Influence of Lithium Diffusion into Copper Current Collectors on Lithium Electrodeposition in Anode‐Free Lithium‐Metal Batteries

The development of “anode‐free” lithium‐metal batteries with high energy densities is, at present, mainly limited by the poor control of the nucleation of lithium directly on the copper current collector, especially in conventional carbonate electrolytes. It is therefore essential to improve the und...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 43; pp. e2306829 - n/a
Main Authors Huang, Yu‐Kai, Chen, Heyin, Nyholm, Leif
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of “anode‐free” lithium‐metal batteries with high energy densities is, at present, mainly limited by the poor control of the nucleation of lithium directly on the copper current collector, especially in conventional carbonate electrolytes. It is therefore essential to improve the understanding of the lithium nucleation process and its interactions with the copper substrate. In this study, it is shown that diffusion of lithium into the copper substrate, most likely via the grain boundaries, can significantly influence the nucleation process. Such diffusion makes it more difficult to obtain a great number of homogeneously distributed lithium nuclei on the copper surface and thus leads to inhomogeneous electrodeposition. It is, however, demonstrated that the nucleation of lithium on copper is significantly improved if an initial chemical prelithiation of the copper surface is performed. This prelithiation saturates the copper surface with lithium and hence decreases the influence of lithium diffusion via the grain boundaries. In this way, the lithium nucleation can be made to take place more homogenously, especially when a short potentiostatic nucleation pulse that can generate a large number of nuclei on the surface of the copper substrate is applied. Diffusion of lithium into the copper substrate, most likely via the grain boundaries, can significantly influence the nucleation process by making it more difficult to obtain a great number of homogeneously‐distributed lithium nuclei on the copper surface and thus leads to inhomogeneous electrodeposition. This problem can be mitigated by an initial chemical prelithiation of the copper surface.
AbstractList The development of “anode‐free” lithium‐metal batteries with high energy densities is, at present, mainly limited by the poor control of the nucleation of lithium directly on the copper current collector, especially in conventional carbonate electrolytes. It is therefore essential to improve the understanding of the lithium nucleation process and its interactions with the copper substrate. In this study, it is shown that diffusion of lithium into the copper substrate, most likely via the grain boundaries, can significantly influence the nucleation process. Such diffusion makes it more difficult to obtain a great number of homogeneously distributed lithium nuclei on the copper surface and thus leads to inhomogeneous electrodeposition. It is, however, demonstrated that the nucleation of lithium on copper is significantly improved if an initial chemical prelithiation of the copper surface is performed. This prelithiation saturates the copper surface with lithium and hence decreases the influence of lithium diffusion via the grain boundaries. In this way, the lithium nucleation can be made to take place more homogenously, especially when a short potentiostatic nucleation pulse that can generate a large number of nuclei on the surface of the copper substrate is applied.
The development of “anode‐free” lithium‐metal batteries with high energy densities is, at present, mainly limited by the poor control of the nucleation of lithium directly on the copper current collector, especially in conventional carbonate electrolytes. It is therefore essential to improve the understanding of the lithium nucleation process and its interactions with the copper substrate. In this study, it is shown that diffusion of lithium into the copper substrate, most likely via the grain boundaries, can significantly influence the nucleation process. Such diffusion makes it more difficult to obtain a great number of homogeneously distributed lithium nuclei on the copper surface and thus leads to inhomogeneous electrodeposition. It is, however, demonstrated that the nucleation of lithium on copper is significantly improved if an initial chemical prelithiation of the copper surface is performed. This prelithiation saturates the copper surface with lithium and hence decreases the influence of lithium diffusion via the grain boundaries. In this way, the lithium nucleation can be made to take place more homogenously, especially when a short potentiostatic nucleation pulse that can generate a large number of nuclei on the surface of the copper substrate is applied. Diffusion of lithium into the copper substrate, most likely via the grain boundaries, can significantly influence the nucleation process by making it more difficult to obtain a great number of homogeneously‐distributed lithium nuclei on the copper surface and thus leads to inhomogeneous electrodeposition. This problem can be mitigated by an initial chemical prelithiation of the copper surface.
