Focusing Micromechanical Polaritons in Topologically Nontrivial Hyperbolic Metasurfaces
Vertically stacked multiple atomically thin layers have recently widened the landscape of rich optical structures thanks to these quantum metamaterials or van der Waals (vdW) materials, featuring hyperbolic polaritons with unprecedented avenues for light. Despite their far‐reaching implications, mos...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 36; no. 25; pp. e2311599 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vertically stacked multiple atomically thin layers have recently widened the landscape of rich optical structures thanks to these quantum metamaterials or van der Waals (vdW) materials, featuring hyperbolic polaritons with unprecedented avenues for light. Despite their far‐reaching implications, most of their properties rest entirely on a trivial band topological origin. Here, a 2D approach is adopted toward a micromechanical vdW analogue that, as a result of engineered chiral and mirror symmetries, provides topologically resilient hyperbolic radiation of mechanical vibrations in the ultrasonic regime. By applying laser vibrometry of the micrometer‐sized metasurface, we are able to exhibit the exotic fingerprints of robust hyperbolic radiation spanning several frequencies, which beyond their physical relevance, may enable ultrasonic technologies.
The study takes a micromechanical approach to unlock topologically resilient vibrating polaritons in analog to van der Waals nanophotonics. It is shown that due to the embedded topological protection, hyperbolic focused radiation remains resilient against random defects. |
---|---|
AbstractList | Vertically stacked multiple atomically thin layers have recently widened the landscape of rich optical structures thanks to these quantum metamaterials or van der Waals (vdW) materials, featuring hyperbolic polaritons with unprecedented avenues for light. Despite their far‐reaching implications, most of their properties rest entirely on a trivial band topological origin. Here, a 2D approach is adopted toward a micromechanical vdW analogue that, as a result of engineered chiral and mirror symmetries, provides topologically resilient hyperbolic radiation of mechanical vibrations in the ultrasonic regime. By applying laser vibrometry of the micrometer‐sized metasurface, we are able to exhibit the exotic fingerprints of robust hyperbolic radiation spanning several frequencies, which beyond their physical relevance, may enable ultrasonic technologies. Vertically stacked multiple atomically thin layers have recently widened the landscape of rich optical structures thanks to these quantum metamaterials or van der Waals (vdW) materials, featuring hyperbolic polaritons with unprecedented avenues for light. Despite their far-reaching implications, most of their properties rest entirely on a trivial band topological origin. Here, a 2D approach is adopted toward a micromechanical vdW analogue that, as a result of engineered chiral and mirror symmetries, provides topologically resilient hyperbolic radiation of mechanical vibrations in the ultrasonic regime. By applying laser vibrometry of the micrometer-sized metasurface, we are able to exhibit the exotic fingerprints of robust hyperbolic radiation spanning several frequencies, which beyond their physical relevance, may enable ultrasonic technologies.Vertically stacked multiple atomically thin layers have recently widened the landscape of rich optical structures thanks to these quantum metamaterials or van der Waals (vdW) materials, featuring hyperbolic polaritons with unprecedented