Focusing Micromechanical Polaritons in Topologically Nontrivial Hyperbolic Metasurfaces

Vertically stacked multiple atomically thin layers have recently widened the landscape of rich optical structures thanks to these quantum metamaterials or van der Waals (vdW) materials, featuring hyperbolic polaritons with unprecedented avenues for light. Despite their far‐reaching implications, mos...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 25; pp. e2311599 - n/a
Main Authors Zheng, Jiang‐Po, Zheng, Li‐Yang, Yu, Si‐Yuan, Yang, Shi‐Li, Sun, Xiao‐Chen, Liu, Le, Lu, Ming‐Hui, Chen, Yan‐Feng, Christensen, Johan
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vertically stacked multiple atomically thin layers have recently widened the landscape of rich optical structures thanks to these quantum metamaterials or van der Waals (vdW) materials, featuring hyperbolic polaritons with unprecedented avenues for light. Despite their far‐reaching implications, most of their properties rest entirely on a trivial band topological origin. Here, a 2D approach is adopted toward a micromechanical vdW analogue that, as a result of engineered chiral and mirror symmetries, provides topologically resilient hyperbolic radiation of mechanical vibrations in the ultrasonic regime. By applying laser vibrometry of the micrometer‐sized metasurface, we are able to exhibit the exotic fingerprints of robust hyperbolic radiation spanning several frequencies, which beyond their physical relevance, may enable ultrasonic technologies. The study takes a micromechanical approach to unlock topologically resilient vibrating polaritons in analog to van der Waals nanophotonics. It is shown that due to the embedded topological protection, hyperbolic focused radiation remains resilient against random defects.
AbstractList Vertically stacked multiple atomically thin layers have recently widened the landscape of rich optical structures thanks to these quantum metamaterials or van der Waals (vdW) materials, featuring hyperbolic polaritons with unprecedented avenues for light. Despite their far‐reaching implications, most of their properties rest entirely on a trivial band topological origin. Here, a 2D approach is adopted toward a micromechanical vdW analogue that, as a result of engineered chiral and mirror symmetries, provides topologically resilient hyperbolic radiation of mechanical vibrations in the ultrasonic regime. By applying laser vibrometry of the micrometer‐sized metasurface, we are able to exhibit the exotic fingerprints of robust hyperbolic radiation spanning several frequencies, which beyond their physical relevance, may enable ultrasonic technologies.
Vertically stacked multiple atomically thin layers have recently widened the landscape of rich optical structures thanks to these quantum metamaterials or van der Waals (vdW) materials, featuring hyperbolic polaritons with unprecedented avenues for light. Despite their far-reaching implications, most of their properties rest entirely on a trivial band topological origin. Here, a 2D approach is adopted toward a micromechanical vdW analogue that, as a result of engineered chiral and mirror symmetries, provides topologically resilient hyperbolic radiation of mechanical vibrations in the ultrasonic regime. By applying laser vibrometry of the micrometer-sized metasurface, we are able to exhibit the exotic fingerprints of robust hyperbolic radiation spanning several frequencies, which beyond their physical relevance, may enable ultrasonic technologies.Vertically stacked multiple atomically thin layers have recently widened the landscape of rich optical structures thanks to these quantum metamaterials or van der Waals (vdW) materials, featuring hyperbolic polaritons with unprecedented avenues for light. Despite their far-reaching implications, most of their properties rest entirely on a trivial band topological origin. Here, a 2D approach is adopted toward a micromechanical vdW analogue that, as a result of engineered chiral and mirror symmetries, provides topologically resilient hyperbolic radiation of mechanical vibrations in the ultrasonic regime. By applying laser vibrometry of the micrometer-sized metasurface, we are able to exhibit the exotic fingerprints of robust hyperbolic radiation spanning several frequencies, which beyond their physical relevance, may enable ultrasonic technologies.
Vertically stacked multiple atomically thin layers have recently widened the landscape of rich optical structures thanks to these quantum metamaterials or van der Waals (vdW) materials, featuring hyperbolic polaritons with unprecedented avenues for light. Despite their far‐reaching implications, most of their properties rest entirely on a trivial band topological origin. Here, a 2D approach is adopted toward a micromechanical vdW analogue that, as a result of engineered chiral and mirror symmetries, provides topologically resilient hyperbolic radiation of mechanical vibrations in the ultrasonic regime. By applying laser vibrometry of the micrometer‐sized metasurface, we are able to exhibit the exotic fingerprints of robust hyperbolic radiation spanning several frequencies, which beyond their physical relevance, may enable ultrasonic technologies. The study takes a micromechanical approach to unlock topologically resilient vibrating polaritons in analog to van der Waals nanophotonics. It is shown that due to the embedded topological protection, hyperbolic focused radiation remains resilient against random defects.