The development of "anode-free" lithium-metal batteries with high energy densities is, at present, mainly limited by the poor control of the nucleation of lithium directly on the copper current collector, especially in conventional carbonate electrolytes. It is therefore essential to improve the understanding of the lithium nucleation process and its interactions with the copper substrate. In this study, it is shown that diffusion of lithium into the copper substrate, most likely via the grain boundaries, can significantly influence the nucleation process. Such diffusion makes it more difficult to obtain a great number of homogeneously distributed lithium nuclei on the copper surface and thus leads to inhomogeneous electrodeposition. It is, however, demonstrated that the nucleation of lithium on copper is significantly improved if an initial chemical prelithiation of the copper surface is performed. This prelithiation saturates the copper surface with lithium and hence decreases the influence of lithium diffusion via the grain boundaries. In this way, the lithium nucleation can be made to take place more homogenously, especially when a short potentiostatic nucleation pulse that can generate a large number of nuclei on the surface of the copper substrate is applied.The development of "anode-free" lithium-metal batteries with high energy densities is, at present, mainly limited by the poor control of the nucleation of lithium directly on the copper current collector, especially in conventional carbonate electrolytes. It is therefore essential to improve the understanding of the lithium nucleation process and its interactions with the copper substrate. In this study, it is shown that diffusion of lithium into the copper substrate, most likely via the grain boundaries, can significantly influence the nucleation process. Such diffusion makes it more difficult to obtain a great number of homogeneously distributed lithium nuclei on the copper surface and thus leads to inhomogeneous electrodeposition. It is, however, demonstrated that the nucleation of lithium on copper is significantly improved if an initial chemical prelithiation of the copper surface is performed. This prelithiation saturates the copper surface with lithium and hence decreases the influence of lithium diffusion via the grain boundaries. In this way, the lithium nucleation can be made to take place more homogenously, especially when a short potentiostatic nucleation pulse that can generate a large number of nuclei on the surface of the copper substrate is applied.
Author Nyholm, Leif
Huang, Yu‐Kai
Chen, Heyin
Author_xml – sequence: 1
  givenname: Yu‐Kai
  orcidid: 0000-0002-2049-7339
  surname: Huang
  fullname: Huang, Yu‐Kai
  organization: Uppsala University
– sequence: 2
  givenname: Heyin
  surname: Chen
  fullname: Chen, Heyin
  organization: Uppsala University
– sequence: 3
  givenname: Leif
  orcidid: 0000-0001-9292-016X
  surname: Nyholm
  fullname: Nyholm, Leif
  email: leif.nyholm@kemi.uu.se
  organization: Uppsala University