avenues for light. Despite their far-reaching implications, most of their properties rest entirely on a trivial band topological origin. Here, a 2D approach is adopted toward a micromechanical vdW analogue that, as a result of engineered chiral and mirror symmetries, provides topologically resilient hyperbolic radiation of mechanical vibrations in the ultrasonic regime. By applying laser vibrometry of the micrometer-sized metasurface, we are able to exhibit the exotic fingerprints of robust hyperbolic radiation spanning several frequencies, which beyond their physical relevance, may enable ultrasonic technologies. Vertically stacked multiple atomically thin layers have recently widened the landscape of rich optical structures thanks to these quantum metamaterials or van der Waals (vdW) materials, featuring hyperbolic polaritons with unprecedented avenues for light. Despite their far‐reaching implications, most of their properties rest entirely on a trivial band topological origin. Here, a 2D approach is adopted toward a micromechanical vdW analogue that, as a result of engineered chiral and mirror symmetries, provides topologically resilient hyperbolic radiation of mechanical vibrations in the ultrasonic regime. By applying laser vibrometry of the micrometer‐sized metasurface, we are able to exhibit the exotic fingerprints of robust hyperbolic radiation spanning several frequencies, which beyond their physical relevance, may enable ultrasonic technologies. The study takes a micromechanical approach to unlock topologically resilient vibrating polaritons in analog to van der Waals nanophotonics. It is shown that due to the embedded topological protection, hyperbolic focused radiation remains resilient against random defects. Vertically stacked multiple atomically thin layers have recently widened the landscape of rich optical structures thanks to these quantum metamaterials or van der Waals (vdW) materials, featuring hyperbolic polaritons with unprecedented avenues for light. Despite their far‐reaching implications, most of their properties rest entirely on a trivial band topological origin. Here, a 2D approach is adopted toward a micromechanical vdW analogue that, as a result of engineered chiral and mirror symmetries, provides topologically resilient hyperbolic radiation of mechanical vibrations in the ultrasonic regime. By applying laser vibrometry of the micrometer‐sized metasurface, we are able to exhibit the exotic fingerprints of robust hyperbolic radiation spanning several frequencies, which beyond their physical relevance, may enable ultrasonic technologies. |
Author | Lu, Ming‐Hui Christensen, Johan Zheng, Li‐Yang Yu, Si‐Yuan Sun, Xiao‐Chen Zheng, Jiang‐Po Yang, Shi‐Li Liu, Le Chen, Yan‐Feng |
Author_xml | – sequence: 1 givenname: Jiang‐Po surname: Zheng fullname: Zheng, Jiang‐Po organization: Nanjing University – sequence: 2 givenname: Li‐Yang orcidid: 0000-0003-0438-0488 surname: Zheng fullname: Zheng, Li‐Yang email: zhengly27@mail.sysu.edu.cn organization: Universidad Carlos III de Madrid – sequence: 3 givenname: Si‐Yuan surname: Yu fullname: Yu, Si‐Yuan organization: Nanjing University – sequence: 4 givenname: Shi‐Li surname: Yang fullname: Yang, Shi‐Li organization: Nanjing University – sequence: 5 givenname: Xiao‐Chen surname: Sun fullname: Sun, Xiao‐Chen organization: Nanjing University – sequence: 6 givenname: Le surname: Liu fullname: Liu, Le organization: Nanjing University – sequence: 7 givenname: Ming‐Hui surname: Lu fullname: Lu, Ming‐Hui email: luminghui@nju.edu.cn organization: Nanjing University – sequence: 8 givenname: Yan‐Feng surname: Chen fullname: Chen, Yan‐Feng organization: Nanjing University – sequence: 9 givenname: Johan orcidid: 0000-0002-1604-250X surname: Christensen fullname: Christensen, Johan email: johan.christensen@imdea.org organization: IMDEA Materials Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38374796$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1rFDEYh4NU7LZ69SgDXrzMmq_5eI9LtVboqoeKx5BN3tSUTLImM8r-986wtUJBPIUkz_Mm_H5n5CSmiIS8ZHTNKOVvtR30mlMuGGsAnpAVazirJYXmhKwoiKaGVvan5KyUO0optLR9Rk5FLzrZQbsi3y6TmYqPt9XWm5wGNN919EaH6ksKOvsxxVL5WN2kfQrpdrkJh-pTimP2P_2MXR32mHcpeFNtcdRlyk4bLM_JU6dDwRf36zn5evn-5uKqvv784ePF5ro2kndQC8pca7WzOG-ZZazbOeyYc1Ja1moL1CFS2HEtmk6Dcchlb8ECa-R83otz8uY4d5_TjwnLqAZfDIagI6apKA687xvZtWJGXz9C79KU4_w7JWgLIATQZeCre2raDWjVPvtB54P6E9kMrI_AHFcpGd0DwqhaOlFLJ-qhk1mQjwTjRz36JUPtw781OGq_fMDDfx5Rm3fbzV_3Nx9EoYo |
CitedBy_id | crossref_primary_10_1063_5_0238859 crossref_primary_10_1103_PhysRevA_111_033522 |
Cites_doi | 10.1038/s41586-021-03581-5 10.1126/science.1219171 10.1103/PhysRevLett.122.014302 10.1021/acs.nanolett.0c01627 10.1038/s41565-018-0294-9 10.1016/j.scib.2023.07.033 10.1103/PhysRevB.103.064307 10.1103/PhysRevLett.114.114301 10.1021/acs.nanolett.0c01673 10.1088/2515-7639/abb74e 10.1186/s43593-021-00008-6 10.1126/science.adf1251 10.1002/adma.202201856 10.1038/s42005-018-0094-4 10.1038/nphys3999 10.1038/s41586-020-2359-9 10.1038/nphoton.2014.248 10.1038/s41467-023-37923-w 10.1103/PhysRevB.97.060101 10.1038/natrevmats.2016.1 10.1002/adma.201800257 10.1103/PhysRevB.93.125209 10.1038/s41586-021-04328-y 10.1038/nphys3867 10.1038/s41586-023-06163-9 10.1038/s41467-021-23991-3 10.1038/s41565-022-01264-4 10.1103/PhysRevB.90.115207 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202311599 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 38374796 10_1002_adma_202311599 ADMA202311599 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 12204553 – fundername: Ministerio de Ciencia e Innovación funderid: CNS2022‐135706 – fundername: National Natrual Science Foundation of China funderid: 11890702; 52322201; 92163133 – fundername: National Key Research and Development Program of China funderid: 2022YFA1404404; 2021YFB380180 – fundername: National Natrual Science Foundation of China grantid: 92163133 – fundername: National Key Research and Development Program of China grantid: 2021YFB380180 – fundername: National Natrual Science Foundation of China grantid: 52322201 – fundername: Ministerio de Ciencia e Innovación grantid: CNS2022-135706 – fundername: National Key Research and Development Program of China grantid: 2022YFA1404404 – fundername: National Natural Science Foundation of China grantid: 12204553 – fundername: National Natrual Science Foundation of China grantid: 11890702 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAHHS AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACCFJ ACRPL ACSCC ACYXJ ADNMO ADZOD AEEZP AEQDE AETEA AFFNX AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4279-301f6dafde4271d117bfe71ff44d16ad90fee09b2a357a9cfe248d9d9154e0983 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 15:27:45 EDT 2025 Fri Jul 25 21:54:42 EDT 2025 Mon Jul 21 05:57:13 EDT 2025 Tue Jul 01 05:27:44 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Wed Aug 20 07:26:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | van der Waals materials metamaterials polaritons topological insulators hyperbolic polaritons |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4279-301f6dafde4271d117bfe71ff44d16ad90fee09b2a357a9cfe248d9d9154e0983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0438-0488 0000-0002-1604-250X |
PMID | 38374796 |
PQID | 3069933908 |
PQPubID | 2045203 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2928854763 proquest_journals_3069933908 pubmed_primary_38374796 crossref_primary_10_1002_adma_202311599 crossref_citationtrail_10_1002_adma_202311599 wiley_primary_10_1002_adma_202311599_ADMA202311599 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 35 2023; 14 2021; 3 2014; 90 2020; 20 2023; 18 2020; 582 2021; 103 2016; 93 2019; 122 2016; 12 2023; 68 2016; 1 2021; 12 2021; 597 2018; 1 2015; 114 2017; 13 2023; 379 2018; 30 2022; 2 2014; 8 2012; 336 2023; 618 2022; 602 2018; 97 2018; 13 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_12_1 |
References_xml | – volume: 103 year: 2021 publication-title: Phys. Rev. B – volume: 1 start-page: 97 year: 2018 publication-title: Commun. Phys. – volume: 12 start-page: 3670 year: 2021 publication-title: Nat. Commun. – volume: 379 start-page: 558 year: 2023 publication-title: Science – volume: 20 start-page: 5301 year: 2020 publication-title: Nano Lett. – volume: 12 start-page: 1124 year: 2016 publication-title: Nat. Phys. – volume: 97 year: 2018 publication-title: Phys. Rev. B – volume: 582 start-page: 209 year: 2020 publication-title: Nature – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 13 start-page: 369 year: 2017 publication-title: Nat. Phys. – volume: 90 year: 2014 publication-title: Phys. Rev. B – volume: 68 start-page: 1862 year: 2023 publication-title: Sci. Bull. – volume: 8 start-page: 821 year: 2014 publication-title: Nat. Photonics – volume: 3 year: 2021 publication-title: J. Phys. Mater. – volume: 2 start-page: 1 year: 2022 publication-title: ELight – volume: 14 start-page: 2532 year: 2023 publication-title: Nat. Commun. – volume: 114 year: 2015 publication-title: Phys. Rev. Lett. – volume: 93 year: 2016 publication-title: Phys. Rev. B – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 597 start-page: 187 year: 2021 publication-title: Nature – volume: 20 start-page: 5323 year: 2020 publication-title: Nano Lett. – volume: 13 start-page: 986 year: 2018 publication-title: Nat. Nanotechnol. – volume: 18 start-page: 64 year: 2023 publication-title: Nat. Nanotechnol. – volume: 122 year: 2019 publication-title: Phys. Rev. Lett. – volume: 602 start-page: 595 year: 2022 publication-title: Nature – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 336 start-page: 205 year: 2012 publication-title: Science – volume: 618 start-page: 687 year: 2023 publication-title: Nature – ident: e_1_2_8_8_1 doi: 10.1038/s41586-021-03581-5 – ident: e_1_2_8_18_1 doi: 10.1126/science.1219171 – ident: e_1_2_8_23_1 doi: 10.1103/PhysRevLett.122.014302 – ident: e_1_2_8_16_1 doi: 10.1021/acs.nanolett.0c01627 – ident: e_1_2_8_5_1 doi: 10.1038/s41565-018-0294-9 – ident: e_1_2_8_4_1 doi: 10.1016/j.scib.2023.07.033 – ident: e_1_2_8_28_1 doi: 10.1103/PhysRevB.103.064307 – ident: e_1_2_8_20_1 doi: 10.1103/PhysRevLett.114.114301 – ident: e_1_2_8_17_1 doi: 10.1021/acs.nanolett.0c01673 – ident: e_1_2_8_7_1 doi: 10.1088/2515-7639/abb74e – ident: e_1_2_8_9_1 doi: 10.1186/s43593-021-00008-6 – ident: e_1_2_8_13_1 doi: 10.1126/science.adf1251 – ident: e_1_2_8_12_1 doi: 10.1002/adma.202201856 – ident: e_1_2_8_24_1 doi: 10.1038/s42005-018-0094-4 – ident: e_1_2_8_22_1 doi: 10.1038/nphys3999 – ident: e_1_2_8_15_1 doi: 10.1038/s41586-020-2359-9 – ident: e_1_2_8_19_1 doi: 10.1038/nphoton.2014.248 – ident: e_1_2_8_14_1 doi: 10.1038/s41467-023-37923-w – ident: e_1_2_8_26_1 doi: 10.1103/PhysRevB.97.060101 – ident: e_1_2_8_1_1 doi: 10.1038/natrevmats.2016.1 – ident: e_1_2_8_2_1 doi: 10.1002/adma.201800257 – ident: e_1_2_8_6_1 doi: 10.1103/PhysRevB.93.125209 – ident: e_1_2_8_10_1 doi: 10.1038/s41586-021-04328-y – ident: e_1_2_8_21_1 doi: 10.1038/nphys3867 – ident: e_1_2_8_25_1 doi: 10.1038/s41586-023-06163-9 – ident: e_1_2_8_3_1 doi: 10.1038/s41467-021-23991-3 – ident: e_1_2_8_11_1 doi: 10.1038/s41565-022-01264-4 – ident: e_1_2_8_27_1 doi: 10.1103/PhysRevB.90.115207 |
