The turbulent destruction of clouds – I. A k–ε treatment of turbulence in 2D models of adiabatic shock–cloud interactions

The interaction of a shock with a cloud has been extensively studied in the literature, where the effects of magnetic fields, radiative cooling and thermal conduction have been considered. In many cases, the formation of fully developed turbulence has been prevented by the artificial viscosity inher...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 394; no. 3; pp. 1351 - 1378
Main Authors Pittard, J. M., Falle, S. A. E. G., Hartquist, T. W., Dyson, J. E.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 11.04.2009
Subjects
Online AccessGet full text
ISSN0035-8711
1365-2966
DOI10.1111/j.1365-2966.2009.13759.x

Cover

Abstract The interaction of a shock with a cloud has been extensively studied in the literature, where the effects of magnetic fields, radiative cooling and thermal conduction have been considered. In many cases, the formation of fully developed turbulence has been prevented by the artificial viscosity inherent in hydrodynamical simulations. This problem is particularly severe in some recent simulations designed to investigate the interaction of a flow with multiple clouds, where the resolution of individual clouds is necessarily poor. Furthermore, the shocked flow interacting with the cloud has been assumed to be completely uniform in all previous single-cloud studies. In reality, the flow behind the shock is also likely to be turbulent, with non-uniform density, pressure and velocity structure created as the shock sweeps over inhomogeneities upstream of the cloud (as seen in recent multiple cloud simulations). To address these twin issues we use a subgrid compressible k–ε turbulence model to estimate the properties of the turbulence generated in shock–cloud interactions and the resulting increase in the transport coefficients that the turbulence brings. A detailed comparison with the output from an inviscid hydrodynamical code puts these new results into context. Despite the above concerns, we find that cloud destruction in inviscid and k–ε models occurs at roughly the same speed when the post-shock flow is smooth and when the density contrast between the cloud and intercloud medium, χ≲ 100. However, there are increasing and significant differences as χ increases. The k–ε models also demonstrate better convergence in resolution tests than inviscid models, a feature which is particularly useful for multiple-cloud simulations. Clouds which are over-run by a highly turbulent post-shock environment are destroyed significantly quicker as they are subject to strong ‘buffeting’ by the flow. The decreased lifetime and faster acceleration of the cloud material to the speed of the ambient flow leads to a reduction in the total amount of circulation (vorticity) generated in the interaction, so that the amount of vorticity may be self-limiting. Additional calculations with an inviscid code where the post-shock flow is given random, grid-scale, motions confirm the more rapid destruction of the cloud. Our results clearly show that turbulence plays an important role in shock–cloud interactions, and that environmental turbulence adds a new dimension to the parameter space which has hitherto been studied.
AbstractList ABSTRACT The interaction of a shock with a cloud has been extensively studied in the literature, where the effects of magnetic fields, radiative cooling and thermal conduction have been considered. In many cases, the formation of fully developed turbulence has been prevented by the artificial viscosity inherent in hydrodynamical simulations. This problem is particularly severe in some recent simulations designed to investigate the interaction of a flow with multiple clouds, where the resolution of individual clouds is necessarily poor. Furthermore, the shocked flow interacting with the cloud has been assumed to be completely uniform in all previous single‐cloud studies. In reality, the flow behind the shock is also likely to be turbulent, with non‐uniform density, pressure and velocity structure created as the shock sweeps over inhomogeneities upstream of the cloud (as seen in recent multiple cloud simulations). To address these twin issues we use a subgrid compressible k–ε turbulence model to estimate the properties of the turbulence generated in shock–cloud interactions and the resulting increase in the transport coefficients that the turbulence brings. A detailed comparison with the output from an inviscid hydrodynamical code puts these new results into context. Despite the above concerns, we find that cloud destruction in inviscid and k–ε models occurs at roughly the same speed when the post‐shock flow is smooth and when the density contrast between the cloud and intercloud medium, χ≲ 100. However, there are increasing and significant differences as χ increases. The k–ε models also demonstrate better convergence in resolution tests than inviscid models, a feature which is particularly useful for multiple‐cloud simulations. Clouds which are over‐run by a highly turbulent post‐shock environment are destroyed significantly quicker as they are subject to strong ‘buffeting’ by the flow. The decreased lifetime and faster acceleration of the cloud material to the speed of the ambient flow leads to a reduction in the total amount of circulation (vorticity) generated in the interaction, so that the amount of vorticity may be self‐limiting. Additional calculations with an inviscid code where the post‐shock flow is given random, grid‐scale, motions confirm the more rapid destruction of the cloud. Our results clearly show that turbulence plays an important role in shock–cloud interactions, and that environmental turbulence adds a new dimension to the parameter space which has hitherto been studied.
The interaction of a shock with a cloud has been extensively studied in the literature, where the effects of magnetic fields, radiative cooling and thermal conduction have been considered. In many cases, the formation of fully developed turbulence has been prevented by the artificial viscosity inherent in hydrodynamical simulations. This problem is particularly severe in some recent simulations designed to investigate the interaction of a flow with multiple clouds, where the resolution of individual clouds is necessarily poor. Furthermore, the shocked flow interacting with the cloud has been assumed to be completely uniform in all previous single-cloud studies. In reality, the flow behind the shock is also likely to be turbulent, with non-uniform density, pressure and velocity structure created as the shock sweeps over inhomogeneities upstream of the cloud (as seen in recent multiple cloud simulations). To address these twin issues we use a subgrid compressible k–ε turbulence model to estimate the properties of the turbulence generated in shock–cloud interactions and the resulting increase in the transport coefficients that the turbulence brings. A detailed comparison with the output from an inviscid hydrodynamical code puts these new results into context. Despite the above concerns, we find that cloud destruction in inviscid and k–ε models occurs at roughly the same speed when the post-shock flow is smooth and when the density contrast between the cloud and intercloud medium, χ≲ 100. However, there are increasing and significant differences as χ increases. The k–ε models also demonstrate better convergence in resolution tests than inviscid models, a feature which is particularly useful for multiple-cloud simulations. Clouds which are over-run by a highly turbulent post-shock environment are destroyed significantly quicker as they are subject to strong ‘buffeting’ by the flow. The decreased lifetime and faster acceleration of the cloud material to the speed of the ambient flow leads to a reduction in the total amount of circulation (vorticity) generated in the interaction, so that the amount of vorticity may be self-limiting. Additional calculations with an inviscid code where the post-shock flow is given random, grid-scale, motions confirm the more rapid destruction of the cloud. Our results clearly show that turbulence plays an important role in shock–cloud interactions, and that environmental turbulence adds a new dimension to the parameter space which has hitherto been studied.
ABSTRACTThe interaction of a shock with a cloud has been extensively studied in the literature, where the effects of magnetic fields, radiative cooling and thermal conduction have been considered. In many cases, the formation of fully developed turbulence has been prevented by the artificial viscosity inherent in hydrodynamical simulations. This problem is particularly severe in some recent simulations designed to investigate the interaction of a flow with multiple clouds, where the resolution of individual clouds is necessarily poor. Furthermore, the shocked flow interacting with the cloud has been assumed to be completely uniform in all previous single-cloud studies. In reality, the flow behind the shock is also likely to be turbulent, with non-uniform density, pressure and velocity structure created as the shock sweeps over inhomogeneities upstream of the cloud (as seen in recent multiple cloud simulations). To address these twin issues we use a subgrid compressible k- epsilon turbulence model to estimate the properties of the turbulence generated in shock-cloud interactions and the resulting increase in the transport coefficients that the turbulence brings. A detailed comparison with the output from an inviscid hydrodynamical code puts these new results into context.Despite the above concerns, we find that cloud destruction in inviscid and k- epsilon models occurs at roughly the same speed when the post-shock flow is smooth and when the density contrast between the cloud and intercloud medium, chi [lsim] 100. However, there are increasing and significant differences as chi increases. The k- epsilon models also demonstrate better convergence in resolution tests than inviscid models, a feature which is particularly useful for multiple-cloud simulations.Clouds which are over-run by a highly turbulent post-shock environment are destroyed significantly quicker as they are subject to strong 'buffeting' by the flow. The decreased lifetime and faster acceleration of the cloud material to the speed of the ambient flow leads to a reduction in the total amount of circulation (vorticity) generated in the interaction, so that the amount of vorticity may be self-limiting. Additional calculations with an inviscid code where the post-shock flow is given random, grid-scale, motions confirm the more rapid destruction of the cloud.Our results clearly show that turbulence plays an important role in shock-cloud interactions, and that environmental turbulence adds a new dimension to the parameter space which has hitherto been studied.
The interaction of a shock with a cloud has been extensively studied in the literature, where the effects of magnetic fields, radiative cooling and thermal conduction have been considered. In many cases, the formation of fully developed turbulence has been prevented by the artificial viscosity inherent in hydrodynamical simulations. This problem is particularly severe in some recent simulations designed to investigate the interaction of a flow with multiple clouds, where the resolution of individual clouds is necessarily poor. Furthermore, the shocked flow interacting with the cloud has been assumed to be completely uniform in all previous single-cloud studies. In reality, the flow behind the shock is also likely to be turbulent, with non-uniform density, pressure and velocity structure created as the shock sweeps over inhomogeneities upstream of the cloud (as seen in recent multiple cloud simulations). To address these twin issues we use a subgrid compressible k-ε turbulence model to estimate the properties of the turbulence generated in shock-cloud interactions and the resulting increase in the transport coefficients that the turbulence brings. A detailed comparison with the output from an inviscid hydrodynamical code puts these new results into context. Despite the above concerns, we find that cloud destruction in inviscid and k-ε models occurs at roughly the same speed when the post-shock flow is smooth and when the density contrast between the cloud and intercloud medium, χ≲ 100. However, there are increasing and significant differences as χ increases. The k-ε models also demonstrate better convergence in resolution tests than inviscid models, a feature which is particularly useful for multiple-cloud simulations. Clouds which are over-run by a highly turbulent post-shock environment are destroyed significantly quicker as they are subject to strong 'buffeting' by the flow. The decreased lifetime and faster acceleration of the cloud material to the speed of the ambient flow leads to a reduction in the total amount of circulation (vorticity) generated in the interaction, so that the amount of vorticity may be self-limiting. Additional calculations with an inviscid code where the post-shock flow is given random, grid-scale, motions confirm the more rapid destruction of the cloud. Our results clearly show that turbulence plays an important role in shock-cloud interactions, and that environmental turbulence adds a new dimension to the parameter space which has hitherto been studied.
Author Falle, S. A. E. G.
Hartquist, T. W.
Pittard, J. M.
Dyson, J. E.
Author_xml – sequence: 1
  givenname: J. M.
  surname: Pittard
  fullname: Pittard, J. M.
  email: jmp@ast.leeds.ac.uk, † jmp@ast.leeds.ac.uk
  organization: School of Physics and Astronomy, The University of Leeds, Leeds LS2 9JT
– sequence: 2
  givenname: S. A. E. G.
  surname: Falle
  fullname: Falle, S. A. E. G.
  organization: Department of Applied Mathematics, The University of Leeds, Leeds LS2 9JT
– sequence: 3
  givenname: T. W.
  surname: Hartquist
  fullname: Hartquist, T. W.
  organization: School of Physics and Astronomy, The University of Leeds, Leeds LS2 9JT
– sequence: 4
  givenname: J. E.
  surname: Dyson
  fullname: Dyson, J. E.
  organization: School of Physics and Astronomy, The University of Leeds, Leeds LS2 9JT
BookMark eNqVkEtuFDEQhi0UJCaBO3jFrhs_2o_eIEXhkUhJQNHkITaW2-1WPOlpD7ZbTHa5A2fhGjlEToJ7hmSBQAJvXKX6v79U_y7YGfxgAYAYlTi_N4sSU84KUnNeEoTq3ApWl-tnYPY02AEzhCgrpMD4BdiNcYEQqijhM3A3v7YwjaEZezsk2NqYwmiS8wP0HTS9H9sIH-6-w6MS7sObXN3_gClYnZaTPmseYWOhGyB5B5e-tX2cRrp1utHJGRivvZngjWHWJRv0Zkt8CZ53uo_21a9_D5x_eD8_OCyOP308Otg_LkxFRF1wRowwuGprrgltDUG4olVDsGiElLqqKG0o140VFTasZh3qaFujTnJWt5oIugdeb31XwX8d85lq6aKxfa8H68eoCGJSVkxmodwKTfAxBtupVXBLHW4VRmqKXC3UlKyaklVT5GoTuVpn9O1vqHFJT2emoF3_HwbfXG9v_3mxOjk925TZgG4N_Lj6C178aW2xpVxMdv3E6XCjuMgadXj1RV1eyYuzy_mF-kx_AoUbwAA
CitedBy_id crossref_primary_10_1093_mnras_stz3320
crossref_primary_10_1002_asna_201913548
crossref_primary_10_1093_mnras_stac1104
crossref_primary_10_1016_j_compfluid_2020_104549
crossref_primary_10_1093_mnras_stu1048
crossref_primary_10_1051_0004_6361_201935632
crossref_primary_10_3847_1538_4357_ab02ff
crossref_primary_10_1093_mnras_staa2904
crossref_primary_10_1088_0004_637X_736_2_109
crossref_primary_10_1016_j_ijheatfluidflow_2015_07_017
crossref_primary_10_1051_0004_6361_201322482
crossref_primary_10_1134_S0015462822601395
crossref_primary_10_1088_0004_637X_766_1_45
crossref_primary_10_1093_mnras_stx720
crossref_primary_10_3847_1538_4357_ac1d4b
crossref_primary_10_1093_mnras_stx2541
crossref_primary_10_1088_0004_637X_722_1_412
crossref_primary_10_1051_0004_6361_200913801
crossref_primary_10_1088_0004_6256_150_2_59
crossref_primary_10_1017_pas_2013_002
crossref_primary_10_1093_mnras_stv2405
crossref_primary_10_1088_0067_0049_194_1_15
crossref_primary_10_1093_mnras_staa3889
crossref_primary_10_1088_0004_637X_700_2_1067
crossref_primary_10_1088_1742_6596_1103_1_012007
crossref_primary_10_1111_j_1365_2966_2010_16520_x
crossref_primary_10_1111_j_1365_2966_2010_16888_x
crossref_primary_10_1007_s10509_010_0526_4
crossref_primary_10_1093_mnras_stw025
crossref_primary_10_1093_mnras_sty401
crossref_primary_10_1051_0004_6361_201321808
crossref_primary_10_1088_1742_6596_2028_1_012019
crossref_primary_10_1093_mnras_stz1040
crossref_primary_10_1093_mnras_stu1501
crossref_primary_10_1016_j_ascom_2024_100887
crossref_primary_10_1016_j_compfluid_2018_03_009
crossref_primary_10_1093_mnras_stw1796
crossref_primary_10_1111_j_1365_2966_2010_16504_x
crossref_primary_10_1103_PhysRevE_99_013104
crossref_primary_10_1016_j_newar_2021_101610
crossref_primary_10_1093_mnras_stw378
crossref_primary_10_1093_mnras_stae1295
crossref_primary_10_1016_j_actaastro_2020_02_026
crossref_primary_10_1051_0004_6361_201629796
crossref_primary_10_1088_1742_6596_1336_1_012009
crossref_primary_10_1093_mnras_stx1431
crossref_primary_10_1051_0004_6361_201628132
crossref_primary_10_1016_j_hedp_2012_11_005
crossref_primary_10_1088_0004_637X_774_2_133
crossref_primary_10_3390_galaxies6040114
crossref_primary_10_1093_mnras_stw1365
crossref_primary_10_1111_j_1745_3933_2010_00988_x
crossref_primary_10_1111_j_1365_2966_2012_21598_x
crossref_primary_10_1088_0004_637X_757_2_136
crossref_primary_10_1111_j_1365_2966_2010_16792_x
crossref_primary_10_1093_mnras_stt1788
crossref_primary_10_1134_S199508021804011X
crossref_primary_10_1093_mnras_stt255
crossref_primary_10_1088_0004_637X_784_2_117
crossref_primary_10_3847_1538_4357_ab76d1
Cites_doi 10.1046/j.1365-8711.2000.03899.x
10.1086/186002
10.1046/j.1365-8711.2002.05340.x
10.1051/0004-6361:20064885
10.1086/341802
10.1086/524918
10.1093/oso/9780198501589.001.0001
10.1093/pasj/54.6.891
10.1086/342537
10.1016/S0010-4655(01)00199-0
10.1086/170457
10.1086/587775
10.1086/381726
10.1007/BF01206003
10.1086/380897
10.1051/0004-6361:20021408
10.1086/338325
10.1111/j.1365-2966.2007.12346.x
10.1086/155667
10.1051/0004-6361:20065550
10.1086/175651
10.1111/j.1365-2966.2005.09268.x
10.1086/502644
10.1086/170007
10.1093/mnras/250.3.581
10.1093/mnras/221.3.715
10.1051/0004-6361:20041281
10.1086/149981
10.1086/323181
10.1086/522693
10.1086/321161
10.1093/pasj/52.1.1
10.1086/520640
10.1146/annurev.astro.43.072103.150615
10.1086/430803
10.1086/512483
10.1086/341886
10.1103/RevModPhys.76.125
10.1051/0004-6361:20065738
10.1111/j.1365-2966.2005.09343.x
10.1086/312402
10.1051/0004-6361:20052679
10.1086/518365
10.1086/422445
10.1111/j.1365-2966.2007.12496.x
10.1086/181476
10.1086/421440
10.1146/annurev.astro.41.011802.094859
10.1093/mnras/269.3.607
10.1146/annurev.astro.42.120403.143327
10.1111/j.1365-2966.2008.13137.x
10.1007/978-3-662-05866-4
10.1086/155302
10.1086/173554
10.1051/0004-6361:20077430
10.1007/BF00793207
10.1086/505796
10.1038/nature06003
10.1051/0004-6361:20052896
10.1046/j.1365-8711.2000.03391.x
10.1086/426313
10.1086/529420
10.1086/306680
10.1086/186361
10.1086/321481
10.1046/j.1365-8711.1999.02114.x
10.1086/308425
10.1046/j.1365-8711.1999.02604.x
10.1046/j.1365-8711.2000.03345.x
10.1038/363054a0
10.1093/mnras/261.2.430
10.1086/310224
10.1086/345340
10.1086/174685
10.1111/j.1365-2966.2008.12963.x
10.1086/376492
10.1086/501530
10.1086/507944
10.1086/523955
10.1086/323534
ContentType Journal Article
Copyright 2009 The Authors. Journal compilation © 2009 RAS 2009
2009 The Authors. Journal compilation © 2009 RAS
Copyright_xml – notice: 2009 The Authors. Journal compilation © 2009 RAS 2009
– notice: 2009 The Authors. Journal compilation © 2009 RAS
DBID BSCLL
AAYXX
CITATION
7TG
KL.
DOI 10.1111/j.1365-2966.2009.13759.x
DatabaseName Istex
CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList

Meteorological & Geoastrophysical Abstracts - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 1378
ExternalDocumentID 10_1111_j_1365_2966_2009_13759_x
MNR13759
10.1111/j.1365-2966.2009.13759.x
ark_67375_HXZ_WX8VRWTV_P
Genre article
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMMB
AAMVS
AANHP
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABAZT
ABCQN
ABCQX
ABEJV
ABEML
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPEJ
ABPTD
ABQLI
ABVLG
ABXVV
ABZBJ
ACBWZ
ACGFO
ACGFS
ACGOD
ACNCT
ACRPL
ACSCC
ACUFI
ACUKT
ACUXJ
ACXQS
ACYRX
ACYTK
ACYXJ
ADEYI
ADGZP
ADHKW
ADHZD
ADNMO
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEFGJ
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFBPY
AFEBI
AFFZL
AFIYH
AFOFC
AFZJQ
AGINJ
AGQPQ
AGSYK
AGXDD
AHXPO
AIDQK
AIDYY
AJAOE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
ASPBG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BSCLL
BTQHN
BY8
CAG
CDBKE
CO8
COF
D-E
D-F
DAKXR
DCZOG
DILTD
DR2
DU5
D~K
E3Z
EBS
EE~
EJD
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
JXSIZ
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MK4
NGC
NMDNZ
NOMLY
O9-
OCL
ODMLO
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RNS
ROL
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
V8K
W8V
W99
WH7
WQJ
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
2WC
AAHHS
AASNB
ABFSI
ABJNI
ABSAR
ABSMQ
ABTAH
ACBNA
ACCFJ
ACFRR
ACUTJ
ADRIX
AEEZP
AEQDE
AETEA
AFFNX
AFXEN
AGMDO
AIWBW
AJBDE
ASAOO
ATDFG
BCRHZ
CXTWN
DFGAJ
E.L
EAD
EAP
ESX
MBTAY
O0~
OHT
RHF
RNP
ROX
UQL
VOH
WRC
ZY4
AAYXX
CITATION
7TG
KL.
ID FETCH-LOGICAL-c4279-652c7c14d96a23dc201434b217b788a4433b36abe741c595f0f3d90f8659da273
IEDL.DBID DR2
ISSN 0035-8711
IngestDate Fri Jul 11 05:55:18 EDT 2025
Thu Apr 24 22:53:50 EDT 2025
Tue Jul 01 00:53:51 EDT 2025
Wed Jan 22 16:20:31 EST 2025
Wed Aug 28 03:23:26 EDT 2024
Tue Jul 15 01:34:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords hydrodynamics
ISM: clouds
turbulence
supernova remnants
ISM: kinematics and dynamics
shock waves
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4279-652c7c14d96a23dc201434b217b788a4433b36abe741c595f0f3d90f8659da273
Notes ark:/67375/HXZ-WX8VRWTV-P
istex:853F8F308EA0D40122521E15D15487B3658A36C4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 20588458
PQPubID 23462
PageCount 28
ParticipantIDs proquest_miscellaneous_20588458
crossref_primary_10_1111_j_1365_2966_2009_13759_x
crossref_citationtrail_10_1111_j_1365_2966_2009_13759_x
wiley_primary_10_1111_j_1365_2966_2009_13759_x_MNR13759
oup_primary_10_1111_j_1365-2966_2009_13759_x
istex_primary_ark_67375_HXZ_WX8VRWTV_P
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-04-11
PublicationDateYYYYMMDD 2009-04-11
PublicationDate_xml – month: 04
  year: 2009
  text: 2009-04-11
  day: 11
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationTitleAbbrev Monthly Notices of the Royal Astronomical Society
PublicationTitleAlternate Monthly Notices of the Royal Astronomical Society
PublicationYear 2009
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1991; 58
2005; 130
2000; 531
2002; 395
2007; 382
2002; 54
1988; 144
1974; 189
2005; 619
2008; 388
2006; 457
2004; 604
2004; 602
2008; 385
2006; 458
1993; 363
1979
2006; 452
2004; 606
1999; 527
2006; 652
1996; 468
1994; 420
2004; 76
1992; 390
1994; 269
2007; 173
1986; 221
2000; 52
1977; 218
2006; 164
2008; 678
2005; 429
1983
1977; 214
1995; 444
2008; 674
2006; 643
2008; 672
2007; 659
2006; 645
2004; 612
2001; 138
2001; 122
2001; 562
1991; 372
2004; 42
1991; 250
1991; 371
2007; 448
1991; 378
1994; 433
2000; 314
2000; 315
2002; 576
2000; 317
2002; 332
1998
2005; 43
1993; 261
2004
2003
1999; 349
1999; 302
1959
2008; 680
1956
1999; 307
2005; 361
2003; 589
2005; 362
2007b
2005; 443
2007b; 671
2005; 444
2002; 124
2007; 471
2000; 100
1999; 511
2007a; 381
2001; 555
2003; 583
1969; 156
2007a; 660
Cecil (10.1111/j.1365-2966.2009.13759.x-BIB4) 2001; 555
Melioli (10.1111/j.1365-2966.2009.13759.x-BIB49) 2005; 443
Kornreich (10.1111/j.1365-2966.2009.13759.x-BIB37) 2000; 531
Mac Low (10.1111/j.1365-2966.2009.13759.x-BIB44) 2004; 76
Hartquist (10.1111/j.1365-2966.2009.13759.x-BIB28) 1986; 221
Jones (10.1111/j.1365-2966.2009.13759.x-BIB32) 1991; 58
Graham (10.1111/j.1365-2966.2009.13759.x-BIB25) 1995; 444
Pittard (10.1111/j.1365-2966.2009.13759.x-BIB62) 2007
Stone (10.1111/j.1365-2966.2009.13759.x-BIB76) 1992; 390
Cho (10.1111/j.1365-2966.2009.13759.x-BIB6) 2003; 589
Runacres (10.1111/j.1365-2966.2009.13759.x-BIB69) 2005; 429
Klein (10.1111/j.1365-2966.2009.13759.x-BIB36) 2003; 583
Cantó (10.1111/j.1365-2966.2009.13759.x-BIB3) 1991; 372
Orlando (10.1111/j.1365-2966.2009.13759.x-BIB58) 2008; 678
Pittard (10.1111/j.1365-2966.2009.13759.x-BIB63) 2005; 361
Strickland (10.1111/j.1365-2966.2009.13759.x-BIB77) 2000; 314
Melnick (10.1111/j.1365-2966.2009.13759.x-BIB51) 1999; 302
Plewa (10.1111/j.1365-2966.2009.13759.x-BIB64) 2001; 138
Van Loo (10.1111/j.1365-2966.2009.13759.x-BIB81) 2007; 471
Orlando (10.1111/j.1365-2966.2009.13759.x-BIB57) 2005; 444
Jun (10.1111/j.1365-2966.2009.13759.x-BIB33) 1996; 468
Falle (10.1111/j.1365-2966.2009.13759.x-BIB21) 1991; 250
McKee (10.1111/j.1365-2966.2009.13759.x-BIB43) 1977; 218
Shin (10.1111/j.1365-2966.2009.13759.x-BIB73) 2008; 680
Pope (10.1111/j.1365-2966.2009.13759.x-BIB66) 2008; 385
Schultz (10.1111/j.1365-2966.2009.13759.x-BIB71) 1999; 511
Hartquist (10.1111/j.1365-2966.2009.13759.x-BIB27) 1988; 144
Danforth (10.1111/j.1365-2966.2009.13759.x-BIB12) 2001; 122
Fragile (10.1111/j.1365-2966.2009.13759.x-BIB24) 2005; 619
Klein (10.1111/j.1365-2966.2009.13759.x-BIB35) 1994; 420
Ohyama (10.1111/j.1365-2966.2009.13759.x-BIB56) 2002; 54
Yusef-Zadeh (10.1111/j.1365-2966.2009.13759.x-BIB88) 1991; 371
Currie (10.1111/j.1365-2966.2009.13759.x-BIB11) 2000; 100
Lazarian (10.1111/j.1365-2966.2009.13759.x-BIB40) 2006; 645
Cooper (10.1111/j.1365-2966.2009.13759.x-BIB8) 2008; 674
Marcolini (10.1111/j.1365-2966.2009.13759.x-BIB46) 2005; 362
Fragile (10.1111/j.1365-2966.2009.13759.x-BIB23) 2004; 604
Westmoquette (10.1111/j.1365-2966.2009.13759.x-BIB85) 2007; 381
Steffen (10.1111/j.1365-2966.2009.13759.x-BIB75) 2004; 612
Matsuura (10.1111/j.1365-2966.2009.13759.x-BIB48) 2007; 382
Narayan (10.1111/j.1365-2966.2009.13759.x-BIB54) 2001; 562
Mac Low (10.1111/j.1365-2966.2009.13759.x-BIB45) 1994; 433
Mellema (10.1111/j.1365-2966.2009.13759.x-BIB50) 2002; 395
Elmegreen (10.1111/j.1365-2966.2009.13759.x-BIB19) 2004; 42
Kulsrud (10.1111/j.1365-2966.2009.13759.x-BIB38) 1969; 156
Tedds (10.1111/j.1365-2966.2009.13759.x-BIB79) 1999; 307
Nakamura (10.1111/j.1365-2966.2009.13759.x-BIB53) 2006; 164
Dopita (10.1111/j.1365-2966.2009.13759.x-BIB15) 2003
Ettori (10.1111/j.1365-2966.2009.13759.x-BIB20) 2000; 317
Serabyn (10.1111/j.1365-2966.2009.13759.x-BIB72) 1991; 378
Allen (10.1111/j.1365-2966.2009.13759.x-BIB1) 1993; 363
Landau (10.1111/j.1365-2966.2009.13759.x-BIB39) 1959
Tenorio-Tagle (10.1111/j.1365-2966.2009.13759.x-BIB80) 2006; 643
Wagner (10.1111/j.1365-2966.2009.13759.x-BIB83) 2006; 452
Lee (10.1111/j.1365-2966.2009.13759.x-BIB41) 2000; 315
Martin (10.1111/j.1365-2966.2009.13759.x-BIB47) 2007; 448
Parker (10.1111/j.1365-2966.2009.13759.x-BIB59) 1979
Dyson (10.1111/j.1365-2966.2009.13759.x-BIB17) 2006; 457
Hora (10.1111/j.1365-2966.2009.13759.x-BIB30) 2006; 652
Cox (10.1111/j.1365-2966.2009.13759.x-BIB9) 2005; 43
Pittard (10.1111/j.1365-2966.2009.13759.x-BIB61) 2007; 660
Yirak (10.1111/j.1365-2966.2009.13759.x-BIB87) 2008; 672
Cox (10.1111/j.1365-2966.2009.13759.x-BIB10) 1974; 189
Iapichino (10.1111/j.1365-2966.2009.13759.x-BIB31) 2008; 388
Weis (10.1111/j.1365-2966.2009.13759.x-BIB84) 1999; 349
Chandran (10.1111/j.1365-2966.2009.13759.x-BIB5) 2004; 602
Elmegreen (10.1111/j.1365-2966.2009.13759.x-BIB18) 1977; 214
Westmoquette (10.1111/j.1365-2966.2009.13759.x-BIB86) 2007; 671
Conselice (10.1111/j.1365-2966.2009.13759.x-BIB7) 2001; 122
Kaifu (10.1111/j.1365-2966.2009.13759.x-BIB34) 2000; 52
Patnaude (10.1111/j.1365-2966.2009.13759.x-BIB60) 2002; 124
Gregori (10.1111/j.1365-2966.2009.13759.x-BIB26) 1999; 527
Levenson (10.1111/j.1365-2966.2009.13759.x-BIB42) 2002; 576
Sutherland (10.1111/j.1365-2966.2009.13759.x-BIB78) 2007; 173
Scalo (10.1111/j.1365-2966.2009.13759.x-BIB70) 2004; 42
Miceli (10.1111/j.1365-2966.2009.13759.x-BIB52) 2006; 458
Davidson (10.1111/j.1365-2966.2009.13759.x-BIB14) 2004
Falle (10.1111/j.1365-2966.2009.13759.x-BIB22) 1994; 269
Hartquist (10.1111/j.1365-2966.2009.13759.x-BIB29) 1998
Raymond (10.1111/j.1365-2966.2009.13759.x-BIB67) 2007; 659
Redman (10.1111/j.1365-2966.2009.13759.x-BIB68) 2002; 332
O'Dell (10.1111/j.1365-2966.2009.13759.x-BIB55) 2005; 130
Vikhlinin (10.1111/j.1365-2966.2009.13759.x-BIB82) 2001; 555
Dyson (10.1111/j.1365-2966.2009.13759.x-BIB16) 1993; 261
Poludnenko (10.1111/j.1365-2966.2009.13759.x-BIB65) 2002; 576
Asai (10.1111/j.1365-2966.2009.13759.x-BIB2) 2004; 606
Spitzer (10.1111/j.1365-2966.2009.13759.x-BIB74) 1956
10.1111/j.1365-2966.2009.13759.x-BIB13
References_xml – volume: 156
  start-page: 445
  year: 1969
  publication-title: ApJ
– volume: 555
  start-page: 338
  year: 2001
  publication-title: ApJ
– volume: 332
  start-page: 754
  year: 2002
  publication-title: MNRAS
– volume: 269
  start-page: 607
  year: 1994
  publication-title: MNRAS
– volume: 433
  start-page: 757
  year: 1994
  publication-title: ApJ
– volume: 643
  start-page: 186
  year: 2006
  publication-title: ApJ
– year: 1956
– volume: 583
  start-page: 245
  year: 2003
  publication-title: ApJ
– year: 2007b
– volume: 602
  start-page: 170
  year: 2004
  publication-title: ApJ
– volume: 124
  start-page: 2118
  year: 2002
  publication-title: AJ
– volume: 444
  start-page: 787
  year: 1995
  publication-title: ApJ
– volume: 429
  start-page: 323
  year: 2005
  publication-title: A&A
– volume: 363
  start-page: 54
  year: 1993
  publication-title: Nat
– volume: 122
  start-page: 2281
  year: 2001
  publication-title: ApJ
– volume: 314
  start-page: 511
  year: 2000
  publication-title: MNRAS
– volume: 43
  start-page: 337
  year: 2005
  publication-title: ARA&A
– volume: 531
  start-page: 366
  year: 2000
  publication-title: ApJ
– year: 1979
– volume: 390
  start-page: L17
  year: 1992
  publication-title: ApJ
– volume: 138
  start-page: 101
  year: 2001
  publication-title: Comput. Phys. Commun.
– volume: 604
  start-page: 74
  year: 2004
  publication-title: ApJ
– volume: 511
  start-page: 282
  year: 1999
  publication-title: ApJ
– year: 1998
– volume: 680
  start-page: 336
  year: 2008
  publication-title: ApJ
– volume: 619
  start-page: 327
  year: 2005
  publication-title: ApJ
– volume: 173
  start-page: 37
  year: 2007
  publication-title: ApJS
– year: 1959
– volume: 659
  start-page: 1257
  year: 2007
  publication-title: ApJ
– volume: 317
  start-page: L57
  year: 2000
  publication-title: MNRAS
– volume: 214
  start-page: 725
  year: 1977
  publication-title: ApJ
– volume: 395
  start-page: L13
  year: 2002
  publication-title: A&A
– volume: 606
  start-page: L105
  year: 2004
  publication-title: ApJ
– volume: 652
  start-page: 426
  year: 2006
  publication-title: ApJ
– year: 2004
– volume: 562
  start-page: L129
  year: 2001
  publication-title: ApJ
– volume: 444
  start-page: 505
  year: 2005
  publication-title: A&A
– volume: 371
  start-page: L59
  year: 1991
  publication-title: ApJ
– volume: 100
  start-page: 12
  year: 2000
  publication-title: ESO Messenger
– volume: 250
  start-page: 581
  year: 1991
  publication-title: MNRAS
– volume: 164
  start-page: 477
  year: 2006
  publication-title: ApJS
– volume: 381
  start-page: 894
  year: 2007a
  publication-title: MNRAS
– volume: 678
  start-page: 274
  year: 2008
  publication-title: ApJ
– volume: 361
  start-page: 1077
  year: 2005
  publication-title: MNRAS
– volume: 349
  start-page: 467
  year: 1999
  publication-title: A&A
– year: 1983
– volume: 674
  start-page: 157
  year: 2008
  publication-title: ApJ
– volume: 576
  start-page: 832
  year: 2002
  publication-title: ApJ
– volume: 221
  start-page: 715
  year: 1986
  publication-title: MNRAS
– volume: 576
  start-page: 798
  year: 2002
  publication-title: ApJ
– volume: 130
  start-page: 172
  year: 2005
  publication-title: AJ
– volume: 385
  start-page: 1779
  year: 2008
  publication-title: MNRAS
– volume: 660
  start-page: L141
  year: 2007a
  publication-title: ApJ
– volume: 315
  start-page: 11
  year: 2000
  publication-title: MNRAS
– year: 2003
– volume: 307
  start-page: 337
  year: 1999
  publication-title: MNRAS
– volume: 555
  start-page: L87
  year: 2001
  publication-title: ApJ
– volume: 54
  start-page: 891
  year: 2002
  publication-title: PASJ
– volume: 448
  start-page: 780
  year: 2007
  publication-title: Nat
– volume: 122
  start-page: 938
  year: 2001
  publication-title: AJ
– volume: 378
  start-page: 557
  year: 1991
  publication-title: ApJ
– volume: 261
  start-page: 430
  year: 1993
  publication-title: MNRAS
– volume: 42
  start-page: 211
  year: 2004
  publication-title: ARA&A
– volume: 589
  start-page: L77
  year: 2003
  publication-title: ApJ
– volume: 362
  start-page: 626
  year: 2005
  publication-title: MNRAS
– volume: 672
  start-page: 996
  year: 2008
  publication-title: ApJ
– volume: 671
  start-page: 358
  year: 2007b
  publication-title: ApJ
– volume: 452
  start-page: 763
  year: 2006
  publication-title: A&A
– volume: 471
  start-page: 213
  year: 2007
  publication-title: A&A
– volume: 457
  start-page: 561
  year: 2006
  publication-title: A&A
– volume: 527
  start-page: L113
  year: 1999
  publication-title: ApJ
– volume: 388
  start-page: 1079
  year: 2008
  publication-title: MNRAS
– volume: 645
  start-page: L25
  year: 2006
  publication-title: ApJ
– volume: 76
  start-page: 125
  year: 2004
  publication-title: Rev. Mod. Phys.
– volume: 443
  start-page: 495
  year: 2005
  publication-title: A&A
– volume: 612
  start-page: 319
  year: 2004
  publication-title: ApJ
– volume: 420
  start-page: 213
  year: 1994
  publication-title: ApJ
– volume: 458
  start-page: 213
  year: 2006
  publication-title: A&A
– volume: 58
  start-page: 259
  year: 1991
  publication-title: Space Sci. Rev.
– volume: 468
  start-page: L59
  year: 1996
  publication-title: ApJ
– volume: 42
  start-page: 275
  year: 2004
  publication-title: ARA&A
– volume: 144
  start-page: 615
  year: 1988
  publication-title: Ap&SS
– volume: 52
  start-page: 1
  year: 2000
  publication-title: PASJ
– volume: 382
  start-page: 1447
  year: 2007
  publication-title: MNRAS
– volume: 189
  start-page: L105
  year: 1974
  publication-title: ApJ
– volume: 372
  start-page: 646
  year: 1991
  publication-title: ApJ
– volume: 218
  start-page: 148
  year: 1977
  publication-title: ApJ
– volume: 302
  start-page: 677
  year: 1999
  publication-title: MNRAS
– volume: 317
  start-page: L57
  year: 2000
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB20
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2000.03899.x
– volume: 371
  start-page: L59
  year: 1991
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB88
  publication-title: ApJ
  doi: 10.1086/186002
– volume: 332
  start-page: 754
  year: 2002
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB68
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2002.05340.x
– volume: 452
  start-page: 763
  year: 2006
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB83
  publication-title: A&A
  doi: 10.1051/0004-6361:20064885
– volume: 576
  start-page: 798
  year: 2002
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB42
  publication-title: ApJ
  doi: 10.1086/341802
– volume: 674
  start-page: 157
  year: 2008
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB8
  publication-title: ApJ
  doi: 10.1086/524918
– volume-title: The Molecular Astrophysics of Stars and Galaxies
  year: 1998
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB29
  doi: 10.1093/oso/9780198501589.001.0001
– volume-title: Cosmical Magnetic Fields
  year: 1979
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB59
– volume: 54
  start-page: 891
  year: 2002
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB56
  publication-title: PASJ
  doi: 10.1093/pasj/54.6.891
– volume: 124
  start-page: 2118
  year: 2002
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB60
  publication-title: AJ
  doi: 10.1086/342537
– volume: 138
  start-page: 101
  year: 2001
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB64
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(01)00199-0
– volume: 378
  start-page: 557
  year: 1991
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB72
  publication-title: ApJ
  doi: 10.1086/170457
– volume: 680
  start-page: 336
  year: 2008
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB73
  publication-title: ApJ
  doi: 10.1086/587775
– volume: 604
  start-page: 74
  year: 2004
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB23
  publication-title: ApJ
  doi: 10.1086/381726
– volume: 58
  start-page: 259
  year: 1991
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB32
  publication-title: Space Sci. Rev.
  doi: 10.1007/BF01206003
– volume: 602
  start-page: 170
  year: 2004
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB5
  publication-title: ApJ
  doi: 10.1086/380897
– volume: 395
  start-page: L13
  year: 2002
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB50
  publication-title: A&A
  doi: 10.1051/0004-6361:20021408
– volume: 562
  start-page: L129
  year: 2001
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB54
  publication-title: ApJ
  doi: 10.1086/338325
– volume: 381
  start-page: 894
  year: 2007
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB85
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.12346.x
– volume: 218
  start-page: 148
  year: 1977
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB43
  publication-title: ApJ
  doi: 10.1086/155667
– volume: 457
  start-page: 561
  year: 2006
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB17
  publication-title: A&A
  doi: 10.1051/0004-6361:20065550
– volume: 444
  start-page: 787
  year: 1995
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB25
  publication-title: ApJ
  doi: 10.1086/175651
– volume: 361
  start-page: 1077
  year: 2005
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB63
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09268.x
– volume: 643
  start-page: 186
  year: 2006
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB80
  publication-title: ApJ
  doi: 10.1086/502644
– volume: 372
  start-page: 646
  year: 1991
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB3
  publication-title: ApJ
  doi: 10.1086/170007
– volume: 250
  start-page: 581
  year: 1991
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB21
  publication-title: MNRAS
  doi: 10.1093/mnras/250.3.581
– volume: 221
  start-page: 715
  year: 1986
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB28
  publication-title: MNRAS
  doi: 10.1093/mnras/221.3.715
– volume: 429
  start-page: 323
  year: 2005
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB69
  publication-title: A&A
  doi: 10.1051/0004-6361:20041281
– volume: 349
  start-page: 467
  year: 1999
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB84
  publication-title: A&A
– volume: 156
  start-page: 445
  year: 1969
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB38
  publication-title: ApJ
  doi: 10.1086/149981
– volume: 555
  start-page: L87
  year: 2001
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB82
  publication-title: ApJ
  doi: 10.1086/323181
– volume: 671
  start-page: 358
  year: 2007
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB86
  publication-title: ApJ
  doi: 10.1086/522693
– volume: 122
  start-page: 938
  year: 2001
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB12
  publication-title: AJ
  doi: 10.1086/321161
– volume: 52
  start-page: 1
  year: 2000
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB34
  publication-title: PASJ
  doi: 10.1093/pasj/52.1.1
– volume: 173
  start-page: 37
  year: 2007
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB78
  publication-title: ApJS
  doi: 10.1086/520640
– volume: 43
  start-page: 337
  year: 2005
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB9
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.43.072103.150615
– volume: 130
  start-page: 172
  year: 2005
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB55
  publication-title: AJ
  doi: 10.1086/430803
– volume-title: Diffuse Matter from Star Forming Regions to Active Galaxies
  year: 2007
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB62
– volume: 659
  start-page: 1257
  year: 2007
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB67
  publication-title: ApJ
  doi: 10.1086/512483
– volume: 576
  start-page: 832
  year: 2002
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB65
  publication-title: ApJ
  doi: 10.1086/341886
– volume: 76
  start-page: 125
  year: 2004
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB44
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.76.125
– volume: 458
  start-page: 213
  year: 2006
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB52
  publication-title: A&A
  doi: 10.1051/0004-6361:20065738
– volume: 362
  start-page: 626
  year: 2005
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB46
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09343.x
– volume: 527
  start-page: L113
  year: 1999
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB26
  publication-title: ApJ
  doi: 10.1086/312402
– volume: 443
  start-page: 495
  year: 2005
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB49
  publication-title: A&A
  doi: 10.1051/0004-6361:20052679
– volume: 660
  start-page: L141
  year: 2007
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB61
  publication-title: ApJ
  doi: 10.1086/518365
– volume: 612
  start-page: 319
  year: 2004
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB75
  publication-title: ApJ
  doi: 10.1086/422445
– volume: 382
  start-page: 1447
  year: 2007
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB48
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.12496.x
– volume: 189
  start-page: L105
  year: 1974
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB10
  publication-title: ApJ
  doi: 10.1086/181476
– volume: 606
  start-page: L105
  year: 2004
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB2
  publication-title: ApJ
  doi: 10.1086/421440
– volume-title: Turbulence. An Introduction for Scientists and Engineers
  year: 2004
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB14
– volume: 42
  start-page: 211
  year: 2004
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB19
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.41.011802.094859
– volume: 269
  start-page: 607
  year: 1994
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB22
  publication-title: MNRAS
  doi: 10.1093/mnras/269.3.607
– volume: 42
  start-page: 275
  year: 2004
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB70
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.42.120403.143327
– volume: 388
  start-page: 1079
  year: 2008
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB31
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13137.x
– volume-title: Astrophysics of the Diffuse Universe
  year: 2003
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB15
  doi: 10.1007/978-3-662-05866-4
– volume: 214
  start-page: 725
  year: 1977
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB18
  publication-title: ApJ
  doi: 10.1086/155302
– volume: 420
  start-page: 213
  year: 1994
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB35
  publication-title: ApJ
  doi: 10.1086/173554
– volume: 471
  start-page: 213
  year: 2007
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB81
  publication-title: A&A
  doi: 10.1051/0004-6361:20077430
– volume-title: Physics of Fully Ionized Gases
  year: 1956
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB74
– volume: 144
  start-page: 615
  year: 1988
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB27
  publication-title: Ap&SS
  doi: 10.1007/BF00793207
– volume: 645
  start-page: L25
  year: 2006
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB40
  publication-title: ApJ
  doi: 10.1086/505796
– volume: 448
  start-page: 780
  year: 2007
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB47
  publication-title: Nat
  doi: 10.1038/nature06003
– volume: 444
  start-page: 505
  year: 2005
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB57
  publication-title: A&A
  doi: 10.1051/0004-6361:20052896
– volume: 314
  start-page: 511
  year: 2000
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB77
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2000.03391.x
– volume: 100
  start-page: 12
  year: 2000
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB11
  publication-title: ESO Messenger
– volume: 619
  start-page: 327
  year: 2005
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB24
  publication-title: ApJ
  doi: 10.1086/426313
– ident: 10.1111/j.1365-2966.2009.13759.x-BIB13
– volume: 678
  start-page: 274
  year: 2008
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB58
  publication-title: ApJ
  doi: 10.1086/529420
– volume: 511
  start-page: 282
  year: 1999
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB71
  publication-title: ApJ
  doi: 10.1086/306680
– volume: 390
  start-page: L17
  year: 1992
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB76
  publication-title: ApJ
  doi: 10.1086/186361
– volume: 555
  start-page: 338
  year: 2001
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB4
  publication-title: ApJ
  doi: 10.1086/321481
– volume: 302
  start-page: 677
  year: 1999
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB51
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1999.02114.x
– volume: 531
  start-page: 366
  year: 2000
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB37
  publication-title: ApJ
  doi: 10.1086/308425
– volume: 307
  start-page: 337
  year: 1999
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB79
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1999.02604.x
– volume: 315
  start-page: 11
  year: 2000
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB41
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2000.03345.x
– volume: 363
  start-page: 54
  year: 1993
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB1
  publication-title: Nat
  doi: 10.1038/363054a0
– volume: 261
  start-page: 430
  year: 1993
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB16
  publication-title: MNRAS
  doi: 10.1093/mnras/261.2.430
– volume: 468
  start-page: L59
  year: 1996
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB33
  publication-title: ApJ
  doi: 10.1086/310224
– volume: 583
  start-page: 245
  year: 2003
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB36
  publication-title: ApJ
  doi: 10.1086/345340
– volume: 433
  start-page: 757
  year: 1994
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB45
  publication-title: ApJ
  doi: 10.1086/174685
– volume: 385
  start-page: 1779
  year: 2008
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB66
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.12963.x
– volume: 589
  start-page: L77
  year: 2003
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB6
  publication-title: ApJ
  doi: 10.1086/376492
– volume: 164
  start-page: 477
  year: 2006
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB53
  publication-title: ApJS
  doi: 10.1086/501530
– volume: 652
  start-page: 426
  year: 2006
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB30
  publication-title: ApJ
  doi: 10.1086/507944
– volume: 672
  start-page: 996
  year: 2008
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB87
  publication-title: ApJ
  doi: 10.1086/523955
– volume: 122
  start-page: 2281
  year: 2001
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB7
  publication-title: ApJ
  doi: 10.1086/323534
– volume-title: Fluid Mechanics
  year: 1959
  ident: 10.1111/j.1365-2966.2009.13759.x-BIB39
SSID ssj0004326
Score 2.2604985
Snippet The interaction of a shock with a cloud has been extensively studied in the literature, where the effects of magnetic fields, radiative cooling and thermal...
ABSTRACT The interaction of a shock with a cloud has been extensively studied in the literature, where the effects of magnetic fields, radiative cooling and...
ABSTRACTThe interaction of a shock with a cloud has been extensively studied in the literature, where the effects of magnetic fields, radiative cooling and...
SourceID proquest
crossref
wiley
oup
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1351
SubjectTerms hydrodynamics
ISM: clouds
ISM: kinematics and dynamics
shock waves
supernova remnants
turbulence
Title The turbulent destruction of clouds – I. A k–ε treatment of turbulence in 2D models of adiabatic shock–cloud interactions
URI https://api.istex.fr/ark:/67375/HXZ-WX8VRWTV-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2966.2009.13759.x
https://www.proquest.com/docview/20588458
Volume 394
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQuXDhp4C6_M6h6omsNonz4-OqpVoqbYVW_VlxsWzHFtVuE7TpSoVT34Fn4TV4CJ6EGWcTulWRKsTNkT1WHI_tb5yZbxjbVrEIrVY6QHCcB7woeJALYwNrnAgdKohwFJw8PkxHx_xgmkxX_k8UC9PwQ3QXbrQy_H5NC1zpen2Rew8txOsN7WQYZ4noE57ECqLR35v8YZLisc-85hka0UYI1516bu1o7aS6Tx_98kYUHIHR65DWn0n7j9isHU3jijLrLy9033y7QfT4f4b7mD1cQVcYNrr2hN2z5SbbGtZ0mV6df4Ud8OXmrqTeZL0xAvJq4e_tsXJ3fobo2D89ZVeonoCnnV7SqQeF7XhsoXJg5tWyqOHX1Xf40IchzLD08wd0TvHUphU2Fs5KiPbA5_SpqYroFjQx0UL9Gbd7FPYdAlFjLJpAjvoZO95_f7Q7ClbJIALDo4xcdCKTmZAXIlVRXJiIiAm5RotKoxWvOI9jHadKW4RIJhGJG7i4EAOXp4koFIK052yjrEq7xSCPnOKKqAMp37bSwqh4oLGlM9ylPOmxrJ14aVZM6ZSwYy6vWUw4GZImg_J4CuknQ172WNhJfmnYQu4gs-N1qxNQixl522WJHE0_ydNpfjI5PTqRH3vsHSrfX_oNbun3baulErcM-g-kSlsta2xF0clJjuP0GnfnV5Xjw4kvvvhnyZfsQfs_LgxfsQ1ULvsaYd2FfuMX7G-2VT9C
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbhMxELZQe4ALPwXU8FcfUE9slF17f3yMWqoUmghFaRtxsWyvLaqEXZRtpMKp78Cz8Bo8BE_CjDe7NFWRKsTN0XqseD22v5md-YaQ14qJ0GqlAwDHWcDznAeZMDawxonQgYIIh8nJw1EyOObvpvF0VQ4Ic2FqfojW4YY7w5_XuMHRIb2-y32IFgD2mncyZGksugAoNzngDrTE9sd_uKQ487XXPEcjWAnheljPjSOt3VWb-NovruXBIRy9Cmr9rXTwgMyb-dTBKLPu8lx3zbdrVI__acIPyf0VeqX9Wt0ekTu22CLb_Qr96eXnr3SX-nbtLqm2SGcImLxceNc9PNybnwFA9r8ek0vQUAoXnl7ixUdz21LZ0tJRMy-XeUV_XX6nh13apzNo_fxB27h47NMIG0vPChrtU1_Wp8JHyLigkYyWVp_gxAdhPyBFdoxFnctRPSHHB28ne4NgVQ8iMDxKMUonMqkJeS4SFbHcRMhNyDUYVRoMecU5Y5olSltASSYWses5louey5JY5Apw2lOyUZSF3SY0i5ziCtkDseS20sIo1tPQ0xnuEh53SNqsvDQrsnSs2TGXV4wmWAyJi4GlPIX0iyEvOiRsJb_UhCG3kNn1ytUKqMUMA-7SWA6mH-XpNDsZn05O5IcOeQPa95dxgxvG3WnUVMKpgZ-CVGHLZQW9MEE5zmCeXuVu_VflcDT2zWf_LLlD7g4mwyN5dDh6_5zcaz7PheELsgGKZl8CyjvXr_zu_Q2rwUNh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dbtMwFLbQJiFuGAzQymDzBdoVqZrE-fFltVF1QKup2k_FjWU7tja1JFOzSoOrvcOeZa_BQ_AkO8dpwjoNaULcOYqPFcfH9nfsc75DyAcZct8oqTwAx6nHsox5KdfGM9py34KCcIvByYNh3D9in8fReOH_hLEwFT9Ec-CGM8Ot1zjBzzO7PMmdhxbg9Yp20g-TiLcBT66yGIAFAqTRHyopFrrUa46iEYwEf9mr58GWlraqVfzrl_fC4BCN3sW0blPqrZFJ3Z3KF2XSnl-otv55j-nx__T3BXm-wK60WynbS_LE5Otko1viaXrx_Qfdoa5cHZaU66Q1AERezNzBPbzcnZ4BPHZPr8gV6CeF7U7NcdujmWmIbGlhqZ4W86ykv6-u6X6bdukESr9uaOMVj3VqYW3oWU6DPeqS-pT4CvkWFFLR0vIU1nsQdg1S5MaYVZEc5Wty1Pt0uNv3FtkgPM2CBH10Ap1on2U8lkGY6QCZCZkCk0qBGS8ZC0MVxlIZwEg64pHt2DDjHZvGEc8koLQ3ZCUvcrNBaBpYySRyB2LCbam4lmFHQU2rmY1Z1CJJPfBCL6jSMWPHVNwxmWAwBA4GJvLkwg2GuGwRv5E8r-hCHiGz43SrEZCzCbrbJZHoj7-Jk3F6PDo5PBYHLfIRlO8v7XoPtLtda6mANQMvgmRuinkJtTA8OUqhn07jHv2pYjAcueLbf5bcJk8P9nri6_7wyyZ5Vt_N-f47sgJ6Zt4DxLtQW27u3gKaw0IQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+turbulent+destruction+of+clouds+-+I.+A+k-%CE%B5+treatment+of+turbulence+in+2D+models+of+adiabatic+shock-cloud+interactions&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Pittard%2C+J.+M.&rft.au=Falle%2C+S.+A.+E.+G.&rft.au=Hartquist%2C+T.+W.&rft.au=Dyson%2C+J.+E.&rft.date=2009-04-11&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=394&rft.issue=3&rft.spage=1351&rft.epage=1378&rft_id=info:doi/10.1111%2Fj.1365-2966.2009.13759.x&rft.externalDocID=10.1111%2Fj.1365-2966.2009.13759.x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon