Camellia oil authentication: A comparative analysis and recent analytical techniques developed for its assessment. A review
Camellia oil is obtained from the camellia seed with various cultivated species (Camellia. oleifera (C. oleifera), C. meiocarpa, C. vietnamensis, C. yuhsienensis, C. chekiangoleosa, C. semiserrata, C. reticulata, C. gigantocarpa, C. octopetala, C. semiserrata var. abliflora etc.), by widely used col...
Saved in:
Published in | Trends in food science & technology Vol. 97; pp. 88 - 99 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Elsevier Ltd
01.03.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Camellia oil is obtained from the camellia seed with various cultivated species (Camellia. oleifera (C. oleifera), C. meiocarpa, C. vietnamensis, C. yuhsienensis, C. chekiangoleosa, C. semiserrata, C. reticulata, C. gigantocarpa, C. octopetala, C. semiserrata var. abliflora etc.), by widely used cold press extraction. As the earliest specie with high oil yield (40–60%) in China, C. oleifera, has become the most commonly available seed for camellia oil manufacturing. Because of its high nutritional and economic value, camellia oil is frequently adulterated with other cheap oils. Additionally, its quality is also susceptible to different species or regions, and various extraction technologies. These factors result in the incorrect labeling of camellia oil, and destabilize the local camellia oil market economies. Therefore, a rapid and accurate method should be prerequisite to authenticate camellia oil.
The officially recommended methods are tedious, and destructive to detect camellia oil adulteration. Therefore, various rapid, precise, and non-destructive techniques should be developed for camellia oil authentication. This present review provides a critical overview of these existing analytical methods in the past few years.
The mass-chromatographic, spectroscopy techniques, and other techniques including electronic noses (e-noses), isotope-ratio mass spectrometry (IRMS), differential scanning calorimetry (DSC), ion mobility spectrometry (IMS) and DNA, have been used for camellia oil authentication. Compared with the traditional chromatographic methods, infrared spectroscopy (IR), Fourier transformed (FT)-Raman, nuclear magnetic resonance (NMR), and fluorescence spectroscopy, combined with chemometrics, respectively, are efficient alternative analytical techniques for camellia oil quality control.
•Camellia oil is frequently adulterated with other cheap oils.•Camellia oil quality is susceptible to different species and extraction methods.•Various rapid and non-destructive techniques could authenticate camellia oil.•Spectroscopy with chemometrics is efficient for camellia oil authentication. |
---|---|
AbstractList | Camellia oil is obtained from the camellia seed with various cultivated species (Camellia. oleifera (C. oleifera), C. meiocarpa, C. vietnamensis, C. yuhsienensis, C. chekiangoleosa, C. semiserrata, C. reticulata, C. gigantocarpa, C. octopetala, C. semiserrata var. abliflora etc.), by widely used cold press extraction. As the earliest specie with high oil yield (40–60%) in China, C. oleifera, has become the most commonly available seed for camellia oil manufacturing. Because of its high nutritional and economic value, camellia oil is frequently adulterated with other cheap oils. Additionally, its quality is also susceptible to different species or regions, and various extraction technologies. These factors result in the incorrect labeling of camellia oil, and destabilize the local camellia oil market economies. Therefore, a rapid and accurate method should be prerequisite to authenticate camellia oil.The officially recommended methods are tedious, and destructive to detect camellia oil adulteration. Therefore, various rapid, precise, and non-destructive techniques should be developed for camellia oil authentication. This present review provides a critical overview of these existing analytical methods in the past few years.The mass-chromatographic, spectroscopy techniques, and other techniques including electronic noses (e-noses), isotope-ratio mass spectrometry (IRMS), differential scanning calorimetry (DSC), ion mobility spectrometry (IMS) and DNA, have been used for camellia oil authentication. Compared with the traditional chromatographic methods, infrared spectroscopy (IR), Fourier transformed (FT)-Raman, nuclear magnetic resonance (NMR), and fluorescence spectroscopy, combined with chemometrics, respectively, are efficient alternative analytical techniques for camellia oil quality control. Camellia oil is obtained from the camellia seed with various cultivated species (Camellia. oleifera (C. oleifera), C. meiocarpa, C. vietnamensis, C. yuhsienensis, C. chekiangoleosa, C. semiserrata, C. reticulata, C. gigantocarpa, C. octopetala, C. semiserrata var. abliflora etc.), by widely used cold press extraction. As the earliest specie with high oil yield (40–60%) in China, C. oleifera, has become the most commonly available seed for camellia oil manufacturing. Because of its high nutritional and economic value, camellia oil is frequently adulterated with other cheap oils. Additionally, its quality is also susceptible to different species or regions, and various extraction technologies. These factors result in the incorrect labeling of camellia oil, and destabilize the local camellia oil market economies. Therefore, a rapid and accurate method should be prerequisite to authenticate camellia oil. The officially recommended methods are tedious, and destructive to detect camellia oil adulteration. Therefore, various rapid, precise, and non-destructive techniques should be developed for camellia oil authentication. This present review provides a critical overview of these existing analytical methods in the past few years. The mass-chromatographic, spectroscopy techniques, and other techniques including electronic noses (e-noses), isotope-ratio mass spectrometry (IRMS), differential scanning calorimetry (DSC), ion mobility spectrometry (IMS) and DNA, have been used for camellia oil authentication. Compared with the traditional chromatographic methods, infrared spectroscopy (IR), Fourier transformed (FT)-Raman, nuclear magnetic resonance (NMR), and fluorescence spectroscopy, combined with chemometrics, respectively, are efficient alternative analytical techniques for camellia oil quality control. •Camellia oil is frequently adulterated with other cheap oils.•Camellia oil quality is susceptible to different species and extraction methods.•Various rapid and non-destructive techniques could authenticate camellia oil.•Spectroscopy with chemometrics is efficient for camellia oil authentication. Background Camellia oil is obtained from the camellia seed with various cultivated species (Camellia. oleifera (C. oleifera), C. meiocarpa, C. vietnamensis, C. yuhsienensis, C. chekiangoleosa, C. semiserrata, C. reticulata, C. gigantocarpa, C. octopetala, C. semiserrata var. abliflora etc.), by widely used cold press extraction. As the earliest specie with high oil yield (40–60%) in China, C. oleifera, has become the most commonly available seed for camellia oil manufacturing. Because of its high nutritional and economic value, camellia oil is frequently adulterated with other cheap oils. Additionally, its quality is also susceptible to different species or regions, and various extraction technologies. These factors result in the incorrect labeling of camellia oil, and destabilize the local camellia oil market economies. Therefore, a rapid and accurate method should be prerequisite to authenticate camellia oil. Scope and approach The officially recommended methods are tedious, and destructive to detect camellia oil adulteration. Therefore, various rapid, precise, and non-destructive techniques should be developed for camellia oil authentication. This present review provides a critical overview of these existing analytical methods in the past few years. Key findings and conclusion The mass-chromatographic, spectroscopy techniques, and other techniques including electronic noses (e-noses), isotope-ratio mass spectrometry (IRMS), differential scanning calorimetry (DSC), ion mobility spectrometry (IMS) and DNA, have been used for camellia oil authentication. Compared with the traditional chromatographic methods, infrared spectroscopy (IR), Fourier transformed (FT)-Raman, nuclear magnetic resonance (NMR), and fluorescence spectroscopy, combined with chemometrics, respectively, are efficient alternative analytical techniques for camellia oil quality control. |
Author | Wang, Xingguo Wu, Gangcheng Jin, Qingzhe Shi, Ting |
Author_xml | – sequence: 1 givenname: Ting surname: Shi fullname: Shi, Ting – sequence: 2 givenname: Gangcheng surname: Wu fullname: Wu, Gangcheng – sequence: 3 givenname: Qingzhe surname: Jin fullname: Jin, Qingzhe – sequence: 4 givenname: Xingguo surname: Wang fullname: Wang, Xingguo email: wangxg1002@gmail.com |
BookMark | eNp9kc1u1DAUhS1UJKYDL8DKEhs2Sf2XOEFsqlGBSpXYwNq649yoHiXxYHsGVbw8NwyrLrryj77P8j3nml0tcUHG3ktRSyHbm0NdwphrJZSohayFaF6xjexsX2nR6Cu2Eb0ylVLGvGHXOR8EEbppNuzPDmacpgA8honDqTziUoKHEuLyid9yH-cjJDqekcMC01MOmTYDT-iJvNytwsQL-scl_Dph5gOecYpHHPgYEw-FlJwx55mUml5NeA74-y17PcKU8d3_dct-frn7sftWPXz_er-7fai8UbZUWtphr8cWaJTRKtP7UYG3Lah-b_eote5gaMZeofHQ-MEq3fUosQWE1jRab9nHy7vHFNfvFTeH7GlqWDCeslNGCNNTQh2hH56hh3hKNCNR2lqtWtP2RKkL5VPMOeHojinMkJ6cFG7twx3c2odb-3BCujXtLeueST6UfzmXBGF6Wf18UZFSouSSyz7g4nEIVENxQwwv6X8BDQWqWA |
CitedBy_id | crossref_primary_10_3389_fphar_2023_1225515 crossref_primary_10_1016_j_crfs_2024_100732 crossref_primary_10_1016_j_ijbiomac_2024_137384 crossref_primary_10_1016_j_tifs_2023_104211 crossref_primary_10_1016_j_foodchem_2024_139046 crossref_primary_10_1016_j_foodcont_2021_108565 crossref_primary_10_1016_j_bios_2024_116098 crossref_primary_10_1016_j_indcrop_2022_114943 crossref_primary_10_1016_j_chemolab_2020_104165 crossref_primary_10_1007_s12161_024_02658_x crossref_primary_10_1016_j_ijbiomac_2023_126134 crossref_primary_10_1016_j_foodchem_2023_137306 crossref_primary_10_1093_fqsafe_fyad034 crossref_primary_10_3390_foods13182894 crossref_primary_10_1016_j_lwt_2024_116822 crossref_primary_10_1016_j_fochx_2024_102127 crossref_primary_10_3389_fsens_2022_901628 crossref_primary_10_3390_foods11223644 crossref_primary_10_1016_j_jfca_2023_105730 crossref_primary_10_1016_j_jfca_2024_106926 crossref_primary_10_3390_molecules26164738 crossref_primary_10_1080_10408398_2021_1922872 crossref_primary_10_1016_j_foodchem_2024_142279 crossref_primary_10_1016_j_indcrop_2021_114499 crossref_primary_10_1016_j_indcrop_2021_113824 crossref_primary_10_47836_ifrj_29_6_17 crossref_primary_10_1016_j_crfs_2024_100753 crossref_primary_10_1016_j_foodhyd_2021_107063 crossref_primary_10_1016_j_foodchem_2021_131534 crossref_primary_10_1016_j_jiec_2024_11_055 crossref_primary_10_1016_j_fochx_2022_100558 crossref_primary_10_1016_j_indcrop_2020_113193 crossref_primary_10_1016_j_foodchem_2024_140888 crossref_primary_10_3390_foods11244047 crossref_primary_10_1016_j_foodchem_2024_141217 crossref_primary_10_3390_horticulturae8111077 crossref_primary_10_1016_j_foodres_2020_110057 crossref_primary_10_3390_biology13060438 crossref_primary_10_1002_fsn3_2209 crossref_primary_10_1002_jsfa_12117 crossref_primary_10_3389_fmicb_2022_918339 crossref_primary_10_3389_fpls_2022_932926 crossref_primary_10_1016_j_fochx_2024_101619 crossref_primary_10_1016_j_jfca_2022_104804 crossref_primary_10_1016_j_ifset_2024_103579 crossref_primary_10_3390_foods11152232 crossref_primary_10_5650_jos_ess22114 crossref_primary_10_1016_j_foodchem_2025_143526 crossref_primary_10_1080_03650340_2021_1872783 crossref_primary_10_1016_j_fbio_2023_102960 crossref_primary_10_1016_j_foodchem_2024_140629 crossref_primary_10_1016_j_foodchem_2025_143181 crossref_primary_10_1016_j_lwt_2022_113349 crossref_primary_10_1016_j_foodcont_2023_109744 crossref_primary_10_1016_j_foodchem_2021_130388 crossref_primary_10_1016_j_foodchem_2021_131997 crossref_primary_10_3390_molecules25225485 crossref_primary_10_1016_j_lwt_2021_110911 crossref_primary_10_1016_j_fochx_2024_101629 crossref_primary_10_3389_fnut_2022_1023711 crossref_primary_10_1111_jfpp_14696 crossref_primary_10_3390_foods13244182 crossref_primary_10_1111_1750_3841_16677 crossref_primary_10_1016_j_foodchem_2024_141314 crossref_primary_10_1080_07373937_2024_2321197 crossref_primary_10_3390_foods12020374 crossref_primary_10_1016_j_lwt_2022_114396 crossref_primary_10_3390_plants10101984 crossref_primary_10_1016_j_foodchem_2023_137109 crossref_primary_10_1016_j_indcrop_2024_118392 crossref_primary_10_1002_ejlt_202200212 crossref_primary_10_1016_j_scienta_2024_113903 crossref_primary_10_1016_j_lwt_2024_116348 crossref_primary_10_3389_fnut_2021_667744 crossref_primary_10_1021_acs_jafc_0c07321 crossref_primary_10_3389_fnut_2024_1440279 crossref_primary_10_1016_j_fbio_2023_103081 crossref_primary_10_1016_j_lwt_2021_111959 crossref_primary_10_1016_j_tifs_2025_104889 crossref_primary_10_1111_jfpp_15670 crossref_primary_10_1007_s00216_023_05029_3 crossref_primary_10_1016_j_foodhyd_2023_108473 crossref_primary_10_1016_j_jfca_2023_105494 crossref_primary_10_1016_j_lwt_2022_114040 crossref_primary_10_1111_ijfs_16958 crossref_primary_10_1016_j_fochx_2025_102384 crossref_primary_10_1016_j_tifs_2021_09_025 crossref_primary_10_1016_j_talanta_2022_123733 crossref_primary_10_3390_pr10081489 crossref_primary_10_3390_cosmetics8040114 crossref_primary_10_3389_fnut_2022_1053315 crossref_primary_10_3390_horticulturae10101047 crossref_primary_10_1007_s10895_025_04229_7 crossref_primary_10_1111_1750_3841_16293 crossref_primary_10_3389_fnut_2022_993334 crossref_primary_10_3390_foods14040677 crossref_primary_10_1016_j_foodchem_2020_128959 crossref_primary_10_1016_j_foodchem_2024_140206 crossref_primary_10_1021_acs_jnatprod_2c00929 crossref_primary_10_1016_j_foodchem_2024_142501 crossref_primary_10_3390_f12121712 crossref_primary_10_3390_cimb47020092 crossref_primary_10_1016_j_foodcont_2022_109275 crossref_primary_10_1111_jfbc_13649 crossref_primary_10_1016_j_indcrop_2024_119662 crossref_primary_10_1016_j_foodcont_2024_111033 crossref_primary_10_1016_j_foodchem_2022_134198 crossref_primary_10_1080_05704928_2023_2204946 crossref_primary_10_1021_acs_analchem_3c01101 crossref_primary_10_47836_ifrj_30_1_15 crossref_primary_10_1016_j_indcrop_2023_116419 crossref_primary_10_3390_horticulturae8060494 crossref_primary_10_1016_j_fbio_2022_101855 crossref_primary_10_1016_j_foodres_2022_111159 crossref_primary_10_1016_j_jare_2024_10_010 crossref_primary_10_1016_j_foodcont_2021_108332 crossref_primary_10_3390_horticulturae10050450 crossref_primary_10_1016_j_foodchem_2023_137090 |
Cites_doi | 10.1105/tpc.140930 10.1111/j.1750-3841.2012.02622.x 10.1016/j.trac.2017.09.004 10.1002/ejlt.201800431 10.1080/10408398.2016.1225666 10.1016/j.arabjc.2017.12.025 10.1016/j.jfoodeng.2017.06.006 10.2174/0929867311320210003 10.1016/j.talanta.2018.08.092 10.1016/j.foodchem.2019.04.109 10.1016/j.foodchem.2016.02.086 10.1016/j.foodchem.2018.07.200 10.3390/molecules23020241 10.1016/j.saa.2019.117208 10.1016/j.foodchem.2014.02.016 10.1016/j.chemphyslip.2011.06.005 10.1016/j.lwt.2019.03.018 10.1016/j.vibspec.2018.10.003 10.1016/j.lwt.2019.108261 10.1038/s41598-018-32223-6 10.1016/j.foodres.2015.07.044 10.1016/j.trac.2014.02.006 10.1016/j.aca.2012.12.003 10.1016/j.foodcont.2018.08.024 10.1016/j.fuproc.2018.02.014 10.1016/j.trac.2017.07.015 10.1016/j.talanta.2018.08.074 10.1016/j.talanta.2018.12.026 10.1002/jccs.200600078 10.1016/j.chemphyslip.2012.03.004 10.1016/j.lwt.2017.03.026 10.1016/j.foodchem.2005.04.015 10.1016/j.rser.2012.07.003 10.1016/j.foodchem.2009.04.088 10.1039/c2cs35138b 10.1016/j.foodchem.2009.02.068 10.1016/j.foodres.2012.11.029 10.1111/1541-4337.12408 10.25165/j.ijabe.20181105.3656 10.1016/j.ejrs.2017.02.001 10.1016/j.foodchem.2019.04.073 10.1016/j.tifs.2018.01.013 10.1016/j.jhydrol.2016.12.014 10.1016/j.foodchem.2018.03.065 10.1080/10942912.2015.1021929 10.1016/j.foodchem.2017.09.061 10.1016/j.foodchem.2013.08.013 10.1016/j.foodres.2017.09.089 10.1016/S0021-9673(00)00355-1 10.1016/j.tifs.2016.10.014 10.1016/j.foodchem.2016.08.051 10.1016/j.foodres.2009.12.006 10.1016/j.petrol.2019.02.045 10.1007/s11746-010-1564-3 10.1002/ejlt.200501224 10.1016/j.foodchem.2015.02.079 10.1016/j.tifs.2017.12.006 10.2174/2212798410901010001 10.1016/j.foodchem.2017.04.110 10.1016/j.saa.2019.03.099 10.1016/j.saa.2006.09.014 10.1016/j.foodchem.2019.02.072 10.1007/s11746-013-2209-0 10.1016/j.foodchem.2005.12.039 10.1016/j.foodcont.2017.06.034 10.1007/s10973-016-5606-4 10.1016/j.lwt.2019.04.075 10.1016/j.compag.2018.03.002 10.1016/j.aca.2016.01.025 10.1016/j.tifs.2016.12.007 10.1080/19476337.2018.1466834 10.1016/j.foodchem.2019.03.067 10.1002/ejlt.201500463 10.1142/S1793545818500062 10.1016/j.foodres.2013.08.041 10.1016/j.foodchem.2017.11.013 10.1177/156482650402500402 10.1016/j.foodchem.2018.11.095 10.5507/bp.2011.052 10.1007/s12161-016-0587-2 10.1002/jsfa.9424 10.1016/j.talanta.2016.08.005 10.1016/j.indcrop.2018.10.004 10.1016/j.chemolab.2016.03.028 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Mar 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Mar 2020 |
DBID | AAYXX CITATION 7QO 7QR 7ST 7T7 8FD C1K F28 FR3 P64 SOI 7S9 L.6 |
DOI | 10.1016/j.tifs.2020.01.005 |
DatabaseName | CrossRef Biotechnology Research Abstracts Chemoreception Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Biotechnology Research Abstracts Technology Research Database Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts ANTE: Abstracts in New Technology & Engineering Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Biotechnology Research Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1879-3053 |
EndPage | 99 |
ExternalDocumentID | 10_1016_j_tifs_2020_01_005 S0924224419306995 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFRAH AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W K-O KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K WH7 WUQ XFK Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7QO 7QR 7ST 7T7 8FD C1K EFKBS F28 FR3 P64 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c427t-317db3f6a305f7249cf2ac76a29b7be3338ad5f92e4ca5cd72389e1e6aea64533 |
IEDL.DBID | .~1 |
ISSN | 0924-2244 |
IngestDate | Fri Jul 11 10:05:54 EDT 2025 Wed Aug 13 06:50:13 EDT 2025 Thu Apr 24 23:05:24 EDT 2025 Tue Jul 01 04:02:36 EDT 2025 Fri Feb 23 02:48:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Spectroscopy techniques Chromatographic techniques Authentication Camellia oil Chemometrics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-317db3f6a305f7249cf2ac76a29b7be3338ad5f92e4ca5cd72389e1e6aea64533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2377326469 |
PQPubID | 2045388 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2400490928 proquest_journals_2377326469 crossref_primary_10_1016_j_tifs_2020_01_005 crossref_citationtrail_10_1016_j_tifs_2020_01_005 elsevier_sciencedirect_doi_10_1016_j_tifs_2020_01_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2020 2020-03-00 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Trends in food science & technology |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Zhu, Wang, Chen (bib88) 2017; 216 Liu, Hu, Liu, Zhang, Chen, He (bib44) 2017; 119 Shi, Zhu, Zhou, Huo, Long, Zeng (bib60) 2019; 287 Peris, Escuder-Gilabert (bib52) 2016; 58 Guo, Xu, Yuan, Wu, Wang (bib25) 2010; 87 Sales, Portoles, Johnsen, Danielsen, Beltran (bib57) 2019; 271 Hemmateenejad, Akhond, Samari (bib30) 2007; 67 Xie, Liu, Yu, Song, Hu (bib75) 2013; 90 Rosa, Coqueiro, Março, Valderrama (bib55) 2018; 273 Dais, Hatzakis (bib17) 2013; 765 Majchrzak, Wojnowski, Dymerski, Gebicki, Namiesnik (bib46) 2018; 246 Yang, Li, Wang, Zou, Peng, Yin (bib77) 2019; 121 Cheng, Yang, Wang, Zhou, Yan, Teng (bib12) 2018; 11 Ozulku, Yildirim, Toker, Karasu, Durak (bib50) 2017; 82 Weng, Weng, Chen (bib72) 2006; 53 Dou, Mao, Zhang, Xie, Chen, Yu (bib18) 2018; 23 Chu, Wang, Li, Zhao, Jiang (bib14) 2018; 11 Shi, Zhu, Chen, Yan, Chen, Wu (bib59) 2018; 242 Hu, He, Zhang, Yang, Liu (bib32) 2019; 191 Camin, Boner, Bontempo, Fauhl-Hassek, Kelly, Riedl (bib7) 2017; 61 Chen, Chen, Lu (bib10) 2018; 8 Sabah, Talebkeikhah, Agin, Talebkeikhah, Hasheminasab (bib56) 2019; 177 Hu, Chen, Gao, Li, Du, Fu (bib31) 2019; 99 Nunes (bib49) 2014; 60 Wallingford, Yuhas, Du, Zhai, Popkin (bib66) 2004; 25 Mohamed, Saleh, Belal, Gad (bib47) 2017; 21 Parker, Limer, Watson, Defernez, Williamson, Kemsley (bib51) 2014; 57 Yuan, Wang, Chen, Ye, Zhou (bib80) 2015; 19 Hai, Wang (bib28) 2006; 108 Gerhardt, Schwolow, Rohn, Perez-Cacho, Galan-Soldevilla, Arce (bib21) 2019; 278 Hatzakis (bib29) 2019; 18 Wang, Zeng, Del Mar Contreras, Wang (bib69) 2017; 102 Ellis, Brewster, Dunn, William, Golovanov, Royston (bib19) 2012; 41 Wu, Ma, Zhang, Li, Li, Zhang (bib74) 2016; 204 Wu, Li, Li, Liu, Zhang, Xiao (bib73) 2018; 174 Li, Huang, Huang, Teng, Xia, Wei (bib42) 2016; 126 Cui, Lisa, Wenfeng, Ruchun (bib16) 2014; 39 Šmejkalová, Piccolo (bib62) 2010; 118 Ai, Bin, Zhang, Huang, Wang, Liang (bib1) 2014; 143 Kumar, Tarai, Mishra (bib40) 2017; 97 Siasos, Tousoulis, Tsigkou, Kokkou, Oikonomou, Vavuranakis (bib61) 2013; 20 Zeb (bib81) 2012; 165 Kamaleldin, Moazzami (bib36) 2009; 1 Zhang (bib82) 2012; 16 Zhu, Zhou, Duncan, Lv, Liao, Feng (bib89) 2017; 545 Cao, Ruan, Chen, Hong, Cai (bib9) 2017; 96 Kremmyda, Tvrzicka, Stankova, Zak (bib39) 2011; 155 Guadalupe, María Teresa (bib24) 2011; 164 Rohman, Man (bib54) 2010; 43 Zhong, Danny, Andrea, Paul, Kevin (bib84) 2007; 100 Gurdeniz, Ozen (bib26) 2009; 116 Zhou, Jiang, Zhao, Zhang, Gu, Pan (bib85) 2017; 84 Li, Zhu, Zhang, Li, Su, Shan (bib45) 2012; 77 Yin, Zhou, Chen, Han, Zheng, Younis (bib79) 2019; 221 Gómez-Caravaca, Maggio, Cerretani (bib22) 2016; 913 Wang, Wu, Long, Hu, Cheng, Chen (bib68) 2019; 293 Bingning, Haixia, Qiaojiao, Jie, Yanwen (bib6) 2015; 181 Akbar, Kuanar, Patnaik, Mishra, Nayak (bib2) 2018; 148 Aparicio, Aparicio-Ruíz (bib3) 2000; 881 Yang, Zhang, Li, Yu, Mao, Wang (bib78) 2018; 74 Wang, Zeng, Verardo, Contreras (bib70) 2017; 233 Bing (bib5) 2012; 27 Karpas, Zeev (bib37) 2013; 54 Cheng, Liu, Tao, Wang, Li, Teng (bib11) 2017; 11 Lang, Yang, Dou, Wang, Zhang, Li (bib41) 2019; 107 Uitterhaegen, Evon (bib65) 2017; 212 Robards, Prenzler, Ryan, Zhong, Moreau, Kamaleldin (bib53) 2009 Zhang, Wang, Yang, Mao, Jiang, Wang (bib83) 2019; 289 Cao, Li, Liu, Liu, Fan, Deng (bib8) 2016; 10 Farahani, Benvidi, Rezaeinasab, Abbasi, Abdollahi-Alibeik, Rezaeipoor-Anari (bib20) 2019; 192 Wei, Sun, Jiang, Zhang, Hong, Jin (bib71) 2019; 112 de Santana, Borges Neto, Poppi (bib58) 2019; 293 Gu, Sun (bib27) 2019; 218 Granato, Santos, Escher, Ferreira, Maggio (bib23) 2018; 72 Li, Kong, Shi, Shen (bib43) 2016; 155 Zhuang, Zhang, Wang, Li (bib87) 2018; 126 Jimenez-Carvelo, Lozano, Olivieri (bib35) 2019; 96 Karuk Elmas, Arslan, Akin, Kenar, Janssen, Yilmaz (bib38) 2019; 196 Wang, Lee, Wang, He (bib67) 2006; 95 Bajoub, Bendini, Fernández-Gutiérrez, Carrasco-Pancorbo (bib4) 2018; 58 Chen, Lin, Tan (bib13) 2018 Jiang, Wu, Yuan, Lamu, Wang, Zhang (bib34) 2018; 11 Taofiq, Calhelha, Heleno, Barros, Martins, Santos-Buelga (bib64) 2015; 76 Zhou, Shi, Pan, Liu, Long, Ge (bib86) 2019; 110 Xue-Hui, Chen, Wang, Cheng, Zhou (bib76) 2007 Clouse (bib15) 2002; 14 Su, Shih, Lin (bib63) 2014; 156 Hui, Geng, Tong, Lu, Chen (bib33) 2018; 16 Navarro-Reig, Jaumot, Beek, Vivó-Truyols, Tauler (bib48) 2016; 160 Li (10.1016/j.tifs.2020.01.005_bib43) 2016; 155 Hai (10.1016/j.tifs.2020.01.005_bib28) 2006; 108 Camin (10.1016/j.tifs.2020.01.005_bib7) 2017; 61 Li (10.1016/j.tifs.2020.01.005_bib45) 2012; 77 Zhang (10.1016/j.tifs.2020.01.005_bib82) 2012; 16 Cheng (10.1016/j.tifs.2020.01.005_bib11) 2017; 11 Xie (10.1016/j.tifs.2020.01.005_bib75) 2013; 90 Yin (10.1016/j.tifs.2020.01.005_bib79) 2019; 221 Liu (10.1016/j.tifs.2020.01.005_bib44) 2017; 119 Siasos (10.1016/j.tifs.2020.01.005_bib61) 2013; 20 Zhou (10.1016/j.tifs.2020.01.005_bib86) 2019; 110 Wang (10.1016/j.tifs.2020.01.005_bib67) 2006; 95 Granato (10.1016/j.tifs.2020.01.005_bib23) 2018; 72 Lang (10.1016/j.tifs.2020.01.005_bib41) 2019; 107 Nunes (10.1016/j.tifs.2020.01.005_bib49) 2014; 60 Wu (10.1016/j.tifs.2020.01.005_bib73) 2018; 174 Zeb (10.1016/j.tifs.2020.01.005_bib81) 2012; 165 Ellis (10.1016/j.tifs.2020.01.005_bib19) 2012; 41 Su (10.1016/j.tifs.2020.01.005_bib63) 2014; 156 Li (10.1016/j.tifs.2020.01.005_bib42) 2016; 126 Chen (10.1016/j.tifs.2020.01.005_bib13) 2018 Chu (10.1016/j.tifs.2020.01.005_bib14) 2018; 11 Zhu (10.1016/j.tifs.2020.01.005_bib89) 2017; 545 Yang (10.1016/j.tifs.2020.01.005_bib77) 2019; 121 Dais (10.1016/j.tifs.2020.01.005_bib17) 2013; 765 Bajoub (10.1016/j.tifs.2020.01.005_bib4) 2018; 58 Cao (10.1016/j.tifs.2020.01.005_bib9) 2017; 96 Hatzakis (10.1016/j.tifs.2020.01.005_bib29) 2019; 18 Gómez-Caravaca (10.1016/j.tifs.2020.01.005_bib22) 2016; 913 Yuan (10.1016/j.tifs.2020.01.005_bib80) 2015; 19 Uitterhaegen (10.1016/j.tifs.2020.01.005_bib65) 2017; 212 Navarro-Reig (10.1016/j.tifs.2020.01.005_bib48) 2016; 160 Shi (10.1016/j.tifs.2020.01.005_bib60) 2019; 287 Zhou (10.1016/j.tifs.2020.01.005_bib85) 2017; 84 Ozulku (10.1016/j.tifs.2020.01.005_bib50) 2017; 82 Dou (10.1016/j.tifs.2020.01.005_bib18) 2018; 23 Farahani (10.1016/j.tifs.2020.01.005_bib20) 2019; 192 Kamaleldin (10.1016/j.tifs.2020.01.005_bib36) 2009; 1 Šmejkalová (10.1016/j.tifs.2020.01.005_bib62) 2010; 118 Zhang (10.1016/j.tifs.2020.01.005_bib83) 2019; 289 Akbar (10.1016/j.tifs.2020.01.005_bib2) 2018; 148 Rohman (10.1016/j.tifs.2020.01.005_bib54) 2010; 43 Kremmyda (10.1016/j.tifs.2020.01.005_bib39) 2011; 155 Karpas (10.1016/j.tifs.2020.01.005_bib37) 2013; 54 Gerhardt (10.1016/j.tifs.2020.01.005_bib21) 2019; 278 Chen (10.1016/j.tifs.2020.01.005_bib10) 2018; 8 Wang (10.1016/j.tifs.2020.01.005_bib68) 2019; 293 Wang (10.1016/j.tifs.2020.01.005_bib69) 2017; 102 Wang (10.1016/j.tifs.2020.01.005_bib70) 2017; 233 Hu (10.1016/j.tifs.2020.01.005_bib32) 2019; 191 Yang (10.1016/j.tifs.2020.01.005_bib78) 2018; 74 Zhong (10.1016/j.tifs.2020.01.005_bib84) 2007; 100 Parker (10.1016/j.tifs.2020.01.005_bib51) 2014; 57 Zhu (10.1016/j.tifs.2020.01.005_bib88) 2017; 216 Sales (10.1016/j.tifs.2020.01.005_bib57) 2019; 271 Gu (10.1016/j.tifs.2020.01.005_bib27) 2019; 218 Gurdeniz (10.1016/j.tifs.2020.01.005_bib26) 2009; 116 Bingning (10.1016/j.tifs.2020.01.005_bib6) 2015; 181 Wu (10.1016/j.tifs.2020.01.005_bib74) 2016; 204 Hemmateenejad (10.1016/j.tifs.2020.01.005_bib30) 2007; 67 Ai (10.1016/j.tifs.2020.01.005_bib1) 2014; 143 Rosa (10.1016/j.tifs.2020.01.005_bib55) 2018; 273 Guadalupe (10.1016/j.tifs.2020.01.005_bib24) 2011; 164 Hui (10.1016/j.tifs.2020.01.005_bib33) 2018; 16 Peris (10.1016/j.tifs.2020.01.005_bib52) 2016; 58 Jimenez-Carvelo (10.1016/j.tifs.2020.01.005_bib35) 2019; 96 Wei (10.1016/j.tifs.2020.01.005_bib71) 2019; 112 Taofiq (10.1016/j.tifs.2020.01.005_bib64) 2015; 76 Clouse (10.1016/j.tifs.2020.01.005_bib15) 2002; 14 Cui (10.1016/j.tifs.2020.01.005_bib16) 2014; 39 de Santana (10.1016/j.tifs.2020.01.005_bib58) 2019; 293 Majchrzak (10.1016/j.tifs.2020.01.005_bib46) 2018; 246 Cao (10.1016/j.tifs.2020.01.005_bib8) 2016; 10 Hu (10.1016/j.tifs.2020.01.005_bib31) 2019; 99 Shi (10.1016/j.tifs.2020.01.005_bib59) 2018; 242 Cheng (10.1016/j.tifs.2020.01.005_bib12) 2018; 11 Weng (10.1016/j.tifs.2020.01.005_bib72) 2006; 53 Wallingford (10.1016/j.tifs.2020.01.005_bib66) 2004; 25 Robards (10.1016/j.tifs.2020.01.005_bib53) 2009 Bing (10.1016/j.tifs.2020.01.005_bib5) 2012; 27 Karuk Elmas (10.1016/j.tifs.2020.01.005_bib38) 2019; 196 Guo (10.1016/j.tifs.2020.01.005_bib25) 2010; 87 Zhuang (10.1016/j.tifs.2020.01.005_bib87) 2018; 126 Kumar (10.1016/j.tifs.2020.01.005_bib40) 2017; 97 Mohamed (10.1016/j.tifs.2020.01.005_bib47) 2017; 21 Aparicio (10.1016/j.tifs.2020.01.005_bib3) 2000; 881 Jiang (10.1016/j.tifs.2020.01.005_bib34) 2018; 11 Sabah (10.1016/j.tifs.2020.01.005_bib56) 2019; 177 Xue-Hui (10.1016/j.tifs.2020.01.005_bib76) 2007 |
References_xml | – volume: 21 start-page: 1 year: 2017 end-page: 14 ident: bib47 article-title: Application of near-infrared reflectance for quantitative assessment of soil properties publication-title: Egyptian Journal of Remote Sensing & Space Science – volume: 148 start-page: 160 year: 2018 end-page: 178 ident: bib2 article-title: Application of Artificial Neural Network modeling for optimization and prediction of essential oil yield in turmeric (Curcuma longa L.) publication-title: Computers and Electronics in Agriculture – volume: 11 start-page: 1850006 year: 2018 ident: bib14 article-title: Identifying camellia oil adulteration with selected vegetable oils by characteristic near-infrared spectral regions publication-title: Journal of Innovative Optical Health Sciences – volume: 97 start-page: 216 year: 2017 end-page: 243 ident: bib40 article-title: Unconventional steady-state fluorescence spectroscopy as an analytical technique for analyses of complex-multifluorophoric mixtures publication-title: TRAC Trends in Analytical Chemistry – volume: 96 start-page: 22 year: 2019 end-page: 28 ident: bib35 article-title: Comparative chemometric analysis of fluorescence and near infrared spectroscopies for authenticity confirmation and geographical origin of Argentinean extra virgin olive oils publication-title: Food Control – volume: 19 start-page: 300 year: 2015 end-page: 313 ident: bib80 article-title: Identification and detection of AdulteratedCamellia OleiferaAbel. Oils by near infrared transmittance spectroscopy publication-title: International Journal of Food Properties – volume: 27 start-page: 111 year: 2012 end-page: 115 ident: bib5 article-title: Research on the detection of adulteration of virgin camellia oil based on dielectric spectroscopy method publication-title: Journal of the Chinese Cereals & Oils Association – volume: 287 start-page: 46 year: 2019 end-page: 54 ident: bib60 article-title: H NMR combined with PLS for the rapid determination of squalene and sterols in vegetable oils publication-title: Food Chemistry – volume: 58 start-page: 40 year: 2016 end-page: 54 ident: bib52 article-title: Electronic noses and tongues to assess food authenticity and adulteration publication-title: Trends in Food Science & Technology – volume: 204 start-page: 334 year: 2016 end-page: 342 ident: bib74 article-title: Simultaneous determination of phenolic compounds in sesame oil using LC-MS/MS combined with magnetic carboxylated multi-walled carbon nanotubes publication-title: Food Chemistry – volume: 271 start-page: 488 year: 2019 end-page: 496 ident: bib57 article-title: Olive oil quality classification and measurement of its organoleptic attributes by untargeted GC-MS and multivariate statistical-based approach publication-title: Food Chemistry – volume: 216 start-page: 268 year: 2017 end-page: 274 ident: bib88 article-title: Rapid detection of peanut oil adulteration using low-field nuclear magnetic resonance and chemometrics publication-title: Food Chemistry – volume: 99 start-page: 2285 year: 2019 end-page: 2291 ident: bib31 article-title: Fusion of near‐infrared and fluorescence spectroscopy for untargeted fraud detection of Chinese tea seed oil using chemometric methods publication-title: Journal of the Science of Food and Agriculture – volume: 174 start-page: 88 year: 2018 end-page: 94 ident: bib73 article-title: Simultaneous extraction of oil and tea saponin from Camellia oleifera Abel. seeds under subcritical water conditions publication-title: Fuel Processing Technology – volume: 60 start-page: 255 year: 2014 end-page: 261 ident: bib49 article-title: Vibrational spectroscopy and chemometrics to assess authenticity, adulteration and intrinsic quality parameters of edible oils and fats publication-title: Food Research International – volume: 118 start-page: 153 year: 2010 end-page: 158 ident: bib62 article-title: High-power gradient diffusion NMR spectroscopy for the rapid assessment of extra-virgin olive oil adulteration publication-title: Food Chemistry – volume: 116 start-page: 519 year: 2009 end-page: 525 ident: bib26 article-title: Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data publication-title: Food Chemistry – volume: 54 start-page: 1146 year: 2013 end-page: 1151 ident: bib37 article-title: Applications of ion mobility spectrometry (IMS) in the field of foodomics publication-title: Food Research International – volume: 143 start-page: 472 year: 2014 end-page: 478 ident: bib1 article-title: Application of random forests to select premium quality vegetable oils by their fatty acid composition publication-title: Food Chemistry – volume: 95 start-page: 529 year: 2006 end-page: 536 ident: bib67 article-title: Feasibility study of quantifying and discriminating soybean oil adulteration in camellia oils by attenuated total reflectance MIR and fiber optic diffuse reflectance NIR publication-title: Food Chemistry – volume: 913 start-page: 1 year: 2016 end-page: 21 ident: bib22 article-title: Chemometric applications to assess quality and critical parameters of virgin and extra-virgin olive oil. A review publication-title: Analytica Chimica Acta – volume: 102 start-page: 184 year: 2017 end-page: 194 ident: bib69 article-title: Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil publication-title: Food Research International – volume: 72 start-page: 83 year: 2018 end-page: 90 ident: bib23 article-title: Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective publication-title: Trends in Food Science & Technology – volume: 108 start-page: 116 year: 2006 end-page: 124 ident: bib28 article-title: Detection of adulteration in camellia seed oil and sesame oil using an electronic nose publication-title: European Journal of Lipid Science and Technology – volume: 293 start-page: 323 year: 2019 end-page: 332 ident: bib58 article-title: Random forest as one-class classifier and infrared spectroscopy for food adulteration detection publication-title: Food Chemistry – start-page: 139 year: 2007 end-page: 141 ident: bib76 article-title: Study on technology of supercritical CO publication-title: Food Science and Technology – volume: 246 start-page: 192 year: 2018 end-page: 201 ident: bib46 article-title: Electronic noses in classification and quality control of edible oils: A review publication-title: Food Chemistry – volume: 160 start-page: 624 year: 2016 end-page: 635 ident: bib48 article-title: Chemometric analysis of comprehensive LC×LC-MS data: Resolution of triacylglycerol structural isomers in corn oil publication-title: Talanta – volume: 20 start-page: 2641 year: 2013 end-page: 2660 ident: bib61 article-title: Flavonoids in atherosclerosis: An overview of their mechanisms of action publication-title: Current Medicinal Chemistry – volume: 1 start-page: 1 year: 2009 end-page: 14 ident: bib36 article-title: Plant sterols and stanols as cholesterol-lowering ingredients in functional foods publication-title: Recent Patents on Food, Nutrition & Agriculture – volume: 164 start-page: 607 year: 2011 end-page: 624 ident: bib24 article-title: Current and new insights on phytosterol oxides in plant sterol-enriched food publication-title: Chemistry and Physics of Lipids – volume: 155 start-page: 195 year: 2011 end-page: 218 ident: bib39 article-title: Fatty acids as biocompounds: Their role in human metabolism, health and disease: A review. Part 2: Fatty acid physiological roles and applications in human health and disease publication-title: Biomedical Papers-Olomouc – volume: 84 start-page: 562 year: 2017 end-page: 571 ident: bib85 article-title: Changes in physicochemical properties and protein structure of surimi enhanced with camellia tea oil publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology – volume: 14 start-page: 1995 year: 2002 end-page: 2000 ident: bib15 article-title: Arabidopsis mutants reveal multiple roles for sterols in plant development publication-title: Plant Cell – volume: 18 start-page: 189 year: 2019 end-page: 220 ident: bib29 article-title: Nuclear magnetic resonance (NMR) spectroscopy in food science: A comprehensive review publication-title: Comprehensive Reviews in Food Science and Food Safety – volume: 100 start-page: 1544 year: 2007 end-page: 1551 ident: bib84 article-title: Endogenous biophenol, fatty acid and volatile profiles of selected oils publication-title: Food Chemistry – volume: 74 start-page: 26 year: 2018 end-page: 32 ident: bib78 article-title: A review of chemical composition and nutritional properties of minor vegetable oils in China publication-title: Trends in Food Science & Technology – volume: 82 start-page: 212 year: 2017 end-page: 216 ident: bib50 article-title: Rapid detection of adulteration of cold pressed sesame oil adultered with hazelnut, canola, and sunflower oils using ATR-FTIR spectroscopy combined with chemometric publication-title: Food Control – volume: 61 start-page: 176 year: 2017 end-page: 187 ident: bib7 article-title: Stable isotope techniques for verifying the declared geographical origin of food in legal cases publication-title: Trends in Food Science & Technology – volume: 121 year: 2019 ident: bib77 article-title: A novel aqueous extraction for camellia oil by emulsified oil: A frozen/thawed method publication-title: European Journal of Lipid Science and Technology – volume: 278 start-page: 720 year: 2019 end-page: 728 ident: bib21 article-title: Quality assessment of olive oils based on temperature-ramped HS-GC-IMS and sensory evaluation: Comparison of different processing approaches by LDA, kNN, and SVM publication-title: Food Chemistry – volume: 43 start-page: 886 year: 2010 end-page: 892 ident: bib54 article-title: Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil publication-title: Food Research International – volume: 23 start-page: 241 year: 2018 ident: bib18 article-title: Multispecies adulteration detection of camellia oil by chemical markers publication-title: Molecules – volume: 76 start-page: 821 year: 2015 end-page: 827 ident: bib64 article-title: The contribution of phenolic acids to the anti-inflammatory activity of mushrooms: Screening in phenolic extracts, individual parent molecules and synthesized glucuronated and methylated derivatives publication-title: Food Research International – volume: 96 start-page: 201 year: 2017 end-page: 211 ident: bib9 article-title: Recent developments and applications of mass spectrometry for the quality and safety assessment of cooking oil publication-title: TRAC Trends in Analytical Chemistry – start-page: 178 year: 2018 end-page: 183 ident: bib13 article-title: Fast quantitative detection of sesame oil adulteration by near-infrared spectroscopy and chemometric models publication-title: Vibrational Spectroscopy – volume: 191 start-page: 324 year: 2019 end-page: 332 ident: bib32 article-title: Safety analysis of edible oil products via Raman spectroscopy publication-title: Talanta – volume: 41 start-page: 5706 year: 2012 end-page: 5727 ident: bib19 article-title: Fingerprinting food: Current technologies for the detection of food adulteration and contamination publication-title: Chemical Society Reviews – volume: 242 start-page: 308 year: 2018 end-page: 315 ident: bib59 article-title: H NMR combined with chemometrics for the rapid detection of adulteration in camellia oils publication-title: Food Chemistry – volume: 39 start-page: 67 year: 2014 end-page: 70 ident: bib16 article-title: Electrical conductivity measurement in identification of authentic oil-tea camellia seed oil publication-title: China Oils and Fats – volume: 16 start-page: 6048 year: 2012 end-page: 6058 ident: bib82 article-title: Review on analysis of biodiesel with infrared spectroscopy publication-title: Renewable and Sustainable Energy Reviews – volume: 765 start-page: 1 year: 2013 end-page: 27 ident: bib17 article-title: Quality assessment and authentication of virgin olive oil by NMR spectroscopy: A critical review publication-title: Analytica Chimica Acta – volume: 221 start-page: 117208 year: 2019 ident: bib79 article-title: A review of the application of near-infrared spectroscopy to rare traditional Chinese medicine publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy – volume: 16 start-page: 747 year: 2018 end-page: 754 ident: bib33 article-title: Second-derivative laser-induced fluorescence spectroscopy combined with chemometrics for authentication of the adulteration of camellia oil publication-title: CyTA - Journal of Food – volume: 53 start-page: 597 year: 2006 end-page: 603 ident: bib72 article-title: Authentication of camellia oleifera Abel oil by near infrared Fourier transform Raman spectroscopy publication-title: Journal of the Chinese Chemical Society – volume: 181 start-page: 25 year: 2015 end-page: 30 ident: bib6 article-title: Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: A comparative study publication-title: Food Chemistry – volume: 10 start-page: 649 year: 2016 end-page: 658 ident: bib8 article-title: Combined application of fluorescence spectroscopy and chemometrics analysis in oxidative deterioration of edible oils publication-title: Food Analytical Methods – volume: 156 start-page: 369 year: 2014 end-page: 373 ident: bib63 article-title: Chemical composition of seed oils in native Taiwanese Camellia species publication-title: Food Chemistry – volume: 177 start-page: 236 year: 2019 end-page: 249 ident: bib56 article-title: Application of decision tree, artificial neural networks, and adaptive neuro-fuzzy inference system on predicting lost circulation: A case study from Marun oil field publication-title: Journal of Petroleum Science and Engineering – volume: 25 start-page: 330 year: 2004 end-page: 336 ident: bib66 article-title: Fatty acids in Chinese edible oils: Value of direct analysis as a basis for labeling publication-title: Food and Nutrition Bulletin – volume: 233 start-page: 302 year: 2017 end-page: 310 ident: bib70 article-title: Fatty acid and sterol composition of tea seed oils: Their comparison by the "FancyTiles" approach publication-title: Food Chemistry – year: 2009 ident: bib53 article-title: Camellia oil and tea oil – volume: 90 start-page: 641 year: 2013 end-page: 646 ident: bib75 article-title: Rapid detection and quantification by GC–MS of camellia seed oil adulterated with soybean oil publication-title: Journal of the American Oil Chemists Society – volume: 881 start-page: 93 year: 2000 end-page: 104 ident: bib3 article-title: Authentication of vegetable oils by chromatographic techniques publication-title: Journal of Chromatography A – volume: 155 start-page: 145 year: 2016 end-page: 150 ident: bib43 article-title: A combination of chemometrics methods and GC–MS for the classification of edible vegetable oils publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 126 start-page: 340 year: 2018 end-page: 346 ident: bib87 article-title: The effect of alternative solvents to n-hexane on the green extraction of Litsea cubeba kernel oils as new oil sources publication-title: Industrial Crops and Products – volume: 119 start-page: 1500463 year: 2017 ident: bib44 article-title: Rapid detection and separation of olive oil andCamelliaoil based on ion mobility spectrometry fingerprints and chemometric models publication-title: European Journal of Lipid Science and Technology – volume: 289 start-page: 313 year: 2019 end-page: 319 ident: bib83 article-title: Simultaneous determination of tocopherols, carotenoids and phytosterols in edible vegetable oil by ultrasound-assisted saponification, LLE and LC-MS/MS publication-title: Food Chemistry – volume: 87 start-page: 839 year: 2010 end-page: 848 ident: bib25 article-title: Characterization and authentication of significant Chinese edible oilseed oils by stable carbon isotope analysis publication-title: Journal of the American Oil Chemists Society – volume: 11 start-page: 815 year: 2018 end-page: 826 ident: bib12 article-title: New method for effective identification of adulterated Camellia oil basing on Camellia oleifera-specific DNA publication-title: Arabian Journal of Chemistry – volume: 192 start-page: 439 year: 2019 end-page: 447 ident: bib20 article-title: Potentiality of PARAFAC approaches for simultaneous determination of N-acetylcysteine and acetaminophen based on the second-order data obtained from differential pulse voltammetry publication-title: Talanta – volume: 126 start-page: 1735 year: 2016 end-page: 1746 ident: bib42 article-title: Comparison of GC and DSC monitoring the adulteration of camellia oil with selected vegetable oils publication-title: Journal of Thermal Analysis and Calorimetry – volume: 77 start-page: 374 year: 2012 end-page: 380 ident: bib45 article-title: Authentication of pure camellia oil by using near infrared spectroscopy and pattern recognition techniques publication-title: Journal of Food Science – volume: 8 start-page: 13784 year: 2018 ident: bib10 article-title: A novel method for detection of camellia oil adulteration based on time-resolved emission fluorescence publication-title: Scientific Reports – volume: 196 start-page: 22 year: 2019 end-page: 31 ident: bib38 article-title: Synchronous fluorescence spectroscopy combined with chemometrics for rapid assessment of cold-pressed grape seed oil adulteration: Qualitative and quantitative study publication-title: Talanta – volume: 293 start-page: 348 year: 2019 end-page: 357 ident: bib68 article-title: Rapid identification and quantification of cheaper vegetable oil adulteration in camellia oil by using excitation-emission matrix fluorescence spectroscopy combined with chemometrics publication-title: Food Chemistry – volume: 273 start-page: 52 year: 2018 end-page: 56 ident: bib55 article-title: Thermal rice oil degradation evaluated by UV-Vis-NIR and PARAFAC publication-title: Food Chemistry – volume: 58 start-page: 832 year: 2018 end-page: 857 ident: bib4 article-title: Olive oil authentication: A comparative analysis of regulatory frameworks with especial emphasis on quality and authenticity indices, and recent analytical techniques developed for their assessment. A review publication-title: Critical Reviews in Food Science and Nutrition – volume: 11 start-page: 230 year: 2018 end-page: 235 ident: bib34 article-title: Physicochemical properties, flavor intensity and oxidative stability of different camellia oils publication-title: International Journal of Agricultural and Biological Engineering – volume: 545 start-page: 1 year: 2017 end-page: 11 ident: bib89 article-title: Integrating real-time and manual monitored data to predict hillslope soil moisture dynamics with high spatio-temporal resolution using linear and non-linear models publication-title: Journal of Hydrology – volume: 67 start-page: 958 year: 2007 end-page: 965 ident: bib30 article-title: A comparative study between PCR and PLS in simultaneous spectrophotometric determination of diphenylamine, aniline, and phenol: Effect of wavelength selection publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy – volume: 112 start-page: 108261 year: 2019 ident: bib71 article-title: Triacylglycerols fingerprint of edible vegetable oils by ultra-performance liquid chromatography-Q-ToF-MS publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology – volume: 11 start-page: 815 year: 2017 end-page: 826 ident: bib11 article-title: New method for effective identification of adulterated Camellia oil basing on Camellia oleifera -specific DNA publication-title: Arabian Journal of Chemistry – volume: 218 start-page: 27 year: 2019 end-page: 32 ident: bib27 article-title: Enhancing the fluorescence spectrum of frying oil using a nanoscale probe publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy – volume: 107 start-page: 221 year: 2019 end-page: 227 ident: bib41 article-title: Simultaneous determination of 19 phenolic compounds in oilseeds using magnetic solid phase extraction and LC-MS/MS publication-title: Lebensmittel-Wissenschaft & Technologie – volume: 212 start-page: 190 year: 2017 end-page: 200 ident: bib65 article-title: Twin-screw extrusion technology for vegetable oil extraction: A review publication-title: Journal of Food Engineering – volume: 165 start-page: 608 year: 2012 end-page: 614 ident: bib81 article-title: Triacylglycerols composition, oxidation and oxidation compounds in camellia oil using liquid chromatography–mass spectrometry publication-title: Chemistry and Physics of Lipids – volume: 110 start-page: 175 year: 2019 end-page: 181 ident: bib86 article-title: Effectively improve the quality of camellia oil by the combination of supercritical fluid extraction and molecular distillation (SFE-MD) publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology – volume: 57 start-page: 147 year: 2014 end-page: 158 ident: bib51 article-title: 60 MHz publication-title: Trends in Analytical Chemistry – volume: 14 start-page: 1995 issue: 9 year: 2002 ident: 10.1016/j.tifs.2020.01.005_bib15 article-title: Arabidopsis mutants reveal multiple roles for sterols in plant development publication-title: Plant Cell doi: 10.1105/tpc.140930 – volume: 77 start-page: 374 issue: 4 year: 2012 ident: 10.1016/j.tifs.2020.01.005_bib45 article-title: Authentication of pure camellia oil by using near infrared spectroscopy and pattern recognition techniques publication-title: Journal of Food Science doi: 10.1111/j.1750-3841.2012.02622.x – volume: 97 start-page: 216 year: 2017 ident: 10.1016/j.tifs.2020.01.005_bib40 article-title: Unconventional steady-state fluorescence spectroscopy as an analytical technique for analyses of complex-multifluorophoric mixtures publication-title: TRAC Trends in Analytical Chemistry doi: 10.1016/j.trac.2017.09.004 – volume: 121 issue: 4 year: 2019 ident: 10.1016/j.tifs.2020.01.005_bib77 article-title: A novel aqueous extraction for camellia oil by emulsified oil: A frozen/thawed method publication-title: European Journal of Lipid Science and Technology doi: 10.1002/ejlt.201800431 – volume: 58 start-page: 832 issue: 5 year: 2018 ident: 10.1016/j.tifs.2020.01.005_bib4 article-title: Olive oil authentication: A comparative analysis of regulatory frameworks with especial emphasis on quality and authenticity indices, and recent analytical techniques developed for their assessment. A review publication-title: Critical Reviews in Food Science and Nutrition doi: 10.1080/10408398.2016.1225666 – volume: 39 start-page: 67 issue: 4 year: 2014 ident: 10.1016/j.tifs.2020.01.005_bib16 article-title: Electrical conductivity measurement in identification of authentic oil-tea camellia seed oil publication-title: China Oils and Fats – volume: 11 start-page: 815 issue: 6 year: 2017 ident: 10.1016/j.tifs.2020.01.005_bib11 article-title: New method for effective identification of adulterated Camellia oil basing on Camellia oleifera -specific DNA publication-title: Arabian Journal of Chemistry doi: 10.1016/j.arabjc.2017.12.025 – volume: 212 start-page: 190 year: 2017 ident: 10.1016/j.tifs.2020.01.005_bib65 article-title: Twin-screw extrusion technology for vegetable oil extraction: A review publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2017.06.006 – volume: 20 start-page: 2641 issue: 21 year: 2013 ident: 10.1016/j.tifs.2020.01.005_bib61 article-title: Flavonoids in atherosclerosis: An overview of their mechanisms of action publication-title: Current Medicinal Chemistry doi: 10.2174/0929867311320210003 – volume: 192 start-page: 439 year: 2019 ident: 10.1016/j.tifs.2020.01.005_bib20 article-title: Potentiality of PARAFAC approaches for simultaneous determination of N-acetylcysteine and acetaminophen based on the second-order data obtained from differential pulse voltammetry publication-title: Talanta doi: 10.1016/j.talanta.2018.08.092 – year: 2009 ident: 10.1016/j.tifs.2020.01.005_bib53 – volume: 293 start-page: 348 year: 2019 ident: 10.1016/j.tifs.2020.01.005_bib68 article-title: Rapid identification and quantification of cheaper vegetable oil adulteration in camellia oil by using excitation-emission matrix fluorescence spectroscopy combined with chemometrics publication-title: Food Chemistry doi: 10.1016/j.foodchem.2019.04.109 – volume: 204 start-page: 334 year: 2016 ident: 10.1016/j.tifs.2020.01.005_bib74 article-title: Simultaneous determination of phenolic compounds in sesame oil using LC-MS/MS combined with magnetic carboxylated multi-walled carbon nanotubes publication-title: Food Chemistry doi: 10.1016/j.foodchem.2016.02.086 – volume: 271 start-page: 488 year: 2019 ident: 10.1016/j.tifs.2020.01.005_bib57 article-title: Olive oil quality classification and measurement of its organoleptic attributes by untargeted GC-MS and multivariate statistical-based approach publication-title: Food Chemistry doi: 10.1016/j.foodchem.2018.07.200 – volume: 23 start-page: 241 issue: 2 year: 2018 ident: 10.1016/j.tifs.2020.01.005_bib18 article-title: Multispecies adulteration detection of camellia oil by chemical markers publication-title: Molecules doi: 10.3390/molecules23020241 – volume: 221 start-page: 117208 year: 2019 ident: 10.1016/j.tifs.2020.01.005_bib79 article-title: A review of the application of near-infrared spectroscopy to rare traditional Chinese medicine publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy doi: 10.1016/j.saa.2019.117208 – volume: 156 start-page: 369 year: 2014 ident: 10.1016/j.tifs.2020.01.005_bib63 article-title: Chemical composition of seed oils in native Taiwanese Camellia species publication-title: Food Chemistry doi: 10.1016/j.foodchem.2014.02.016 – volume: 164 start-page: 607 issue: 6 year: 2011 ident: 10.1016/j.tifs.2020.01.005_bib24 article-title: Current and new insights on phytosterol oxides in plant sterol-enriched food publication-title: Chemistry and Physics of Lipids doi: 10.1016/j.chemphyslip.2011.06.005 – volume: 107 start-page: 221 year: 2019 ident: 10.1016/j.tifs.2020.01.005_bib41 article-title: Simultaneous determination of 19 phenolic compounds in oilseeds using magnetic solid phase extraction and LC-MS/MS publication-title: Lebensmittel-Wissenschaft & Technologie doi: 10.1016/j.lwt.2019.03.018 – volume: 11 start-page: 815 issue: 6 year: 2018 ident: 10.1016/j.tifs.2020.01.005_bib12 article-title: New method for effective identification of adulterated Camellia oil basing on Camellia oleifera-specific DNA publication-title: Arabian Journal of Chemistry doi: 10.1016/j.arabjc.2017.12.025 – start-page: 178 issue: 99 year: 2018 ident: 10.1016/j.tifs.2020.01.005_bib13 article-title: Fast quantitative detection of sesame oil adulteration by near-infrared spectroscopy and chemometric models publication-title: Vibrational Spectroscopy doi: 10.1016/j.vibspec.2018.10.003 – volume: 112 start-page: 108261 year: 2019 ident: 10.1016/j.tifs.2020.01.005_bib71 article-title: Triacylglycerols fingerprint of edible vegetable oils by ultra-performance liquid chromatography-Q-ToF-MS publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology doi: 10.1016/j.lwt.2019.108261 – volume: 8 start-page: 13784 issue: 1 year: 2018 ident: 10.1016/j.tifs.2020.01.005_bib10 article-title: A novel method for detection of camellia oil adulteration based on time-resolved emission fluorescence publication-title: Scientific Reports doi: 10.1038/s41598-018-32223-6 – volume: 76 start-page: 821 year: 2015 ident: 10.1016/j.tifs.2020.01.005_bib64 article-title: The contribution of phenolic acids to the anti-inflammatory activity of mushrooms: Screening in phenolic extracts, individual parent molecules and synthesized glucuronated and methylated derivatives publication-title: Food Research International doi: 10.1016/j.foodres.2015.07.044 – volume: 57 start-page: 147 issue: 100 year: 2014 ident: 10.1016/j.tifs.2020.01.005_bib51 article-title: 60 MHz 1H NMR spectroscopy for the analysis of edible oils publication-title: Trends in Analytical Chemistry doi: 10.1016/j.trac.2014.02.006 – volume: 765 start-page: 1 year: 2013 ident: 10.1016/j.tifs.2020.01.005_bib17 article-title: Quality assessment and authentication of virgin olive oil by NMR spectroscopy: A critical review publication-title: Analytica Chimica Acta doi: 10.1016/j.aca.2012.12.003 – volume: 96 start-page: 22 year: 2019 ident: 10.1016/j.tifs.2020.01.005_bib35 article-title: Comparative chemometric analysis of fluorescence and near infrared spectroscopies for authenticity confirmation and geographical origin of Argentinean extra virgin olive oils publication-title: Food Control doi: 10.1016/j.foodcont.2018.08.024 – volume: 174 start-page: 88 year: 2018 ident: 10.1016/j.tifs.2020.01.005_bib73 article-title: Simultaneous extraction of oil and tea saponin from Camellia oleifera Abel. seeds under subcritical water conditions publication-title: Fuel Processing Technology doi: 10.1016/j.fuproc.2018.02.014 – volume: 96 start-page: 201 year: 2017 ident: 10.1016/j.tifs.2020.01.005_bib9 article-title: Recent developments and applications of mass spectrometry for the quality and safety assessment of cooking oil publication-title: TRAC Trends in Analytical Chemistry doi: 10.1016/j.trac.2017.07.015 – volume: 191 start-page: 324 year: 2019 ident: 10.1016/j.tifs.2020.01.005_bib32 article-title: Safety analysis of edible oil products via Raman spectroscopy publication-title: Talanta doi: 10.1016/j.talanta.2018.08.074 – volume: 196 start-page: 22 year: 2019 ident: 10.1016/j.tifs.2020.01.005_bib38 article-title: Synchronous fluorescence spectroscopy combined with chemometrics for rapid assessment of cold-pressed grape seed oil adulteration: Qualitative and quantitative study publication-title: Talanta doi: 10.1016/j.talanta.2018.12.026 – volume: 53 start-page: 597 issue: 3 year: 2006 ident: 10.1016/j.tifs.2020.01.005_bib72 article-title: Authentication of camellia oleifera Abel oil by near infrared Fourier transform Raman spectroscopy publication-title: Journal of the Chinese Chemical Society doi: 10.1002/jccs.200600078 – volume: 165 start-page: 608 issue: 5 year: 2012 ident: 10.1016/j.tifs.2020.01.005_bib81 article-title: Triacylglycerols composition, oxidation and oxidation compounds in camellia oil using liquid chromatography–mass spectrometry publication-title: Chemistry and Physics of Lipids doi: 10.1016/j.chemphyslip.2012.03.004 – volume: 84 start-page: 562 year: 2017 ident: 10.1016/j.tifs.2020.01.005_bib85 article-title: Changes in physicochemical properties and protein structure of surimi enhanced with camellia tea oil publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology doi: 10.1016/j.lwt.2017.03.026 – volume: 95 start-page: 529 issue: 3 year: 2006 ident: 10.1016/j.tifs.2020.01.005_bib67 article-title: Feasibility study of quantifying and discriminating soybean oil adulteration in camellia oils by attenuated total reflectance MIR and fiber optic diffuse reflectance NIR publication-title: Food Chemistry doi: 10.1016/j.foodchem.2005.04.015 – volume: 27 start-page: 111 issue: 12 year: 2012 ident: 10.1016/j.tifs.2020.01.005_bib5 article-title: Research on the detection of adulteration of virgin camellia oil based on dielectric spectroscopy method publication-title: Journal of the Chinese Cereals & Oils Association – volume: 16 start-page: 6048 issue: 8 year: 2012 ident: 10.1016/j.tifs.2020.01.005_bib82 article-title: Review on analysis of biodiesel with infrared spectroscopy publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2012.07.003 – volume: 118 start-page: 153 issue: 1 year: 2010 ident: 10.1016/j.tifs.2020.01.005_bib62 article-title: High-power gradient diffusion NMR spectroscopy for the rapid assessment of extra-virgin olive oil adulteration publication-title: Food Chemistry doi: 10.1016/j.foodchem.2009.04.088 – volume: 41 start-page: 5706 issue: 17 year: 2012 ident: 10.1016/j.tifs.2020.01.005_bib19 article-title: Fingerprinting food: Current technologies for the detection of food adulteration and contamination publication-title: Chemical Society Reviews doi: 10.1039/c2cs35138b – volume: 116 start-page: 519 issue: 2 year: 2009 ident: 10.1016/j.tifs.2020.01.005_bib26 article-title: Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data publication-title: Food Chemistry doi: 10.1016/j.foodchem.2009.02.068 – volume: 54 start-page: 1146 issue: 1 year: 2013 ident: 10.1016/j.tifs.2020.01.005_bib37 article-title: Applications of ion mobility spectrometry (IMS) in the field of foodomics publication-title: Food Research International doi: 10.1016/j.foodres.2012.11.029 – volume: 18 start-page: 189 issue: 1 year: 2019 ident: 10.1016/j.tifs.2020.01.005_bib29 article-title: Nuclear magnetic resonance (NMR) spectroscopy in food science: A comprehensive review publication-title: Comprehensive Reviews in Food Science and Food Safety doi: 10.1111/1541-4337.12408 – volume: 11 start-page: 230 issue: 5 year: 2018 ident: 10.1016/j.tifs.2020.01.005_bib34 article-title: Physicochemical properties, flavor intensity and oxidative stability of different camellia oils publication-title: International Journal of Agricultural and Biological Engineering doi: 10.25165/j.ijabe.20181105.3656 – volume: 21 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.tifs.2020.01.005_bib47 article-title: Application of near-infrared reflectance for quantitative assessment of soil properties publication-title: Egyptian Journal of Remote Sensing & Space Science doi: 10.1016/j.ejrs.2017.02.001 – volume: 293 start-page: 323 year: 2019 ident: 10.1016/j.tifs.2020.01.005_bib58 article-title: Random forest as one-class classifier and infrared spectroscopy for food adulteration detection publication-title: Food Chemistry doi: 10.1016/j.foodchem.2019.04.073 – volume: 74 start-page: 26 year: 2018 ident: 10.1016/j.tifs.2020.01.005_bib78 article-title: A review of chemical composition and nutritional properties of minor vegetable oils in China publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2018.01.013 – volume: 545 start-page: 1 year: 2017 ident: 10.1016/j.tifs.2020.01.005_bib89 article-title: Integrating real-time and manual monitored data to predict hillslope soil moisture dynamics with high spatio-temporal resolution using linear and non-linear models publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2016.12.014 – volume: 273 start-page: 52 year: 2018 ident: 10.1016/j.tifs.2020.01.005_bib55 article-title: Thermal rice oil degradation evaluated by UV-Vis-NIR and PARAFAC publication-title: Food Chemistry doi: 10.1016/j.foodchem.2018.03.065 – volume: 19 start-page: 300 issue: 2 year: 2015 ident: 10.1016/j.tifs.2020.01.005_bib80 article-title: Identification and detection of AdulteratedCamellia OleiferaAbel. Oils by near infrared transmittance spectroscopy publication-title: International Journal of Food Properties doi: 10.1080/10942912.2015.1021929 – volume: 242 start-page: 308 year: 2018 ident: 10.1016/j.tifs.2020.01.005_bib59 article-title: 1H NMR combined with chemometrics for the rapid detection of adulteration in camellia oils publication-title: Food Chemistry doi: 10.1016/j.foodchem.2017.09.061 – volume: 143 start-page: 472 issue: 2 year: 2014 ident: 10.1016/j.tifs.2020.01.005_bib1 article-title: Application of random forests to select premium quality vegetable oils by their fatty acid composition publication-title: Food Chemistry doi: 10.1016/j.foodchem.2013.08.013 – volume: 102 start-page: 184 year: 2017 ident: 10.1016/j.tifs.2020.01.005_bib69 article-title: Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil publication-title: Food Research International doi: 10.1016/j.foodres.2017.09.089 – start-page: 139 year: 2007 ident: 10.1016/j.tifs.2020.01.005_bib76 article-title: Study on technology of supercritical CO2 extraction of the camellia oils publication-title: Food Science and Technology – volume: 881 start-page: 93 issue: 1–2 year: 2000 ident: 10.1016/j.tifs.2020.01.005_bib3 article-title: Authentication of vegetable oils by chromatographic techniques publication-title: Journal of Chromatography A doi: 10.1016/S0021-9673(00)00355-1 – volume: 58 start-page: 40 year: 2016 ident: 10.1016/j.tifs.2020.01.005_bib52 article-title: Electronic noses and tongues to assess food authenticity and adulteration publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2016.10.014 – volume: 216 start-page: 268 year: 2017 ident: 10.1016/j.tifs.2020.01.005_bib88 article-title: Rapid detection of peanut oil adulteration using low-field nuclear magnetic resonance and chemometrics publication-title: Food Chemistry doi: 10.1016/j.foodchem.2016.08.051 – volume: 43 start-page: 886 issue: 3 year: 2010 ident: 10.1016/j.tifs.2020.01.005_bib54 article-title: Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil publication-title: Food Research International doi: 10.1016/j.foodres.2009.12.006 – volume: 177 start-page: 236 year: 2019 ident: 10.1016/j.tifs.2020.01.005_bib56 article-title: Application of decision tree, artificial neural networks, and adaptive neuro-fuzzy inference system on predicting lost circulation: A case study from Marun oil field publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2019.02.045 – volume: 87 start-page: 839 issue: 8 year: 2010 ident: 10.1016/j.tifs.2020.01.005_bib25 article-title: Characterization and authentication of significant Chinese edible oilseed oils by stable carbon isotope analysis publication-title: Journal of the American Oil Chemists Society doi: 10.1007/s11746-010-1564-3 – volume: 108 start-page: 116 issue: 2 year: 2006 ident: 10.1016/j.tifs.2020.01.005_bib28 article-title: Detection of adulteration in camellia seed oil and sesame oil using an electronic nose publication-title: European Journal of Lipid Science and Technology doi: 10.1002/ejlt.200501224 – volume: 181 start-page: 25 year: 2015 ident: 10.1016/j.tifs.2020.01.005_bib6 article-title: Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: A comparative study publication-title: Food Chemistry doi: 10.1016/j.foodchem.2015.02.079 – volume: 72 start-page: 83 year: 2018 ident: 10.1016/j.tifs.2020.01.005_bib23 article-title: Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2017.12.006 – volume: 1 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.tifs.2020.01.005_bib36 article-title: Plant sterols and stanols as cholesterol-lowering ingredients in functional foods publication-title: Recent Patents on Food, Nutrition & Agriculture doi: 10.2174/2212798410901010001 – volume: 233 start-page: 302 year: 2017 ident: 10.1016/j.tifs.2020.01.005_bib70 article-title: Fatty acid and sterol composition of tea seed oils: Their comparison by the "FancyTiles" approach publication-title: Food Chemistry doi: 10.1016/j.foodchem.2017.04.110 – volume: 218 start-page: 27 year: 2019 ident: 10.1016/j.tifs.2020.01.005_bib27 article-title: Enhancing the fluorescence spectrum of frying oil using a nanoscale probe publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy doi: 10.1016/j.saa.2019.03.099 – volume: 67 start-page: 958 issue: 3–4 year: 2007 ident: 10.1016/j.tifs.2020.01.005_bib30 article-title: A comparative study between PCR and PLS in simultaneous spectrophotometric determination of diphenylamine, aniline, and phenol: Effect of wavelength selection publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy doi: 10.1016/j.saa.2006.09.014 – volume: 287 start-page: 46 year: 2019 ident: 10.1016/j.tifs.2020.01.005_bib60 article-title: 1H NMR combined with PLS for the rapid determination of squalene and sterols in vegetable oils publication-title: Food Chemistry doi: 10.1016/j.foodchem.2019.02.072 – volume: 90 start-page: 641 issue: 5 year: 2013 ident: 10.1016/j.tifs.2020.01.005_bib75 article-title: Rapid detection and quantification by GC–MS of camellia seed oil adulterated with soybean oil publication-title: Journal of the American Oil Chemists Society doi: 10.1007/s11746-013-2209-0 – volume: 100 start-page: 1544 issue: 4 year: 2007 ident: 10.1016/j.tifs.2020.01.005_bib84 article-title: Endogenous biophenol, fatty acid and volatile profiles of selected oils publication-title: Food Chemistry doi: 10.1016/j.foodchem.2005.12.039 – volume: 82 start-page: 212 year: 2017 ident: 10.1016/j.tifs.2020.01.005_bib50 article-title: Rapid detection of adulteration of cold pressed sesame oil adultered with hazelnut, canola, and sunflower oils using ATR-FTIR spectroscopy combined with chemometric publication-title: Food Control doi: 10.1016/j.foodcont.2017.06.034 – volume: 126 start-page: 1735 issue: 3 year: 2016 ident: 10.1016/j.tifs.2020.01.005_bib42 article-title: Comparison of GC and DSC monitoring the adulteration of camellia oil with selected vegetable oils publication-title: Journal of Thermal Analysis and Calorimetry doi: 10.1007/s10973-016-5606-4 – volume: 110 start-page: 175 year: 2019 ident: 10.1016/j.tifs.2020.01.005_bib86 article-title: Effectively improve the quality of camellia oil by the combination of supercritical fluid extraction and molecular distillation (SFE-MD) publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology doi: 10.1016/j.lwt.2019.04.075 – volume: 148 start-page: 160 year: 2018 ident: 10.1016/j.tifs.2020.01.005_bib2 article-title: Application of Artificial Neural Network modeling for optimization and prediction of essential oil yield in turmeric (Curcuma longa L.) publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.03.002 – volume: 913 start-page: 1 year: 2016 ident: 10.1016/j.tifs.2020.01.005_bib22 article-title: Chemometric applications to assess quality and critical parameters of virgin and extra-virgin olive oil. A review publication-title: Analytica Chimica Acta doi: 10.1016/j.aca.2016.01.025 – volume: 61 start-page: 176 year: 2017 ident: 10.1016/j.tifs.2020.01.005_bib7 article-title: Stable isotope techniques for verifying the declared geographical origin of food in legal cases publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2016.12.007 – volume: 16 start-page: 747 issue: 1 year: 2018 ident: 10.1016/j.tifs.2020.01.005_bib33 article-title: Second-derivative laser-induced fluorescence spectroscopy combined with chemometrics for authentication of the adulteration of camellia oil publication-title: CyTA - Journal of Food doi: 10.1080/19476337.2018.1466834 – volume: 289 start-page: 313 year: 2019 ident: 10.1016/j.tifs.2020.01.005_bib83 article-title: Simultaneous determination of tocopherols, carotenoids and phytosterols in edible vegetable oil by ultrasound-assisted saponification, LLE and LC-MS/MS publication-title: Food Chemistry doi: 10.1016/j.foodchem.2019.03.067 – volume: 119 start-page: 1500463 issue: 3 year: 2017 ident: 10.1016/j.tifs.2020.01.005_bib44 article-title: Rapid detection and separation of olive oil andCamelliaoil based on ion mobility spectrometry fingerprints and chemometric models publication-title: European Journal of Lipid Science and Technology doi: 10.1002/ejlt.201500463 – volume: 11 start-page: 1850006 year: 2018 ident: 10.1016/j.tifs.2020.01.005_bib14 article-title: Identifying camellia oil adulteration with selected vegetable oils by characteristic near-infrared spectral regions publication-title: Journal of Innovative Optical Health Sciences doi: 10.1142/S1793545818500062 – volume: 60 start-page: 255 issue: 6 year: 2014 ident: 10.1016/j.tifs.2020.01.005_bib49 article-title: Vibrational spectroscopy and chemometrics to assess authenticity, adulteration and intrinsic quality parameters of edible oils and fats publication-title: Food Research International doi: 10.1016/j.foodres.2013.08.041 – volume: 246 start-page: 192 year: 2018 ident: 10.1016/j.tifs.2020.01.005_bib46 article-title: Electronic noses in classification and quality control of edible oils: A review publication-title: Food Chemistry doi: 10.1016/j.foodchem.2017.11.013 – volume: 25 start-page: 330 issue: 4 year: 2004 ident: 10.1016/j.tifs.2020.01.005_bib66 article-title: Fatty acids in Chinese edible oils: Value of direct analysis as a basis for labeling publication-title: Food and Nutrition Bulletin doi: 10.1177/156482650402500402 – volume: 278 start-page: 720 year: 2019 ident: 10.1016/j.tifs.2020.01.005_bib21 article-title: Quality assessment of olive oils based on temperature-ramped HS-GC-IMS and sensory evaluation: Comparison of different processing approaches by LDA, kNN, and SVM publication-title: Food Chemistry doi: 10.1016/j.foodchem.2018.11.095 – volume: 155 start-page: 195 issue: 3 year: 2011 ident: 10.1016/j.tifs.2020.01.005_bib39 article-title: Fatty acids as biocompounds: Their role in human metabolism, health and disease: A review. Part 2: Fatty acid physiological roles and applications in human health and disease publication-title: Biomedical Papers-Olomouc doi: 10.5507/bp.2011.052 – volume: 10 start-page: 649 issue: 3 year: 2016 ident: 10.1016/j.tifs.2020.01.005_bib8 article-title: Combined application of fluorescence spectroscopy and chemometrics analysis in oxidative deterioration of edible oils publication-title: Food Analytical Methods doi: 10.1007/s12161-016-0587-2 – volume: 99 start-page: 2285 issue: 5 year: 2019 ident: 10.1016/j.tifs.2020.01.005_bib31 article-title: Fusion of near‐infrared and fluorescence spectroscopy for untargeted fraud detection of Chinese tea seed oil using chemometric methods publication-title: Journal of the Science of Food and Agriculture doi: 10.1002/jsfa.9424 – volume: 160 start-page: 624 year: 2016 ident: 10.1016/j.tifs.2020.01.005_bib48 article-title: Chemometric analysis of comprehensive LC×LC-MS data: Resolution of triacylglycerol structural isomers in corn oil publication-title: Talanta doi: 10.1016/j.talanta.2016.08.005 – volume: 126 start-page: 340 year: 2018 ident: 10.1016/j.tifs.2020.01.005_bib87 article-title: The effect of alternative solvents to n-hexane on the green extraction of Litsea cubeba kernel oils as new oil sources publication-title: Industrial Crops and Products doi: 10.1016/j.indcrop.2018.10.004 – volume: 155 start-page: 145 year: 2016 ident: 10.1016/j.tifs.2020.01.005_bib43 article-title: A combination of chemometrics methods and GC–MS for the classification of edible vegetable oils publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2016.03.028 |
SSID | ssj0005355 |
Score | 2.6246831 |
SecondaryResourceType | review_article |
Snippet | Camellia oil is obtained from the camellia seed with various cultivated species (Camellia. oleifera (C. oleifera), C. meiocarpa, C. vietnamensis, C.... Background Camellia oil is obtained from the camellia seed with various cultivated species (Camellia. oleifera (C. oleifera), C. meiocarpa, C. vietnamensis, C.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 88 |
SubjectTerms | adulterated products Authentication Calorimetry Camellia Camellia oil Camellia oleifera Camellia reticulata Chemometrics China Chromatographic techniques Chromatography cold Cold pressing Comparative analysis Differential scanning calorimetry DNA economic valuation Edible oils electronic nose Electronic noses Fluorescence fluorescence emission spectroscopy Fluorescence spectroscopy Fourier analysis Infrared spectroscopy Ionic mobility Market economies market economy Mass spectrometry Mass spectroscopy Mathematical analysis NMR nondestructive methods Nondestructive testing Nuclear magnetic resonance nuclear magnetic resonance spectroscopy Oil oils Quality control Scientific imaging Spectroscopy techniques |
Title | Camellia oil authentication: A comparative analysis and recent analytical techniques developed for its assessment. A review |
URI | https://dx.doi.org/10.1016/j.tifs.2020.01.005 https://www.proquest.com/docview/2377326469 https://www.proquest.com/docview/2400490928 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hONAeEKWturxkpN6qsBvHsWNuq1XRtis4tEXlZk0cRwqiWVTCCYnfzthxFlpVHHpKYo-TyGOPZ-yZbwA-clHxokrzRFZak4GCOiksL5MiQytyl-UYIIXOzuX8Qny9zC_XYDbEwni3yij7e5kepHUsGcfeHN80zfj7hEwHWoAEqSATqbUPNBdC-VF-_PDMzSMLmU89ceKpY-BM7-PVNbWH7OaTAN3pU9j9e3H6S0yHted0G7ai0sim_X-9gTXX7sDmEFN8uwOvn8EKvoX7Gf7yOJvIls01Q-_D3nZxb-6ETZl9QvxmGEFJ6KZi1BNE2ZeFPW62gni9ZTG8ylWM9FzWdNRkhep5TG_tg2DewcXp5x-zeRKTLCRWcNWRDFZVmdUSaeLXiowxW3O0SiLXpSpdRiYsVnmtuRMWc1v5JGXapU6iQylIWXwP6-2ydR-AkfaS2gxLh2Q22gB5a2spHKoCay3sCNKhd42NCOQ-Eca1GVzNrozniPEcMZPUEEdG8GnV5qbH33iROh-YZv4YRYYWiBfb7Q8cNnEOU32mFCm3QuoRHK2qafb5IxVs3fKOaEQ4OtW82P3PT-_BK__Uu7Xtw3r3-84dkJ7TlYdhIB_CxvTLYn7ur4tvPxePgNn_3w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hONAeENBWXaDUldpTFXbjOE5ciQOCoqU8LgWJmztxHCkVzSI2CCEk_lT_YMeOs6VVxaESNyu2E2vGnocz8w3Aey5KnpdxGslSKXJQUEW54UWUJ2hEapMUPaTQ8Ykcn4kv5-n5HPzsc2FcWGWQ_Z1M99I6PBkGag4v63r4dUSuAykgQSbISCrVR1Ye2tsb8tum2wd7xOQPnO9_Pt0dR6G0QGQEz1qSPFlZJJVE2u5VRi6IqTiaTCJXRVbYhBw3LNNKcSsMpqZ0pbmUja1Ei1Kk7haU5P4CtXJXNmHr_kFcSeJLrbrVRW55IVOnCypr68phhPORxwp1NfP-rQ3_0gte2e0vw1KwUtlOR4gVmLPNKiz2SczTVXj-AMfwBdzt4g8H7IlsUl8wdEHzTRsuAz-xHWZ-Q4wzDCgo1CgZkZ5Gds_8pTqbYcpOWcjnsiUjw5rVLU2ZwYhu0Vu7rJuXcPYkpH8F882ksa-BkbkUmwQLi-SnGo-xayopLGY5VkqYAcQ9dbUJkOeu8saF7mPbvmvHEe04okexJo4M4ONszmUH-PHo6LRnmv5j22rSSI_O2-g5rIPQoP4ky8iaFlIN4N2sm467-4eDjZ1c0xjh_9Uqnq_956ffwuL49PhIHx2cHK7DM9fTxdRtwHx7dW3fkJHVFpt-UzP49tSn6BdaOzp7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Camellia+oil+authentication%3A+A+comparative+analysis+and+recent+analytical+techniques+developed+for+its+assessment.+A+review&rft.jtitle=Trends+in+food+science+%26+technology&rft.au=Shi%2C+Ting&rft.au=Wu%2C+Gangcheng&rft.au=Jin%2C+Qingzhe&rft.au=Wang%2C+Xingguo&rft.date=2020-03-01&rft.issn=0924-2244&rft.volume=97&rft.spage=88&rft.epage=99&rft_id=info:doi/10.1016%2Fj.tifs.2020.01.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tifs_2020_01_005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2244&client=summon |