Fractional-Order Degn–Harrison Reaction–Diffusion Model: Finite-Time Dynamics of Stability and Synchronization

This study aims to address the topic of finite-time synchronization within a specific subset of fractional-order Degn–Harrison reaction–diffusion systems. To achieve this goal, we begin with the introduction of a novel lemma specific for finite-time stability analysis. Diverging from existing criter...

Full description

Saved in:
Bibliographic Details
Published inComputation Vol. 12; no. 7; p. 144
Main Authors Hammad, Ma’mon Abu, Bendib, Issam, Alshanti, Waseem Ghazi, Alshanty, Ahmad, Ouannas, Adel, Hioual, Amel, Momani, Shaher
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2024
Subjects
Online AccessGet full text
ISSN2079-3197
2079-3197
DOI10.3390/computation12070144

Cover

Abstract This study aims to address the topic of finite-time synchronization within a specific subset of fractional-order Degn–Harrison reaction–diffusion systems. To achieve this goal, we begin with the introduction of a novel lemma specific for finite-time stability analysis. Diverging from existing criteria, this lemma represents a significant extension of prior findings, laying the groundwork for subsequent investigations. Building upon this foundation, we proceed to develop efficient dependent linear controllers designed to orchestrate finite-time synchronization. Leveraging the power of a Lyapunov function, we derive new, robust conditions that ensure the attainment of synchronization within a predefined time frame. This innovative approach not only enhances our understanding of finite-time synchronization, but also offers practical solutions for its realization in complex systems. To validate the efficacy and applicability of our proposed methodology, extensive numerical simulations are conducted. Through this comprehensive analysis, we aim to contribute valuable insights to the field of fractional-order reaction–diffusion systems while paving the way for practical implementations in real-world applications.
AbstractList This study aims to address the topic of finite-time synchronization within a specific subset of fractional-order Degn–Harrison reaction–diffusion systems. To achieve this goal, we begin with the introduction of a novel lemma specific for finite-time stability analysis. Diverging from existing criteria, this lemma represents a significant extension of prior findings, laying the groundwork for subsequent investigations. Building upon this foundation, we proceed to develop efficient dependent linear controllers designed to orchestrate finite-time synchronization. Leveraging the power of a Lyapunov function, we derive new, robust conditions that ensure the attainment of synchronization within a predefined time frame. This innovative approach not only enhances our understanding of finite-time synchronization, but also offers practical solutions for its realization in complex systems. To validate the efficacy and applicability of our proposed methodology, extensive numerical simulations are conducted. Through this comprehensive analysis, we aim to contribute valuable insights to the field of fractional-order reaction–diffusion systems while paving the way for practical implementations in real-world applications.
Audience Academic
Author Bendib, Issam
Alshanti, Waseem Ghazi
Alshanty, Ahmad
Hioual, Amel
Ouannas, Adel
Hammad, Ma’mon Abu
Momani, Shaher
Author_xml – sequence: 1
  givenname: Ma’mon Abu
  surname: Hammad
  fullname: Hammad, Ma’mon Abu
– sequence: 2
  givenname: Issam
  surname: Bendib
  fullname: Bendib, Issam
– sequence: 3
  givenname: Waseem Ghazi
  surname: Alshanti
  fullname: Alshanti, Waseem Ghazi
– sequence: 4
  givenname: Ahmad
  surname: Alshanty
  fullname: Alshanty, Ahmad
– sequence: 5
  givenname: Adel
  surname: Ouannas
  fullname: Ouannas, Adel
– sequence: 6
  givenname: Amel
  orcidid: 0000-0001-6944-1689
  surname: Hioual
  fullname: Hioual, Amel
– sequence: 7
  givenname: Shaher
  surname: Momani
  fullname: Momani, Shaher
BookMark eNp9UUtOHDEUtCKQQggnYNNS1k38_2SHmExAIkIKsG653c8Tj3rsid2zGFa5Q27ISTA0iqIoir3wU6mqXKr3Dh3EFAGhU4LPGDP4o0ub7W6yU0iRUKww4fwNOqqTaRkx6uCP-S06KWWN6zGEaYqPUF5m656ldmxv8gC5WcAqPv78dWlzDiXF5hvMhIotgve7Uufmaxpg_NQsQwwTtHdhA81iH-0muNIk39xOtg9jmPaNjUNzu4_ue04xPLyEfI8OvR0LnLy-x-h--fnu4rK9vvlydXF-3TpO1dRSrrQciBdOSuYHb5hR1EsniMGyJ70ZiOJUG6oIUOZEL6XSYIUXQnrvKDtGV7PvkOy62-awsXnfJRu6FyDlVWfzFNwIHQjBjLDAgDMusbYYBNYKiPA9qyGq14fZa5vTjx2UqVunXa6llY5hzRXRgvDKOptZK1tNQ_Rpqu3WO0Btpm7Nh4qfa8yU5JrKKmCzwOVUSgb_OybB3fNyu38st6rMXyoXZkr9Loz_1T4BeY2x5A
CitedBy_id crossref_primary_10_1016_j_padiff_2024_100870
crossref_primary_10_3390_math12233679
crossref_primary_10_1063_5_0257304
crossref_primary_10_3390_computation12100197
crossref_primary_10_1016_j_padiff_2025_101118
Cites_doi 10.1186/s13661-019-1188-y
10.1016/j.neucom.2015.11.094
10.1109/ACCESS.2020.2993784
10.1016/j.cnsns.2014.01.022
10.1007/s11071-013-1177-0
10.3390/fractalfract7050347
10.1142/S0218348X22401454
10.1140/epjs/s11734-023-00911-8
10.1063/5.0170419
10.1007/BF00279718
10.1190/geo2019-0066.1
10.1155/2019/2832781
10.3390/math11030555
10.1186/s13662-021-03286-z
10.1140/epjst/e2020-900193-4
10.1007/s10543-014-0484-2
10.1016/j.mcm.2009.12.004
10.3390/fractalfract7110828
10.1140/epjst/e2020-900177-6
10.1007/s00009-017-0894-x
10.3390/axioms12080728
10.1007/s11538-006-9062-3
10.3390/fractalfract8040231
10.3390/axioms12090806
10.1016/j.chaos.2021.110698
10.1002/mma.6807
10.1016/j.camwa.2012.01.056
10.1137/S0036142900374111
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/computation12070144
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 2079-3197
ExternalDocumentID oai_doaj_org_article_e55395ae3e434608a0e5087e15fb36d1
A803764826
10_3390_computation12070144
GeographicLocations Jordan
GeographicLocations_xml – name: Jordan
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABUWG
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
K6V
K7-
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PMFND
3V.
7SC
7XB
8AL
8FD
8FK
COVID
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c427t-24786d1f5c663fdf93972f6c51906b1b9d174289271e23c5b6678ea5f556ffc23
IEDL.DBID DOA
ISSN 2079-3197
IngestDate Wed Aug 27 01:28:27 EDT 2025
Sat Jul 26 02:02:26 EDT 2025
Tue Jun 10 21:06:37 EDT 2025
Tue Jul 01 01:46:42 EDT 2025
Thu Apr 24 23:01:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-24786d1f5c663fdf93972f6c51906b1b9d174289271e23c5b6678ea5f556ffc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6944-1689
OpenAccessLink https://doaj.org/article/e55395ae3e434608a0e5087e15fb36d1
PQID 3084718514
PQPubID 2032414
ParticipantIDs doaj_primary_oai_doaj_org_article_e55395ae3e434608a0e5087e15fb36d1
proquest_journals_3084718514
gale_infotracacademiconefile_A803764826
crossref_primary_10_3390_computation12070144
crossref_citationtrail_10_3390_computation12070144
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Computation
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wang (ref_6) 2022; 30
Khennaoui (ref_10) 2020; 229
Feng (ref_23) 2024; 34
Jahanshahi (ref_8) 2021; 144
Mesdoui (ref_1) 2020; 8
ref_14
ref_34
Li (ref_33) 2016; 185
ref_32
Khennaoui (ref_9) 2023; 232
ref_30
Houston (ref_17) 2002; 39
Song (ref_20) 2020; 85
Gallegos (ref_25) 2014; 19
Ouannas (ref_5) 2019; 2019
ref_15
Velarde (ref_28) 1979; 8
Wu (ref_12) 2024; 77
Srivastava (ref_7) 2014; 76
Jiang (ref_27) 2021; 2021
Ouannas (ref_2) 2019; 2019
ref_24
Hu (ref_13) 2018; 59
ref_22
ref_21
Mesdoui (ref_19) 2021; 44
Ambrosio (ref_3) 2012; 64
Kay (ref_18) 2014; 54
Lisena (ref_29) 2017; 14
Ouannas (ref_11) 2020; 229
Pan (ref_31) 2010; 51
Garvie (ref_16) 2007; 69
ref_4
Yaagoub (ref_26) 2024; 7
References_xml – volume: 2019
  start-page: 74
  year: 2019
  ident: ref_5
  article-title: Synchronization results for a class of fractional-order spatiotemporal partial differential systems based on fractional Lyapunov approach
  publication-title: Bound. Value Probl.
  doi: 10.1186/s13661-019-1188-y
– volume: 185
  start-page: 242
  year: 2016
  ident: ref_33
  article-title: Finite-time synchronization for competitive neural networks with mixed delays and non-identical perturbations
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.094
– volume: 8
  start-page: 91829
  year: 2020
  ident: ref_1
  article-title: Synchronization methods for the Degn-Harrison reaction-diffusion systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2993784
– volume: 19
  start-page: 2951
  year: 2014
  ident: ref_25
  article-title: Lyapunov functions for fractional order systems
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2014.01.022
– volume: 76
  start-page: 905
  year: 2014
  ident: ref_7
  article-title: Anti-synchronization between identical and non identical fractional-order chaotic systems using active control method
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-013-1177-0
– ident: ref_24
– ident: ref_32
  doi: 10.3390/fractalfract7050347
– ident: ref_34
– volume: 30
  start-page: 2240145
  year: 2022
  ident: ref_6
  article-title: A Hybrid Approach For Synchronizing Between Two Reaction Diffusion Systems of Integer-And Fractional-Order Applied On Certain Chemical Models
  publication-title: Fractals
  doi: 10.1142/S0218348X22401454
– volume: 232
  start-page: 2385
  year: 2023
  ident: ref_9
  article-title: From Lozi map to fractional memristive Lozi map
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-023-00911-8
– volume: 34
  start-page: 023105
  year: 2024
  ident: ref_23
  article-title: Finite-time stability of fractional-order nonlinear systems
  publication-title: Chaos
  doi: 10.1063/5.0170419
– volume: 8
  start-page: 147
  year: 1979
  ident: ref_28
  article-title: Time-periodic oscillations in a model for the respiratory process of a bacterial culture
  publication-title: J. Math. Biol.
  doi: 10.1007/BF00279718
– volume: 85
  start-page: T179
  year: 2020
  ident: ref_20
  article-title: The asymptotic local finite-difference method of the fractional wave equation and its viscous seismic wavefield simulation
  publication-title: Geophysics
  doi: 10.1190/geo2019-0066.1
– volume: 2019
  start-page: 2832781
  year: 2019
  ident: ref_2
  article-title: Synchronization control in reaction-diffusion systems: Application to Lengyel-Epstein system
  publication-title: Complexity
  doi: 10.1155/2019/2832781
– ident: ref_21
  doi: 10.3390/math11030555
– volume: 2021
  start-page: 127
  year: 2021
  ident: ref_27
  article-title: Finite time stability and sliding mode control for uncertain variable fractional order nonlinear systems
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-021-03286-z
– volume: 229
  start-page: 2261
  year: 2020
  ident: ref_11
  article-title: Bifurcation and chaos in the fractional form of Hénon-Lozi type map
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjst/e2020-900193-4
– volume: 59
  start-page: 440
  year: 2018
  ident: ref_13
  article-title: Finite-time synchronization of fractional-order chaotic systems
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 54
  start-page: 937
  year: 2014
  ident: ref_18
  article-title: Fourier spectral methods for fractional-in-space reaction-diffusion equations
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-014-0484-2
– volume: 51
  start-page: 1037
  year: 2010
  ident: ref_31
  article-title: Stability criteria for impulsive reaction-diffusion Cohen-Grossberg neural networks with time-varying delays
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2009.12.004
– volume: 7
  start-page: 156
  year: 2024
  ident: ref_26
  article-title: Mathematical analysis of a fractional order two strain SEIR epidemic model
  publication-title: Results Nonlinear Anal.
– ident: ref_14
  doi: 10.3390/fractalfract7110828
– volume: 229
  start-page: 1083
  year: 2020
  ident: ref_10
  article-title: A fractional map with hidden attractors: Chaos and control
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjst/e2020-900177-6
– volume: 14
  start-page: 91
  year: 2017
  ident: ref_29
  article-title: Some global results for the Degn—Harrison system with diffusion
  publication-title: Medit. J. Math.
  doi: 10.1007/s00009-017-0894-x
– ident: ref_30
  doi: 10.3390/axioms12080728
– volume: 69
  start-page: 931
  year: 2007
  ident: ref_16
  article-title: Finite-difference schemes for reaction–diffusion equations modeling predator–prey interactions in M ATLAB
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-006-9062-3
– ident: ref_4
  doi: 10.3390/fractalfract8040231
– ident: ref_15
  doi: 10.3390/axioms12090806
– volume: 144
  start-page: 110698
  year: 2021
  ident: ref_8
  article-title: On the development of variable-order fractional hyper chaotic economic system with a nonlinear model predictive controller
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.110698
– volume: 44
  start-page: 1003
  year: 2021
  ident: ref_19
  article-title: Global synchronization of fractional-order and integer-order N component reaction diffusion systems: Application to biochemical models
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.6807
– volume: 64
  start-page: 934
  year: 2012
  ident: ref_3
  article-title: Synchronization and control of coupled reaction–diffusion systems of the FitzHugh–Nagumo type
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2012.01.056
– ident: ref_22
– volume: 77
  start-page: 729
  year: 2024
  ident: ref_12
  article-title: Finite-time synchronization of chaotic systems with time-varying delays and parameter mismatches
  publication-title: Nonlinear Dyn.
– volume: 39
  start-page: 2133
  year: 2002
  ident: ref_17
  article-title: Discontinuous hp-finite element methods for advection-diffusion-reaction problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142900374111
SSID ssj0000913820
Score 2.3059337
Snippet This study aims to address the topic of finite-time synchronization within a specific subset of fractional-order Degn–Harrison reaction–diffusion systems. To...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 144
SubjectTerms Behavior
Communications networks
Complex systems
Degn–Harrison reaction–diffusion systems
Diffusion
Dynamical systems
Efficiency
Equilibrium
finite-time stability
finite-time synchronization
Liapunov functions
Lyapunov function
Mathematical functions
Mathematical models
Numerical analysis
Partial differential equations
Reaction-diffusion equations
Robotics
Stability
Stability analysis
Stability criteria
Time dependence
Time synchronization
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgXOCAaAGxpSAfkAAJq4m_knBBhSWskAoSUKk3y3bsqtIqW5LtoTf-A_-QX8KM412EBL0mjpR4xvPeTOw3hDxzhZUoY8dsZSUDvNastrVnDYBV5ADpzmFp4PiTXpzIj6fqNBfcxrytchMTU6DuVh5r5IeiSHEU8P3NxXeGXaPw72puoXGT3CoBadDP6_bDtsaCmpeAcJPYkIDs_tCnVgnpm0sO3g7pxF-AlHT7_xedE-S098jdzBXp0WTcXXIj9HvkzvFWaHXcI7t5bY70RRaQfnmfDO0wHVewS_YZpTXpPJz1v378XNghtRykX8I0AK7Nz2O8xJIZxbZoy9e0PUcayvBsCJ1P_epHuooUaGnaSHtFbd_Rr1e9T7q60zHOB-Skff_t3YLl3grMS16tGZdVrbsyKg_TFrvYAC_hUXsgdIV2pWs6SFUgGeNVGbjwymlAtWBVVErH6Ll4SHb6VR8eEQocCtxR8ABkQ5aSu6C9bby0XpZd8OWM8M0EG5-Fx7H_xdJAAoJWMf-wyoy82j50MeluXD_8LVpuOxRFs9OF1XBm8ho0QSnRKBtEkELqorZFAHpahVJFJ2AyZuQ52t3g0oYX9DafUIDPRJEsc1QXEI4lJGQzcrBxDZPX_Gj-eOj-9bcfk9scqNG06feA7KyHy_AEqM3aPU3--xtoK_v0
  priority: 102
  providerName: ProQuest
Title Fractional-Order Degn–Harrison Reaction–Diffusion Model: Finite-Time Dynamics of Stability and Synchronization
URI https://www.proquest.com/docview/3084718514
https://doaj.org/article/e55395ae3e434608a0e5087e15fb36d1
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxQxFH5ovehBbFVcrUsOggqGzuTXzHhr3Y6L0CrVQm8hySSlsExld3vorf9D_0P_El-S6dJCay9eQwJJ3kve94W87wG8s4URUcaOmsoIivFa0drUjjYYrALDkG5tfBrY21fTQ_HtSB5dK_UV_4RleeC8cVteSt5I47kXXKiiNoVHTFH5UgbLVZeIT9EU18hUuoObqK1XZJkhjrx-y6UiCWm1JUM_RyJxIxQlxf677uUUbNpn8HRAiWQ7z24dHvh-A57srSRWFxuwPpzKBfkwSEd_fA7zdp4TFcyMfo-immTij_s_F5dTM0_FBsmBzx2wbXISwll8LCOxINrsM2lPIgClMSuETHKl-gU5DQQBafpCe05M35Gf571Liro5gfMFHLa7v75M6VBVgTrBqiVloqpx34J0CDZCFxpEJCwoh1CuULa0TYckBWkYq0rPuJNWYTzzRgYpVQiO8Zew1p_2_hUQRE_oiJx5hBmiFMx65UzjhHGi7LwrR8CuNli7QXI8Vr6YaaQe0Sr6FquM4NNq0O-suPHv7jvRcquuUS47NaAT6cGJ9H1ONIL30e46HmqcoDNDbgIuM8pj6e26wItYIBUbweaVa-jhtC80L1KMR-z5-n_M5g08Zgid8qfgTVhbzs_8W4Q-SzuGh3X7dQyPdnb3fxyMk8__BZLWBmE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED5N3QPwgNgAUTbADyBAIlri2EmDhNBGV3VsLWhs0t48x7GnSV060k6ob_wH_gc_il_CnZMUIcHe9uo6auvz3fed4_sO4HkeakEydoFOtQgQr5Ogp3smyBCsHEdIz3M6GhiNk-Gx-HgiT1bgZ1sLQ9cq25joA3UxNXRGvhWHPo4ivr-__BpQ1yh6u9q20Ki3xb5dfMOUbfZur4_2fcH5YPfowzBougoERvB0HnCR9pIictIg2LrCZYjI3CUGqUyY5FGeFUjSMQ3haWR5bGSeYDy3WjopE-cMCR1gyF8VVNHagdWd3fHnw-WpDqlsIqbW8kZxnIVbxjdn8KsccfQvTGD-gkDfKeB_eOBBbnAP7jbslG3X22kNVmy5DndGS2nX2TqsNdFgxl41ktWv70M1qOoCCT0JPpGYJ-vbs_LX9x9DXfkmh-zQ1hNwrH_u3BUd0jFqxDZ5ywbnRHwDqkZh_UWpL_CL2NQxJML-6u6C6bJgXxal8Uq-deHoAzi-kXV_CJ1yWtpHwJC1oQPE3CK9EZHguU2MzozQRkSFNVEXeLvAyjRS59RxY6Iw5SGrqH9YpQtvlg9d1kof10_fIcstp5JMtx-YVmeq8XplpYwzqW1sRSySsKdDi4Q4tZF0eYyL0YWXZHdFwQR_oNFNTQT-TZLlUtu9EAFAYArYhc12a6gmyszUH594fP3Hz-DW8Gh0oA72xvsbcJsjMauvHG9CZ15d2SdIrOb502Y3Mzi9aQf6DSq6OOo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqIiE4IFpALBTwAQRIWJv4Jz9ICBVC2FJaEFCpN-M4dlVpyZbsVmhvvANvw-PwJMw4ySIk6K1Xr6Pd9Xjm-8bxfEPI_SoyEmXsmEmNZIDXCctMZlkOYOU5QHpV4dHA3n4yOZBvDtXhGvk51MLgtcohJoZAXc8snpGPRRTiKOD72PfXIt4X5fOTrww7SOGb1qGdRrdFdt3yG6Rv82c7Bdj6Aeflq08vJ6zvMMCs5OmCcZlmSR17ZQF4fe1zQGfuEwu0JkqquMprIOyQkvA0dlxYVSUQ251RXqnEe4uiBxD-L6QizTHxy8rXq_Md1NsEdO2EjoTIo7ENbRrCesccPA1Smb_AMPQM-B8yBLgrr5IrPU-l293G2iBrrtkkl_dWIq_zTbLRx4U5fdSLVz--Rtqy7UolzJS9Q1lPWrij5tf3HxPThnaH9IPrJsBYcez9KR7XUWzJNn1Ky2OkwAzrUmixbMwX-CI68xQocbjEu6SmqenHZWODpm9XQnqdHJzLqt8g682scTcJBf4GriC4A6IjY8krl1iTW2msjGtn4xHhwwJr24ueY--NqYbkB62i_2GVEXmyeuik0_w4e_oLtNxqKgp2h4FZe6R7_9dOKZEr44STQiZRZiIH1Dh1sfKVgMUYkYdod41hBX6gNX11BPxNFOjS21kEUCAhGRyRrWFr6D7ezPUf77h19sf3yEVwG_12Z3_3NrnEgaF1d4-3yPqiPXV3gGEtqrthK1Py-bx95zcjoTu6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional-Order+Degn%E2%80%93Harrison+Reaction%E2%80%93Diffusion+Model%3A+Finite-Time+Dynamics+of+Stability+and+Synchronization&rft.jtitle=Computation&rft.au=Hammad%2C+Ma%27mon+Abu&rft.au=Bendib%2C+Issam&rft.au=Alshanti%2C+Waseem+Ghazi&rft.au=Alshanty%2C+Ahmad&rft.date=2024-07-01&rft.pub=MDPI+AG&rft.issn=2079-3197&rft.volume=12&rft.issue=7&rft_id=info:doi/10.3390%2Fcomputation12070144&rft.externalDocID=A803764826
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-3197&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-3197&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-3197&client=summon