Fractional-Order Degn–Harrison Reaction–Diffusion Model: Finite-Time Dynamics of Stability and Synchronization
This study aims to address the topic of finite-time synchronization within a specific subset of fractional-order Degn–Harrison reaction–diffusion systems. To achieve this goal, we begin with the introduction of a novel lemma specific for finite-time stability analysis. Diverging from existing criter...
Saved in:
Published in | Computation Vol. 12; no. 7; p. 144 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2079-3197 2079-3197 |
DOI | 10.3390/computation12070144 |
Cover
Abstract | This study aims to address the topic of finite-time synchronization within a specific subset of fractional-order Degn–Harrison reaction–diffusion systems. To achieve this goal, we begin with the introduction of a novel lemma specific for finite-time stability analysis. Diverging from existing criteria, this lemma represents a significant extension of prior findings, laying the groundwork for subsequent investigations. Building upon this foundation, we proceed to develop efficient dependent linear controllers designed to orchestrate finite-time synchronization. Leveraging the power of a Lyapunov function, we derive new, robust conditions that ensure the attainment of synchronization within a predefined time frame. This innovative approach not only enhances our understanding of finite-time synchronization, but also offers practical solutions for its realization in complex systems. To validate the efficacy and applicability of our proposed methodology, extensive numerical simulations are conducted. Through this comprehensive analysis, we aim to contribute valuable insights to the field of fractional-order reaction–diffusion systems while paving the way for practical implementations in real-world applications. |
---|---|
AbstractList | This study aims to address the topic of finite-time synchronization within a specific subset of fractional-order Degn–Harrison reaction–diffusion systems. To achieve this goal, we begin with the introduction of a novel lemma specific for finite-time stability analysis. Diverging from existing criteria, this lemma represents a significant extension of prior findings, laying the groundwork for subsequent investigations. Building upon this foundation, we proceed to develop efficient dependent linear controllers designed to orchestrate finite-time synchronization. Leveraging the power of a Lyapunov function, we derive new, robust conditions that ensure the attainment of synchronization within a predefined time frame. This innovative approach not only enhances our understanding of finite-time synchronization, but also offers practical solutions for its realization in complex systems. To validate the efficacy and applicability of our proposed methodology, extensive numerical simulations are conducted. Through this comprehensive analysis, we aim to contribute valuable insights to the field of fractional-order reaction–diffusion systems while paving the way for practical implementations in real-world applications. |
Audience | Academic |
Author | Bendib, Issam Alshanti, Waseem Ghazi Alshanty, Ahmad Hioual, Amel Ouannas, Adel Hammad, Ma’mon Abu Momani, Shaher |
Author_xml | – sequence: 1 givenname: Ma’mon Abu surname: Hammad fullname: Hammad, Ma’mon Abu – sequence: 2 givenname: Issam surname: Bendib fullname: Bendib, Issam – sequence: 3 givenname: Waseem Ghazi surname: Alshanti fullname: Alshanti, Waseem Ghazi – sequence: 4 givenname: Ahmad surname: Alshanty fullname: Alshanty, Ahmad – sequence: 5 givenname: Adel surname: Ouannas fullname: Ouannas, Adel – sequence: 6 givenname: Amel orcidid: 0000-0001-6944-1689 surname: Hioual fullname: Hioual, Amel – sequence: 7 givenname: Shaher surname: Momani fullname: Momani, Shaher |