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-516166$$DView record from Swedish Publication Index
BookMark eNqFkbtqHDEUhkVwILaTNvVAmhTZtS4zmtlys7ZjwxgXubRCqzlKZLTSRBeMuxR5AD-jnyQaJuuAIbjSOYfvE9J_jtCB8w4QekvwkmBMT-LO2iXFlGHe0dULdEg4YYupPnisCX6FjmK8wZgRWreH6Pel0zaDU1B5XfUm_TB5V50arXM03lXGJV9t_DhCqDY5BHCptNaCSj7EqhB752yaBT_A6KNJs1utXRk8_Lo_DwB7srRXkKStPsqUIBiIr9FLLW2EN3_PY_T1_OzL5mLRX3-63Kz7happu1q0Ta1J3QDgWjHCOB5Up4dBDQpkKZqmHRQHxRVuObQMuGy2W7VljFHdsUGzY_Rhvjfewpi3YgxmJ8Od8NKIU_NtLXz4LnIWTUmL84K_n_Ex-J8ZYhI7ExVYKx34HAXtOOakwbgt6Lsn6I3PwZXPFKqk3nFad4WqZ0oFH2MALZRJcsoqBWmsIFhMmxTTJsXjJou2fKLtH_5fYTULt8bC3TO0-HzV9__cPyHcuLY
CitedBy_id crossref_primary_10_1002_adfm_202424022
crossref_primary_10_1039_D3EE04235A
crossref_primary_10_1021_acs_iecr_3c04442
crossref_primary_10_1016_j_ensm_2025_104100
crossref_primary_10_1016_j_jcis_2024_10_023
crossref_primary_10_1016_j_jpowsour_2024_235098
crossref_primary_10_1016_j_est_2024_111666
crossref_primary_10_3389_fbael_2023_1292622
crossref_primary_10_1016_j_est_2024_113683
crossref_primary_10_1016_j_jpowsour_2024_234941
crossref_primary_10_1002_celc_202300739
crossref_primary_10_1002_cphc_202400007
crossref_primary_10_1039_D4TA02003K
Cites_doi 10.1039/D1CC03676A
10.1149/1945-7111/ab9b20
10.1016/j.ensm.2020.07.004
10.1021/jacs.0c10258
10.1039/C7EE00244K
10.1021/acs.chemmater.9b04385
10.1016/j.jpowsour.2021.229504
10.1039/C9CC04415A
10.1149/1.1409400
10.1016/j.mattod.2022.01.015
10.1038/nenergy.2016.10
10.1038/ncomms7362
10.1021/jacs.9b10195
10.1002/aenm.202003674
10.1021/acs.analchem.8b04924
10.1021/acsenergylett.9b02306
10.1039/D0TA01044H
10.1016/j.physleta.2005.01.041
10.1002/adfm.202006950
10.1002/adma.202108827
10.1039/C8NR06980H
10.1038/s41560-019-0428-9
10.1002/adfm.201602353
10.1002/ange.201807034
10.1016/j.mtener.2022.101060
10.1038/s41560-019-0413-3
10.1038/s41467-018-04394-3
10.1126/sciadv.1701246
10.1016/j.nanoen.2019.02.048
10.1002/anie.201812523
10.1002/aenm.201702097
10.1016/j.electacta.2011.01.004
10.1038/s41560-020-0648-z
10.1002/anie.201702099
10.1021/acs.nanolett.6b04755
10.1016/j.electacta.2007.11.054
10.1002/aenm.202000804
10.1016/j.jechem.2020.11.034
10.1149/2.0661914jes
10.1186/s42649-022-00071-4
10.1002/aenm.201903339
10.1002/adfm.201910249
10.1007/s11669-010-9840-3
10.1002/anie.202012005
10.1002/anie.201905251
10.1016/j.mattod.2018.08.003
10.1134/S1023193508060049
10.1038/ncomms8436
10.1039/D0TA06141G
10.1002/aenm.201800266
10.1088/1674-1056/ab943c
10.1038/s41560-020-0668-8
10.1002/aesr.202000110
10.1002/adfm.201904629
10.1073/pnas.1208638109
10.1002/slct.201800281
10.1021/jp309321w
10.1007/s12274-019-2567-7
10.1021/acsnano.8b08012
10.1039/C8EE00364E
10.1021/acs.jpclett.9b02014
10.1021/acs.jpcc.1c03877
ContentType Journal Article
Copyright 2023 The Authors. Small published by Wiley‐VCH GmbH
2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 The Authors. Small published by Wiley-VCH GmbH.
Copyright_xml – notice: 2023 The Authors. Small published by Wiley‐VCH GmbH
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 The Authors. Small published by Wiley-VCH GmbH.
DBID 24P
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOI 10.1002/smll.202306829
DatabaseName Wiley Online Library Open Access
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID oai_DiVA_org_uu_516166
10_1002_smll_202306829
SMLL202306829
Genre article
GrantInformation_xml – fundername: Swedish Research Council
  funderid: VR‐2019‐04276
– fundername: Ångström Advanced Battery Center
– fundername: STandUp for energy
GroupedDBID ---
05W
0R~
123
1L6
1OC
24P
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ID FETCH-LOGICAL-c4279-754f145ee04c31360dc8fddcdcea8fd557dc6ec6c076e73e6a5bbcb3332f83df3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Aug 21 06:57:13 EDT 2025
Fri Jul 11 08:42:58 EDT 2025
Sun Jul 13 04:35:15 EDT 2025
Thu Apr 24 23:15:50 EDT 2025
Tue Jul 01 02:54:42 EDT 2025
Wed Jan 22 16:14:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4279-754f145ee04c31360dc8fddcdcea8fd557dc6ec6c076e73e6a5bbcb3332f83df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2049-7339
0000-0001-9292-016X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202306829
PQID 2881086248
PQPubID 1046358
PageCount 11
ParticipantIDs swepub_primary_oai_DiVA_org_uu_516166
proquest_miscellaneous_2860615007
proquest_journals_2881086248
crossref_citationtrail_10_1002_smll_202306829
crossref_primary_10_1002_smll_202306829
wiley_primary_10_1002_smll_202306829_SMLL202306829
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 91
2017; 3
2019; 11
2019; 55
2021; 125
2019; 10
2019; 13
2019; 59
2019; 58
2005; 337
2020; 13
2011; 56
2020; 167
2020; 10
2019; 166
2001; 148
2022; 28
2020; 8
2018; 130
2018; 9
2020; 5
2018; 8
2018; 3
2021; 31
1990
2019; 29
2015; 6
2019; 4
2021; 2
2020; 142
1998
2011; 32
2020; 32
2008; 53
2019; 141
2018; 21
2012; 109
2021; 57
2021; 59
2016; 1
2021; 11
2022
2020; 30
2017; 17
2017; 10
2017; 56
2021; 490
2022; 52
2022; 53
2008; 44
2018; 11
2021; 60
2012; 116
2016; 26
2020; 29
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
Paunovic M. (e_1_2_8_29_1) 1998
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
Greff R. (e_1_2_8_28_1) 1990
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 2600
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 59
  start-page: 666
  year: 2021
  publication-title: J Energy Chem.
– volume: 6
  start-page: 6362
  year: 2015
  publication-title: Nat. Commun.
– volume: 60
  start-page: 3661
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– year: 1990
– year: 1998
– volume: 116
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– year: 2022
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 45
  year: 2020
  publication-title: Nano Res.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 91
  start-page: 2296
  year: 2019
  publication-title: Anal. Chem.
– volume: 148
  start-page: G640
  year: 2001
  publication-title: J. Electrochem. Soc.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 130
  year: 2018
  publication-title: Angew. Chem.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 59
  start-page: 500
  year: 2019
  publication-title: Nano Energy
– volume: 55
  year: 2019
  publication-title: Chem. Commun.
– volume: 10
  start-page: 5206
  year: 2019
  publication-title: J. Phys. Chem. Lett.
– volume: 4
  start-page: 683
  year: 2019
  publication-title: Nat. Energy
– volume: 28
  year: 2022
  publication-title: Mater. Today Energy
– volume: 17
  start-page: 1132
  year: 2017
  publication-title: Nano Lett.
– volume: 3
  start-page: 2311
  year: 2018
  publication-title: ChemistrySelect
– volume: 53
  start-page: 3313
  year: 2008
  publication-title: Electrochim. Acta
– volume: 109
  year: 2012
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 693
  year: 2020
  publication-title: Nat. Energy
– volume: 32
  start-page: 2803
  year: 2020
  publication-title: Chem. Mater.
– volume: 5
  start-page: 561
  year: 2020
  publication-title: Nat. Energy
– volume: 32
  start-page: 172
  year: 2011
  publication-title: J. Phase Equilib. Diffus.
– volume: 44
  start-page: 652
  year: 2008
  publication-title: Russ. J. Electrochem.
– volume: 2
  year: 2021
  publication-title: Adv. Energy Sustainability Res.
– volume: 490
  year: 2021
  publication-title: J. Power Sources
– volume: 52
  start-page: 2
  year: 2022
  publication-title: Appl. Microsc.
– volume: 29
  year: 2020
  publication-title: Chin. Phys. B
– volume: 53
  start-page: 173
  year: 2022
  publication-title: Mater. Today
– volume: 56
  start-page: 7764
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 7436
  year: 2015
  publication-title: Nat. Commun.
– volume: 10
  start-page: 1350
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 125
  year: 2021
  publication-title: J. Phys. Chem. C
– volume: 13
  start-page: 737
  year: 2019
  publication-title: ACS Nano
– volume: 9
  start-page: 2152
  year: 2018
  publication-title: Nat. Commun.
– volume: 56
  start-page: 3006
  year: 2011
  publication-title: Electrochim. Acta
– volume: 26
  start-page: 7094
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 2952
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 32
  start-page: 386
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 337
  start-page: 247
  year: 2005
  publication-title: Phys. Lett. A
– volume: 21
  start-page: 1010
  year: 2018
  publication-title: Mater. Today
– volume: 11
  start-page: 2710
  year: 2019
  publication-title: Nanoscale
– volume: 8
  start-page: 6229
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 58
  start-page: 3092
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 57
  start-page: 9232
  year: 2021
  publication-title: Chem. Commun.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 664
  year: 2019
  publication-title: Nat. Energy
– volume: 166
  year: 2019
  publication-title: J. Electrochem. Soc.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– ident: e_1_2_8_14_1
  doi: 10.1039/D1CC03676A
– ident: e_1_2_8_51_1
  doi: 10.1149/1945-7111/ab9b20
– ident: e_1_2_8_4_1
  doi: 10.1016/j.ensm.2020.07.004
– ident: e_1_2_8_43_1
  doi: 10.1021/jacs.0c10258
– ident: e_1_2_8_48_1
  doi: 10.1039/C7EE00244K
– ident: e_1_2_8_36_1
  doi: 10.1021/acs.chemmater.9b04385
– ident: e_1_2_8_12_1
  doi: 10.1016/j.jpowsour.2021.229504
– ident: e_1_2_8_27_1
  doi: 10.1039/C9CC04415A
– ident: e_1_2_8_64_1
  doi: 10.1149/1.1409400
– ident: e_1_2_8_6_1
  doi: 10.1016/j.mattod.2022.01.015
– ident: e_1_2_8_23_1
  doi: 10.1038/nenergy.2016.10
– ident: e_1_2_8_11_1
  doi: 10.1038/ncomms7362
– ident: e_1_2_8_38_1
  doi: 10.1021/jacs.9b10195
– ident: e_1_2_8_56_1
  doi: 10.1002/aenm.202003674
– ident: e_1_2_8_46_1
  doi: 10.1021/acs.analchem.8b04924
– ident: e_1_2_8_24_1
  doi: 10.1021/acsenergylett.9b02306
– ident: e_1_2_8_25_1
  doi: 10.1039/D0TA01044H
– ident: e_1_2_8_62_1
  doi: 10.1016/j.physleta.2005.01.041
– ident: e_1_2_8_26_1
  doi: 10.1002/adfm.202006950
– ident: e_1_2_8_52_1
  doi: 10.1002/adma.202108827
– ident: e_1_2_8_20_1
  doi: 10.1039/C8NR06980H
– ident: e_1_2_8_8_1
  doi: 10.1038/s41560-019-0428-9
– ident: e_1_2_8_10_1
  doi: 10.1002/adfm.201602353
– ident: e_1_2_8_13_1
  doi: 10.1002/ange.201807034
– ident: e_1_2_8_41_1
  doi: 10.1016/j.mtener.2022.101060
– ident: e_1_2_8_32_1
  doi: 10.1038/s41560-019-0413-3
– ident: e_1_2_8_49_1
  doi: 10.1038/s41467-018-04394-3
– ident: e_1_2_8_58_1
  doi: 10.1126/sciadv.1701246
– ident: e_1_2_8_17_1
  doi: 10.1016/j.nanoen.2019.02.048
– ident: e_1_2_8_18_1
  doi: 10.1002/anie.201812523
– ident: e_1_2_8_60_1
  doi: 10.1002/aenm.201702097
– ident: e_1_2_8_47_1
  doi: 10.1016/j.electacta.2011.01.004
– ident: e_1_2_8_37_1
  doi: 10.1038/s41560-020-0648-z
– ident: e_1_2_8_22_1
  doi: 10.1002/anie.201702099
– ident: e_1_2_8_35_1
  doi: 10.1021/acs.nanolett.6b04755
– ident: e_1_2_8_57_1
  doi: 10.1016/j.electacta.2007.11.054
– ident: e_1_2_8_2_1
  doi: 10.1002/aenm.202000804
– ident: e_1_2_8_5_1
  doi: 10.1016/j.jechem.2020.11.034
– ident: e_1_2_8_34_1
  doi: 10.1149/2.0661914jes
– ident: e_1_2_8_61_1
  doi: 10.1186/s42649-022-00071-4
– ident: e_1_2_8_21_1
  doi: 10.1002/aenm.201903339
– ident: e_1_2_8_55_1
  doi: 10.1002/adfm.201910249
– ident: e_1_2_8_53_1
  doi: 10.1007/s11669-010-9840-3
– ident: e_1_2_8_15_1
  doi: 10.1002/anie.202012005
– ident: e_1_2_8_31_1
  doi: 10.1002/anie.201905251
– ident: e_1_2_8_40_1
  doi: 10.1016/j.mattod.2018.08.003
– volume-title: Fundamentals of Electrochemical Deposition
  year: 1998
  ident: e_1_2_8_29_1
– ident: e_1_2_8_30_1
  doi: 10.1134/S1023193508060049
– ident: e_1_2_8_7_1
  doi: 10.1038/ncomms8436
– ident: e_1_2_8_39_1
  doi: 10.1039/D0TA06141G
– ident: e_1_2_8_16_1
  doi: 10.1002/aenm.201800266
– ident: e_1_2_8_63_1
  doi: 10.1088/1674-1056/ab943c
– ident: e_1_2_8_3_1
  doi: 10.1038/s41560-020-0668-8
– ident: e_1_2_8_1_1
  doi: 10.1002/aesr.202000110
– ident: e_1_2_8_33_1
  doi: 10.1002/adfm.201904629
– ident: e_1_2_8_54_1
  doi: 10.1073/pnas.1208638109
– ident: e_1_2_8_44_1
  doi: 10.1002/slct.201800281
– ident: e_1_2_8_59_1
  doi: 10.1021/jp309321w
– ident: e_1_2_8_19_1
  doi: 10.1007/s12274-019-2567-7
– volume-title: Instrumental Methods in Electrochemistry
  year: 1990
  ident: e_1_2_8_28_1
– ident: e_1_2_8_42_1
  doi: 10.1021/acsnano.8b08012
– ident: e_1_2_8_9_1
  doi: 10.1039/C8EE00364E
– ident: e_1_2_8_50_1
  doi: 10.1021/acs.jpclett.9b02014
– ident: e_1_2_8_45_1
  doi: 10.1021/acs.jpcc.1c03877
SSID ssj0031247
Score 2.4970706
Snippet The development of “anode‐free” lithium‐metal batteries with high energy densities is, at present, mainly limited by the poor control of the nucleation of...
The development of "anode-free" lithium-metal batteries with high energy densities is, at present, mainly limited by the poor control of the nucleation of...
The development of “anode-free” lithium-metal batteries with high energy densities is, at present, mainly limited by the poor control of the nucleation of...
SourceID swepub
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2306829
SubjectTerms anode‐free lithium‐metal batteries
Copper
Electrodeposition
Electrolytes
Grain boundaries
Lithium
lithium diffusion
lithium electrodeposition
Nanotechnology
Nucleation
Nuclei
Substrates
Title Influence of Lithium Diffusion into Copper Current Collectors on Lithium Electrodeposition in Anode‐Free Lithium‐Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202306829
https://www.proquest.com/docview/2881086248
https://www.proquest.com/docview/2860615007
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-516166
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagJzjwRgRK5UogTm5TP5Pjqu2qrXYRAop6s-JXiWiT1W5y4cSBH8Bv5Jdgx0m6i4SQ4BYnM4pjz2Rm7PE3ALzi1BgfyyqUK0YRtcqh3IsNcszYTFN1IEwIFOdv-ck5PbtgF2un-CM-xLjgFjSj-18HBS_Uav8GNHR1fRW2DoILneFwgi8kbAWv6P2IH0W88eqqq3ibhQLw1oDamOL9TfZNq7Tmakb40E3PtTM90_ugGDodM06-7LWN2tNff8Nz_J-vegDu9X4pnERBeghu2eoRuLuGVvgYfD8dCprA2sFZ2Xwu22t4VDrXhiU3WFZNDQ_rxcIuYQ_7BLt1ia6iD_QUA89xrL1j7JAy5nnhpPI3fn77MV1aO1D65tz68ABGGFAf1T8B59Pjj4cnqC_igDTFIkeCUXdAmbUp1cRPUWp05ozRRtvCXzAmjOZWc50KbgWxvGBKaUUIwS4jxpGnYKuqK_sMQKWcYzlmmqjch4Uuw0UqDC1YrrgQpEgAGiZR6h7hPBTauJIRmxnLMLpyHN0EvBnpFxHb44-U24NMyF7HVxJnWShThWmWgN3xsdfOsOVSVLZuAw3vIPdTkYDXUZbGVwVg76Py00TWy0vZtpJ5MeU8AbiTj7_0SH6Yz2Zj6_m_ML0Ad8J1zEzcBlvNsrUvvYfVqB1wG9N3O50u_QIewiR4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHIAD76qBAkYCcUqb9TM5rrpdbSHbA7SImxW_IGqbrLbJhRMHfgC_kV-CHSehi4SQ4BYnM4rjzGQennwDwEtGtHaxrIwzSUlMjLRx5sQmtlSbVBE54doHistjtjglbz7SoZrQ_wsT8CHGhJvXjO577RXcJ6T3f6GGXl6c-70D70OnKLsObvi23h4-f_ZuRJDCznx1_VWc1Yo99NaA25ig_U3-Tbt0xdkMAKKbvmtnfOZ3gRymHWpOzvbaRu6pL78hOv7Xc90Dd3rXFE6DLN0H10z1ANy-Alj4EHw7GnqawNrCvGw-l-0FnJXWtj7rBsuqqeFBvVqZNeyRn2CXmuia-kBHMfAchvY72gxVY44XTit34sfX7_O1MQOlGy6NixBgQAJ1gf0jcDo_PDlYxH0fh1gRxLOYU2InhBqTEIUnmCVapVZrpZUp3AGlXCtmFFMJZ4ZjwwoqpZIYY2RTrC3eBltVXZkdAKW0lmaIKiwzFxnaFBUJ16SgmWSc4yIC8fAWhepBzn2vjXMR4JmR8KsrxtWNwOuRfhXgPf5IuTsIhejV_FKgNPWdqhBJI_BivOwU1O-6FJWpW0_DOtT9hEfgVRCm8VYe23tWfpiKev1JtK2gTk4ZiwDqBOQvMxLvl3k-jh7_C9NzcHNxssxFfnT89gm45c-HQsVdsNWsW_PUOVyNfNap1E9htie9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRAcEE8RKGAkEKeoWT-T46rbVQu7VSUo6s2KXyVSm6y2mzsHfgC_kV-CHSdh94CQuMXOjBJlZjwPO98AvOPUGJ_LqrRQjKbUKpcWXm1Sx4zNNVUTYUKiuDzlx-f04wW72PqLP-JDjAW3YBndeh0MfGXcwR_Q0Jvrq7B1EELoHBe34U7Y8QuHujA9G9Zi4r1X117FO600IG8NsI0ZPtjl33VLW7FmxA_dDV073zN_CA_6oBFNo5QfwS1bP4b7W1CCT-DHydBtBDUOLarNt6q9RrPKuTbUw1BVbxp02KxWdo16TCbUFQ26djvIUww8R7ExjrHDeS7Pi6a1n_j1_ed8be1A6YdL62N3FDE6fcr9FM7nR18Oj9O-w0KqKRZFKhh1E8qszagmE8Izo3NnjDbalv6CMWE0t5rrTHAriOUlU0orQgh2OTGOPIO9uqntc0BKOccKzDRRhc_ZXI7LTBhaskJxIUiZQDp8YKl7-PHQBeNKRuBkLINA5CiQBD6M9KsIvPFXyv1BXrI3wBuJ8zz0kMI0T-DteNubTtgPKWvbtIGGd3j4mUjgfZTz-KiAuj2rvk5ls76UbSuZVyHOE8CdGvzjjeTn5WIxjl78D9MbuHs2m8vFyemnl3AvTMcThPuwt1m39pWPhDbqdafsvwGABwTu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Lithium+Diffusion+into+Copper+Current+Collectors+on+Lithium+Electrodeposition+in+Anode%E2%80%90Free+Lithium%E2%80%90Metal+Batteries&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Huang%2C+Yu%E2%80%90Kai&rft.au=Chen%2C+Heyin&rft.au=Nyholm%2C+Leif&rft.date=2023-10-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=43&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202306829&rft.externalDBID=10.1002%252Fsmll.202306829&rft.externalDocID=SMLL202306829
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon