Influence of Lithium Diffusion into Copper Current Collectors on Lithium Electrodeposition in Anode‐Free Lithium‐Metal Batteries
The development of “anode‐free” lithium‐metal batteries with high energy densities is, at present, mainly limited by the poor control of the nucleation of lithium directly on the copper current collector, especially in conventional carbonate electrolytes. It is therefore essential to improve the und...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 43; pp. e2306829 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of “anode‐free” lithium‐metal batteries with high energy densities is, at present, mainly limited by the poor control of the nucleation of lithium directly on the copper current collector, especially in conventional carbonate electrolytes. It is therefore essential to improve the understanding of the lithium nucleation process and its interactions with the copper substrate. In this study, it is shown that diffusion of lithium into the copper substrate, most likely via the grain boundaries, can significantly influence the nucleation process. Such diffusion makes it more difficult to obtain a great number of homogeneously distributed lithium nuclei on the copper surface and thus leads to inhomogeneous electrodeposition. It is, however, demonstrated that the nucleation of lithium on copper is significantly improved if an initial chemical prelithiation of the copper surface is performed. This prelithiation saturates the copper surface with lithium and hence decreases the influence of lithium diffusion via the grain boundaries. In this way, the lithium nucleation can be made to take place more homogenously, especially when a short potentiostatic nucleation pulse that can generate a large number of nuclei on the surface of the copper substrate is applied.
Diffusion of lithium into the copper substrate, most likely via the grain boundaries, can significantly influence the nucleation process by making it more difficult to obtain a great number of homogeneously‐distributed lithium nuclei on the copper surface and thus leads to inhomogeneous electrodeposition. This problem can be mitigated by an initial chemical prelithiation of the copper surface. |
---|---|
AbstractList | The development of “anode‐free” lithium‐metal batteries with high energy densities is, at present, mainly limited by the poor control of the nucleation of lithium directly on the copper current collector, especially in conventional carbonate electrolytes. It is therefore essential to improve the understanding of the lithium nucleation process and its interactions with the copper substrate. In this study, it is shown that diffusion of lithium into the copper substrate, most likely via the grain boundaries, can significantly influence the nucleation process. Such diffusion makes it more difficult to obtain a great number of homogeneously distributed lithium nuclei on the copper surface and thus leads to inhomogeneous electrodeposition. It is, however, demonstrated that the nucleation of lithium on copper is significantly improved if an initial chemical prelithiation of the copper surface is performed. This prelithiation saturates the copper surface with lithium and hence decreases the influence of lithium diffusion via the grain boundaries. In this way, the lithium nucleation can be made to take place more homogenously, especially when a short potentiostatic nucleation pulse that can generate a large number of nuclei on the surface of the copper substrate is applied. The development of “anode‐free” lithium‐metal batteries with high energy densities is, at present, mainly limited by the poor control of the nucleation of lithium directly on the copper current collector, especially in conventional carbonate electrolytes. It is therefore essential to improve the understanding of the lithium nucleation process and its interactions with the copper substrate. In this study, it is shown that diffusion of lithium into the copper substrate, most likely via the grain boundaries, can significantly influence the nucleation process. Such diffusion makes it more difficult to obtain a great number of homogeneously distributed lithium nuclei on the copper surface and thus leads to inhomogeneous electrodeposition. It is, however, demonstrated that the nucleation of lithium on copper is significantly improved if an initial chemical prelithiation of the copper surface is performed. This prelithiation saturates the copper surface with lithium and hence decreases the influence of lithium diffusion via the grain boundaries. In this way, the lithium nucleation can be made to take place more homogenously, especially when a short potentiostatic nucleation pulse that can generate a large number of nuclei on the surface of the copper substrate is applied. Diffusion of lithium into the copper substrate, most likely via the grain boundaries, can significantly influence the nucleation process by making it more difficult to obtain a great number of homogeneously‐distributed lithium nuclei on the copper surface and thus leads to inhomogeneous electrodeposition. This problem can be mitigated by an initial chemical prelithiation of the copper surface. The development of "anode-free" lithium-metal batteries with high energy densities is, at present, mainly limited by the poor control of the nucleation of lithium directly on the copper current collector, especially in conventional carbonate electrolytes. It is therefore essential to improve the understanding of the lithium nucleation process and its interactions with the copper substrate. In this study, it is shown that diffusion of lithium into the copper substrate, most likely via the grain boundaries, can significantly influence the nucleation process. Such diffusion makes it more difficult to obtain a great number of homogeneously distributed lithium nuclei on the copper surface and thus leads to inhomogeneous electrodeposition. It is, however, demonstrated that the nucleation of lithium on copper is significantly improved if an initial chemical prelithiation of the copper surface is performed. This prelithiation saturates the copper surface with lithium and hence decreases the influence of lithium diffusion via the grain boundaries. In this way, the lithium nucleation can be made to take place more homogenously, especially when a short potentiostatic nucleation pulse that can generate a large number of nuclei on the surface of the copper substrate is applied.The development of "anode-free" lithium-metal batteries with high energy densities is, at present, mainly limited by the poor control of the nucleation of lithium directly on the copper current collector, especially in conventional carbonate electrolytes. It is therefore essential to improve the understanding of the lithium nucleation process and its interactions with the copper substrate. In this study, it is shown that diffusion of lithium into the copper substrate, most likely via the grain boundaries, can significantly influence the nucleation process. Such diffusion makes it more difficult to obtain a great number of homogeneously distributed lithium nuclei on the copper surface and thus leads to inhomogeneous electrodeposition. It is, however, demonstrated that the nucleation of lithium on copper is significantly improved if an initial chemical prelithiation of the copper surface is performed. This prelithiation saturates the copper surface with lithium and hence decreases the influence of lithium diffusion via the grain boundaries. In this way, the lithium nucleation can be made to take place more homogenously, especially when a short potentiostatic nucleation pulse that can generate a large number of nuclei on the surface of the copper substrate is applied. |
Author | Nyholm, Leif Huang, Yu‐Kai Chen, Heyin |
Author_xml | – sequence: 1 givenname: Yu‐Kai orcidid: 0000-0002-2049-7339 surname: Huang fullname: Huang, Yu‐Kai organization: Uppsala University – sequence: 2 givenname: Heyin surname: Chen fullname: Chen, Heyin organization: Uppsala University – sequence: 3 givenname: Leif orcidid: 0000-0001-9292-016X surname: Nyholm fullname: Nyholm, Leif email: leif.nyholm@kemi.uu.se organization: Uppsala University |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-516166$$DView record from Swedish Publication Index |
BookMark | eNqFkbtqHDEUhkVwILaTNvVAmhTZtS4zmtlys7ZjwxgXubRCqzlKZLTSRBeMuxR5AD-jnyQaJuuAIbjSOYfvE9J_jtCB8w4QekvwkmBMT-LO2iXFlGHe0dULdEg4YYupPnisCX6FjmK8wZgRWreH6Pel0zaDU1B5XfUm_TB5V50arXM03lXGJV9t_DhCqDY5BHCptNaCSj7EqhB752yaBT_A6KNJs1utXRk8_Lo_DwB7srRXkKStPsqUIBiIr9FLLW2EN3_PY_T1_OzL5mLRX3-63Kz7happu1q0Ta1J3QDgWjHCOB5Up4dBDQpkKZqmHRQHxRVuObQMuGy2W7VljFHdsUGzY_Rhvjfewpi3YgxmJ8Od8NKIU_NtLXz4LnIWTUmL84K_n_Ex-J8ZYhI7ExVYKx34HAXtOOakwbgt6Lsn6I3PwZXPFKqk3nFad4WqZ0oFH2MALZRJcsoqBWmsIFhMmxTTJsXjJou2fKLtH_5fYTULt8bC3TO0-HzV9__cPyHcuLY |
CitedBy_id | crossref_primary_10_1002_adfm_202424022 crossref_primary_10_1039_D3EE04235A crossref_primary_10_1021_acs_iecr_3c04442 crossref_primary_10_1016_j_ensm_2025_104100 crossref_primary_10_1016_j_jcis_2024_10_023 crossref_primary_10_1016_j_jpowsour_2024_235098 crossref_primary_10_1016_j_est_2024_111666 crossref_primary_10_3389_fbael_2023_1292622 crossref_primary_10_1016_j_est_2024_113683 crossref_primary_10_1016_j_jpowsour_2024_234941 crossref_primary_10_1002_celc_202300739 crossref_primary_10_1002_cphc_202400007 crossref_primary_10_1039_D4TA02003K |
Cites_doi | 10.1039/D1CC03676A 10.1149/1945-7111/ab9b20 10.1016/j.ensm.2020.07.004 10.1021/jacs.0c10258 10.1039/C7EE00244K 10.1021/acs.chemmater.9b04385 10.1016/j.jpowsour.2021.229504 10.1039/C9CC04415A 10.1149/1.1409400 10.1016/j.mattod.2022.01.015 10.1038/nenergy.2016.10 10.1038/ncomms7362 10.1021/jacs.9b10195 10.1002/aenm.202003674 10.1021/acs.analchem.8b04924 10.1021/acsenergylett.9b02306 10.1039/D0TA01044H 10.1016/j.physleta.2005.01.041 10.1002/adfm.202006950 10.1002/adma.202108827 10.1039/C8NR06980H 10.1038/s41560-019-0428-9 10.1002/adfm.201602353 10.1002/ange.201807034 10.1016/j.mtener.2022.101060 10.1038/s41560-019-0413-3 10.1038/s41467-018-04394-3 10.1126/sciadv.1701246 10.1016/j.nanoen.2019.02.048 10.1002/anie.201812523 10.1002/aenm.201702097 10.1016/j.electacta.2011.01.004 10.1038/s41560-020-0648-z 10.1002/anie.201702099 10.1021/acs.nanolett.6b04755 10.1016/j.electacta.2007.11.054 10.1002/aenm.202000804 10.1016/j.jechem.2020.11.034 10.1149/2.0661914jes 10.1186/s42649-022-00071-4 10.1002/aenm.201903339 10.1002/adfm.201910249 10.1007/s11669-010-9840-3 10.1002/anie.202012005 10.1002/anie.201905251 10.1016/j.mattod.2018.08.003 10.1134/S1023193508060049 10.1038/ncomms8436 10.1039/D0TA06141G 10.1002/aenm.201800266 10.1088/1674-1056/ab943c 10.1038/s41560-020-0668-8 10.1002/aesr.202000110 10.1002/adfm.201904629 10.1073/pnas.1208638109 10.1002/slct.201800281 10.1021/jp309321w 10.1007/s12274-019-2567-7 10.1021/acsnano.8b08012 10.1039/C8EE00364E 10.1021/acs.jpclett.9b02014 10.1021/acs.jpcc.1c03877 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Small published by Wiley‐VCH GmbH 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 The Authors. Small published by Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 The Authors. Small published by Wiley‐VCH GmbH – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 The Authors. Small published by Wiley-VCH GmbH. |
DBID | 24P AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
DOI | 10.1002/smll.202306829 |
DatabaseName | Wiley Online Library Open Access CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | oai_DiVA_org_uu_516166 10_1002_smll_202306829 SMLL202306829 |
Genre | article |
GrantInformation_xml | – fundername: Swedish Research Council funderid: VR‐2019‐04276 – fundername: Ångström Advanced Battery Center – fundername: STandUp for energy |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 24P 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
ID | FETCH-LOGICAL-c4279-754f145ee04c31360dc8fddcdcea8fd557dc6ec6c076e73e6a5bbcb3332f83df3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Aug 21 06:57:13 EDT 2025 Fri Jul 11 08:42:58 EDT 2025 Sun Jul 13 04:35:15 EDT 2025 Thu Apr 24 23:15:50 EDT 2025 Tue Jul 01 02:54:42 EDT 2025 Wed Jan 22 16:14:53 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4279-754f145ee04c31360dc8fddcdcea8fd557dc6ec6c076e73e6a5bbcb3332f83df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2049-7339 0000-0001-9292-016X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202306829 |
PQID | 2881086248 |
PQPubID | 1046358 |
PageCount | 11 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_516166 proquest_miscellaneous_2860615007 proquest_journals_2881086248 crossref_citationtrail_10_1002_smll_202306829 crossref_primary_10_1002_smll_202306829 wiley_primary_10_1002_smll_202306829_SMLL202306829 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 91 2017; 3 2019; 11 2019; 55 2021; 125 2019; 10 2019; 13 2019; 59 2019; 58 2005; 337 2020; 13 2011; 56 2020; 167 2020; 10 2019; 166 2001; 148 2022; 28 2020; 8 2018; 130 2018; 9 2020; 5 2018; 8 2018; 3 2021; 31 1990 2019; 29 2015; 6 2019; 4 2021; 2 2020; 142 1998 2011; 32 2020; 32 2008; 53 2019; 141 2018; 21 2012; 109 2021; 57 2021; 59 2016; 1 2021; 11 2022 2020; 30 2017; 17 2017; 10 2017; 56 2021; 490 2022; 52 2022; 53 2008; 44 2018; 11 2021; 60 2012; 116 2016; 26 2020; 29 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 Paunovic M. (e_1_2_8_29_1) 1998 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 Greff R. (e_1_2_8_28_1) 1990 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 2600 year: 2018 publication-title: Energy Environ. Sci. – volume: 59 start-page: 666 year: 2021 publication-title: J Energy Chem. – volume: 6 start-page: 6362 year: 2015 publication-title: Nat. Commun. – volume: 60 start-page: 3661 year: 2021 publication-title: Angew. Chem., Int. Ed. – year: 1990 – year: 1998 – volume: 116 year: 2012 publication-title: J. Phys. Chem. C – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. – year: 2022 publication-title: Adv. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 45 year: 2020 publication-title: Nano Res. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 91 start-page: 2296 year: 2019 publication-title: Anal. Chem. – volume: 148 start-page: G640 year: 2001 publication-title: J. Electrochem. Soc. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 130 year: 2018 publication-title: Angew. Chem. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 59 start-page: 500 year: 2019 publication-title: Nano Energy – volume: 55 year: 2019 publication-title: Chem. Commun. – volume: 10 start-page: 5206 year: 2019 publication-title: J. Phys. Chem. Lett. – volume: 4 start-page: 683 year: 2019 publication-title: Nat. Energy – volume: 28 year: 2022 publication-title: Mater. Today Energy – volume: 17 start-page: 1132 year: 2017 publication-title: Nano Lett. – volume: 3 start-page: 2311 year: 2018 publication-title: ChemistrySelect – volume: 53 start-page: 3313 year: 2008 publication-title: Electrochim. Acta – volume: 109 year: 2012 publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 693 year: 2020 publication-title: Nat. Energy – volume: 32 start-page: 2803 year: 2020 publication-title: Chem. Mater. – volume: 5 start-page: 561 year: 2020 publication-title: Nat. Energy – volume: 32 start-page: 172 year: 2011 publication-title: J. Phase Equilib. Diffus. – volume: 44 start-page: 652 year: 2008 publication-title: Russ. J. Electrochem. – volume: 2 year: 2021 publication-title: Adv. Energy Sustainability Res. – volume: 490 year: 2021 publication-title: J. Power Sources – volume: 52 start-page: 2 year: 2022 publication-title: Appl. Microsc. – volume: 29 year: 2020 publication-title: Chin. Phys. B – volume: 53 start-page: 173 year: 2022 publication-title: Mater. Today – volume: 56 start-page: 7764 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 7436 year: 2015 publication-title: Nat. Commun. – volume: 10 start-page: 1350 year: 2017 publication-title: Energy Environ. Sci. – volume: 125 year: 2021 publication-title: J. Phys. Chem. C – volume: 13 start-page: 737 year: 2019 publication-title: ACS Nano – volume: 9 start-page: 2152 year: 2018 publication-title: Nat. Commun. – volume: 56 start-page: 3006 year: 2011 publication-title: Electrochim. Acta – volume: 26 start-page: 7094 year: 2016 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 2952 year: 2019 publication-title: ACS Energy Lett. – volume: 32 start-page: 386 year: 2020 publication-title: Energy Storage Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 337 start-page: 247 year: 2005 publication-title: Phys. Lett. A – volume: 21 start-page: 1010 year: 2018 publication-title: Mater. Today – volume: 11 start-page: 2710 year: 2019 publication-title: Nanoscale – volume: 8 start-page: 6229 year: 2020 publication-title: J. Mater. Chem. A – volume: 58 start-page: 3092 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 57 start-page: 9232 year: 2021 publication-title: Chem. Commun. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 664 year: 2019 publication-title: Nat. Energy – volume: 166 year: 2019 publication-title: J. Electrochem. Soc. – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – ident: e_1_2_8_14_1 doi: 10.1039/D1CC03676A – ident: e_1_2_8_51_1 doi: 10.1149/1945-7111/ab9b20 – ident: e_1_2_8_4_1 doi: 10.1016/j.ensm.2020.07.004 – ident: e_1_2_8_43_1 doi: 10.1021/jacs.0c10258 – ident: e_1_2_8_48_1 doi: 10.1039/C7EE00244K – ident: e_1_2_8_36_1 doi: 10.1021/acs.chemmater.9b04385 – ident: e_1_2_8_12_1 doi: 10.1016/j.jpowsour.2021.229504 – ident: e_1_2_8_27_1 doi: 10.1039/C9CC04415A – ident: e_1_2_8_64_1 doi: 10.1149/1.1409400 – ident: e_1_2_8_6_1 doi: 10.1016/j.mattod.2022.01.015 – ident: e_1_2_8_23_1 doi: 10.1038/nenergy.2016.10 – ident: e_1_2_8_11_1 doi: 10.1038/ncomms7362 – ident: e_1_2_8_38_1 doi: 10.1021/jacs.9b10195 – ident: e_1_2_8_56_1 doi: 10.1002/aenm.202003674 – ident: e_1_2_8_46_1 doi: 10.1021/acs.analchem.8b04924 – ident: e_1_2_8_24_1 doi: 10.1021/acsenergylett.9b02306 – ident: e_1_2_8_25_1 doi: 10.1039/D0TA01044H – ident: e_1_2_8_62_1 doi: 10.1016/j.physleta.2005.01.041 – ident: e_1_2_8_26_1 doi: 10.1002/adfm.202006950 – ident: e_1_2_8_52_1 doi: 10.1002/adma.202108827 – ident: e_1_2_8_20_1 doi: 10.1039/C8NR06980H – ident: e_1_2_8_8_1 doi: 10.1038/s41560-019-0428-9 – ident: e_1_2_8_10_1 doi: 10.1002/adfm.201602353 – ident: e_1_2_8_13_1 doi: 10.1002/ange.201807034 – ident: e_1_2_8_41_1 doi: 10.1016/j.mtener.2022.101060 – ident: e_1_2_8_32_1 doi: 10.1038/s41560-019-0413-3 – ident: e_1_2_8_49_1 doi: 10.1038/s41467-018-04394-3 – ident: e_1_2_8_58_1 doi: 10.1126/sciadv.1701246 – ident: e_1_2_8_17_1 doi: 10.1016/j.nanoen.2019.02.048 – ident: e_1_2_8_18_1 doi: 10.1002/anie.201812523 – ident: e_1_2_8_60_1 doi: 10.1002/aenm.201702097 – ident: e_1_2_8_47_1 doi: 10.1016/j.electacta.2011.01.004 – ident: e_1_2_8_37_1 doi: 10.1038/s41560-020-0648-z – ident: e_1_2_8_22_1 doi: 10.1002/anie.201702099 – ident: e_1_2_8_35_1 doi: 10.1021/acs.nanolett.6b04755 – ident: e_1_2_8_57_1 doi: 10.1016/j.electacta.2007.11.054 – ident: e_1_2_8_2_1 doi: 10.1002/aenm.202000804 – ident: e_1_2_8_5_1 doi: 10.1016/j.jechem.2020.11.034 – ident: e_1_2_8_34_1 doi: 10.1149/2.0661914jes – ident: e_1_2_8_61_1 doi: 10.1186/s42649-022-00071-4 – ident: e_1_2_8_21_1 doi: 10.1002/aenm.201903339 – ident: e_1_2_8_55_1 doi: 10.1002/adfm.201910249 – ident: e_1_2_8_53_1 doi: 10.1007/s11669-010-9840-3 – ident: e_1_2_8_15_1 doi: 10.1002/anie.202012005 – ident: e_1_2_8_31_1 doi: 10.1002/anie.201905251 – ident: e_1_2_8_40_1 doi: 10.1016/j.mattod.2018.08.003 – volume-title: Fundamentals of Electrochemical Deposition year: 1998 ident: e_1_2_8_29_1 – ident: e_1_2_8_30_1 doi: 10.1134/S1023193508060049 – ident: e_1_2_8_7_1 doi: 10.1038/ncomms8436 – ident: e_1_2_8_39_1 doi: 10.1039/D0TA06141G – ident: e_1_2_8_16_1 doi: 10.1002/aenm.201800266 – ident: e_1_2_8_63_1 doi: 10.1088/1674-1056/ab943c – ident: e_1_2_8_3_1 doi: 10.1038/s41560-020-0668-8 – ident: e_1_2_8_1_1 doi: 10.1002/aesr.202000110 – ident: e_1_2_8_33_1 doi: 10.1002/adfm.201904629 – ident: e_1_2_8_54_1 doi: 10.1073/pnas.1208638109 – ident: e_1_2_8_44_1 doi: 10.1002/slct.201800281 – ident: e_1_2_8_59_1 doi: 10.1021/jp309321w – ident: e_1_2_8_19_1 doi: 10.1007/s12274-019-2567-7 – volume-title: Instrumental Methods in Electrochemistry year: 1990 ident: e_1_2_8_28_1 – ident: e_1_2_8_42_1 doi: 10.1021/acsnano.8b08012 – ident: e_1_2_8_9_1 doi: 10.1039/C8EE00364E – ident: e_1_2_8_50_1 doi: 10.1021/acs.jpclett.9b02014 – ident: e_1_2_8_45_1 doi: 10.1021/acs.jpcc.1c03877 |
SSID | ssj0031247 |
Score | 2.4970706 |
Snippet | The development of “anode‐free” lithium‐metal batteries with high energy densities is, at present, mainly limited by the poor control of the nucleation of... The development of "anode-free" lithium-metal batteries with high energy densities is, at present, mainly limited by the poor control of the nucleation of... The development of “anode-free” lithium-metal batteries with high energy densities is, at present, mainly limited by the poor control of the nucleation of... |
SourceID | swepub proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2306829 |
SubjectTerms | anode‐free lithium‐metal batteries Copper Electrodeposition Electrolytes Grain boundaries Lithium lithium diffusion lithium electrodeposition Nanotechnology Nucleation Nuclei Substrates |
Title | Influence of Lithium Diffusion into Copper Current Collectors on Lithium Electrodeposition in Anode‐Free Lithium‐Metal Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202306829 https://www.proquest.com/docview/2881086248 https://www.proquest.com/docview/2860615007 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-516166 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagJzjwRgRK5UogTm5TP5Pjqu2qrXYRAop6s-JXiWiT1W5y4cSBH8Bv5Jdgx0m6i4SQ4BYnM4pjz2Rm7PE3ALzi1BgfyyqUK0YRtcqh3IsNcszYTFN1IEwIFOdv-ck5PbtgF2un-CM-xLjgFjSj-18HBS_Uav8GNHR1fRW2DoILneFwgi8kbAWv6P2IH0W88eqqq3ibhQLw1oDamOL9TfZNq7Tmakb40E3PtTM90_ugGDodM06-7LWN2tNff8Nz_J-vegDu9X4pnERBeghu2eoRuLuGVvgYfD8dCprA2sFZ2Xwu22t4VDrXhiU3WFZNDQ_rxcIuYQ_7BLt1ia6iD_QUA89xrL1j7JAy5nnhpPI3fn77MV1aO1D65tz68ABGGFAf1T8B59Pjj4cnqC_igDTFIkeCUXdAmbUp1cRPUWp05ozRRtvCXzAmjOZWc50KbgWxvGBKaUUIwS4jxpGnYKuqK_sMQKWcYzlmmqjch4Uuw0UqDC1YrrgQpEgAGiZR6h7hPBTauJIRmxnLMLpyHN0EvBnpFxHb44-U24NMyF7HVxJnWShThWmWgN3xsdfOsOVSVLZuAw3vIPdTkYDXUZbGVwVg76Py00TWy0vZtpJ5MeU8AbiTj7_0SH6Yz2Zj6_m_ML0Ad8J1zEzcBlvNsrUvvYfVqB1wG9N3O50u_QIewiR4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHIAD76qBAkYCcUqb9TM5rrpdbSHbA7SImxW_IGqbrLbJhRMHfgC_kV-CHSehi4SQ4BYnM4rjzGQennwDwEtGtHaxrIwzSUlMjLRx5sQmtlSbVBE54doHistjtjglbz7SoZrQ_wsT8CHGhJvXjO577RXcJ6T3f6GGXl6c-70D70OnKLsObvi23h4-f_ZuRJDCznx1_VWc1Yo99NaA25ig_U3-Tbt0xdkMAKKbvmtnfOZ3gRymHWpOzvbaRu6pL78hOv7Xc90Dd3rXFE6DLN0H10z1ANy-Alj4EHw7GnqawNrCvGw-l-0FnJXWtj7rBsuqqeFBvVqZNeyRn2CXmuia-kBHMfAchvY72gxVY44XTit34sfX7_O1MQOlGy6NixBgQAJ1gf0jcDo_PDlYxH0fh1gRxLOYU2InhBqTEIUnmCVapVZrpZUp3AGlXCtmFFMJZ4ZjwwoqpZIYY2RTrC3eBltVXZkdAKW0lmaIKiwzFxnaFBUJ16SgmWSc4yIC8fAWhepBzn2vjXMR4JmR8KsrxtWNwOuRfhXgPf5IuTsIhejV_FKgNPWdqhBJI_BivOwU1O-6FJWpW0_DOtT9hEfgVRCm8VYe23tWfpiKev1JtK2gTk4ZiwDqBOQvMxLvl3k-jh7_C9NzcHNxssxFfnT89gm45c-HQsVdsNWsW_PUOVyNfNap1E9htie9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRAcEE8RKGAkEKeoWT-T46rbVQu7VSUo6s2KXyVSm6y2mzsHfgC_kV-CHSdh94CQuMXOjBJlZjwPO98AvOPUGJ_LqrRQjKbUKpcWXm1Sx4zNNVUTYUKiuDzlx-f04wW72PqLP-JDjAW3YBndeh0MfGXcwR_Q0Jvrq7B1EELoHBe34U7Y8QuHujA9G9Zi4r1X117FO600IG8NsI0ZPtjl33VLW7FmxA_dDV073zN_CA_6oBFNo5QfwS1bP4b7W1CCT-DHydBtBDUOLarNt6q9RrPKuTbUw1BVbxp02KxWdo16TCbUFQ26djvIUww8R7ExjrHDeS7Pi6a1n_j1_ed8be1A6YdL62N3FDE6fcr9FM7nR18Oj9O-w0KqKRZFKhh1E8qszagmE8Izo3NnjDbalv6CMWE0t5rrTHAriOUlU0orQgh2OTGOPIO9uqntc0BKOccKzDRRhc_ZXI7LTBhaskJxIUiZQDp8YKl7-PHQBeNKRuBkLINA5CiQBD6M9KsIvPFXyv1BXrI3wBuJ8zz0kMI0T-DteNubTtgPKWvbtIGGd3j4mUjgfZTz-KiAuj2rvk5ls76UbSuZVyHOE8CdGvzjjeTn5WIxjl78D9MbuHs2m8vFyemnl3AvTMcThPuwt1m39pWPhDbqdafsvwGABwTu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Lithium+Diffusion+into+Copper+Current+Collectors+on+Lithium+Electrodeposition+in+Anode%E2%80%90Free+Lithium%E2%80%90Metal+Batteries&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Huang%2C+Yu%E2%80%90Kai&rft.au=Chen%2C+Heyin&rft.au=Nyholm%2C+Leif&rft.date=2023-10-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=43&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202306829&rft.externalDBID=10.1002%252Fsmll.202306829&rft.externalDocID=SMLL202306829 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |