A Lightweight Convolutional Neural Network Architecture Applied for Bone Metastasis Classification in Nuclear Medicine: A Case Study on Prostate Cancer Patients

Bone metastasis is among the most frequent in diseases to patients suffering from metastatic cancer, such as breast or prostate cancer. A popular diagnostic method is bone scintigraphy where the whole body of the patient is scanned. However, hot spots that are presented in the scanned image can be m...

Full description

Saved in:
Bibliographic Details
Published inHealthcare (Basel) Vol. 8; no. 4; p. 493
Main Authors Ntakolia, Charis, Diamantis, Dimitrios E., Papandrianos, Nikolaos, Moustakidis, Serafeim, Papageorgiou, Elpiniki I.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 18.11.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bone metastasis is among the most frequent in diseases to patients suffering from metastatic cancer, such as breast or prostate cancer. A popular diagnostic method is bone scintigraphy where the whole body of the patient is scanned. However, hot spots that are presented in the scanned image can be misleading, making the accurate and reliable diagnosis of bone metastasis a challenge. Artificial intelligence can play a crucial role as a decision support tool to alleviate the burden of generating manual annotations on images and therefore prevent oversights by medical experts. So far, several state-of-the-art convolutional neural networks (CNN) have been employed to address bone metastasis diagnosis as a binary or multiclass classification problem achieving adequate accuracy (higher than 90%). However, due to their increased complexity (number of layers and free parameters), these networks are severely dependent on the number of available training images that are typically limited within the medical domain. Our study was dedicated to the use of a new deep learning architecture that overcomes the computational burden by using a convolutional neural network with a significantly lower number of floating-point operations (FLOPs) and free parameters. The proposed lightweight look-behind fully convolutional neural network was implemented and compared with several well-known powerful CNNs, such as ResNet50, VGG16, Inception V3, Xception, and MobileNet on an imaging dataset of moderate size (778 images from male subjects with prostate cancer). The results prove the superiority of the proposed methodology over the current state-of-the-art on identifying bone metastasis. The proposed methodology demonstrates a unique potential to revolutionize image-based diagnostics enabling new possibilities for enhanced cancer metastasis monitoring and treatment.
AbstractList Bone metastasis is among the most frequent in diseases to patients suffering from metastatic cancer, such as breast or prostate cancer. A popular diagnostic method is bone scintigraphy where the whole body of the patient is scanned. However, hot spots that are presented in the scanned image can be misleading, making the accurate and reliable diagnosis of bone metastasis a challenge. Artificial intelligence can play a crucial role as a decision support tool to alleviate the burden of generating manual annotations on images and therefore prevent oversights by medical experts. So far, several state-of-the-art convolutional neural networks (CNN) have been employed to address bone metastasis diagnosis as a binary or multiclass classification problem achieving adequate accuracy (higher than 90%). However, due to their increased complexity (number of layers and free parameters), these networks are severely dependent on the number of available training images that are typically limited within the medical domain. Our study was dedicated to the use of a new deep learning architecture that overcomes the computational burden by using a convolutional neural network with a significantly lower number of floating-point operations (FLOPs) and free parameters. The proposed lightweight look-behind fully convolutional neural network was implemented and compared with several well-known powerful CNNs, such as ResNet50, VGG16, Inception V3, Xception, and MobileNet on an imaging dataset of moderate size (778 images from male subjects with prostate cancer). The results prove the superiority of the proposed methodology over the current state-of-the-art on identifying bone metastasis. The proposed methodology demonstrates a unique potential to revolutionize image-based diagnostics enabling new possibilities for enhanced cancer metastasis monitoring and treatment.
Bone metastasis is among the most frequent in diseases to patients suffering from metastatic cancer, such as breast or prostate cancer. A popular diagnostic method is bone scintigraphy where the whole body of the patient is scanned. However, hot spots that are presented in the scanned image can be misleading, making the accurate and reliable diagnosis of bone metastasis a challenge. Artificial intelligence can play a crucial role as a decision support tool to alleviate the burden of generating manual annotations on images and therefore prevent oversights by medical experts. So far, several state-of-the-art convolutional neural networks (CNN) have been employed to address bone metastasis diagnosis as a binary or multiclass classification problem achieving adequate accuracy (higher than 90%). However, due to their increased complexity (number of layers and free parameters), these networks are severely dependent on the number of available training images that are typically limited within the medical domain. Our study was dedicated to the use of a new deep learning architecture that overcomes the computational burden by using a convolutional neural network with a significantly lower number of floating-point operations (FLOPs) and free parameters. The proposed lightweight look-behind fully convolutional neural network was implemented and compared with several well-known powerful CNNs, such as ResNet50, VGG16, Inception V3, Xception, and MobileNet on an imaging dataset of moderate size (778 images from male subjects with prostate cancer). The results prove the superiority of the proposed methodology over the current state-of-the-art on identifying bone metastasis. The proposed methodology demonstrates a unique potential to revolutionize image-based diagnostics enabling new possibilities for enhanced cancer metastasis monitoring and treatment.Bone metastasis is among the most frequent in diseases to patients suffering from metastatic cancer, such as breast or prostate cancer. A popular diagnostic method is bone scintigraphy where the whole body of the patient is scanned. However, hot spots that are presented in the scanned image can be misleading, making the accurate and reliable diagnosis of bone metastasis a challenge. Artificial intelligence can play a crucial role as a decision support tool to alleviate the burden of generating manual annotations on images and therefore prevent oversights by medical experts. So far, several state-of-the-art convolutional neural networks (CNN) have been employed to address bone metastasis diagnosis as a binary or multiclass classification problem achieving adequate accuracy (higher than 90%). However, due to their increased complexity (number of layers and free parameters), these networks are severely dependent on the number of available training images that are typically limited within the medical domain. Our study was dedicated to the use of a new deep learning architecture that overcomes the computational burden by using a convolutional neural network with a significantly lower number of floating-point operations (FLOPs) and free parameters. The proposed lightweight look-behind fully convolutional neural network was implemented and compared with several well-known powerful CNNs, such as ResNet50, VGG16, Inception V3, Xception, and MobileNet on an imaging dataset of moderate size (778 images from male subjects with prostate cancer). The results prove the superiority of the proposed methodology over the current state-of-the-art on identifying bone metastasis. The proposed methodology demonstrates a unique potential to revolutionize image-based diagnostics enabling new possibilities for enhanced cancer metastasis monitoring and treatment.
Author Diamantis, Dimitrios E.
Ntakolia, Charis
Moustakidis, Serafeim
Papandrianos, Nikolaos
Papageorgiou, Elpiniki I.
AuthorAffiliation 2 Department of Energy Systems, Faculty of Technology, Geopolis Campus, University of Thessaly, Larissa-Trikala Ring Road, 41500 Larissa, Greece; elpinikipapageorgiou@uth.gr
3 AIDEAS OÜ, Narva mnt 5, 10117 Tallinin, Estonia; s.moustakidis@aideas.eu
1 Department of Computer Science and Biomedical Informatics, School of Science, University of Thessaly, 35100 Lamia, Greece; didiamantis@uth.gr
AuthorAffiliation_xml – name: 2 Department of Energy Systems, Faculty of Technology, Geopolis Campus, University of Thessaly, Larissa-Trikala Ring Road, 41500 Larissa, Greece; elpinikipapageorgiou@uth.gr
– name: 1 Department of Computer Science and Biomedical Informatics, School of Science, University of Thessaly, 35100 Lamia, Greece; didiamantis@uth.gr
– name: 3 AIDEAS OÜ, Narva mnt 5, 10117 Tallinin, Estonia; s.moustakidis@aideas.eu
Author_xml – sequence: 1
  givenname: Charis
  orcidid: 0000-0001-9780-9815
  surname: Ntakolia
  fullname: Ntakolia, Charis
– sequence: 2
  givenname: Dimitrios E.
  orcidid: 0000-0003-4384-8557
  surname: Diamantis
  fullname: Diamantis, Dimitrios E.
– sequence: 3
  givenname: Nikolaos
  surname: Papandrianos
  fullname: Papandrianos, Nikolaos
– sequence: 4
  givenname: Serafeim
  orcidid: 0000-0002-1090-2177
  surname: Moustakidis
  fullname: Moustakidis, Serafeim
– sequence: 5
  givenname: Elpiniki I.
  orcidid: 0000-0003-2498-9661
  surname: Papageorgiou
  fullname: Papageorgiou, Elpiniki I.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33217973$$D View this record in MEDLINE/PubMed
BookMark eNp1Uk1v1DAQjVARLaU_gAuyxIXLgr82TjgghYgC0lIqAWfLsSeNi9debKdV_w0_td5ui0oRluWxPO89vRnP02rPBw9V9Zzg14y1-M0EyuVJqwgN5pi37FF1QCkVixYzunfvvl8dpXSOy2oJa9jySbXPGCWiFeyg-t2hlT2b8iVsT9QHfxHcnG3wyqETmONNyJch_kRd1JPNoPMcAXWbjbNg0Bgiel-coS-QVSrbJtQ7lZIdrVZbIWQ9Opm1AxULyFhtPbxFHepVAvQtz-YKFdBpDIWdoTx7DRGdFi74nJ5Vj0flEhzdxsPqx_GH7_2nxerrx899t1poTkVeUF3rmprRNLo1oOlywLwZBxhwzbnW1Ggo9VO2xA03tTENH4aS4aMeBaECs8Pq3U53Mw9rKHCfS-1yE-1axSsZlJV_Z7yd5Fm4kEIQ0lBRBF7dCsTwa4aU5domDc4pD2FOkvKaEVw3ghToywfQ8zDH0vEdita0WW4dvbjv6I-Vu88rALED6NK7FGGU2uablheD1kmC5XZS5D-TUpjkAfNO_P-ca8h6x4E
CitedBy_id crossref_primary_10_1049_ipr2_13311
crossref_primary_10_3390_diagnostics11020285
crossref_primary_10_3390_s21103464
crossref_primary_10_1007_s00259_022_05891_w
crossref_primary_10_1016_j_array_2024_100357
crossref_primary_10_3389_fonc_2022_908873
crossref_primary_10_1016_j_compbiomed_2021_104458
crossref_primary_10_1186_s41747_022_00282_0
crossref_primary_10_1016_j_acra_2024_01_009
crossref_primary_10_1097_MNM_0000000000001634
crossref_primary_10_3390_jpm14030287
crossref_primary_10_3390_app12157592
crossref_primary_10_3390_jcm11133918
crossref_primary_10_1186_s13550_022_00897_9
crossref_primary_10_1002_ird3_99
crossref_primary_10_3390_cancers16152700
crossref_primary_10_1053_j_semnuclmed_2023_07_004
crossref_primary_10_3389_fonc_2021_771787
Cites_doi 10.3390/diagnostics10080532
10.1371/journal.pone.0237213
10.1371/journal.pone.0240215
10.23919/ICCAS47443.2019.8971539
10.1007/978-3-030-20257-6_45
10.1016/S1001-9294(09)60072-9
10.1016/j.aci.2018.08.003
10.1053/ctrv.2000.0210
10.1016/j.suronc.2013.10.004
10.1155/2019/6212759
10.1016/j.media.2020.101784
10.1088/1361-6560/aaebd0
10.3390/app10030997
10.1016/j.bspc.2018.12.005
10.1109/CVPR.2016.90
10.3390/healthcare8020111
10.1007/s12149-019-01399-w
10.1016/j.media.2013.02.001
10.1109/CVPR.2016.308
10.21203/rs.3.rs-28656/v1
10.1109/CVPR.2017.195
10.4103/0973-1482.150422
10.1109/CVPR.2015.7298594
10.18632/oncotarget.7278
10.1177/030089160909500304
10.3390/healthcare8030291
10.3390/healthcare8030234
10.1109/CVPR.2018.00474
10.2214/ajr.169.6.9393186
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
3V.
7RV
7XB
8C1
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
KB0
M2O
MBDVC
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/healthcare8040493
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Central (purchase pre-March 2016)
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
Nursing & Allied Health Database (Alumni Edition)
Research Library
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
Health Research Premium Collection
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Public Health
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 2227-9032
ExternalDocumentID PMC7711827
33217973
10_3390_healthcare8040493
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID 53G
5VS
7RV
8C1
8FI
8FJ
8G5
AAFWJ
AAHBH
AAYXX
ABUWG
ADBBV
AFKRA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DIK
DWQXO
FYUFA
GNUQQ
GUQSH
GX1
HYE
IAO
IHR
KQ8
M2O
M48
MODMG
M~E
NAPCQ
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
UKHRP
3V.
GROUPED_DOAJ
NPM
7XB
8FK
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c427t-2c6c62dfd8c9dec25b048fbeb0644cc2dce009235084d6dd84bb6444fcf712703
IEDL.DBID M48
ISSN 2227-9032
IngestDate Thu Aug 21 14:10:33 EDT 2025
Tue Aug 12 07:25:25 EDT 2025
Fri Jul 25 04:23:53 EDT 2025
Thu Jan 02 22:58:40 EST 2025
Tue Jul 01 04:05:32 EDT 2025
Thu Apr 24 22:55:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords lightweight look-behind fully convolutional neural network
deep learning
nuclear medicine
convolutional neural network
medical image
machine learning
bone metastasis classification
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-2c6c62dfd8c9dec25b048fbeb0644cc2dce009235084d6dd84bb6444fcf712703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1090-2177
0000-0003-2498-9661
0000-0001-9780-9815
0000-0003-4384-8557
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/healthcare8040493
PMID 33217973
PQID 2463262850
PQPubID 2032390
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7711827
proquest_miscellaneous_2463106871
proquest_journals_2463262850
pubmed_primary_33217973
crossref_citationtrail_10_3390_healthcare8040493
crossref_primary_10_3390_healthcare8040493
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201118
PublicationDateYYYYMMDD 2020-11-18
PublicationDate_xml – month: 11
  year: 2020
  text: 20201118
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Healthcare (Basel)
PublicationTitleAlternate Healthcare (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Coleman (ref_2) 2001; 27
Elfarra (ref_9) 2019; 33
Wang (ref_16) 2016; 7
ref_14
ref_36
ref_13
ref_35
ref_12
ref_34
ref_33
Pianou (ref_17) 2019; 22
Bradshaw (ref_18) 2018; 59
ref_31
ref_30
Li (ref_3) 2009; 24
Bombardieri (ref_5) 2003; 30
ref_39
ref_38
ref_15
ref_37
Diamantis (ref_25) 2019; 49
Eustace (ref_29) 1997; 169
Aslantas (ref_11) 2016; 12
Wu (ref_4) 2013; 22
Ibrahim (ref_1) 2009; 95
Gosfield (ref_32) 1993; 34
Pi (ref_10) 2020; 65
ref_24
ref_45
ref_22
ref_44
ref_21
ref_43
ref_42
ref_41
ref_40
Perk (ref_20) 2018; 63
Ma (ref_27) 2019; 2019
Furuya (ref_19) 2019; 60
Hegenbart (ref_23) 2013; 17
ref_8
Weiner (ref_26) 2001; 35
Rybak (ref_28) 2001; 45
ref_7
ref_6
References_xml – ident: ref_14
  doi: 10.3390/diagnostics10080532
– ident: ref_15
  doi: 10.1371/journal.pone.0237213
– ident: ref_30
– ident: ref_40
  doi: 10.1371/journal.pone.0240215
– volume: 34
  start-page: 2191
  year: 1993
  ident: ref_32
  article-title: Comparison of radionuclide bone scans and magnetic resonance imaging in detecting spinal metastases
  publication-title: J. Nucl. Med.
– ident: ref_12
  doi: 10.23919/ICCAS47443.2019.8971539
– ident: ref_33
  doi: 10.1007/978-3-030-20257-6_45
– ident: ref_34
– volume: 24
  start-page: 112
  year: 2009
  ident: ref_3
  article-title: Clinical value of whole-body magnetic resonance diffusion weighted imaging on detection of malignant metastases
  publication-title: Chin. Med. Sci. J.
  doi: 10.1016/S1001-9294(09)60072-9
– ident: ref_41
  doi: 10.1016/j.aci.2018.08.003
– ident: ref_39
– volume: 27
  start-page: 165
  year: 2001
  ident: ref_2
  article-title: Metastatic bone disease: Clinical features, pathophysiology and treatment strategies
  publication-title: Cancer Treat. Rev.
  doi: 10.1053/ctrv.2000.0210
– volume: 30
  start-page: B132
  year: 2003
  ident: ref_5
  article-title: Bone scintigraphy: Procedure guidelines for tumour imaging
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 22
  start-page: 261
  year: 2013
  ident: ref_4
  article-title: Comparison of whole-body MRI and skeletal scintigraphy for detection of bone metastatic tumors: A meta-analysis
  publication-title: Surg. Oncol.
  doi: 10.1016/j.suronc.2013.10.004
– volume: 2019
  start-page: 6212759
  year: 2019
  ident: ref_27
  article-title: Thyroid diagnosis from SPECT images using convolutional neural network with optimization
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2019/6212759
– ident: ref_42
– ident: ref_35
– ident: ref_44
– volume: 65
  start-page: 101784
  year: 2020
  ident: ref_10
  article-title: Automated diagnosis of bone metastasis based on multi-view bone scans using attention-augmented deep neural networks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101784
– volume: 63
  start-page: 225019
  year: 2018
  ident: ref_20
  article-title: Automated classification of benign and malignant lesions in 18F-NaF PET/CT images using machine learning
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aaebd0
– ident: ref_13
  doi: 10.3390/app10030997
– ident: ref_21
– volume: 49
  start-page: 192
  year: 2019
  ident: ref_25
  article-title: Look-behind fully convolutional neural network for computer-aided endoscopy
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.12.005
– ident: ref_22
  doi: 10.1109/CVPR.2016.90
– ident: ref_6
  doi: 10.3390/healthcare8020111
– volume: 33
  start-page: 866
  year: 2019
  ident: ref_9
  article-title: Computer-aided detection of bone metastasis in bone scintigraphy images using parallelepiped classification method
  publication-title: Ann. Nucl. Med.
  doi: 10.1007/s12149-019-01399-w
– volume: 59
  start-page: 327
  year: 2018
  ident: ref_18
  article-title: Deep learning for classification of benign and malignant bone lesions in [F-18] NaF PET/CT images
  publication-title: J. Nucl. Med.
– volume: 22
  start-page: 6
  year: 2019
  ident: ref_17
  article-title: More advantages in detecting bone and soft tissue metastases 18 from prostate cancer using F-PSMA PET/CT
  publication-title: Hell. J. Nucl. Med.
– volume: 17
  start-page: 458
  year: 2013
  ident: ref_23
  article-title: Scale invariant texture descriptors for classifying celiac disease
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2013.02.001
– ident: ref_36
  doi: 10.1109/CVPR.2016.308
– ident: ref_45
  doi: 10.21203/rs.3.rs-28656/v1
– ident: ref_31
– ident: ref_37
  doi: 10.1109/CVPR.2017.195
– volume: 12
  start-page: 787
  year: 2016
  ident: ref_11
  article-title: CADBOSS: A computer-aided diagnosis system for whole-body bone scintigraphy scans
  publication-title: J. Cancer Res. Ther.
  doi: 10.4103/0973-1482.150422
– ident: ref_38
  doi: 10.1109/CVPR.2015.7298594
– volume: 7
  start-page: 12612
  year: 2016
  ident: ref_16
  article-title: Exploiting machine learning for predicting skeletal-related events in cancer patients with bone metastases
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.7278
– volume: 95
  start-page: 291
  year: 2009
  ident: ref_1
  article-title: Multidisciplinary approach to the treatment of bone metastases: Osteo-Oncology Center, a new organizational model
  publication-title: Tumori J.
  doi: 10.1177/030089160909500304
– ident: ref_7
  doi: 10.3390/healthcare8030291
– volume: 35
  start-page: 185
  year: 2001
  ident: ref_26
  article-title: Artifacts and non-osseous uptake in bone scintigraphy. Imaging reports of 20 cases
  publication-title: Radiol. Oncol.
– ident: ref_8
  doi: 10.3390/healthcare8030234
– volume: 45
  start-page: 53
  year: 2001
  ident: ref_28
  article-title: Radiological imaging for the diagnosis of bone metastases
  publication-title: QJ Nucl. Med.
– ident: ref_43
– ident: ref_24
  doi: 10.1109/CVPR.2018.00474
– volume: 60
  start-page: 1210
  year: 2019
  ident: ref_19
  article-title: A convolutional neural network-based system to detect malignant findings in FDG PET-CT examinations
  publication-title: J. Nucl. Med.
– volume: 169
  start-page: 1655
  year: 1997
  ident: ref_29
  article-title: A comparison of whole-body turboSTIR MR imaging and planar 99mTc-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/ajr.169.6.9393186
SSID ssj0000913835
Score 2.2699265
Snippet Bone metastasis is among the most frequent in diseases to patients suffering from metastatic cancer, such as breast or prostate cancer. A popular diagnostic...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 493
SubjectTerms Automation
Bones
Classification
Datasets
Decision making
Deep learning
Metastasis
Neural networks
Nuclear medicine
Patients
Prostate cancer
Scintigraphy
Tomography
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED7W9GVQRruuXdZ03GBPBVNHViy7LyUNLWUsIZQW-mYsWaaB4mRxstH_pn9q72zFTVbok8GSbeE7Sd_90HcAP42K-OBv6llfak-ShL3IdmMv1GFXh0LzFsrZFqPw-k7-uu_dO4db6dIqV2titVBnU8M-8lNB7xF83s8_n_3xuGoUR1ddCY0t2KYlOIpasH1xORrfNF4WZr0kjFGHMwOy708fmrSqiPRXxsHmhvQGZf6fLLm2-1ztwicHG7Ffy3kPPtjiM-zUPjesjxLtw3Mff7Ot_a9yd-JgWvx1ikWPMgtHdanSvrG_FkBAB0WRACxeTAuLQ7tICTaWkxKrqpmcT1SJECcFjpgCOZ3j0IXlz7CPA9oMkXMSn5A6jfkoCYFYuk06NcdxTd5afoG7q8vbwbXnKjB4Rgq18IQJTSiyPItMnFkjepomfK6tJiAjjRH0U5i0KSCUJ7MwyyKpNbXI3OSKQ9rBAbQKGvZXQN9Pe4SF_LyrA_rvuY6Z6dBPu7nVMg5VG_yVGBLj6Mm5SsZjQmYKSy55I7k2nDSPzGpujvc6d1ayTdw0LZNXpWrDj6aZJhhHTdLCTpd1H7KbybBsw2GtCs3XgoAsuljRy9WGkjQdmLx7s6WYPFQk3kqxaae-vT-sI_go2MDnvMOoA63FfGmPCQUt9Hen6i9J5g1F
  priority: 102
  providerName: ProQuest
Title A Lightweight Convolutional Neural Network Architecture Applied for Bone Metastasis Classification in Nuclear Medicine: A Case Study on Prostate Cancer Patients
URI https://www.ncbi.nlm.nih.gov/pubmed/33217973
https://www.proquest.com/docview/2463262850
https://www.proquest.com/docview/2463106871
https://pubmed.ncbi.nlm.nih.gov/PMC7711827
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Za9tAEB4SB0KglJ6p2tRMIU8FtdJqrZUKpTgmIYTYmBBD3oR2tSKGICc-cvyb_tTO6CJu0j4JtKsDzazm-3YugH2jIk78TV3rSe1KkrAbWT92Qx36OhSaTShHW4zC44k8uehdbEDT3qr-gItnqR33k5rMr77d3zz8ogX_kxknUfbvl22kVEQqKeNgE7bIMCluaDCs0X75Y4594mMc1MgJoG7sBaLycz5_lx3YDgJC7LEK1o3WEyT6d0DlIwt19Ape1tAS-5UuvIYNW7yBF9W-HFbpRm_hdx9PmY_flVuiOJgVt7Xy0aVcqaM8lKHh2H_kZMAariKBXDyYFRaHdpkStFxMF1h21uSYo1LMOC1wxGWS0zkOa9f9D-zjgAwmctziA9KkMaebENCl06R3cxxXBV4X72BydHg-OHbrLg2ukUItXWFCE4oszyITZ9aInqafQq6tJrAjjRH0UbiwU0BIUGZhlkVSaxqRuckVu72D99Ap6LU_AHpe2iO85OW-DkgEuY65GqKX-rnVMg6VA14jhsTUJcy5k8ZVQlSGhZg8EaIDX9tLrqv6Hf-bvNfINmk0MRGkwIITTT0HvrTDtAjZs5IWdraq5hC3JvLpwG6lCu3TGh1yQK0pSTuBC3yvjxTTy7LQt1JM_9THf97zE-wI5v8clhjtQWc5X9nPBJKWugub0cDvwtbB4Wh81i0Xwh_JHhTd
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgCpQjzbQAuDBBckq_buxmsjoSoEqpQmUQ-t1JvxrtdqJOSUOKXqv-EX8BuZ8YuGSr31FCm73liZ2d1vXt8AvLM64sLf1HO-Mp4iCXuRC2IvNGFgQmH4CuVsi2k4OlHfTvuna_CnrYXhtMr2TKwO6mxu2Ue-K2gdwfV-_t75T4-7RnF0tW2hUavFobu6JJOt_HTwheT7Xoj9r8fDkdd0FfCsEnrpCRvaUGR5Ftk4c1b0DSlxbpyhy1lZKzLrmIhIEnJRWZhlkTKGRlRuc81hWknr3oP7StLW5Mr0YdD5dJhjkxBNHTyVMvZ3z7okroh2i4rl6vV3A9P-n5p57a7bfwyPGpCKg1qrnsCaK57CRu3hw7pw6Rn8HuCYLfvLyrmKw3nxq1FjepQ5P6qPKskcB9fCFdgAXyS4jJ_nhcOJW6YEUstZiVWPTs5eqhQGZwVOmXA5XeCkSQL4iAMc0tWLnAF5hTTpiAtXCDLT16TBCzyqqWLL53ByJ5J5AesFvfYWoO-nfUJefh4YSf97bmLmVfTTIHdGxaHugd-KIbENGTr35PiRkFHEkktuSK4HH7pHzmsmkNsmb7eyTZpDoUz-qXAP3nbDtJ05RpMWbn5RzyErnczYHmzWqtD9mpRkP8aaFtcrStJNYKrw1ZFidlZRhmvNhqR-eftrvYEHo-PJOBkfTA9fwUPBrgXOeIy2YX25uHA7hL-W5nWl9Ajf73qX_QUfsklo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9RAEB9qBRGK-Lc9bXUEfRHCJZu9bCJIOa8erW2Pe7DQt5jdbOiB5Orlaum38XP46ZzJJrFnoW99Orjd7IWb3-z8nwF4Z1TMhb-ZZ32pPUkU9mIbJF6ko0BHQrMI5WyLSbR_Ir-eDk7X4E9bC8Nple2dWF_U-dywj7wv6BzB9X5-v2jSIqZ7493znx5PkOJIaztOw0Hk0F5dkvlWfTrYI1q_F2L85dto32smDHhGCrX0hIlMJPIij02SWyMGmgBdaKtJUEtjRG4sNyUKSYuReZTnsdSaVmRhCsUh25DOvQf3Vahi5rF4FHT-He63SdqNC6SGYeL3z7qErpg4Rybhqii8od_-n6Z5Te6NH8OjRmHFoUPYE1iz5VPYcN4-dEVMz-D3EI_Yyr-sHa04mpe_GkjTo9z_o_6oE85xeC10gY0SjKQ64-d5afHYLjNSWKtZhfW8Ts5kqsGDsxIn3Hw5W-BxkxDwEYc4IjGMnA15hbRpykUspD7T14TmBU5d29jqOZzcCWVewHpJr70F6PvZgLQwvwh0SP97oRPusehnQWG1TCLVA78lQ2qaxug8n-NHSgYSUy69QbkefOgeOXddQW7bvN3SNm0uiCr9B-cevO2WibU5XpOVdn7h9pDFTiZtDzYdFLpfC0OyJRNFh6sVkHQbuG346ko5O6vbhyvFRqV6eftrvYEHxF_p0cHk8BU8FOxl4OTHeBvWl4sLu0Oq2FK_rjGP8P2umewvBcJNng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Lightweight+Convolutional+Neural+Network+Architecture+Applied+for+Bone+Metastasis+Classification+in+Nuclear+Medicine%3A+A+Case+Study+on+Prostate+Cancer+Patients&rft.jtitle=Healthcare+%28Basel%29&rft.au=Ntakolia%2C+Charis&rft.au=Diamantis%2C+Dimitrios+E&rft.au=Papandrianos%2C+Nikolaos&rft.au=Moustakidis%2C+Serafeim&rft.date=2020-11-18&rft.issn=2227-9032&rft.eissn=2227-9032&rft.volume=8&rft.issue=4&rft_id=info:doi/10.3390%2Fhealthcare8040493&rft_id=info%3Apmid%2F33217973&rft.externalDocID=33217973
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9032&client=summon