BookMark | eNp9UUtOHDEUtCKQQggnYNNS1k38_2SHmExAIkIKsG653c8Tj3rsid2zGFa5Q27ISTA0iqIoir3wU6mqXKr3Dh3EFAGhU4LPGDP4o0ub7W6yU0iRUKww4fwNOqqTaRkx6uCP-S06KWWN6zGEaYqPUF5m656ldmxv8gC5WcAqPv78dWlzDiXF5hvMhIotgve7Uufmaxpg_NQsQwwTtHdhA81iH-0muNIk39xOtg9jmPaNjUNzu4_ue04xPLyEfI8OvR0LnLy-x-h--fnu4rK9vvlydXF-3TpO1dRSrrQciBdOSuYHb5hR1EsniMGyJ70ZiOJUG6oIUOZEL6XSYIUXQnrvKDtGV7PvkOy62-awsXnfJRu6FyDlVWfzFNwIHQjBjLDAgDMusbYYBNYKiPA9qyGq14fZa5vTjx2UqVunXa6llY5hzRXRgvDKOptZK1tNQ_Rpqu3WO0Btpm7Nh4qfa8yU5JrKKmCzwOVUSgb_OybB3fNyu38st6rMXyoXZkr9Loz_1T4BeY2x5A |
CitedBy_id | crossref_primary_10_1016_j_padiff_2024_100870 crossref_primary_10_3390_math12233679 crossref_primary_10_1063_5_0257304 crossref_primary_10_3390_computation12100197 crossref_primary_10_1016_j_padiff_2025_101118 |
Cites_doi | 10.1186/s13661-019-1188-y 10.1016/j.neucom.2015.11.094 10.1109/ACCESS.2020.2993784 10.1016/j.cnsns.2014.01.022 10.1007/s11071-013-1177-0 10.3390/fractalfract7050347 10.1142/S0218348X22401454 10.1140/epjs/s11734-023-00911-8 10.1063/5.0170419 10.1007/BF00279718 10.1190/geo2019-0066.1 10.1155/2019/2832781 10.3390/math11030555 10.1186/s13662-021-03286-z 10.1140/epjst/e2020-900193-4 10.1007/s10543-014-0484-2 10.1016/j.mcm.2009.12.004 10.3390/fractalfract7110828 10.1140/epjst/e2020-900177-6 10.1007/s00009-017-0894-x 10.3390/axioms12080728 10.1007/s11538-006-9062-3 10.3390/fractalfract8040231 10.3390/axioms12090806 10.1016/j.chaos.2021.110698 10.1002/mma.6807 10.1016/j.camwa.2012.01.056 10.1137/S0036142900374111 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.3390/computation12070144 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Coronavirus Research Database ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 2079-3197 |
ExternalDocumentID | oai_doaj_org_article_e55395ae3e434608a0e5087e15fb36d1 A803764826 10_3390_computation12070144 |
GeographicLocations | Jordan |
GeographicLocations_xml | – name: Jordan |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABUWG ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC K6V K7- KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQQKQ PROAC PMFND 3V. 7SC 7XB 8AL 8FD 8FK COVID JQ2 L7M L~C L~D M0N PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c427t-24786d1f5c663fdf93972f6c51906b1b9d174289271e23c5b6678ea5f556ffc23 |
IEDL.DBID | DOA |
ISSN | 2079-3197 |
IngestDate | Wed Aug 27 01:28:27 EDT 2025 Sat Jul 26 02:02:26 EDT 2025 Tue Jun 10 21:06:37 EDT 2025 Tue Jul 01 01:46:42 EDT 2025 Thu Apr 24 23:01:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-24786d1f5c663fdf93972f6c51906b1b9d174289271e23c5b6678ea5f556ffc23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6944-1689 |
OpenAccessLink | https://doaj.org/article/e55395ae3e434608a0e5087e15fb36d1 |
PQID | 3084718514 |
PQPubID | 2032414 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e55395ae3e434608a0e5087e15fb36d1 proquest_journals_3084718514 gale_infotracacademiconefile_A803764826 crossref_primary_10_3390_computation12070144 crossref_citationtrail_10_3390_computation12070144 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Computation |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wang (ref_6) 2022; 30 Khennaoui (ref_10) 2020; 229 Feng (ref_23) 2024; 34 Jahanshahi (ref_8) 2021; 144 Mesdoui (ref_1) 2020; 8 ref_14 ref_34 Li (ref_33) 2016; 185 ref_32 Khennaoui (ref_9) 2023; 232 ref_30 Houston (ref_17) 2002; 39 Song (ref_20) 2020; 85 Gallegos (ref_25) 2014; 19 Ouannas (ref_5) 2019; 2019 ref_15 Velarde (ref_28) 1979; 8 Wu (ref_12) 2024; 77 Srivastava (ref_7) 2014; 76 Jiang (ref_27) 2021; 2021 Ouannas (ref_2) 2019; 2019 ref_24 Hu (ref_13) 2018; 59 ref_22 ref_21 Mesdoui (ref_19) 2021; 44 Ambrosio (ref_3) 2012; 64 Kay (ref_18) 2014; 54 Lisena (ref_29) 2017; 14 Ouannas (ref_11) 2020; 229 Pan (ref_31) 2010; 51 Garvie (ref_16) 2007; 69 ref_4 Yaagoub (ref_26) 2024; 7 |
References_xml | – volume: 2019 start-page: 74 year: 2019 ident: ref_5 article-title: Synchronization results for a class of fractional-order spatiotemporal partial differential systems based on fractional Lyapunov approach publication-title: Bound. Value Probl. doi: 10.1186/s13661-019-1188-y – volume: 185 start-page: 242 year: 2016 ident: ref_33 article-title: Finite-time synchronization for competitive neural networks with mixed delays and non-identical perturbations publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.094 – volume: 8 start-page: 91829 year: 2020 ident: ref_1 article-title: Synchronization methods for the Degn-Harrison reaction-diffusion systems publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2993784 – volume: 19 start-page: 2951 year: 2014 ident: ref_25 article-title: Lyapunov functions for fractional order systems publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2014.01.022 – volume: 76 start-page: 905 year: 2014 ident: ref_7 article-title: Anti-synchronization between identical and non identical fractional-order chaotic systems using active control method publication-title: Nonlinear Dyn. doi: 10.1007/s11071-013-1177-0 – ident: ref_24 – ident: ref_32 doi: 10.3390/fractalfract7050347 – ident: ref_34 – volume: 30 start-page: 2240145 year: 2022 ident: ref_6 article-title: A Hybrid Approach For Synchronizing Between Two Reaction Diffusion Systems of Integer-And Fractional-Order Applied On Certain Chemical Models publication-title: Fractals doi: 10.1142/S0218348X22401454 – volume: 232 start-page: 2385 year: 2023 ident: ref_9 article-title: From Lozi map to fractional memristive Lozi map publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjs/s11734-023-00911-8 – volume: 34 start-page: 023105 year: 2024 ident: ref_23 article-title: Finite-time stability of fractional-order nonlinear systems publication-title: Chaos doi: 10.1063/5.0170419 – volume: 8 start-page: 147 year: 1979 ident: ref_28 article-title: Time-periodic oscillations in a model for the respiratory process of a bacterial culture publication-title: J. Math. Biol. doi: 10.1007/BF00279718 – volume: 85 start-page: T179 year: 2020 ident: ref_20 article-title: The asymptotic local finite-difference method of the fractional wave equation and its viscous seismic wavefield simulation publication-title: Geophysics doi: 10.1190/geo2019-0066.1 – volume: 2019 start-page: 2832781 year: 2019 ident: ref_2 article-title: Synchronization control in reaction-diffusion systems: Application to Lengyel-Epstein system publication-title: Complexity doi: 10.1155/2019/2832781 – ident: ref_21 doi: 10.3390/math11030555 – volume: 2021 start-page: 127 year: 2021 ident: ref_27 article-title: Finite time stability and sliding mode control for uncertain variable fractional order nonlinear systems publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-021-03286-z – volume: 229 start-page: 2261 year: 2020 ident: ref_11 article-title: Bifurcation and chaos in the fractional form of Hénon-Lozi type map publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjst/e2020-900193-4 – volume: 59 start-page: 440 year: 2018 ident: ref_13 article-title: Finite-time synchronization of fractional-order chaotic systems publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 54 start-page: 937 year: 2014 ident: ref_18 article-title: Fourier spectral methods for fractional-in-space reaction-diffusion equations publication-title: BIT Numer. Math. doi: 10.1007/s10543-014-0484-2 – volume: 51 start-page: 1037 year: 2010 ident: ref_31 article-title: Stability criteria for impulsive reaction-diffusion Cohen-Grossberg neural networks with time-varying delays publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2009.12.004 – volume: 7 start-page: 156 year: 2024 ident: ref_26 article-title: Mathematical analysis of a fractional order two strain SEIR epidemic model publication-title: Results Nonlinear Anal. – ident: ref_14 doi: 10.3390/fractalfract7110828 – volume: 229 start-page: 1083 year: 2020 ident: ref_10 article-title: A fractional map with hidden attractors: Chaos and control publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjst/e2020-900177-6 – volume: 14 start-page: 91 year: 2017 ident: ref_29 article-title: Some global results for the Degn—Harrison system with diffusion publication-title: Medit. J. Math. doi: 10.1007/s00009-017-0894-x – ident: ref_30 doi: 10.3390/axioms12080728 – volume: 69 start-page: 931 year: 2007 ident: ref_16 article-title: Finite-difference schemes for reaction–diffusion equations modeling predator–prey interactions in M ATLAB publication-title: Bull. Math. Biol. doi: 10.1007/s11538-006-9062-3 – ident: ref_4 doi: 10.3390/fractalfract8040231 – ident: ref_15 doi: 10.3390/axioms12090806 – volume: 144 start-page: 110698 year: 2021 ident: ref_8 article-title: On the development of variable-order fractional hyper chaotic economic system with a nonlinear model predictive controller publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.110698 – volume: 44 start-page: 1003 year: 2021 ident: ref_19 article-title: Global synchronization of fractional-order and integer-order N component reaction diffusion systems: Application to biochemical models publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6807 – volume: 64 start-page: 934 year: 2012 ident: ref_3 article-title: Synchronization and control of coupled reaction–diffusion systems of the FitzHugh–Nagumo type publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2012.01.056 – ident: ref_22 – volume: 77 start-page: 729 year: 2024 ident: ref_12 article-title: Finite-time synchronization of chaotic systems with time-varying delays and parameter mismatches publication-title: Nonlinear Dyn. – volume: 39 start-page: 2133 year: 2002 ident: ref_17 article-title: Discontinuous hp-finite element methods for advection-diffusion-reaction problems publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142900374111 |
SSID | ssj0000913820 |
Score | 2.3059337 |
Snippet | This study aims to address the topic of finite-time synchronization within a specific subset of fractional-order Degn–Harrison reaction–diffusion systems. To... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 144 |
SubjectTerms | Behavior Communications networks Complex systems Degn–Harrison reaction–diffusion systems Diffusion Dynamical systems Efficiency Equilibrium finite-time stability finite-time synchronization Liapunov functions Lyapunov function Mathematical functions Mathematical models Numerical analysis Partial differential equations Reaction-diffusion equations Robotics Stability Stability analysis Stability criteria Time dependence Time synchronization |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgXOCAaAGxpSAfkAAJq4m_knBBhSWskAoSUKk3y3bsqtIqW5LtoTf-A_-QX8KM412EBL0mjpR4xvPeTOw3hDxzhZUoY8dsZSUDvNastrVnDYBV5ADpzmFp4PiTXpzIj6fqNBfcxrytchMTU6DuVh5r5IeiSHEU8P3NxXeGXaPw72puoXGT3CoBadDP6_bDtsaCmpeAcJPYkIDs_tCnVgnpm0sO3g7pxF-AlHT7_xedE-S098jdzBXp0WTcXXIj9HvkzvFWaHXcI7t5bY70RRaQfnmfDO0wHVewS_YZpTXpPJz1v378XNghtRykX8I0AK7Nz2O8xJIZxbZoy9e0PUcayvBsCJ1P_epHuooUaGnaSHtFbd_Rr1e9T7q60zHOB-Skff_t3YLl3grMS16tGZdVrbsyKg_TFrvYAC_hUXsgdIV2pWs6SFUgGeNVGbjwymlAtWBVVErH6Ll4SHb6VR8eEQocCtxR8ABkQ5aSu6C9bby0XpZd8OWM8M0EG5-Fx7H_xdJAAoJWMf-wyoy82j50MeluXD_8LVpuOxRFs9OF1XBm8ho0QSnRKBtEkELqorZFAHpahVJFJ2AyZuQ52t3g0oYX9DafUIDPRJEsc1QXEI4lJGQzcrBxDZPX_Gj-eOj-9bcfk9scqNG06feA7KyHy_AEqM3aPU3--xtoK_v0 priority: 102 providerName: ProQuest |
Title | Fractional-Order Degn–Harrison Reaction–Diffusion Model: Finite-Time Dynamics of Stability and Synchronization |
URI | https://www.proquest.com/docview/3084718514 https://doaj.org/article/e55395ae3e434608a0e5087e15fb36d1 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxQxFH5ovehBbFVcrUsOggqGzuTXzHhr3Y6L0CrVQm8hySSlsExld3vorf9D_0P_El-S6dJCay9eQwJJ3kve94W87wG8s4URUcaOmsoIivFa0drUjjYYrALDkG5tfBrY21fTQ_HtSB5dK_UV_4RleeC8cVteSt5I47kXXKiiNoVHTFH5UgbLVZeIT9EU18hUuoObqK1XZJkhjrx-y6UiCWm1JUM_RyJxIxQlxf677uUUbNpn8HRAiWQ7z24dHvh-A57srSRWFxuwPpzKBfkwSEd_fA7zdp4TFcyMfo-immTij_s_F5dTM0_FBsmBzx2wbXISwll8LCOxINrsM2lPIgClMSuETHKl-gU5DQQBafpCe05M35Gf571Liro5gfMFHLa7v75M6VBVgTrBqiVloqpx34J0CDZCFxpEJCwoh1CuULa0TYckBWkYq0rPuJNWYTzzRgYpVQiO8Zew1p_2_hUQRE_oiJx5hBmiFMx65UzjhHGi7LwrR8CuNli7QXI8Vr6YaaQe0Sr6FquM4NNq0O-suPHv7jvRcquuUS47NaAT6cGJ9H1ONIL30e46HmqcoDNDbgIuM8pj6e26wItYIBUbweaVa-jhtC80L1KMR-z5-n_M5g08Zgid8qfgTVhbzs_8W4Q-SzuGh3X7dQyPdnb3fxyMk8__BZLWBmE |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED5N3QPwgNgAUTbADyBAIlri2EmDhNBGV3VsLWhs0t48x7GnSV060k6ob_wH_gc_il_CnZMUIcHe9uo6auvz3fed4_sO4HkeakEydoFOtQgQr5Ogp3smyBCsHEdIz3M6GhiNk-Gx-HgiT1bgZ1sLQ9cq25joA3UxNXRGvhWHPo4ivr-__BpQ1yh6u9q20Ki3xb5dfMOUbfZur4_2fcH5YPfowzBougoERvB0HnCR9pIictIg2LrCZYjI3CUGqUyY5FGeFUjSMQ3haWR5bGSeYDy3WjopE-cMCR1gyF8VVNHagdWd3fHnw-WpDqlsIqbW8kZxnIVbxjdn8KsccfQvTGD-gkDfKeB_eOBBbnAP7jbslG3X22kNVmy5DndGS2nX2TqsNdFgxl41ktWv70M1qOoCCT0JPpGYJ-vbs_LX9x9DXfkmh-zQ1hNwrH_u3BUd0jFqxDZ5ywbnRHwDqkZh_UWpL_CL2NQxJML-6u6C6bJgXxal8Uq-deHoAzi-kXV_CJ1yWtpHwJC1oQPE3CK9EZHguU2MzozQRkSFNVEXeLvAyjRS59RxY6Iw5SGrqH9YpQtvlg9d1kof10_fIcstp5JMtx-YVmeq8XplpYwzqW1sRSySsKdDi4Q4tZF0eYyL0YWXZHdFwQR_oNFNTQT-TZLlUtu9EAFAYArYhc12a6gmyszUH594fP3Hz-DW8Gh0oA72xvsbcJsjMauvHG9CZ15d2SdIrOb502Y3Mzi9aQf6DSq6OOo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqIiE4IFpALBTwAQRIWJv4Jz9ICBVC2FJaEFCpN-M4dlVpyZbsVmhvvANvw-PwJMw4ySIk6K1Xr6Pd9Xjm-8bxfEPI_SoyEmXsmEmNZIDXCctMZlkOYOU5QHpV4dHA3n4yOZBvDtXhGvk51MLgtcohJoZAXc8snpGPRRTiKOD72PfXIt4X5fOTrww7SOGb1qGdRrdFdt3yG6Rv82c7Bdj6Aeflq08vJ6zvMMCs5OmCcZlmSR17ZQF4fe1zQGfuEwu0JkqquMprIOyQkvA0dlxYVSUQ251RXqnEe4uiBxD-L6QizTHxy8rXq_Md1NsEdO2EjoTIo7ENbRrCesccPA1Smb_AMPQM-B8yBLgrr5IrPU-l293G2iBrrtkkl_dWIq_zTbLRx4U5fdSLVz--Rtqy7UolzJS9Q1lPWrij5tf3HxPThnaH9IPrJsBYcez9KR7XUWzJNn1Ky2OkwAzrUmixbMwX-CI68xQocbjEu6SmqenHZWODpm9XQnqdHJzLqt8g682scTcJBf4GriC4A6IjY8krl1iTW2msjGtn4xHhwwJr24ueY--NqYbkB62i_2GVEXmyeuik0_w4e_oLtNxqKgp2h4FZe6R7_9dOKZEr44STQiZRZiIH1Dh1sfKVgMUYkYdod41hBX6gNX11BPxNFOjS21kEUCAhGRyRrWFr6D7ezPUf77h19sf3yEVwG_12Z3_3NrnEgaF1d4-3yPqiPXV3gGEtqrthK1Py-bx95zcjoTu6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional-Order+Degn%E2%80%93Harrison+Reaction%E2%80%93Diffusion+Model%3A+Finite-Time+Dynamics+of+Stability+and+Synchronization&rft.jtitle=Computation&rft.au=Hammad%2C+Ma%27mon+Abu&rft.au=Bendib%2C+Issam&rft.au=Alshanti%2C+Waseem+Ghazi&rft.au=Alshanty%2C+Ahmad&rft.date=2024-07-01&rft.pub=MDPI+AG&rft.issn=2079-3197&rft.volume=12&rft.issue=7&rft_id=info:doi/10.3390%2Fcomputation12070144&rft.externalDocID=A803764826 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-3197&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-3197&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-3197&client=summon |