Noisy speech enhancement using discrete cosine transform

This paper illustrates the advantages of using the Discrete Cosine Transform (DCT) as compared to the standard Discrete Fourier Transform (DFT) for the purpose of removing noise embedded in a speech signal. The derivation of the Minimum Mean Square Error (MMSE) filter based on the statistical modell...

Full description

Saved in:
Bibliographic Details
Published inSpeech communication Vol. 24; no. 3; pp. 249 - 257
Main Authors Soon, Ing Yann, Koh, Soo Ngee, Yeo, Chai Kiat
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.06.1998
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper illustrates the advantages of using the Discrete Cosine Transform (DCT) as compared to the standard Discrete Fourier Transform (DFT) for the purpose of removing noise embedded in a speech signal. The derivation of the Minimum Mean Square Error (MMSE) filter based on the statistical modelling of the DCT coefficients is shown. Also shown is the derivation of an over-attenuation factor based on the fact that speech energy is not always present in the noisy signal at all times or in all coefficients. This over-attenuation factor is useful in suppressing any musical residual noise which may be present. The proposed methods are evaluated against the noise reduction filter proposed by Y. Ephraim and D. Malah (1984), using both Gaussian distributed white noise as well as recorded fan noise, with favourable results. Cet article illustre les avantages apportés par l'utilisation de la Transformation Cosinus Discrète (DCT) par rapport à celle de la Transformée de Fourier Discrète (DFT) standard, pour le débruitage de la parole bruitée. On montre comment dériver un filtre MMSE à partir de la modélisation statistique des coefficients DCT. On montre également comment dériver un facteur de sur-atténuation basé sur le fait que, dans les signaux bruités, l'énergie de la parole n'est pas toujours présente à chaque instant ni dans chaque coefficient. Ce facteur de sur-atténuation est utile pour supprimer tout bruit résiduel musical. Les méthods proposées ont été évaluées favorablement par rapport du filtre de réduction de bruit proposé par Ephraim et Malah (1994), en utilisant tant du bruit blanc guassien que du bruit de ventilateur enregistré
AbstractList The advantage of using the discrete cosine transform (DCT) over the standard discrete Fourier transform (DFT) for the purpose of removing noise embedded in a speech signal is illustrated. The derivation of the minimum mean square error filter based on the statistical modelling of the DCT coefficients is shown, as is the derivation of an over-attenuation factor based on the fact that speech energy is not present in the noisy signal at all times or in all coefficients. This over-attenuation factor is useful in suppressing any musical residual noise that may be present. The proposed methods are evaluated against the noise reduction filter proposed by Y. Ephraim & D. Malah (1984), using both Gaussian distributed white noise as well as recorded fan noise, with favorable results. 2 Tables, 8 Figures, 16 References. Adapted from the source document
This paper illustrates the advantages of using the Discrete Cosine Transform (DCT) as compared to the standard Discrete Fourier Transform (DFT) for the purpose of removing noise embedded in a speech signal. The derivation of the Minimum Mean Square Error (MMSE) filter based on the statistical modelling of the DCT coefficients is shown. Also shown is the derivation of an over-attenuation factor based on the fact that speech energy is not always present in the noisy signal at all times or in all coefficients. This over-attenuation factor is useful in suppressing any musical residual noise which may be present. The proposed methods are evaluated against the noise reduction filter proposed by Y. Ephraim and D. Malah (1984), using both Gaussian distributed white noise as well as recorded fan noise, with favourable results. Cet article illustre les avantages apportés par l'utilisation de la Transformation Cosinus Discrète (DCT) par rapport à celle de la Transformée de Fourier Discrète (DFT) standard, pour le débruitage de la parole bruitée. On montre comment dériver un filtre MMSE à partir de la modélisation statistique des coefficients DCT. On montre également comment dériver un facteur de sur-atténuation basé sur le fait que, dans les signaux bruités, l'énergie de la parole n'est pas toujours présente à chaque instant ni dans chaque coefficient. Ce facteur de sur-atténuation est utile pour supprimer tout bruit résiduel musical. Les méthods proposées ont été évaluées favorablement par rapport du filtre de réduction de bruit proposé par Ephraim et Malah (1994), en utilisant tant du bruit blanc guassien que du bruit de ventilateur enregistré
Author Koh, Soo Ngee
Soon, Ing Yann
Yeo, Chai Kiat
Author_xml – sequence: 1
  givenname: Ing Yann
  surname: Soon
  fullname: Soon, Ing Yann
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Block S2, Nanyang Avenue, Singapore 639798, Singapore
– sequence: 2
  givenname: Soo Ngee
  surname: Koh
  fullname: Koh, Soo Ngee
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Block S2, Nanyang Avenue, Singapore 639798, Singapore
– sequence: 3
  givenname: Chai Kiat
  surname: Yeo
  fullname: Yeo, Chai Kiat
  organization: School of Applied Science, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2389982$$DView record in Pascal Francis
BookMark eNqFkEtLAzEQx4NUsK1-BGEPInpYzWM3m5xEii8oelDPIZtMbGQfNdkK_famD7z2MsPAb2b-_CZo1PUdIHRO8A3BhN--p1LlnEl2JcU1xpjInB2hMREVzSsi6AiN_5ETNInxO0GFEHSMxGvv4zqLSwCzyKBb6M5AC92QraLvvjLrowkwQGb6NEM2BN1F14f2FB073UQ42_cp-nx8-Jg95_O3p5fZ_Tw3Ba2GnEhnhSRGYq7rShheOFwy53TKVUhtneC8ZoK7ynELmDJNGFhnDZU1qbllU3S5u7sM_c8K4qDaFAmaRnfQr6ISJWOSUHwQLAXjpWQbsNyBJvQxBnBqGXyrw1oRrDZC1Vao2thSUqitUMXS3sX-gY5GNy6ZMD7-L1MmpBQ0YXc7DJKVXw9BReMhWbU-gBmU7f2BR3_EsovY
CODEN SCOMDH
CitedBy_id crossref_primary_10_1080_03772063_2020_1724836
crossref_primary_10_1016_S0167_6393_03_00013_X
crossref_primary_10_1016_j_apacoust_2022_109134
crossref_primary_10_1142_S1793536910000409
crossref_primary_10_3390_app11135968
crossref_primary_10_1007_s10772_011_9096_2
crossref_primary_10_1016_j_patcog_2006_07_006
crossref_primary_10_1088_0143_0807_36_4_045018
crossref_primary_10_1016_j_specom_2007_02_003
crossref_primary_10_1155_2007_45821
crossref_primary_10_1103_PhysRevLett_84_3197
crossref_primary_10_1007_s10772_015_9317_1
crossref_primary_10_1007_s00348_017_2320_3
crossref_primary_10_1109_ACCESS_2024_3410276
crossref_primary_10_1049_el_20020466
crossref_primary_10_1016_j_specom_2020_09_001
crossref_primary_10_1007_s11760_021_02084_0
crossref_primary_10_1016_j_specom_2010_05_005
crossref_primary_10_1049_iet_spr_2016_0125
crossref_primary_10_1049_iet_spr_2013_0322
crossref_primary_10_1109_TETCI_2020_3032662
crossref_primary_10_1109_TASL_2011_2156785
crossref_primary_10_1109_JPROC_2022_3155904
crossref_primary_10_1016_j_specom_2018_05_005
crossref_primary_10_1049_iet_spr_2016_0449
crossref_primary_10_1109_TCSI_2001_972852
crossref_primary_10_1049_iet_spr_20070008
crossref_primary_10_1007_s11767_005_0174_y
crossref_primary_10_1109_TSA_2005_851943
crossref_primary_10_1007_s11042_024_19017_x
crossref_primary_10_1049_iet_spr_2008_0114
crossref_primary_10_1016_j_specom_2015_02_007
crossref_primary_10_1155_2008_873204
crossref_primary_10_1088_1757_899X_1090_1_012102
crossref_primary_10_1016_j_apacoust_2023_109592
crossref_primary_10_7840_kics_2013_38C_2_189
crossref_primary_10_1016_j_jvcir_2005_06_002
crossref_primary_10_1109_ACCESS_2019_2929864
crossref_primary_10_1007_s12204_016_1725_0
crossref_primary_10_1109_TSA_2003_816063
crossref_primary_10_1016_j_sigpro_2007_03_010
crossref_primary_10_1016_j_apacoust_2022_109005
crossref_primary_10_1109_ACCESS_2017_2699782
crossref_primary_10_1016_j_specom_2019_11_001
crossref_primary_10_1007_s10772_019_09658_x
crossref_primary_10_1007_s11668_014_9903_6
crossref_primary_10_1016_j_imavis_2004_04_002
crossref_primary_10_1016_j_knosys_2022_108580
crossref_primary_10_1097_WNR_0000000000000422
crossref_primary_10_1016_j_sigpro_2003_10_004
crossref_primary_10_1049_iet_spr_2019_0226
crossref_primary_10_1049_el_20020990
crossref_primary_10_1109_TCSII_2005_850448
crossref_primary_10_1016_j_eswa_2022_116778
crossref_primary_10_1109_TCE_2021_3056421
crossref_primary_10_1049_iet_spr_2013_0425
crossref_primary_10_1049_ip_vis_20000323
Cites_doi 10.1109/89.397090
10.1109/TCOM.1978.1094144
10.1109/T-C.1974.223784
10.1109/TASSP.1984.1164453
10.1109/ICASSP.1979.1170788
10.1109/TASSP.1979.1163209
10.1109/ICASSP.1996.543199
10.1016/0165-1684(85)90002-7
10.1109/TASSP.1977.1162974
10.1109/TASSP.1980.1163353
10.1109/TASSP.1976.1162870
10.1109/89.279283
10.1109/TASSP.1980.1163394
10.21437/ICSLP.1990-295
10.1109/TCOM.1977.1093941
ContentType Journal Article
Copyright 1998 Elsevier Science B.V.
1998 INIST-CNRS
Copyright_xml – notice: 1998 Elsevier Science B.V.
– notice: 1998 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7T9
8BM
DOI 10.1016/S0167-6393(98)00019-3
DatabaseName Pascal-Francis
CrossRef
Linguistics and Language Behavior Abstracts (LLBA)
ComDisDome
DatabaseTitle CrossRef
Linguistics and Language Behavior Abstracts (LLBA)
ComDisDome
DatabaseTitleList Linguistics and Language Behavior Abstracts (LLBA)

ComDisDome
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Social Welfare & Social Work
Psychology
Applied Sciences
EISSN 1872-7182
EndPage 257
ExternalDocumentID 10_1016_S0167_6393_98_00019_3
2389982
S0167639398000193
GroupedDBID --K
--M
-~X
.DC
.~1
07C
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
9JO
AACTN
AADFP
AAEDT
AAEDW
AAFJI
AAGJA
AAGJQ
AAGUQ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABIVO
ABJNI
ABMAC
ABMMH
ABOYX
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACXNI
ACZNC
ADBBV
ADEZE
ADIYS
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFYLN
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OKEIE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSO
SST
SSV
SSY
SSZ
T5K
WUQ
XFK
XJE
~G-
08R
ABPIF
ABPTK
IQODW
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7T9
8BM
ABDPE
ID FETCH-LOGICAL-c427t-19fd891c906ab78c64f053ffa71849adf866b386f7f6de023a13edfdc29b1b6d3
IEDL.DBID .~1
ISSN 0167-6393
IngestDate Fri Oct 25 23:26:50 EDT 2024
Fri Oct 25 00:30:25 EDT 2024
Thu Sep 26 15:18:04 EDT 2024
Sun Oct 29 17:08:27 EDT 2023
Fri Feb 23 02:30:15 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Speech enhancement
Noise removal
MMSE amplitude estimation
Discrete cosine transform (DCT)
Spectral data
Speech analysis
Filtering
Gaussian noise
Noise reduction
Speech recognition
White noise
Speech processing
Cosine transform
Mean square error
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-19fd891c906ab78c64f053ffa71849adf866b386f7f6de023a13edfdc29b1b6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 58365930
PQPubID 23478
PageCount 9
ParticipantIDs proquest_miscellaneous_85339120
proquest_miscellaneous_58365930
crossref_primary_10_1016_S0167_6393_98_00019_3
pascalfrancis_primary_2389982
elsevier_sciencedirect_doi_10_1016_S0167_6393_98_00019_3
PublicationCentury 1900
PublicationDate 1998-06-01
PublicationDateYYYYMMDD 1998-06-01
PublicationDate_xml – month: 06
  year: 1998
  text: 1998-06-01
  day: 01
PublicationDecade 1990
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Speech communication
PublicationYear 1998
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References S.F. Boll, Suppression of acoustic noise in speech using spectral subtraction, IEEE Trans. Acoust. Speech Signal Process. ASSP-27 (1979) 113–120
R.J. McAulay, M.L. Malpass, Speech enhancement using a soft-decision noise suppression filter, IEEE Trans. Acoust. Speech Signal Process. ASSP-28 (1980) 137–145
E. Munday, Noise reduction using frequency-domain non-linear processing for the enhancement of speech, Br. Telecom. Technol. J. 6 (2) (1988) 71–83
O. Cappe, Elimination of the musical noise phenomenon with the Ephraim and Malah noise suppressor, IEEE Trans. Speech and Audio Process. 2 (2) (1994) 345–349
P. Scalart, J. Vieira Filho, Speech enhancement based on a a priori signal to noise estimation, Proceedings ICASSP, Vol. 2, 1996, pp. 629–632
R. Zelinski, P. Noll, Adaptive transform coding of speech signals, IEEE Trans. Acoust. Speech and Signal Process. 25 (1997) 299–309
M. Berouti, R. Schwartz, J. Makhoul, Enhancement of speech corrupted by acoustic noise, IEEE Proc. ICASSP, Vol. 1, April 1979, pp. 208–211
R.E. Crochiere, A weighted overlap-add method of short time Fourier analysis/synthesis, IEEE Trans. Acoust. Speech Signal Process. ASSP-28 (1980) 99–102
W.H. Chen, C.H. Smith, S.C. Fralick, A fast computational algorithm for the discrete cosine transform, IEEE Trans. Commun. COM-25 (1977) 1004–1009
M.J. Narasimha, A.M. Peterson, On the computation of the discrete cosine transform, IEEE Trans. Commun. COM-26 (6) (1978) 934–936
B.H. Juang, Recent developments in speech recognition under adverse conditions, Proceedings of the International Conference on Spoken Language Process, November 1990, Kobe, Japan, pp. 1113–1116
Vary (BIB12) 1985; 8
Ephraim, Malah (BIB10) 1995; 3
Y. Ephraim, D. Malah, Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator, IEEE Trans. Acoust. Speech Signal Process. ASSP-32 (1984) 1109–1121
M.R. Sambur, N.S. Jayant, LPC analysis/synthesis from speech inputs containing white noise or additive white noise, IEEE Trans. Acoust. Speech Signal Process. ASSP-24 (1976) 484–494
N. Ahmed, T. Natarajan, K.R. Rao, Discrete cosine transform, IEEE Trans. Comput. C-23 (1974) 90–93
Ephraim (10.1016/S0167-6393(98)00019-3_BIB10) 1995; 3
10.1016/S0167-6393(98)00019-3_BIB13
10.1016/S0167-6393(98)00019-3_BIB11
10.1016/S0167-6393(98)00019-3_BIB4
10.1016/S0167-6393(98)00019-3_BIB3
10.1016/S0167-6393(98)00019-3_BIB2
10.1016/S0167-6393(98)00019-3_BIB1
10.1016/S0167-6393(98)00019-3_BIB8
10.1016/S0167-6393(98)00019-3_BIB7
10.1016/S0167-6393(98)00019-3_BIB6
10.1016/S0167-6393(98)00019-3_BIB5
10.1016/S0167-6393(98)00019-3_BIB9
Vary (10.1016/S0167-6393(98)00019-3_BIB12) 1985; 8
10.1016/S0167-6393(98)00019-3_BIB16
10.1016/S0167-6393(98)00019-3_BIB14
10.1016/S0167-6393(98)00019-3_BIB15
References_xml – volume: 3
  start-page: 251
  year: 1995
  end-page: 266
  ident: BIB10
  article-title: A signal subspace approach for speech enhancement
  publication-title: IEEE Trans. Speech and Audio Process.
  contributor:
    fullname: Malah
– volume: 8
  start-page: 387
  year: 1985
  end-page: 400
  ident: BIB12
  article-title: Noise suppression by spectral magnitude estimation – Mechanism and theoretical limits
  publication-title: Signal Processing
  contributor:
    fullname: Vary
– volume: 3
  start-page: 251
  year: 1995
  ident: 10.1016/S0167-6393(98)00019-3_BIB10
  article-title: A signal subspace approach for speech enhancement
  publication-title: IEEE Trans. Speech and Audio Process.
  doi: 10.1109/89.397090
  contributor:
    fullname: Ephraim
– ident: 10.1016/S0167-6393(98)00019-3_BIB14
  doi: 10.1109/TCOM.1978.1094144
– ident: 10.1016/S0167-6393(98)00019-3_BIB7
– ident: 10.1016/S0167-6393(98)00019-3_BIB8
  doi: 10.1109/T-C.1974.223784
– ident: 10.1016/S0167-6393(98)00019-3_BIB3
  doi: 10.1109/TASSP.1984.1164453
– ident: 10.1016/S0167-6393(98)00019-3_BIB6
  doi: 10.1109/ICASSP.1979.1170788
– ident: 10.1016/S0167-6393(98)00019-3_BIB4
  doi: 10.1109/TASSP.1979.1163209
– ident: 10.1016/S0167-6393(98)00019-3_BIB15
  doi: 10.1109/ICASSP.1996.543199
– volume: 8
  start-page: 387
  year: 1985
  ident: 10.1016/S0167-6393(98)00019-3_BIB12
  article-title: Noise suppression by spectral magnitude estimation – Mechanism and theoretical limits
  publication-title: Signal Processing
  doi: 10.1016/0165-1684(85)90002-7
  contributor:
    fullname: Vary
– ident: 10.1016/S0167-6393(98)00019-3_BIB9
  doi: 10.1109/TASSP.1977.1162974
– ident: 10.1016/S0167-6393(98)00019-3_BIB11
  doi: 10.1109/TASSP.1980.1163353
– ident: 10.1016/S0167-6393(98)00019-3_BIB1
  doi: 10.1109/TASSP.1976.1162870
– ident: 10.1016/S0167-6393(98)00019-3_BIB16
  doi: 10.1109/89.279283
– ident: 10.1016/S0167-6393(98)00019-3_BIB5
  doi: 10.1109/TASSP.1980.1163394
– ident: 10.1016/S0167-6393(98)00019-3_BIB2
  doi: 10.21437/ICSLP.1990-295
– ident: 10.1016/S0167-6393(98)00019-3_BIB13
  doi: 10.1109/TCOM.1977.1093941
SSID ssj0004882
Score 1.8983833
Snippet This paper illustrates the advantages of using the Discrete Cosine Transform (DCT) as compared to the standard Discrete Fourier Transform (DFT) for the purpose...
The advantage of using the discrete cosine transform (DCT) over the standard discrete Fourier transform (DFT) for the purpose of removing noise embedded in a...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 249
SubjectTerms Applied sciences
Discrete cosine transform (DCT)
Exact sciences and technology
Information, signal and communications theory
MMSE amplitude estimation
Noise removal
Signal processing
Speech enhancement
Speech processing
Telecommunications and information theory
Title Noisy speech enhancement using discrete cosine transform
URI https://dx.doi.org/10.1016/S0167-6393(98)00019-3
https://search.proquest.com/docview/58365930
https://search.proquest.com/docview/85339120
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6h7WWlqqJbaLc86gNCcAibxI5jHxEqWijsBRDcrDi22RVVstosBy797fXksRQhhNSr5TijmfHMaPzNDMAeiwS3EmGDNA0DZk0SZIyxQMbaeu8caVO_4F9O-PiGnd8ld2tw0tXCIKyytf2NTa-tdbsyark5ms9moysE0Hv_SqWoAxXs-InNtrxOH_15hnl4BY27_t64-7mKpzmhXjyQ4rA-JKBv-aeP86zyXHPNuItXlrt2R6fr8KmNI8lxQ-pnWLPFAL5etNnHiuyTi1XD5GoA_ZWhexrAdlOTS27tb5ctrN_bLZSLhy8gJuWseiLV3Np8SmwxRcXAJCJBkPw9wULehY-1SV4iaJ4su9h3A25Of16fjIN2wEKQszhdBpF0RsgolyHPdCpyzpy_k85l3mExmRknONdUcJc6bqz37llErXEmj6WONDd0E3pFWdhvQHhuwyQPjcYL7jjT0lERa5x3lXKZxEM46tiq5k0fDfUPwIynCuWgpKhfw6WiQxAd89ULhVDe1r_36c4LYa1-GGMzQeFp-dEJT_nLhC8kWWHLx0olgvJE0vDtHT66oTKKw-__T94W9JvCRkzlbENvuXi0Oz6yWerdWnV34cPx2a_x5C9dPPKM
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HBREdH0_cxDRQ922SdPkKKKsuu5FRW-haRJ3Udplux68-NtN-lgVEcFrmKZh3iTfzAAckIBRzR1sEMe-R7SKvIQQ4vFQahudA6nKF_ybHu3ck6vH6HEKzppaGAerrH1_5dNLb12vtGtutoeDQfvWAehtfMWclYkKnoZZ4vpnWaU-ef_EeVgNDZsG3478s4yn2qJcPOLsuNzFw78FqIVhUli2mWrexQ_XXcajiyVYrBNJdFqddRmmdNaC9W59_VigQ9SddEwuWjA_8XRvLdipinLRg34xyUhb2mYhHz2vAOvlg-INFUOt0z7SWd9phrtFRA4l_4RcJe_IJtsozR1qHo2b5HcV7i_O7846Xj1hwUtJGI-9gBvFeJBynyYyZiklxhqlMYmNWIQnyjBKJWbUxIYqbcN7EmCtjEpDLgNJFV6DmSzP9AYgmmo_Sn0lnYUbSiQ3mIXSDbyKKY_CTThp2CqGVSMN8QVhRmPh5CA4K5_DucCbwBrmi28aIayz_-vT3W_CmvwwdN0EmT3LfiM8Ya3JPZEkmc5fCxExTCOO_d8pbHqDeRD6W_8_3j7Mde5uuqJ72bvehvmqytHd6-zAzHj0qndtmjOWe6UafwAj2PQu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noisy+speech+enhancement+using+discrete+cosine+transform&rft.jtitle=Speech+communication&rft.au=ING+YANN+SOON&rft.au=SOO+NGEE+KOH&rft.au=CHAI+KIAT+YEO&rft.date=1998-06-01&rft.pub=Elsevier&rft.issn=0167-6393&rft.eissn=1872-7182&rft.volume=24&rft.issue=3&rft.spage=249&rft.epage=257&rft_id=info:doi/10.1016%2Fs0167-6393%2898%2900019-3&rft.externalDBID=n%2Fa&rft.externalDocID=2389982
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6393&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6393&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6393&client=summon