SSID | ssj0009606 |
Score | 2.467987 |
Snippet | Vertically stacked multiple atomically thin layers have recently widened the landscape of rich optical structures thanks to these quantum metamaterials or van... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2311599 |
SubjectTerms | hyperbolic polaritons Metamaterials Metasurfaces Polaritons Thin films topological insulators van der Waals materials |
Title | Focusing Micromechanical Polaritons in Topologically Nontrivial Hyperbolic Metasurfaces |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202311599 https://www.ncbi.nlm.nih.gov/pubmed/38374796 https://www.proquest.com/docview/3069933908 https://www.proquest.com/docview/2928854763 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1da9swFL2MPG0P7T661l02NCj0yakty7b0GLaFMEgYo2V5M7J1VUqDU_IxaH_9dOXESTrKoHuzLAnLurryufLREcCZELmbARSGkSpVKESFoeI5hrKSCUaoM-25OaNxNrwS3yfpZGcXf6MP0S64kWf4-ZocXJeLi61oqDZeN4iTXIyiHXxE2CJU9HOrH0Xw3IvtJWmoMiE3qo0Rv9ivvv9V-gtq7iNX_-kZHILeNLphnNz2VsuyVz080nP8n7d6DQdrXMr6zUB6Ay-wfguvdtQK38Gvwawimvw1G3kWH9KmYbIx-0HxsZsa6gW7qdllc-4C5Uzv2Zi48De_3TBnQxfzzksSImYjXNLapCVC2BFcDb5dfhmG63MZwkrwnKgSsc2MtgZdMjZxnJcW89haIUycaaMii-hsz3WS5lpVFrmQRhnl4Jq7L5P30KlnNZ4Aszyxpcpjhwp9qKVjg4kDZVqmxhpjAwg3dimqtWg5nZ0xLRq5ZV5QhxVthwVw3pa_a-Q6nizZ3Zi5WLvtonDxk8NriYpkAJ_bbOdw9BdF1zhbLQquuJSpcPNyAMfN8GgfReG-yFUWAPdG_kcbiv7XUb9NnT6n0gd46a5FQ17rQmc5X-FHB5OW5SfvCn8ARBwJ7Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BOVAOfJYSKGAkJE5pE8dJ7OMKWC3QrBDait4sJx6jqlUWdXeR6K-vx9mkLAhVgmP8oTgej_3GeX4GeC1E6WcAhXGiahUL0WCseImxbGSGCZrCBG5ONS0mR-Ljcd6zCeksTKcPMWy4kWeE-ZocnDakD65UQ40NwkGc9GKUugm36FrvEFV9uVKQIoAe5PayPFaFkL1uY8IPNutvrkt_gM1N7BoWn_E9qPtmd5yT0_3Vst5vLn5TdPyv77oPd9fQlI26sfQAbmD7EO78Ilj4CL6O5w0x5b-xKhD5kM4Nk5nZZwqR_ezQLthJy2bd1QuUc_aTTYkOf_LDj3Q28WHveU1axKzCJW1POuKE7cDR-P3s7SReX80QN4KXxJZIXWGNs-gfU5umZe2wTJ0TwqaFsSpxiN783GR5aVTjkAtplVUesfl0mT2GrXbe4hNgjmeuVmXqgWGItkxqMfO4zMjcOmtdBHFvGN2sdcvp-owz3Skuc00dpocOi-DNUP57p9jx15J7vZ312nMX2odQHrJlKpERvBqyvc_RjxTT4ny10FxxKXPhp-YIdrvxMbyKIn5RqiICHqx8TRv06F01Gp6e_kull3B7MqsO9eGH6adnsO3TRcdl24Ot5fkKn3vUtKxfBL-4BN8lDgg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD5iTJq2h7ErC7DNkybtKZA4TmI_VpSqu7RCE2i8WU58PCFQimg7CX49Pk4b6KZpEnuML4rjc_F3nOPPAB-FKL0HUBgnqlKxEDXGipcYy1pmmKApTMjNGY2L4bH4cpKf3DnF3_JDdBtuZBnBX5OBX1i3d0saamzgDeJEF6PUA3goikSSXve_3xJIET4PbHtZHqtCyCVtY8L3VvuvLkt_YM1V6BrWnsEGmOWo25STs935rNqtr38jdPyfz3oGTxfAlPVaTXoOa9i8gCd36Apfwo_BpKY8-Z9sFNL4kE4Nk5DZIQXI3jc0U3basKP24gWqOb9iY0qGP_3l9ZwNfdB7WRETMRvhjDYnHWWEvYLjwcHR_jBeXMwQ14KXlCuRusIaZ9E_pjZNy8phmTonhE0LY1XiEL3wucny0qjaIRfSKqs8XvPlMnsN682kwTfAHM9cpcrUw8IQa5nUYuZRmZG5dda6COKlXHS9YC2nyzPOdcu3zDVNmO4mLIJPXfuLlq_jry13lmLWC7udah9AecCWqURG8KGr9hZHv1FMg5P5VHPFpcyFd8wRbLbq0b2K4n1RqiICHoT8jzHoXn_U65627tPpPTw67A_0t8_jr9vw2BeLNpFtB9Znl3N86yHTrHoXrOIGwaoMwA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Focusing+Micromechanical+Polaritons+in+Topologically+Nontrivial+Hyperbolic+Metasurfaces&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zheng%2C+Jiang%E2%80%90Po&rft.au=Zheng%2C+Li%E2%80%90Yang&rft.au=Yu%2C+Si%E2%80%90Yuan&rft.au=Yang%2C+Shi%E2%80%90Li&rft.date=2024-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=25&rft_id=info:doi/10.1002%2Fadma.202311599&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202311599 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |