The turbulent destruction of clouds – I. A k–ε treatment of turbulence in 2D models of adiabatic shock–cloud interactions
The interaction of a shock with a cloud has been extensively studied in the literature, where the effects of magnetic fields, radiative cooling and thermal conduction have been considered. In many cases, the formation of fully developed turbulence has been prevented by the artificial viscosity inher...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 394; no. 3; pp. 1351 - 1378 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
11.04.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 0035-8711 1365-2966 |
DOI | 10.1111/j.1365-2966.2009.13759.x |
Cover
Abstract | The interaction of a shock with a cloud has been extensively studied in the literature, where the effects of magnetic fields, radiative cooling and thermal conduction have been considered. In many cases, the formation of fully developed turbulence has been prevented by the artificial viscosity inherent in hydrodynamical simulations. This problem is particularly severe in some recent simulations designed to investigate the interaction of a flow with multiple clouds, where the resolution of individual clouds is necessarily poor. Furthermore, the shocked flow interacting with the cloud has been assumed to be completely uniform in all previous single-cloud studies. In reality, the flow behind the shock is also likely to be turbulent, with non-uniform density, pressure and velocity structure created as the shock sweeps over inhomogeneities upstream of the cloud (as seen in recent multiple cloud simulations). To address these twin issues we use a subgrid compressible k–ε turbulence model to estimate the properties of the turbulence generated in shock–cloud interactions and the resulting increase in the transport coefficients that the turbulence brings. A detailed comparison with the output from an inviscid hydrodynamical code puts these new results into context. Despite the above concerns, we find that cloud destruction in inviscid and k–ε models occurs at roughly the same speed when the post-shock flow is smooth and when the density contrast between the cloud and intercloud medium, χ≲ 100. However, there are increasing and significant differences as χ increases. The k–ε models also demonstrate better convergence in resolution tests than inviscid models, a feature which is particularly useful for multiple-cloud simulations. Clouds which are over-run by a highly turbulent post-shock environment are destroyed significantly quicker as they are subject to strong ‘buffeting’ by the flow. The decreased lifetime and faster acceleration of the cloud material to the speed of the ambient flow leads to a reduction in the total amount of circulation (vorticity) generated in the interaction, so that the amount of vorticity may be self-limiting. Additional calculations with an inviscid code where the post-shock flow is given random, grid-scale, motions confirm the more rapid destruction of the cloud. Our results clearly show that turbulence plays an important role in shock–cloud interactions, and that environmental turbulence adds a new dimension to the parameter space which has hitherto been studied. |
---|---|
AbstractList | ABSTRACT
The interaction of a shock with a cloud has been extensively studied in the literature, where the effects of magnetic fields, radiative cooling and thermal conduction have been considered. In many cases, the formation of fully developed turbulence has been prevented by the artificial viscosity inherent in hydrodynamical simulations. This problem is particularly severe in some recent simulations designed to investigate the interaction of a flow with multiple clouds, where the resolution of individual clouds is necessarily poor. Furthermore, the shocked flow interacting with the cloud has been assumed to be completely uniform in all previous single‐cloud studies. In reality, the flow behind the shock is also likely to be turbulent, with non‐uniform density, pressure and velocity structure created as the shock sweeps over inhomogeneities upstream of the cloud (as seen in recent multiple cloud simulations). To address these twin issues we use a subgrid compressible k–ε turbulence model to estimate the properties of the turbulence generated in shock–cloud interactions and the resulting increase in the transport coefficients that the turbulence brings. A detailed comparison with the output from an inviscid hydrodynamical code puts these new results into context.
Despite the above concerns, we find that cloud destruction in inviscid and k–ε models occurs at roughly the same speed when the post‐shock flow is smooth and when the density contrast between the cloud and intercloud medium, χ≲ 100. However, there are increasing and significant differences as χ increases. The k–ε models also demonstrate better convergence in resolution tests than inviscid models, a feature which is particularly useful for multiple‐cloud simulations.
Clouds which are over‐run by a highly turbulent post‐shock environment are destroyed significantly quicker as they are subject to strong ‘buffeting’ by the flow. The decreased lifetime and faster acceleration of the cloud material to the speed of the ambient flow leads to a reduction in the total amount of circulation (vorticity) generated in the interaction, so that the amount of vorticity may be self‐limiting. Additional calculations with an inviscid code where the post‐shock flow is given random, grid‐scale, motions confirm the more rapid destruction of the cloud.
Our results clearly show that turbulence plays an important role in shock–cloud interactions, and that environmental turbulence adds a new dimension to the parameter space which has hitherto been studied. The interaction of a shock with a cloud has been extensively studied in the literature, where the effects of magnetic fields, radiative cooling and thermal conduction have been considered. In many cases, the formation of fully developed turbulence has been prevented by the artificial viscosity inherent in hydrodynamical simulations. This problem is particularly severe in some recent simulations designed to investigate the interaction of a flow with multiple clouds, where the resolution of individual clouds is necessarily poor. Furthermore, the shocked flow interacting with the cloud has been assumed to be completely uniform in all previous single-cloud studies. In reality, the flow behind the shock is also likely to be turbulent, with non-uniform density, pressure and velocity structure created as the shock sweeps over inhomogeneities upstream of the cloud (as seen in recent multiple cloud simulations). To address these twin issues we use a subgrid compressible k–ε turbulence model to estimate the properties of the turbulence generated in shock–cloud interactions and the resulting increase in the transport coefficients that the turbulence brings. A detailed comparison with the output from an inviscid hydrodynamical code puts these new results into context. Despite the above concerns, we find that cloud destruction in inviscid and k–ε models occurs at roughly the same speed when the post-shock flow is smooth and when the density contrast between the cloud and intercloud medium, χ≲ 100. However, there are increasing and significant differences as χ increases. The k–ε models also demonstrate better convergence in resolution tests than inviscid models, a feature which is particularly useful for multiple-cloud simulations. Clouds which are over-run by a highly turbulent post-shock environment are destroyed significantly quicker as they are subject to strong ‘buffeting’ by the flow. The decreased lifetime and faster acceleration of the cloud material to the speed of the ambient flow leads to a reduction in the total amount of circulation (vorticity) generated in the interaction, so that the amount of vorticity may be self-limiting. Additional calculations with an inviscid code where the post-shock flow is given random, grid-scale, motions confirm the more rapid destruction of the cloud. Our results clearly show that turbulence plays an important role in shock–cloud interactions, and that environmental turbulence adds a new dimension to the parameter space which has hitherto been studied. ABSTRACTThe interaction of a shock with a cloud has been extensively studied in the literature, where the effects of magnetic fields, radiative cooling and thermal conduction have been considered. In many cases, the formation of fully developed turbulence has been prevented by the artificial viscosity inherent in hydrodynamical simulations. This problem is particularly severe in some recent simulations designed to investigate the interaction of a flow with multiple clouds, where the resolution of individual clouds is necessarily poor. Furthermore, the shocked flow interacting with the cloud has been assumed to be completely uniform in all previous single-cloud studies. In reality, the flow behind the shock is also likely to be turbulent, with non-uniform density, pressure and velocity structure created as the shock sweeps over inhomogeneities upstream of the cloud (as seen in recent multiple cloud simulations). To address these twin issues we use a subgrid compressible k- epsilon turbulence model to estimate the properties of the turbulence generated in shock-cloud interactions and the resulting increase in the transport coefficients that the turbulence brings. A detailed comparison with the output from an inviscid hydrodynamical code puts these new results into context.Despite the above concerns, we find that cloud destruction in inviscid and k- epsilon models occurs at roughly the same speed when the post-shock flow is smooth and when the density contrast between the cloud and intercloud medium, chi [lsim] 100. However, there are increasing and significant differences as chi increases. The k- epsilon models also demonstrate better convergence in resolution tests than inviscid models, a feature which is particularly useful for multiple-cloud simulations.Clouds which are over-run by a highly turbulent post-shock environment are destroyed significantly quicker as they are subject to strong 'buffeting' by the flow. The decreased lifetime and faster acceleration of the cloud material to the speed of the ambient flow leads to a reduction in the total amount of circulation (vorticity) generated in the interaction, so that the amount of vorticity may be self-limiting. Additional calculations with an inviscid code where the post-shock flow is given random, grid-scale, motions confirm the more rapid destruction of the cloud.Our results clearly show that turbulence plays an important role in shock-cloud interactions, and that environmental turbulence adds a new dimension to the parameter space which has hitherto been studied. The interaction of a shock with a cloud has been extensively studied in the literature, where the effects of magnetic fields, radiative cooling and thermal conduction have been considered. In many cases, the formation of fully developed turbulence has been prevented by the artificial viscosity inherent in hydrodynamical simulations. This problem is particularly severe in some recent simulations designed to investigate the interaction of a flow with multiple clouds, where the resolution of individual clouds is necessarily poor. Furthermore, the shocked flow interacting with the cloud has been assumed to be completely uniform in all previous single-cloud studies. In reality, the flow behind the shock is also likely to be turbulent, with non-uniform density, pressure and velocity structure created as the shock sweeps over inhomogeneities upstream of the cloud (as seen in recent multiple cloud simulations). To address these twin issues we use a subgrid compressible k-ε turbulence model to estimate the properties of the turbulence generated in shock-cloud interactions and the resulting increase in the transport coefficients that the turbulence brings. A detailed comparison with the output from an inviscid hydrodynamical code puts these new results into context. Despite the above concerns, we find that cloud destruction in inviscid and k-ε models occurs at roughly the same speed when the post-shock flow is smooth and when the density contrast between the cloud and intercloud medium, χ≲ 100. However, there are increasing and significant differences as χ increases. The k-ε models also demonstrate better convergence in resolution tests than inviscid models, a feature which is particularly useful for multiple-cloud simulations. Clouds which are over-run by a highly turbulent post-shock environment are destroyed significantly quicker as they are subject to strong 'buffeting' by the flow. The decreased lifetime and faster acceleration of the cloud material to the speed of the ambient flow leads to a reduction in the total amount of circulation (vorticity) generated in the interaction, so that the amount of vorticity may be self-limiting. Additional calculations with an inviscid code where the post-shock flow is given random, grid-scale, motions confirm the more rapid destruction of the cloud. Our results clearly show that turbulence plays an important role in shock-cloud interactions, and that environmental turbulence adds a new dimension to the parameter space which has hitherto been studied. |
Author | Falle, S. A. E. G. Hartquist, T. W. Pittard, J. M. Dyson, J. E. |
Author_xml | – sequence: 1 givenname: J. M. surname: Pittard fullname: Pittard, J. M. email: jmp@ast.leeds.ac.uk, † jmp@ast.leeds.ac.uk organization: School of Physics and Astronomy, The University of Leeds, Leeds LS2 9JT – sequence: 2 givenname: S. A. E. G. surname: Falle fullname: Falle, S. A. E. G. organization: Department of Applied Mathematics, The University of Leeds, Leeds LS2 9JT – sequence: 3 givenname: T. W. surname: Hartquist fullname: Hartquist, T. W. organization: School of Physics and Astronomy, The University of Leeds, Leeds LS2 9JT – sequence: 4 givenname: J. E. surname: Dyson fullname: Dyson, J. E. organization: School of Physics and Astronomy, The University of Leeds, Leeds LS2 9JT |
BookMark | eNqVkEtuFDEQhi0UJCaBO3jFrhs_2o_eIEXhkUhJQNHkITaW2-1WPOlpD7ZbTHa5A2fhGjlEToJ7hmSBQAJvXKX6v79U_y7YGfxgAYAYlTi_N4sSU84KUnNeEoTq3ApWl-tnYPY02AEzhCgrpMD4BdiNcYEQqijhM3A3v7YwjaEZezsk2NqYwmiS8wP0HTS9H9sIH-6-w6MS7sObXN3_gClYnZaTPmseYWOhGyB5B5e-tX2cRrp1utHJGRivvZngjWHWJRv0Zkt8CZ53uo_21a9_D5x_eD8_OCyOP308Otg_LkxFRF1wRowwuGprrgltDUG4olVDsGiElLqqKG0o140VFTasZh3qaFujTnJWt5oIugdeb31XwX8d85lq6aKxfa8H68eoCGJSVkxmodwKTfAxBtupVXBLHW4VRmqKXC3UlKyaklVT5GoTuVpn9O1vqHFJT2emoF3_HwbfXG9v_3mxOjk925TZgG4N_Lj6C178aW2xpVxMdv3E6XCjuMgadXj1RV1eyYuzy_mF-kx_AoUbwAA |
CitedBy_id | crossref_primary_10_1093_mnras_stz3320 crossref_primary_10_1002_asna_201913548 crossref_primary_10_1093_mnras_stac1104 crossref_primary_10_1016_j_compfluid_2020_104549 crossref_primary_10_1093_mnras_stu1048 crossref_primary_10_1051_0004_6361_201935632 crossref_primary_10_3847_1538_4357_ab02ff crossref_primary_10_1093_mnras_staa2904 crossref_primary_10_1088_0004_637X_736_2_109 crossref_primary_10_1016_j_ijheatfluidflow_2015_07_017 crossref_primary_10_1051_0004_6361_201322482 crossref_primary_10_1134_S0015462822601395 crossref_primary_10_1088_0004_637X_766_1_45 crossref_primary_10_1093_mnras_stx720 crossref_primary_10_3847_1538_4357_ac1d4b crossref_primary_10_1093_mnras_stx2541 crossref_primary_10_1088_0004_637X_722_1_412 crossref_primary_10_1051_0004_6361_200913801 crossref_primary_10_1088_0004_6256_150_2_59 crossref_primary_10_1017_pas_2013_002 crossref_primary_10_1093_mnras_stv2405 crossref_primary_10_1088_0067_0049_194_1_15 crossref_primary_10_1093_mnras_staa3889 crossref_primary_10_1088_0004_637X_700_2_1067 crossref_primary_10_1088_1742_6596_1103_1_012007 crossref_primary_10_1111_j_1365_2966_2010_16520_x crossref_primary_10_1111_j_1365_2966_2010_16888_x crossref_primary_10_1007_s10509_010_0526_4 crossref_primary_10_1093_mnras_stw025 crossref_primary_10_1093_mnras_sty401 crossref_primary_10_1051_0004_6361_201321808 crossref_primary_10_1088_1742_6596_2028_1_012019 crossref_primary_10_1093_mnras_stz1040 crossref_primary_10_1093_mnras_stu1501 crossref_primary_10_1016_j_ascom_2024_100887 crossref_primary_10_1016_j_compfluid_2018_03_009 crossref_primary_10_1093_mnras_stw1796 crossref_primary_10_1111_j_1365_2966_2010_16504_x crossref_primary_10_1103_PhysRevE_99_013104 crossref_primary_10_1016_j_newar_2021_101610 crossref_primary_10_1093_mnras_stw378 crossref_primary_10_1093_mnras_stae1295 crossref_primary_10_1016_j_actaastro_2020_02_026 crossref_primary_10_1051_0004_6361_201629796 crossref_primary_10_1088_1742_6596_1336_1_012009 crossref_primary_10_1093_mnras_stx1431 crossref_primary_10_1051_0004_6361_201628132 crossref_primary_10_1016_j_hedp_2012_11_005 crossref_primary_10_1088_0004_637X_774_2_133 crossref_primary_10_3390_galaxies6040114 crossref_primary_10_1093_mnras_stw1365 crossref_primary_10_1111_j_1745_3933_2010_00988_x crossref_primary_10_1111_j_1365_2966_2012_21598_x crossref_primary_10_1088_0004_637X_757_2_136 crossref_primary_10_1111_j_1365_2966_2010_16792_x crossref_primary_10_1093_mnras_stt1788 crossref_primary_10_1134_S199508021804011X crossref_primary_10_1093_mnras_stt255 crossref_primary_10_1088_0004_637X_784_2_117 crossref_primary_10_3847_1538_4357_ab76d1 |
Cites_doi | 10.1046/j.1365-8711.2000.03899.x 10.1086/186002 10.1046/j.1365-8711.2002.05340.x 10.1051/0004-6361:20064885 10.1086/341802 10.1086/524918 10.1093/oso/9780198501589.001.0001 10.1093/pasj/54.6.891 10.1086/342537 10.1016/S0010-4655(01)00199-0 10.1086/170457 10.1086/587775 10.1086/381726 10.1007/BF01206003 10.1086/380897 10.1051/0004-6361:20021408 10.1086/338325 10.1111/j.1365-2966.2007.12346.x 10.1086/155667 10.1051/0004-6361:20065550 10.1086/175651 10.1111/j.1365-2966.2005.09268.x 10.1086/502644 10.1086/170007 10.1093/mnras/250.3.581 10.1093/mnras/221.3.715 10.1051/0004-6361:20041281 10.1086/149981 10.1086/323181 10.1086/522693 10.1086/321161 10.1093/pasj/52.1.1 10.1086/520640 10.1146/annurev.astro.43.072103.150615 10.1086/430803 10.1086/512483 10.1086/341886 10.1103/RevModPhys.76.125 10.1051/0004-6361:20065738 10.1111/j.1365-2966.2005.09343.x 10.1086/312402 10.1051/0004-6361:20052679 10.1086/518365 10.1086/422445 10.1111/j.1365-2966.2007.12496.x 10.1086/181476 10.1086/421440 10.1146/annurev.astro.41.011802.094859 10.1093/mnras/269.3.607 10.1146/annurev.astro.42.120403.143327 10.1111/j.1365-2966.2008.13137.x 10.1007/978-3-662-05866-4 10.1086/155302 10.1086/173554 10.1051/0004-6361:20077430 10.1007/BF00793207 10.1086/505796 10.1038/nature06003 10.1051/0004-6361:20052896 10.1046/j.1365-8711.2000.03391.x 10.1086/426313 10.1086/529420 10.1086/306680 10.1086/186361 10.1086/321481 10.1046/j.1365-8711.1999.02114.x 10.1086/308425 10.1046/j.1365-8711.1999.02604.x 10.1046/j.1365-8711.2000.03345.x 10.1038/363054a0 10.1093/mnras/261.2.430 10.1086/310224 10.1086/345340 10.1086/174685 10.1111/j.1365-2966.2008.12963.x 10.1086/376492 10.1086/501530 10.1086/507944 10.1086/523955 10.1086/323534 |
ContentType | Journal Article |
Copyright | 2009 The Authors. Journal compilation © 2009 RAS 2009 2009 The Authors. Journal compilation © 2009 RAS |
Copyright_xml | – notice: 2009 The Authors. Journal compilation © 2009 RAS 2009 – notice: 2009 The Authors. Journal compilation © 2009 RAS |
DBID | BSCLL AAYXX CITATION 7TG KL. |
DOI | 10.1111/j.1365-2966.2009.13759.x |
DatabaseName | Istex CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 1378 |
ExternalDocumentID | 10_1111_j_1365_2966_2009_13759_x MNR13759 10.1111/j.1365-2966.2009.13759.x ark_67375_HXZ_WX8VRWTV_P |
Genre | article |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHTB AAIJN AAJKP AAJQQ AAKDD AAMMB AAMVS AANHP AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP ABAZT ABCQN ABCQX ABEJV ABEML ABEUO ABGNP ABIXL ABNGD ABNKS ABPEJ ABPTD ABQLI ABVLG ABXVV ABZBJ ACBWZ ACGFO ACGFS ACGOD ACNCT ACRPL ACSCC ACUFI ACUKT ACUXJ ACXQS ACYRX ACYTK ACYXJ ADEYI ADGZP ADHKW ADHZD ADNMO ADOCK ADQBN ADRDM ADRTK ADVEK ADYVW ADZXQ AECKG AEFGJ AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFBPY AFEBI AFFZL AFIYH AFOFC AFZJQ AGINJ AGQPQ AGSYK AGXDD AHXPO AIDQK AIDYY AJAOE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT ASPBG AVWKF AXUDD AZFZN AZVOD BAYMD BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BSCLL BTQHN BY8 CAG CDBKE CO8 COF D-E D-F DAKXR DCZOG DILTD DR2 DU5 D~K E3Z EBS EE~ EJD F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF JXSIZ K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MK4 NGC NMDNZ NOMLY O9- OCL ODMLO OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RNS ROL ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 V8K W8V W99 WH7 WQJ WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX 2WC AAHHS AASNB ABFSI ABJNI ABSAR ABSMQ ABTAH ACBNA ACCFJ ACFRR ACUTJ ADRIX AEEZP AEQDE AETEA AFFNX AFXEN AGMDO AIWBW AJBDE ASAOO ATDFG BCRHZ CXTWN DFGAJ E.L EAD EAP ESX MBTAY O0~ OHT RHF RNP ROX UQL VOH WRC ZY4 AAYXX CITATION 7TG KL. |
ID | FETCH-LOGICAL-c4279-652c7c14d96a23dc201434b217b788a4433b36abe741c595f0f3d90f8659da273 |
IEDL.DBID | DR2 |
ISSN | 0035-8711 |
IngestDate | Fri Jul 11 05:55:18 EDT 2025 Thu Apr 24 22:53:50 EDT 2025 Tue Jul 01 00:53:51 EDT 2025 Wed Jan 22 16:20:31 EST 2025 Wed Aug 28 03:23:26 EDT 2024 Tue Jul 15 01:34:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | hydrodynamics ISM: clouds turbulence supernova remnants ISM: kinematics and dynamics shock waves |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4279-652c7c14d96a23dc201434b217b788a4433b36abe741c595f0f3d90f8659da273 |
Notes | ark:/67375/HXZ-WX8VRWTV-P istex:853F8F308EA0D40122521E15D15487B3658A36C4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 20588458 |
PQPubID | 23462 |
PageCount | 28 |
ParticipantIDs | proquest_miscellaneous_20588458 crossref_primary_10_1111_j_1365_2966_2009_13759_x crossref_citationtrail_10_1111_j_1365_2966_2009_13759_x wiley_primary_10_1111_j_1365_2966_2009_13759_x_MNR13759 oup_primary_10_1111_j_1365-2966_2009_13759_x istex_primary_ark_67375_HXZ_WX8VRWTV_P |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-04-11 |
PublicationDateYYYYMMDD | 2009-04-11 |
PublicationDate_xml | – month: 04 year: 2009 text: 2009-04-11 day: 11 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationTitleAbbrev | Monthly Notices of the Royal Astronomical Society |
PublicationTitleAlternate | Monthly Notices of the Royal Astronomical Society |
PublicationYear | 2009 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 1991; 58 2005; 130 2000; 531 2002; 395 2007; 382 2002; 54 1988; 144 1974; 189 2005; 619 2008; 388 2006; 457 2004; 604 2004; 602 2008; 385 2006; 458 1993; 363 1979 2006; 452 2004; 606 1999; 527 2006; 652 1996; 468 1994; 420 2004; 76 1992; 390 1994; 269 2007; 173 1986; 221 2000; 52 1977; 218 2006; 164 2008; 678 2005; 429 1983 1977; 214 1995; 444 2008; 674 2006; 643 2008; 672 2007; 659 2006; 645 2004; 612 2001; 138 2001; 122 2001; 562 1991; 372 2004; 42 1991; 250 1991; 371 2007; 448 1991; 378 1994; 433 2000; 314 2000; 315 2002; 576 2000; 317 2002; 332 1998 2005; 43 1993; 261 2004 2003 1999; 349 1999; 302 1959 2008; 680 1956 1999; 307 2005; 361 2003; 589 2005; 362 2007b 2005; 443 2007b; 671 2005; 444 2002; 124 2007; 471 2000; 100 1999; 511 2007a; 381 2001; 555 2003; 583 1969; 156 2007a; 660 Cecil (10.1111/j.1365-2966.2009.13759.x-BIB4) 2001; 555 Melioli (10.1111/j.1365-2966.2009.13759.x-BIB49) 2005; 443 Kornreich (10.1111/j.1365-2966.2009.13759.x-BIB37) 2000; 531 Mac Low (10.1111/j.1365-2966.2009.13759.x-BIB44) 2004; 76 Hartquist (10.1111/j.1365-2966.2009.13759.x-BIB28) 1986; 221 Jones (10.1111/j.1365-2966.2009.13759.x-BIB32) 1991; 58 Graham (10.1111/j.1365-2966.2009.13759.x-BIB25) 1995; 444 Pittard (10.1111/j.1365-2966.2009.13759.x-BIB62) 2007 Stone (10.1111/j.1365-2966.2009.13759.x-BIB76) 1992; 390 Cho (10.1111/j.1365-2966.2009.13759.x-BIB6) 2003; 589 Runacres (10.1111/j.1365-2966.2009.13759.x-BIB69) 2005; 429 Klein (10.1111/j.1365-2966.2009.13759.x-BIB36) 2003; 583 Cantó (10.1111/j.1365-2966.2009.13759.x-BIB3) 1991; 372 Orlando (10.1111/j.1365-2966.2009.13759.x-BIB58) 2008; 678 Pittard (10.1111/j.1365-2966.2009.13759.x-BIB63) 2005; 361 Strickland (10.1111/j.1365-2966.2009.13759.x-BIB77) 2000; 314 Melnick (10.1111/j.1365-2966.2009.13759.x-BIB51) 1999; 302 Plewa (10.1111/j.1365-2966.2009.13759.x-BIB64) 2001; 138 Van Loo (10.1111/j.1365-2966.2009.13759.x-BIB81) 2007; 471 Orlando (10.1111/j.1365-2966.2009.13759.x-BIB57) 2005; 444 Jun (10.1111/j.1365-2966.2009.13759.x-BIB33) 1996; 468 Falle (10.1111/j.1365-2966.2009.13759.x-BIB21) 1991; 250 McKee (10.1111/j.1365-2966.2009.13759.x-BIB43) 1977; 218 Shin (10.1111/j.1365-2966.2009.13759.x-BIB73) 2008; 680 Pope (10.1111/j.1365-2966.2009.13759.x-BIB66) 2008; 385 Schultz (10.1111/j.1365-2966.2009.13759.x-BIB71) 1999; 511 Hartquist (10.1111/j.1365-2966.2009.13759.x-BIB27) 1988; 144 Danforth (10.1111/j.1365-2966.2009.13759.x-BIB12) 2001; 122 Fragile (10.1111/j.1365-2966.2009.13759.x-BIB24) 2005; 619 Klein (10.1111/j.1365-2966.2009.13759.x-BIB35) 1994; 420 Ohyama (10.1111/j.1365-2966.2009.13759.x-BIB56) 2002; 54 Yusef-Zadeh (10.1111/j.1365-2966.2009.13759.x-BIB88) 1991; 371 Currie (10.1111/j.1365-2966.2009.13759.x-BIB11) 2000; 100 Lazarian (10.1111/j.1365-2966.2009.13759.x-BIB40) 2006; 645 Cooper (10.1111/j.1365-2966.2009.13759.x-BIB8) 2008; 674 Marcolini (10.1111/j.1365-2966.2009.13759.x-BIB46) 2005; 362 Fragile (10.1111/j.1365-2966.2009.13759.x-BIB23) 2004; 604 Westmoquette (10.1111/j.1365-2966.2009.13759.x-BIB85) 2007; 381 Steffen (10.1111/j.1365-2966.2009.13759.x-BIB75) 2004; 612 Matsuura (10.1111/j.1365-2966.2009.13759.x-BIB48) 2007; 382 Narayan (10.1111/j.1365-2966.2009.13759.x-BIB54) 2001; 562 Mac Low (10.1111/j.1365-2966.2009.13759.x-BIB45) 1994; 433 Mellema (10.1111/j.1365-2966.2009.13759.x-BIB50) 2002; 395 Elmegreen (10.1111/j.1365-2966.2009.13759.x-BIB19) 2004; 42 Kulsrud (10.1111/j.1365-2966.2009.13759.x-BIB38) 1969; 156 Tedds (10.1111/j.1365-2966.2009.13759.x-BIB79) 1999; 307 Nakamura (10.1111/j.1365-2966.2009.13759.x-BIB53) 2006; 164 Dopita (10.1111/j.1365-2966.2009.13759.x-BIB15) 2003 Ettori (10.1111/j.1365-2966.2009.13759.x-BIB20) 2000; 317 Serabyn (10.1111/j.1365-2966.2009.13759.x-BIB72) 1991; 378 Allen (10.1111/j.1365-2966.2009.13759.x-BIB1) 1993; 363 Landau (10.1111/j.1365-2966.2009.13759.x-BIB39) 1959 Tenorio-Tagle (10.1111/j.1365-2966.2009.13759.x-BIB80) 2006; 643 Wagner (10.1111/j.1365-2966.2009.13759.x-BIB83) 2006; 452 Lee (10.1111/j.1365-2966.2009.13759.x-BIB41) 2000; 315 Martin (10.1111/j.1365-2966.2009.13759.x-BIB47) 2007; 448 Parker (10.1111/j.1365-2966.2009.13759.x-BIB59) 1979 Dyson (10.1111/j.1365-2966.2009.13759.x-BIB17) 2006; 457 Hora (10.1111/j.1365-2966.2009.13759.x-BIB30) 2006; 652 Cox (10.1111/j.1365-2966.2009.13759.x-BIB9) 2005; 43 Pittard (10.1111/j.1365-2966.2009.13759.x-BIB61) 2007; 660 Yirak (10.1111/j.1365-2966.2009.13759.x-BIB87) 2008; 672 Cox (10.1111/j.1365-2966.2009.13759.x-BIB10) 1974; 189 Iapichino (10.1111/j.1365-2966.2009.13759.x-BIB31) 2008; 388 Weis (10.1111/j.1365-2966.2009.13759.x-BIB84) 1999; 349 Chandran (10.1111/j.1365-2966.2009.13759.x-BIB5) 2004; 602 Elmegreen (10.1111/j.1365-2966.2009.13759.x-BIB18) 1977; 214 Westmoquette (10.1111/j.1365-2966.2009.13759.x-BIB86) 2007; 671 Conselice (10.1111/j.1365-2966.2009.13759.x-BIB7) 2001; 122 Kaifu (10.1111/j.1365-2966.2009.13759.x-BIB34) 2000; 52 Patnaude (10.1111/j.1365-2966.2009.13759.x-BIB60) 2002; 124 Gregori (10.1111/j.1365-2966.2009.13759.x-BIB26) 1999; 527 Levenson (10.1111/j.1365-2966.2009.13759.x-BIB42) 2002; 576 Sutherland (10.1111/j.1365-2966.2009.13759.x-BIB78) 2007; 173 Scalo (10.1111/j.1365-2966.2009.13759.x-BIB70) 2004; 42 Miceli (10.1111/j.1365-2966.2009.13759.x-BIB52) 2006; 458 Davidson (10.1111/j.1365-2966.2009.13759.x-BIB14) 2004 Falle (10.1111/j.1365-2966.2009.13759.x-BIB22) 1994; 269 Hartquist (10.1111/j.1365-2966.2009.13759.x-BIB29) 1998 Raymond (10.1111/j.1365-2966.2009.13759.x-BIB67) 2007; 659 Redman (10.1111/j.1365-2966.2009.13759.x-BIB68) 2002; 332 O'Dell (10.1111/j.1365-2966.2009.13759.x-BIB55) 2005; 130 Vikhlinin (10.1111/j.1365-2966.2009.13759.x-BIB82) 2001; 555 Dyson (10.1111/j.1365-2966.2009.13759.x-BIB16) 1993; 261 Poludnenko (10.1111/j.1365-2966.2009.13759.x-BIB65) 2002; 576 Asai (10.1111/j.1365-2966.2009.13759.x-BIB2) 2004; 606 Spitzer (10.1111/j.1365-2966.2009.13759.x-BIB74) 1956 10.1111/j.1365-2966.2009.13759.x-BIB13 |
References_xml | – volume: 156 start-page: 445 year: 1969 publication-title: ApJ – volume: 555 start-page: 338 year: 2001 publication-title: ApJ – volume: 332 start-page: 754 year: 2002 publication-title: MNRAS – volume: 269 start-page: 607 year: 1994 publication-title: MNRAS – volume: 433 start-page: 757 year: 1994 publication-title: ApJ – volume: 643 start-page: 186 year: 2006 publication-title: ApJ – year: 1956 – volume: 583 start-page: 245 year: 2003 publication-title: ApJ – year: 2007b – volume: 602 start-page: 170 year: 2004 publication-title: ApJ – volume: 124 start-page: 2118 year: 2002 publication-title: AJ – volume: 444 start-page: 787 year: 1995 publication-title: ApJ – volume: 429 start-page: 323 year: 2005 publication-title: A&A – volume: 363 start-page: 54 year: 1993 publication-title: Nat – volume: 122 start-page: 2281 year: 2001 publication-title: ApJ – volume: 314 start-page: 511 year: 2000 publication-title: MNRAS – volume: 43 start-page: 337 year: 2005 publication-title: ARA&A – volume: 531 start-page: 366 year: 2000 publication-title: ApJ – year: 1979 – volume: 390 start-page: L17 year: 1992 publication-title: ApJ – volume: 138 start-page: 101 year: 2001 publication-title: Comput. Phys. Commun. – volume: 604 start-page: 74 year: 2004 publication-title: ApJ – volume: 511 start-page: 282 year: 1999 publication-title: ApJ – year: 1998 – volume: 680 start-page: 336 year: 2008 publication-title: ApJ – volume: 619 start-page: 327 year: 2005 publication-title: ApJ – volume: 173 start-page: 37 year: 2007 publication-title: ApJS – year: 1959 – volume: 659 start-page: 1257 year: 2007 publication-title: ApJ – volume: 317 start-page: L57 year: 2000 publication-title: MNRAS – volume: 214 start-page: 725 year: 1977 publication-title: ApJ – volume: 395 start-page: L13 year: 2002 publication-title: A&A – volume: 606 start-page: L105 year: 2004 publication-title: ApJ – volume: 652 start-page: 426 year: 2006 publication-title: ApJ – year: 2004 – volume: 562 start-page: L129 year: 2001 publication-title: ApJ – volume: 444 start-page: 505 year: 2005 publication-title: A&A – volume: 371 start-page: L59 year: 1991 publication-title: ApJ – volume: 100 start-page: 12 year: 2000 publication-title: ESO Messenger – volume: 250 start-page: 581 year: 1991 publication-title: MNRAS – volume: 164 start-page: 477 year: 2006 publication-title: ApJS – volume: 381 start-page: 894 year: 2007a publication-title: MNRAS – volume: 678 start-page: 274 year: 2008 publication-title: ApJ – volume: 361 start-page: 1077 year: 2005 publication-title: MNRAS – volume: 349 start-page: 467 year: 1999 publication-title: A&A – year: 1983 – volume: 674 start-page: 157 year: 2008 publication-title: ApJ – volume: 576 start-page: 832 year: 2002 publication-title: ApJ – volume: 221 start-page: 715 year: 1986 publication-title: MNRAS – volume: 576 start-page: 798 year: 2002 publication-title: ApJ – volume: 130 start-page: 172 year: 2005 publication-title: AJ – volume: 385 start-page: 1779 year: 2008 publication-title: MNRAS – volume: 660 start-page: L141 year: 2007a publication-title: ApJ – volume: 315 start-page: 11 year: 2000 publication-title: MNRAS – year: 2003 – volume: 307 start-page: 337 year: 1999 publication-title: MNRAS – volume: 555 start-page: L87 year: 2001 publication-title: ApJ – volume: 54 start-page: 891 year: 2002 publication-title: PASJ – volume: 448 start-page: 780 year: 2007 publication-title: Nat – volume: 122 start-page: 938 year: 2001 publication-title: AJ – volume: 378 start-page: 557 year: 1991 publication-title: ApJ – volume: 261 start-page: 430 year: 1993 publication-title: MNRAS – volume: 42 start-page: 211 year: 2004 publication-title: ARA&A – volume: 589 start-page: L77 year: 2003 publication-title: ApJ – volume: 362 start-page: 626 year: 2005 publication-title: MNRAS – volume: 672 start-page: 996 year: 2008 publication-title: ApJ – volume: 671 start-page: 358 year: 2007b publication-title: ApJ – volume: 452 start-page: 763 year: 2006 publication-title: A&A – volume: 471 start-page: 213 year: 2007 publication-title: A&A – volume: 457 start-page: 561 year: 2006 publication-title: A&A – volume: 527 start-page: L113 year: 1999 publication-title: ApJ – volume: 388 start-page: 1079 year: 2008 publication-title: MNRAS – volume: 645 start-page: L25 year: 2006 publication-title: ApJ – volume: 76 start-page: 125 year: 2004 publication-title: Rev. Mod. Phys. – volume: 443 start-page: 495 year: 2005 publication-title: A&A – volume: 612 start-page: 319 year: 2004 publication-title: ApJ – volume: 420 start-page: 213 year: 1994 publication-title: ApJ – volume: 458 start-page: 213 year: 2006 publication-title: A&A – volume: 58 start-page: 259 year: 1991 publication-title: Space Sci. Rev. – volume: 468 start-page: L59 year: 1996 publication-title: ApJ – volume: 42 start-page: 275 year: 2004 publication-title: ARA&A – volume: 144 start-page: 615 year: 1988 publication-title: Ap&SS – volume: 52 start-page: 1 year: 2000 publication-title: PASJ – volume: 382 start-page: 1447 year: 2007 publication-title: MNRAS – volume: 189 start-page: L105 year: 1974 publication-title: ApJ – volume: 372 start-page: 646 year: 1991 publication-title: ApJ – volume: 218 start-page: 148 year: 1977 publication-title: ApJ – volume: 302 start-page: 677 year: 1999 publication-title: MNRAS – volume: 317 start-page: L57 year: 2000 ident: 10.1111/j.1365-2966.2009.13759.x-BIB20 publication-title: MNRAS doi: 10.1046/j.1365-8711.2000.03899.x – volume: 371 start-page: L59 year: 1991 ident: 10.1111/j.1365-2966.2009.13759.x-BIB88 publication-title: ApJ doi: 10.1086/186002 – volume: 332 start-page: 754 year: 2002 ident: 10.1111/j.1365-2966.2009.13759.x-BIB68 publication-title: MNRAS doi: 10.1046/j.1365-8711.2002.05340.x – volume: 452 start-page: 763 year: 2006 ident: 10.1111/j.1365-2966.2009.13759.x-BIB83 publication-title: A&A doi: 10.1051/0004-6361:20064885 – volume: 576 start-page: 798 year: 2002 ident: 10.1111/j.1365-2966.2009.13759.x-BIB42 publication-title: ApJ doi: 10.1086/341802 – volume: 674 start-page: 157 year: 2008 ident: 10.1111/j.1365-2966.2009.13759.x-BIB8 publication-title: ApJ doi: 10.1086/524918 – volume-title: The Molecular Astrophysics of Stars and Galaxies year: 1998 ident: 10.1111/j.1365-2966.2009.13759.x-BIB29 doi: 10.1093/oso/9780198501589.001.0001 – volume-title: Cosmical Magnetic Fields year: 1979 ident: 10.1111/j.1365-2966.2009.13759.x-BIB59 – volume: 54 start-page: 891 year: 2002 ident: 10.1111/j.1365-2966.2009.13759.x-BIB56 publication-title: PASJ doi: 10.1093/pasj/54.6.891 – volume: 124 start-page: 2118 year: 2002 ident: 10.1111/j.1365-2966.2009.13759.x-BIB60 publication-title: AJ doi: 10.1086/342537 – volume: 138 start-page: 101 year: 2001 ident: 10.1111/j.1365-2966.2009.13759.x-BIB64 publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(01)00199-0 – volume: 378 start-page: 557 year: 1991 ident: 10.1111/j.1365-2966.2009.13759.x-BIB72 publication-title: ApJ doi: 10.1086/170457 – volume: 680 start-page: 336 year: 2008 ident: 10.1111/j.1365-2966.2009.13759.x-BIB73 publication-title: ApJ doi: 10.1086/587775 – volume: 604 start-page: 74 year: 2004 ident: 10.1111/j.1365-2966.2009.13759.x-BIB23 publication-title: ApJ doi: 10.1086/381726 – volume: 58 start-page: 259 year: 1991 ident: 10.1111/j.1365-2966.2009.13759.x-BIB32 publication-title: Space Sci. Rev. doi: 10.1007/BF01206003 – volume: 602 start-page: 170 year: 2004 ident: 10.1111/j.1365-2966.2009.13759.x-BIB5 publication-title: ApJ doi: 10.1086/380897 – volume: 395 start-page: L13 year: 2002 ident: 10.1111/j.1365-2966.2009.13759.x-BIB50 publication-title: A&A doi: 10.1051/0004-6361:20021408 – volume: 562 start-page: L129 year: 2001 ident: 10.1111/j.1365-2966.2009.13759.x-BIB54 publication-title: ApJ doi: 10.1086/338325 – volume: 381 start-page: 894 year: 2007 ident: 10.1111/j.1365-2966.2009.13759.x-BIB85 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.12346.x – volume: 218 start-page: 148 year: 1977 ident: 10.1111/j.1365-2966.2009.13759.x-BIB43 publication-title: ApJ doi: 10.1086/155667 – volume: 457 start-page: 561 year: 2006 ident: 10.1111/j.1365-2966.2009.13759.x-BIB17 publication-title: A&A doi: 10.1051/0004-6361:20065550 – volume: 444 start-page: 787 year: 1995 ident: 10.1111/j.1365-2966.2009.13759.x-BIB25 publication-title: ApJ doi: 10.1086/175651 – volume: 361 start-page: 1077 year: 2005 ident: 10.1111/j.1365-2966.2009.13759.x-BIB63 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09268.x – volume: 643 start-page: 186 year: 2006 ident: 10.1111/j.1365-2966.2009.13759.x-BIB80 publication-title: ApJ doi: 10.1086/502644 – volume: 372 start-page: 646 year: 1991 ident: 10.1111/j.1365-2966.2009.13759.x-BIB3 publication-title: ApJ doi: 10.1086/170007 – volume: 250 start-page: 581 year: 1991 ident: 10.1111/j.1365-2966.2009.13759.x-BIB21 publication-title: MNRAS doi: 10.1093/mnras/250.3.581 – volume: 221 start-page: 715 year: 1986 ident: 10.1111/j.1365-2966.2009.13759.x-BIB28 publication-title: MNRAS doi: 10.1093/mnras/221.3.715 – volume: 429 start-page: 323 year: 2005 ident: 10.1111/j.1365-2966.2009.13759.x-BIB69 publication-title: A&A doi: 10.1051/0004-6361:20041281 – volume: 349 start-page: 467 year: 1999 ident: 10.1111/j.1365-2966.2009.13759.x-BIB84 publication-title: A&A – volume: 156 start-page: 445 year: 1969 ident: 10.1111/j.1365-2966.2009.13759.x-BIB38 publication-title: ApJ doi: 10.1086/149981 – volume: 555 start-page: L87 year: 2001 ident: 10.1111/j.1365-2966.2009.13759.x-BIB82 publication-title: ApJ doi: 10.1086/323181 – volume: 671 start-page: 358 year: 2007 ident: 10.1111/j.1365-2966.2009.13759.x-BIB86 publication-title: ApJ doi: 10.1086/522693 – volume: 122 start-page: 938 year: 2001 ident: 10.1111/j.1365-2966.2009.13759.x-BIB12 publication-title: AJ doi: 10.1086/321161 – volume: 52 start-page: 1 year: 2000 ident: 10.1111/j.1365-2966.2009.13759.x-BIB34 publication-title: PASJ doi: 10.1093/pasj/52.1.1 – volume: 173 start-page: 37 year: 2007 ident: 10.1111/j.1365-2966.2009.13759.x-BIB78 publication-title: ApJS doi: 10.1086/520640 – volume: 43 start-page: 337 year: 2005 ident: 10.1111/j.1365-2966.2009.13759.x-BIB9 publication-title: ARA&A doi: 10.1146/annurev.astro.43.072103.150615 – volume: 130 start-page: 172 year: 2005 ident: 10.1111/j.1365-2966.2009.13759.x-BIB55 publication-title: AJ doi: 10.1086/430803 – volume-title: Diffuse Matter from Star Forming Regions to Active Galaxies year: 2007 ident: 10.1111/j.1365-2966.2009.13759.x-BIB62 – volume: 659 start-page: 1257 year: 2007 ident: 10.1111/j.1365-2966.2009.13759.x-BIB67 publication-title: ApJ doi: 10.1086/512483 – volume: 576 start-page: 832 year: 2002 ident: 10.1111/j.1365-2966.2009.13759.x-BIB65 publication-title: ApJ doi: 10.1086/341886 – volume: 76 start-page: 125 year: 2004 ident: 10.1111/j.1365-2966.2009.13759.x-BIB44 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.76.125 – volume: 458 start-page: 213 year: 2006 ident: 10.1111/j.1365-2966.2009.13759.x-BIB52 publication-title: A&A doi: 10.1051/0004-6361:20065738 – volume: 362 start-page: 626 year: 2005 ident: 10.1111/j.1365-2966.2009.13759.x-BIB46 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09343.x – volume: 527 start-page: L113 year: 1999 ident: 10.1111/j.1365-2966.2009.13759.x-BIB26 publication-title: ApJ doi: 10.1086/312402 – volume: 443 start-page: 495 year: 2005 ident: 10.1111/j.1365-2966.2009.13759.x-BIB49 publication-title: A&A doi: 10.1051/0004-6361:20052679 – volume: 660 start-page: L141 year: 2007 ident: 10.1111/j.1365-2966.2009.13759.x-BIB61 publication-title: ApJ doi: 10.1086/518365 – volume: 612 start-page: 319 year: 2004 ident: 10.1111/j.1365-2966.2009.13759.x-BIB75 publication-title: ApJ doi: 10.1086/422445 – volume: 382 start-page: 1447 year: 2007 ident: 10.1111/j.1365-2966.2009.13759.x-BIB48 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.12496.x – volume: 189 start-page: L105 year: 1974 ident: 10.1111/j.1365-2966.2009.13759.x-BIB10 publication-title: ApJ doi: 10.1086/181476 – volume: 606 start-page: L105 year: 2004 ident: 10.1111/j.1365-2966.2009.13759.x-BIB2 publication-title: ApJ doi: 10.1086/421440 – volume-title: Turbulence. An Introduction for Scientists and Engineers year: 2004 ident: 10.1111/j.1365-2966.2009.13759.x-BIB14 – volume: 42 start-page: 211 year: 2004 ident: 10.1111/j.1365-2966.2009.13759.x-BIB19 publication-title: ARA&A doi: 10.1146/annurev.astro.41.011802.094859 – volume: 269 start-page: 607 year: 1994 ident: 10.1111/j.1365-2966.2009.13759.x-BIB22 publication-title: MNRAS doi: 10.1093/mnras/269.3.607 – volume: 42 start-page: 275 year: 2004 ident: 10.1111/j.1365-2966.2009.13759.x-BIB70 publication-title: ARA&A doi: 10.1146/annurev.astro.42.120403.143327 – volume: 388 start-page: 1079 year: 2008 ident: 10.1111/j.1365-2966.2009.13759.x-BIB31 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13137.x – volume-title: Astrophysics of the Diffuse Universe year: 2003 ident: 10.1111/j.1365-2966.2009.13759.x-BIB15 doi: 10.1007/978-3-662-05866-4 – volume: 214 start-page: 725 year: 1977 ident: 10.1111/j.1365-2966.2009.13759.x-BIB18 publication-title: ApJ doi: 10.1086/155302 – volume: 420 start-page: 213 year: 1994 ident: 10.1111/j.1365-2966.2009.13759.x-BIB35 publication-title: ApJ doi: 10.1086/173554 – volume: 471 start-page: 213 year: 2007 ident: 10.1111/j.1365-2966.2009.13759.x-BIB81 publication-title: A&A doi: 10.1051/0004-6361:20077430 – volume-title: Physics of Fully Ionized Gases year: 1956 ident: 10.1111/j.1365-2966.2009.13759.x-BIB74 – volume: 144 start-page: 615 year: 1988 ident: 10.1111/j.1365-2966.2009.13759.x-BIB27 publication-title: Ap&SS doi: 10.1007/BF00793207 – volume: 645 start-page: L25 year: 2006 ident: 10.1111/j.1365-2966.2009.13759.x-BIB40 publication-title: ApJ doi: 10.1086/505796 – volume: 448 start-page: 780 year: 2007 ident: 10.1111/j.1365-2966.2009.13759.x-BIB47 publication-title: Nat doi: 10.1038/nature06003 – volume: 444 start-page: 505 year: 2005 ident: 10.1111/j.1365-2966.2009.13759.x-BIB57 publication-title: A&A doi: 10.1051/0004-6361:20052896 – volume: 314 start-page: 511 year: 2000 ident: 10.1111/j.1365-2966.2009.13759.x-BIB77 publication-title: MNRAS doi: 10.1046/j.1365-8711.2000.03391.x – volume: 100 start-page: 12 year: 2000 ident: 10.1111/j.1365-2966.2009.13759.x-BIB11 publication-title: ESO Messenger – volume: 619 start-page: 327 year: 2005 ident: 10.1111/j.1365-2966.2009.13759.x-BIB24 publication-title: ApJ doi: 10.1086/426313 – ident: 10.1111/j.1365-2966.2009.13759.x-BIB13 – volume: 678 start-page: 274 year: 2008 ident: 10.1111/j.1365-2966.2009.13759.x-BIB58 publication-title: ApJ doi: 10.1086/529420 – volume: 511 start-page: 282 year: 1999 ident: 10.1111/j.1365-2966.2009.13759.x-BIB71 publication-title: ApJ doi: 10.1086/306680 – volume: 390 start-page: L17 year: 1992 ident: 10.1111/j.1365-2966.2009.13759.x-BIB76 publication-title: ApJ doi: 10.1086/186361 – volume: 555 start-page: 338 year: 2001 ident: 10.1111/j.1365-2966.2009.13759.x-BIB4 publication-title: ApJ doi: 10.1086/321481 – volume: 302 start-page: 677 year: 1999 ident: 10.1111/j.1365-2966.2009.13759.x-BIB51 publication-title: MNRAS doi: 10.1046/j.1365-8711.1999.02114.x – volume: 531 start-page: 366 year: 2000 ident: 10.1111/j.1365-2966.2009.13759.x-BIB37 publication-title: ApJ doi: 10.1086/308425 – volume: 307 start-page: 337 year: 1999 ident: 10.1111/j.1365-2966.2009.13759.x-BIB79 publication-title: MNRAS doi: 10.1046/j.1365-8711.1999.02604.x – volume: 315 start-page: 11 year: 2000 ident: 10.1111/j.1365-2966.2009.13759.x-BIB41 publication-title: MNRAS doi: 10.1046/j.1365-8711.2000.03345.x – volume: 363 start-page: 54 year: 1993 ident: 10.1111/j.1365-2966.2009.13759.x-BIB1 publication-title: Nat doi: 10.1038/363054a0 – volume: 261 start-page: 430 year: 1993 ident: 10.1111/j.1365-2966.2009.13759.x-BIB16 publication-title: MNRAS doi: 10.1093/mnras/261.2.430 – volume: 468 start-page: L59 year: 1996 ident: 10.1111/j.1365-2966.2009.13759.x-BIB33 publication-title: ApJ doi: 10.1086/310224 – volume: 583 start-page: 245 year: 2003 ident: 10.1111/j.1365-2966.2009.13759.x-BIB36 publication-title: ApJ doi: 10.1086/345340 – volume: 433 start-page: 757 year: 1994 ident: 10.1111/j.1365-2966.2009.13759.x-BIB45 publication-title: ApJ doi: 10.1086/174685 – volume: 385 start-page: 1779 year: 2008 ident: 10.1111/j.1365-2966.2009.13759.x-BIB66 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.12963.x – volume: 589 start-page: L77 year: 2003 ident: 10.1111/j.1365-2966.2009.13759.x-BIB6 publication-title: ApJ doi: 10.1086/376492 – volume: 164 start-page: 477 year: 2006 ident: 10.1111/j.1365-2966.2009.13759.x-BIB53 publication-title: ApJS doi: 10.1086/501530 – volume: 652 start-page: 426 year: 2006 ident: 10.1111/j.1365-2966.2009.13759.x-BIB30 publication-title: ApJ doi: 10.1086/507944 – volume: 672 start-page: 996 year: 2008 ident: 10.1111/j.1365-2966.2009.13759.x-BIB87 publication-title: ApJ doi: 10.1086/523955 – volume: 122 start-page: 2281 year: 2001 ident: 10.1111/j.1365-2966.2009.13759.x-BIB7 publication-title: ApJ doi: 10.1086/323534 – volume-title: Fluid Mechanics year: 1959 ident: 10.1111/j.1365-2966.2009.13759.x-BIB39 |
SSID | ssj0004326 |
Score | 2.2604985 |
Snippet | The interaction of a shock with a cloud has been extensively studied in the literature, where the effects of magnetic fields, radiative cooling and thermal... ABSTRACT The interaction of a shock with a cloud has been extensively studied in the literature, where the effects of magnetic fields, radiative cooling and... ABSTRACTThe interaction of a shock with a cloud has been extensively studied in the literature, where the effects of magnetic fields, radiative cooling and... |
SourceID | proquest crossref wiley oup istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1351 |
SubjectTerms | hydrodynamics ISM: clouds ISM: kinematics and dynamics shock waves supernova remnants turbulence |
Title | The turbulent destruction of clouds – I. A k–ε treatment of turbulence in 2D models of adiabatic shock–cloud interactions |
URI | https://api.istex.fr/ark:/67375/HXZ-WX8VRWTV-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2966.2009.13759.x https://www.proquest.com/docview/20588458 |
Volume | 394 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQuXDhp4C6_M6h6omsNonz4-OqpVoqbYVW_VlxsWzHFtVuE7TpSoVT34Fn4TV4CJ6EGWcTulWRKsTNkT1WHI_tb5yZbxjbVrEIrVY6QHCcB7woeJALYwNrnAgdKohwFJw8PkxHx_xgmkxX_k8UC9PwQ3QXbrQy_H5NC1zpen2Rew8txOsN7WQYZ4noE57ECqLR35v8YZLisc-85hka0UYI1516bu1o7aS6Tx_98kYUHIHR65DWn0n7j9isHU3jijLrLy9033y7QfT4f4b7mD1cQVcYNrr2hN2z5SbbGtZ0mV6df4Ud8OXmrqTeZL0xAvJq4e_tsXJ3fobo2D89ZVeonoCnnV7SqQeF7XhsoXJg5tWyqOHX1Xf40IchzLD08wd0TvHUphU2Fs5KiPbA5_SpqYroFjQx0UL9Gbd7FPYdAlFjLJpAjvoZO95_f7Q7ClbJIALDo4xcdCKTmZAXIlVRXJiIiAm5RotKoxWvOI9jHadKW4RIJhGJG7i4EAOXp4koFIK052yjrEq7xSCPnOKKqAMp37bSwqh4oLGlM9ylPOmxrJ14aVZM6ZSwYy6vWUw4GZImg_J4CuknQ172WNhJfmnYQu4gs-N1qxNQixl522WJHE0_ydNpfjI5PTqRH3vsHSrfX_oNbun3baulErcM-g-kSlsta2xF0clJjuP0GnfnV5Xjw4kvvvhnyZfsQfs_LgxfsQ1ULvsaYd2FfuMX7G-2VT9C |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbhMxELZQe4ALPwXU8FcfUE9slF17f3yMWqoUmghFaRtxsWyvLaqEXZRtpMKp78Cz8Bo8BE_CjDe7NFWRKsTN0XqseD22v5md-YaQ14qJ0GqlAwDHWcDznAeZMDawxonQgYIIh8nJw1EyOObvpvF0VQ4Ic2FqfojW4YY7w5_XuMHRIb2-y32IFgD2mncyZGksugAoNzngDrTE9sd_uKQ487XXPEcjWAnheljPjSOt3VWb-NovruXBIRy9Cmr9rXTwgMyb-dTBKLPu8lx3zbdrVI__acIPyf0VeqX9Wt0ekTu22CLb_Qr96eXnr3SX-nbtLqm2SGcImLxceNc9PNybnwFA9r8ek0vQUAoXnl7ixUdz21LZ0tJRMy-XeUV_XX6nh13apzNo_fxB27h47NMIG0vPChrtU1_Wp8JHyLigkYyWVp_gxAdhPyBFdoxFnctRPSHHB28ne4NgVQ8iMDxKMUonMqkJeS4SFbHcRMhNyDUYVRoMecU5Y5olSltASSYWses5louey5JY5Apw2lOyUZSF3SY0i5ziCtkDseS20sIo1tPQ0xnuEh53SNqsvDQrsnSs2TGXV4wmWAyJi4GlPIX0iyEvOiRsJb_UhCG3kNn1ytUKqMUMA-7SWA6mH-XpNDsZn05O5IcOeQPa95dxgxvG3WnUVMKpgZ-CVGHLZQW9MEE5zmCeXuVu_VflcDT2zWf_LLlD7g4mwyN5dDh6_5zcaz7PheELsgGKZl8CyjvXr_zu_Q2rwUNh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dbtMwFLbQJiFuGAzQymDzBdoVqZrE-fFltVF1QKup2k_FjWU7tja1JFOzSoOrvcOeZa_BQ_AkO8dpwjoNaULcOYqPFcfH9nfsc75DyAcZct8oqTwAx6nHsox5KdfGM9py34KCcIvByYNh3D9in8fReOH_hLEwFT9Ec-CGM8Ot1zjBzzO7PMmdhxbg9Yp20g-TiLcBT66yGIAFAqTRHyopFrrUa46iEYwEf9mr58GWlraqVfzrl_fC4BCN3sW0blPqrZFJ3Z3KF2XSnl-otv55j-nx__T3BXm-wK60WynbS_LE5Otko1viaXrx_Qfdoa5cHZaU66Q1AERezNzBPbzcnZ4BPHZPr8gV6CeF7U7NcdujmWmIbGlhqZ4W86ykv6-u6X6bdukESr9uaOMVj3VqYW3oWU6DPeqS-pT4CvkWFFLR0vIU1nsQdg1S5MaYVZEc5Wty1Pt0uNv3FtkgPM2CBH10Ap1on2U8lkGY6QCZCZkCk0qBGS8ZC0MVxlIZwEg64pHt2DDjHZvGEc8koLQ3ZCUvcrNBaBpYySRyB2LCbam4lmFHQU2rmY1Z1CJJPfBCL6jSMWPHVNwxmWAwBA4GJvLkwg2GuGwRv5E8r-hCHiGz43SrEZCzCbrbJZHoj7-Jk3F6PDo5PBYHLfIRlO8v7XoPtLtda6mANQMvgmRuinkJtTA8OUqhn07jHv2pYjAcueLbf5bcJk8P9nri6_7wyyZ5Vt_N-f47sgJ6Zt4DxLtQW27u3gKaw0IQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+turbulent+destruction+of+clouds+-+I.+A+k-%CE%B5+treatment+of+turbulence+in+2D+models+of+adiabatic+shock-cloud+interactions&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Pittard%2C+J.+M.&rft.au=Falle%2C+S.+A.+E.+G.&rft.au=Hartquist%2C+T.+W.&rft.au=Dyson%2C+J.+E.&rft.date=2009-04-11&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=394&rft.issue=3&rft.spage=1351&rft.epage=1378&rft_id=info:doi/10.1111%2Fj.1365-2966.2009.13759.x&rft.externalDocID=10.1111%2Fj.1365-2966.2009.13759.x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |