food in legal cases
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2016.12.007
– volume: 16
  start-page: 747
  issue: 1
  year: 2018
  ident: 10.1016/j.tifs.2020.01.005_bib33
  article-title: Second-derivative laser-induced fluorescence spectroscopy combined with chemometrics for authentication of the adulteration of camellia oil
  publication-title: CyTA - Journal of Food
  doi: 10.1080/19476337.2018.1466834
– volume: 289
  start-page: 313
  year: 2019
  ident: 10.1016/j.tifs.2020.01.005_bib83
  article-title: Simultaneous determination of tocopherols, carotenoids and phytosterols in edible vegetable oil by ultrasound-assisted saponification, LLE and LC-MS/MS
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2019.03.067
– volume: 119
  start-page: 1500463
  issue: 3
  year: 2017
  ident: 10.1016/j.tifs.2020.01.005_bib44
  article-title: Rapid detection and separation of olive oil andCamelliaoil based on ion mobility spectrometry fingerprints and chemometric models
  publication-title: European Journal of Lipid Science and Technology
  doi: 10.1002/ejlt.201500463
– volume: 11
  start-page: 1850006
  year: 2018
  ident: 10.1016/j.tifs.2020.01.005_bib14
  article-title: Identifying camellia oil adulteration with selected vegetable oils by characteristic near-infrared spectral regions
  publication-title: Journal of Innovative Optical Health Sciences
  doi: 10.1142/S1793545818500062
– volume: 60
  start-page: 255
  issue: 6
  year: 2014
  ident: 10.1016/j.tifs.2020.01.005_bib49
  article-title: Vibrational spectroscopy and chemometrics to assess authenticity, adulteration and intrinsic quality parameters of edible oils and fats
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2013.08.041
– volume: 246
  start-page: 192
  year: 2018
  ident: 10.1016/j.tifs.2020.01.005_bib46
  article-title: Electronic noses in classification and quality control of edible oils: A review
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2017.11.013
– volume: 25
  start-page: 330
  issue: 4
  year: 2004
  ident: 10.1016/j.tifs.2020.01.005_bib66
  article-title: Fatty acids in Chinese edible oils: Value of direct analysis as a basis for labeling
  publication-title: Food and Nutrition Bulletin
  doi: 10.1177/156482650402500402
– volume: 278
  start-page: 720
  year: 2019
  ident: 10.1016/j.tifs.2020.01.005_bib21
  article-title: Quality assessment of olive oils based on temperature-ramped HS-GC-IMS and sensory evaluation: Comparison of different processing approaches by LDA, kNN, and SVM
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2018.11.095
– volume: 155
  start-page: 195
  issue: 3
  year: 2011
  ident: 10.1016/j.tifs.2020.01.005_bib39
  article-title: Fatty acids as biocompounds: Their role in human metabolism, health and disease: A review. Part 2: Fatty acid physiological roles and applications in human health and disease
  publication-title: Biomedical Papers-Olomouc
  doi: 10.5507/bp.2011.052
– volume: 10
  start-page: 649
  issue: 3
  year: 2016
  ident: 10.1016/j.tifs.2020.01.005_bib8
  article-title: Combined application of fluorescence spectroscopy and chemometrics analysis in oxidative deterioration of edible oils
  publication-title: Food Analytical Methods
  doi: 10.1007/s12161-016-0587-2
– volume: 99
  start-page: 2285
  issue: 5
  year: 2019
  ident: 10.1016/j.tifs.2020.01.005_bib31
  article-title: Fusion of near‐infrared and fluorescence spectroscopy for untargeted fraud detection of Chinese tea seed oil using chemometric methods
  publication-title: Journal of the Science of Food and Agriculture
  doi: 10.1002/jsfa.9424
– volume: 160
  start-page: 624
  year: 2016
  ident: 10.1016/j.tifs.2020.01.005_bib48
  article-title: Chemometric analysis of comprehensive LC×LC-MS data: Resolution of triacylglycerol structural isomers in corn oil
  publication-title: Talanta
  doi: 10.1016/j.talanta.2016.08.005
– volume: 126
  start-page: 340
  year: 2018
  ident: 10.1016/j.tifs.2020.01.005_bib87
  article-title: The effect of alternative solvents to n-hexane on the green extraction of Litsea cubeba kernel oils as new oil sources
  publication-title: Industrial Crops and Products
  doi: 10.1016/j.indcrop.2018.10.004
– volume: 155
  start-page: 145
  year: 2016
  ident: 10.1016/j.tifs.2020.01.005_bib43
  article-title: A combination of chemometrics methods and GC–MS for the classification of edible vegetable oils
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2016.03.028
SSID ssj0005355
Score 2.6246831
SecondaryResourceType review_article
Snippet Camellia oil is obtained from the camellia seed with various cultivated species (Camellia. oleifera (C. oleifera), C. meiocarpa, C. vietnamensis, C....
Background Camellia oil is obtained from the camellia seed with various cultivated species (Camellia. oleifera (C. oleifera), C. meiocarpa, C. vietnamensis, C....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 88
SubjectTerms adulterated products
Authentication
Calorimetry
Camellia
Camellia oil
Camellia oleifera
Camellia reticulata
Chemometrics
China
Chromatographic techniques
Chromatography
cold
Cold pressing
Comparative analysis
Differential scanning calorimetry
DNA
economic valuation
Edible oils
electronic nose
Electronic noses
Fluorescence
fluorescence emission spectroscopy
Fluorescence spectroscopy
Fourier analysis
Infrared spectroscopy
Ionic mobility
Market economies
market economy
Mass spectrometry
Mass spectroscopy
Mathematical analysis
NMR
nondestructive methods
Nondestructive testing
Nuclear magnetic resonance
nuclear magnetic resonance spectroscopy
Oil
oils
Quality control
Scientific imaging
Spectroscopy techniques
Title Camellia oil authentication: A comparative analysis and recent analytical techniques developed for its assessment. A review
URI https://dx.doi.org/10.1016/j.tifs.2020.01.005
https://www.proquest.com/docview/2377326469
https://www.proquest.com/docview/2400490928
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hONAeEKWturxkpN6qsBvHsWNuq1XRtis4tEXlZk0cRwqiWVTCCYnfzthxFlpVHHpKYo-TyGOPZ-yZbwA-clHxokrzRFZak4GCOiksL5MiQytyl-UYIIXOzuX8Qny9zC_XYDbEwni3yij7e5kepHUsGcfeHN80zfj7hEwHWoAEqSATqbUPNBdC-VF-_PDMzSMLmU89ceKpY-BM7-PVNbWH7OaTAN3pU9j9e3H6S0yHted0G7ai0sim_X-9gTXX7sDmEFN8uwOvn8EKvoX7Gf7yOJvIls01Q-_D3nZxb-6ETZl9QvxmGEFJ6KZi1BNE2ZeFPW62gni9ZTG8ylWM9FzWdNRkhep5TG_tg2DewcXp5x-zeRKTLCRWcNWRDFZVmdUSaeLXiowxW3O0SiLXpSpdRiYsVnmtuRMWc1v5JGXapU6iQylIWXwP6-2ydR-AkfaS2gxLh2Q22gB5a2spHKoCay3sCNKhd42NCOQ-Eca1GVzNrozniPEcMZPUEEdG8GnV5qbH33iROh-YZv4YRYYWiBfb7Q8cNnEOU32mFCm3QuoRHK2qafb5IxVs3fKOaEQ4OtW82P3PT-_BK__Uu7Xtw3r3-84dkJ7TlYdhIB_CxvTLYn7ur4tvPxePgNn_3w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hONAeENBWXaDUldpTFXbjOE5ciQOCoqU8LgWJmztxHCkVzSI2CCEk_lT_YMeOs6VVxaESNyu2E2vGnocz8w3Aey5KnpdxGslSKXJQUEW54UWUJ2hEapMUPaTQ8Ykcn4kv5-n5HPzsc2FcWGWQ_Z1M99I6PBkGag4v63r4dUSuAykgQSbISCrVR1Ye2tsb8tum2wd7xOQPnO9_Pt0dR6G0QGQEz1qSPFlZJJVE2u5VRi6IqTiaTCJXRVbYhBw3LNNKcSsMpqZ0pbmUja1Ei1Kk7haU5P4CtXJXNmHr_kFcSeJLrbrVRW55IVOnCypr68phhPORxwp1NfP-rQ3_0gte2e0vw1KwUtlOR4gVmLPNKiz2SczTVXj-AMfwBdzt4g8H7IlsUl8wdEHzTRsuAz-xHWZ-Q4wzDCgo1CgZkZ5Gds_8pTqbYcpOWcjnsiUjw5rVLU2ZwYhu0Vu7rJuXcPYkpH8F882ksa-BkbkUmwQLi-SnGo-xayopLGY5VkqYAcQ9dbUJkOeu8saF7mPbvmvHEe04okexJo4M4ONszmUH-PHo6LRnmv5j22rSSI_O2-g5rIPQoP4ky8iaFlIN4N2sm467-4eDjZ1c0xjh_9Uqnq_956ffwuL49PhIHx2cHK7DM9fTxdRtwHx7dW3fkJHVFpt-UzP49tSn6BdaOzp7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Camellia+oil+authentication%3A+A+comparative+analysis+and+recent+analytical+techniques+developed+for+its+assessment.+A+review&rft.jtitle=Trends+in+food+science+%26+technology&rft.au=Shi%2C+Ting&rft.au=Wu%2C+Gangcheng&rft.au=Jin%2C+Qingzhe&rft.au=Wang%2C+Xingguo&rft.date=2020-03-01&rft.issn=0924-2244&rft.volume=97&rft.spage=88&rft.epage=99&rft_id=info:doi/10.1016%2Fj.tifs.2020.01.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tifs_2020_01_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2244&client=summon