Vertically stacked multiple atomically thin layers have recently widened the landscape of rich optical structures thanks to these quantum metamaterials or van der Waals (vdW) materials, featuring hyperbolic polaritons with unprecedented avenues for light. Despite their far‐reaching implications, most of their properties rest entirely on a trivial band topological origin. Here, a 2D approach is adopted toward a micromechanical vdW analogue that, as a result of engineered chiral and mirror symmetries, provides topologically resilient hyperbolic radiation of mechanical vibrations in the ultrasonic regime. By applying laser vibrometry of the micrometer‐sized metasurface, we are able to exhibit the exotic fingerprints of robust hyperbolic radiation spanning several frequencies, which beyond their physical relevance, may enable ultrasonic technologies.
Author Lu, Ming‐Hui
Christensen, Johan
Zheng, Li‐Yang
Yu, Si‐Yuan
Sun, Xiao‐Chen
Zheng, Jiang‐Po
Yang, Shi‐Li
Liu, Le
Chen, Yan‐Feng
Author_xml – sequence: 1
  givenname: Jiang‐Po
  surname: Zheng
  fullname: Zheng, Jiang‐Po
  organization: Nanjing University
– sequence: 2
  givenname: Li‐Yang
  orcidid: 0000-0003-0438-0488
  surname: Zheng
  fullname: Zheng, Li‐Yang
  email: zhengly27@mail.sysu.edu.cn
  organization: Universidad Carlos III de Madrid
– sequence: 3
  givenname: Si‐Yuan
  surname: Yu
  fullname: Yu, Si‐Yuan
  organization: Nanjing University
– sequence: 4
  givenname: Shi‐Li
  surname: Yang
  fullname: Yang, Shi‐Li
  organization: Nanjing University
– sequence: 5
  givenname: Xiao‐Chen
  surname: Sun
  fullname: Sun, Xiao‐Chen
  organization: Nanjing University
– sequence: 6
  givenname: Le
  surname: Liu
  fullname: Liu, Le
  organization: Nanjing University
– sequence: 7
  givenname: Ming‐Hui
  surname: Lu
  fullname: Lu, Ming‐Hui
  email: luminghui@nju.edu.cn
  organization: Nanjing University
– sequence: 8
  givenname: Yan‐Feng
  surname: Chen
  fullname: Chen, Yan‐Feng
  organization: Nanjing University
– sequence: 9
  givenname: Johan
  orcidid: 0000-0002-1604-250X
  surname: Christensen
  fullname: Christensen, Johan
  email: johan.christensen@imdea.org
  organization: IMDEA Materials Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38374796$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1rFDEYh4NU7LZ69SgDXrzMmq_5eI9LtVboqoeKx5BN3tSUTLImM8r-986wtUJBPIUkz_Mm_H5n5CSmiIS8ZHTNKOVvtR30mlMuGGsAnpAVazirJYXmhKwoiKaGVvan5KyUO0optLR9Rk5FLzrZQbsi3y6TmYqPt9XWm5wGNN919EaH6ksKOvsxxVL5WN2kfQrpdrkJh-pTimP2P_2MXR32mHcpeFNtcdRlyk4bLM_JU6dDwRf36zn5evn-5uKqvv784ePF5ro2kndQC8pca7WzOG-ZZazbOeyYc1Ja1moL1CFS2HEtmk6Dcchlb8ECa-R83otz8uY4d5_TjwnLqAZfDIagI6apKA687xvZtWJGXz9C79KU4_w7JWgLIATQZeCre2raDWjVPvtB54P6E9kMrI_AHFcpGd0DwqhaOlFLJ-qhk1mQjwTjRz36JUPtw781OGq_fMDDfx5Rm3fbzV_3Nx9EoYo
CitedBy_id crossref_primary_10_1063_5_0238859
crossref_primary_10_1103_PhysRevA_111_033522
Cites_doi 10.1038/s41586-021-03581-5
10.1126/science.1219171
10.1103/PhysRevLett.122.014302
10.1021/acs.nanolett.0c01627
10.1038/s41565-018-0294-9
10.1016/j.scib.2023.07.033
10.1103/PhysRevB.103.064307
10.1103/PhysRevLett.114.114301
10.1021/acs.nanolett.0c01673
10.1088/2515-7639/abb74e
10.1186/s43593-021-00008-6
10.1126/science.adf1251
10.1002/adma.202201856
10.1038/s42005-018-0094-4
10.1038/nphys3999
10.1038/s41586-020-2359-9
10.1038/nphoton.2014.248
10.1038/s41467-023-37923-w
10.1103/PhysRevB.97.060101
10.1038/natrevmats.2016.1
10.1002/adma.201800257
10.1103/PhysRevB.93.125209
10.1038/s41586-021-04328-y
10.1038/nphys3867
10.1038/s41586-023-06163-9
10.1038/s41467-021-23991-3
10.1038/s41565-022-01264-4
10.1103/PhysRevB.90.115207
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202311599
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 38374796
10_1002_adma_202311599
ADMA202311599
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 12204553
– fundername: Ministerio de Ciencia e Innovación
  funderid: CNS2022‐135706
– fundername: National Natrual Science Foundation of China
  funderid: 11890702; 52322201; 92163133
– fundername: National Key Research and Development Program of China
  funderid: 2022YFA1404404; 2021YFB380180
– fundername: National Natrual Science Foundation of China
  grantid: 92163133
– fundername: National Key Research and Development Program of China
  grantid: 2021YFB380180
– fundername: National Natrual Science Foundation of China
  grantid: 52322201
– fundername: Ministerio de Ciencia e Innovación
  grantid: CNS2022-135706
– fundername: National Key Research and Development Program of China
  grantid: 2022YFA1404404
– fundername: National Natural Science Foundation of China
  grantid: 12204553
– fundername: National Natrual Science Foundation of China
  grantid: 11890702
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAHHS
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACCFJ
ACRPL
ACSCC
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AETEA
AFFNX
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4279-301f6dafde4271d117bfe71ff44d16ad90fee09b2a357a9cfe248d9d9154e0983
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 15:27:45 EDT 2025
Fri Jul 25 21:54:42 EDT 2025
Mon Jul 21 05:57:13 EDT 2025
Tue Jul 01 05:27:44 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Wed Aug 20 07:26:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords van der Waals materials
metamaterials
polaritons
topological insulators
hyperbolic polaritons
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4279-301f6dafde4271d117bfe71ff44d16ad90fee09b2a357a9cfe248d9d9154e0983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0438-0488
0000-0002-1604-250X
PMID 38374796
PQID 3069933908
PQPubID 2045203
PageCount 6
ParticipantIDs proquest_miscellaneous_2928854763
proquest_journals_3069933908
pubmed_primary_38374796
crossref_primary_10_1002_adma_202311599
crossref_citationtrail_10_1002_adma_202311599
wiley_primary_10_1002_adma_202311599_ADMA202311599
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 35
2023; 14
2021; 3
2014; 90
2020; 20
2023; 18
2020; 582
2021; 103
2016; 93
2019; 122
2016; 12
2023; 68
2016; 1
2021; 12
2021; 597
2018; 1
2015; 114
2017; 13
2023; 379
2018; 30
2022; 2
2014; 8
2012; 336
2023; 618
2022; 602
2018; 97
2018; 13
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – volume: 103
  year: 2021
  publication-title: Phys. Rev. B
– volume: 1
  start-page: 97
  year: 2018
  publication-title: Commun. Phys.
– volume: 12
  start-page: 3670
  year: 2021
  publication-title: Nat. Commun.
– volume: 379
  start-page: 558
  year: 2023
  publication-title: Science
– volume: 20
  start-page: 5301
  year: 2020
  publication-title: Nano Lett.
– volume: 12
  start-page: 1124
  year: 2016
  publication-title: Nat. Phys.
– volume: 97
  year: 2018
  publication-title: Phys. Rev. B
– volume: 582
  start-page: 209
  year: 2020
  publication-title: Nature
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 13
  start-page: 369
  year: 2017
  publication-title: Nat. Phys.
– volume: 90
  year: 2014
  publication-title: Phys. Rev. B
– volume: 68
  start-page: 1862
  year: 2023
  publication-title: Sci. Bull.
– volume: 8
  start-page: 821
  year: 2014
  publication-title: Nat. Photonics
– volume: 3
  year: 2021
  publication-title: J. Phys. Mater.
– volume: 2
  start-page: 1
  year: 2022
  publication-title: ELight
– volume: 14
  start-page: 2532
  year: 2023
  publication-title: Nat. Commun.
– volume: 114
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 93
  year: 2016
  publication-title: Phys. Rev. B
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 597
  start-page: 187
  year: 2021
  publication-title: Nature
– volume: 20
  start-page: 5323
  year: 2020
  publication-title: Nano Lett.
– volume: 13
  start-page: 986
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 18
  start-page: 64
  year: 2023
  publication-title: Nat. Nanotechnol.
– volume: 122
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: 602
  start-page: 595
  year: 2022
  publication-title: Nature
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 336
  start-page: 205
  year: 2012
  publication-title: Science
– volume: 618
  start-page: 687
  year: 2023
  publication-title: Nature
– ident: e_1_2_8_8_1
  doi: 10.1038/s41586-021-03581-5
– ident: e_1_2_8_18_1
  doi: 10.1126/science.1219171
– ident: e_1_2_8_23_1
  doi: 10.1103/PhysRevLett.122.014302
– ident: e_1_2_8_16_1
  doi: 10.1021/acs.nanolett.0c01627
– ident: e_1_2_8_5_1
  doi: 10.1038/s41565-018-0294-9
– ident: e_1_2_8_4_1
  doi: 10.1016/j.scib.2023.07.033
– ident: e_1_2_8_28_1
  doi: 10.1103/PhysRevB.103.064307
– ident: e_1_2_8_20_1
  doi: 10.1103/PhysRevLett.114.114301
– ident: e_1_2_8_17_1
  doi: 10.1021/acs.nanolett.0c01673
– ident: e_1_2_8_7_1
  doi: 10.1088/2515-7639/abb74e
– ident: e_1_2_8_9_1
  doi: 10.1186/s43593-021-00008-6
– ident: e_1_2_8_13_1
  doi: 10.1126/science.adf1251
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.202201856
– ident: e_1_2_8_24_1
  doi: 10.1038/s42005-018-0094-4
– ident: e_1_2_8_22_1
  doi: 10.1038/nphys3999
– ident: e_1_2_8_15_1
  doi: 10.1038/s41586-020-2359-9
– ident: e_1_2_8_19_1
  doi: 10.1038/nphoton.2014.248
– ident: e_1_2_8_14_1
  doi: 10.1038/s41467-023-37923-w
– ident: e_1_2_8_26_1
  doi: 10.1103/PhysRevB.97.060101
– ident: e_1_2_8_1_1
  doi: 10.1038/natrevmats.2016.1
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.201800257
– ident: e_1_2_8_6_1
  doi: 10.1103/PhysRevB.93.125209
– ident: e_1_2_8_10_1
  doi: 10.1038/s41586-021-04328-y
– ident: e_1_2_8_21_1
  doi: 10.1038/nphys3867
– ident: e_1_2_8_25_1
  doi: 10.1038/s41586-023-06163-9
– ident: e_1_2_8_3_1
  doi: 10.1038/s41467-021-23991-3
– ident: e_1_2_8_11_1
  doi: 10.1038/s41565-022-01264-4
– ident: e_1_2_8_27_1
  doi: 10.1103/PhysRevB.90.115207
SSID ssj0009606
Score 2.467987
Snippet Vertically stacked multiple atomically thin layers have recently widened the landscape of rich optical structures thanks to these quantum metamaterials or van...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2311599
SubjectTerms hyperbolic polaritons
Metamaterials
Metasurfaces
Polaritons
Thin films
topological insulators
van der Waals materials
Title Focusing Micromechanical Polaritons in Topologically Nontrivial Hyperbolic Metasurfaces
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202311599
https://www.ncbi.nlm.nih.gov/pubmed/38374796
https://www.proquest.com/docview/3069933908
https://www.proquest.com/docview/2928854763
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1da9swFL2MPG0P7T661l02NCj0yakty7b0GLaFMEgYo2V5M7J1VUqDU_IxaH_9dOXESTrKoHuzLAnLurryufLREcCZELmbARSGkSpVKESFoeI5hrKSCUaoM-25OaNxNrwS3yfpZGcXf6MP0S64kWf4-ZocXJeLi61oqDZeN4iTXIyiHXxE2CJU9HOrH0Xw3IvtJWmoMiE3qo0Rv9ivvv9V-gtq7iNX_-kZHILeNLphnNz2VsuyVz080nP8n7d6DQdrXMr6zUB6Ay-wfguvdtQK38Gvwawimvw1G3kWH9KmYbIx-0HxsZsa6gW7qdllc-4C5Uzv2Zi48De_3TBnQxfzzksSImYjXNLapCVC2BFcDb5dfhmG63MZwkrwnKgSsc2MtgZdMjZxnJcW89haIUycaaMii-hsz3WS5lpVFrmQRhnl4Jq7L5P30KlnNZ4Aszyxpcpjhwp9qKVjg4kDZVqmxhpjAwg3dimqtWg5nZ0xLRq5ZV5QhxVthwVw3pa_a-Q6nizZ3Zi5WLvtonDxk8NriYpkAJ_bbOdw9BdF1zhbLQquuJSpcPNyAMfN8GgfReG-yFUWAPdG_kcbiv7XUb9NnT6n0gd46a5FQ17rQmc5X-FHB5OW5SfvCn8ARBwJ7Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BOVAOfJYSKGAkJE5pE8dJ7OMKWC3QrBDait4sJx6jqlUWdXeR6K-vx9mkLAhVgmP8oTgej_3GeX4GeC1E6WcAhXGiahUL0WCseImxbGSGCZrCBG5ONS0mR-Ljcd6zCeksTKcPMWy4kWeE-ZocnDakD65UQ40NwkGc9GKUugm36FrvEFV9uVKQIoAe5PayPFaFkL1uY8IPNutvrkt_gM1N7BoWn_E9qPtmd5yT0_3Vst5vLn5TdPyv77oPd9fQlI26sfQAbmD7EO78Ilj4CL6O5w0x5b-xKhD5kM4Nk5nZZwqR_ezQLthJy2bd1QuUc_aTTYkOf_LDj3Q28WHveU1axKzCJW1POuKE7cDR-P3s7SReX80QN4KXxJZIXWGNs-gfU5umZe2wTJ0TwqaFsSpxiN783GR5aVTjkAtplVUesfl0mT2GrXbe4hNgjmeuVmXqgWGItkxqMfO4zMjcOmtdBHFvGN2sdcvp-owz3Skuc00dpocOi-DNUP57p9jx15J7vZ312nMX2odQHrJlKpERvBqyvc_RjxTT4ny10FxxKXPhp-YIdrvxMbyKIn5RqiICHqx8TRv06F01Gp6e_kull3B7MqsO9eGH6adnsO3TRcdl24Ot5fkKn3vUtKxfBL-4BN8lDgg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD5iTJq2h7ErC7DNkybtKZA4TmI_VpSqu7RCE2i8WU58PCFQimg7CX49Pk4b6KZpEnuML4rjc_F3nOPPAB-FKL0HUBgnqlKxEDXGipcYy1pmmKApTMjNGY2L4bH4cpKf3DnF3_JDdBtuZBnBX5OBX1i3d0saamzgDeJEF6PUA3goikSSXve_3xJIET4PbHtZHqtCyCVtY8L3VvuvLkt_YM1V6BrWnsEGmOWo25STs935rNqtr38jdPyfz3oGTxfAlPVaTXoOa9i8gCd36Apfwo_BpKY8-Z9sFNL4kE4Nk5DZIQXI3jc0U3basKP24gWqOb9iY0qGP_3l9ZwNfdB7WRETMRvhjDYnHWWEvYLjwcHR_jBeXMwQ14KXlCuRusIaZ9E_pjZNy8phmTonhE0LY1XiEL3wucny0qjaIRfSKqs8XvPlMnsN682kwTfAHM9cpcrUw8IQa5nUYuZRmZG5dda6COKlXHS9YC2nyzPOdcu3zDVNmO4mLIJPXfuLlq_jry13lmLWC7udah9AecCWqURG8KGr9hZHv1FMg5P5VHPFpcyFd8wRbLbq0b2K4n1RqiICHoT8jzHoXn_U65627tPpPTw67A_0t8_jr9vw2BeLNpFtB9Znl3N86yHTrHoXrOIGwaoMwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Focusing+Micromechanical+Polaritons+in+Topologically+Nontrivial+Hyperbolic+Metasurfaces&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zheng%2C+Jiang%E2%80%90Po&rft.au=Zheng%2C+Li%E2%80%90Yang&rft.au=Yu%2C+Si%E2%80%90Yuan&rft.au=Yang%2C+Shi%E2%80%90Li&rft.date=2024-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=25&rft_id=info:doi/10.1002%2Fadma.202311599&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202311599
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon