Crystal Phase Engineering of Ultrathin Alloy Nanostructures for Highly Efficient Electroreduction of Nitrate to Ammonia
Electrocatalytic nitrate reduction reaction (NO3RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle. However, it still remains a great challenge to achieve highly efficient ammonia production due to the complex proton‐coupled electron transfer pr...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 36; no. 14; pp. e2313548 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrocatalytic nitrate reduction reaction (NO3RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle. However, it still remains a great challenge to achieve highly efficient ammonia production due to the complex proton‐coupled electron transfer process in NO3RR. Here, the controlled synthesis of RuMo alloy nanoflowers (NFs) with unconventional face‐centered cubic (fcc) phase and hexagonal close‐packed/fcc heterophase for highly efficient NO3RR is reported. Significantly, fcc RuMo NFs demonstrate high Faradaic efficiency of 95.2% and a large yield rate of 32.7 mg h−1 mgcat−1 toward ammonia production at 0 and −0.1 V (vs reversible hydrogen electrode), respectively. In situ characterizations and theoretical calculations have unraveled that fcc RuMo NFs possess the highest d‐band center with superior electroactivity, which originates from the strong Ru─Mo interactions and the high intrinsic activity of the unconventional fcc phase. The optimal electronic structures of fcc RuMo NFs supply strong adsorption of key intermediates with suppression of the competitive hydrogen evolution, which further determines the remarkable NO3RR performance. The successful demonstration of high‐performance zinc‐nitrate batteries with fcc RuMo NFs suggests their substantial application potential in electrochemical energy supply systems.
The controlled synthesis of RuMo alloy nanoflowers (NFs) with unconventional face‐centered cubic (fcc) phase and hexagonal close‐packed (hcp)/fcc heterophase is well achieved. Notably, fcc RuMo NFs demonstrate superior catalytic performance toward nitrate electroreduction to ammonia than hcp/fcc RuMo NFs. Mechanism studies reveal that crystal phase engineering of RuMo alloy nanostructures can significantly improve the electroactivity. |
---|---|
AbstractList | Electrocatalytic nitrate reduction reaction (NO3RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle. However, it still remains a great challenge to achieve highly efficient ammonia production due to the complex proton‐coupled electron transfer process in NO3RR. Here, the controlled synthesis of RuMo alloy nanoflowers (NFs) with unconventional face‐centered cubic (fcc) phase and hexagonal close‐packed/fcc heterophase for highly efficient NO3RR is reported. Significantly, fcc RuMo NFs demonstrate high Faradaic efficiency of 95.2% and a large yield rate of 32.7 mg h−1 mgcat−1 toward ammonia production at 0 and −0.1 V (vs reversible hydrogen electrode), respectively. In situ characterizations and theoretical calculations have unraveled that fcc RuMo NFs possess the highest d‐band center with superior electroactivity, which originates from the strong Ru─Mo interactions and the high intrinsic activity of the unconventional fcc phase. The optimal electronic structures of fcc RuMo NFs supply strong adsorption of key intermediates with suppression of the competitive hydrogen evolution, which further determines the remarkable NO3RR performance. The successful demonstration of high‐performance zinc‐nitrate batteries with fcc RuMo NFs suggests their substantial application potential in electrochemical energy supply systems.
The controlled synthesis of RuMo alloy nanoflowers (NFs) with unconventional face‐centered cubic (fcc) phase and hexagonal close‐packed (hcp)/fcc heterophase is well achieved. Notably, fcc RuMo NFs demonstrate superior catalytic performance toward nitrate electroreduction to ammonia than hcp/fcc RuMo NFs. Mechanism studies reveal that crystal phase engineering of RuMo alloy nanostructures can significantly improve the electroactivity. Electrocatalytic nitrate reduction reaction (NO3RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle. However, it still remains a great challenge to achieve highly efficient ammonia production due to the complex proton-coupled electron transfer process in NO3RR. Here, the controlled synthesis of RuMo alloy nanoflowers (NFs) with unconventional face-centered cubic (fcc) phase and hexagonal close-packed/fcc heterophase for highly efficient NO3RR is reported. Significantly, fcc RuMo NFs demonstrate high Faradaic efficiency of 95.2% and a large yield rate of 32.7 mg h-1 mgcat -1 toward ammonia production at 0 and -0.1 V (vs reversible hydrogen electrode), respectively. In situ characterizations and theoretical calculations have unraveled that fcc RuMo NFs possess the highest d-band center with superior electroactivity, which originates from the strong Ru─Mo interactions and the high intrinsic activity of the unconventional fcc phase. The optimal electronic structures of fcc RuMo NFs supply strong adsorption of key intermediates with suppression of the competitive hydrogen evolution, which further determines the remarkable NO3RR performance. The successful demonstration of high-performance zinc-nitrate batteries with fcc RuMo NFs suggests their substantial application potential in electrochemical energy supply systems.Electrocatalytic nitrate reduction reaction (NO3RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle. However, it still remains a great challenge to achieve highly efficient ammonia production due to the complex proton-coupled electron transfer process in NO3RR. Here, the controlled synthesis of RuMo alloy nanoflowers (NFs) with unconventional face-centered cubic (fcc) phase and hexagonal close-packed/fcc heterophase for highly efficient NO3RR is reported. Significantly, fcc RuMo NFs demonstrate high Faradaic efficiency of 95.2% and a large yield rate of 32.7 mg h-1 mgcat -1 toward ammonia production at 0 and -0.1 V (vs reversible hydrogen electrode), respectively. In situ characterizations and theoretical calculations have unraveled that fcc RuMo NFs possess the highest d-band center with superior electroactivity, which originates from the strong Ru─Mo interactions and the high intrinsic activity of the unconventional fcc phase. The optimal electronic structures of fcc RuMo NFs supply strong adsorption of key intermediates with suppression of the competitive hydrogen evolution, which further determines the remarkable NO3RR performance. The successful demonstration of high-performance zinc-nitrate batteries with fcc RuMo NFs suggests their substantial application potential in electrochemical energy supply systems. Electrocatalytic nitrate reduction reaction (NO RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle. However, it still remains a great challenge to achieve highly efficient ammonia production due to the complex proton-coupled electron transfer process in NO RR. Here, the controlled synthesis of RuMo alloy nanoflowers (NFs) with unconventional face-centered cubic (fcc) phase and hexagonal close-packed/fcc heterophase for highly efficient NO RR is reported. Significantly, fcc RuMo NFs demonstrate high Faradaic efficiency of 95.2% and a large yield rate of 32.7 mg h mg toward ammonia production at 0 and -0.1 V (vs reversible hydrogen electrode), respectively. In situ characterizations and theoretical calculations have unraveled that fcc RuMo NFs possess the highest d-band center with superior electroactivity, which originates from the strong Ru─Mo interactions and the high intrinsic activity of the unconventional fcc phase. The optimal electronic structures of fcc RuMo NFs supply strong adsorption of key intermediates with suppression of the competitive hydrogen evolution, which further determines the remarkable NO RR performance. The successful demonstration of high-performance zinc-nitrate batteries with fcc RuMo NFs suggests their substantial application potential in electrochemical energy supply systems. Electrocatalytic nitrate reduction reaction (NO3RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle. However, it still remains a great challenge to achieve highly efficient ammonia production due to the complex proton‐coupled electron transfer process in NO3RR. Here, the controlled synthesis of RuMo alloy nanoflowers (NFs) with unconventional face‐centered cubic (fcc) phase and hexagonal close‐packed/fcc heterophase for highly efficient NO3RR is reported. Significantly, fcc RuMo NFs demonstrate high Faradaic efficiency of 95.2% and a large yield rate of 32.7 mg h−1 mgcat−1 toward ammonia production at 0 and −0.1 V (vs reversible hydrogen electrode), respectively. In situ characterizations and theoretical calculations have unraveled that fcc RuMo NFs possess the highest d‐band center with superior electroactivity, which originates from the strong Ru─Mo interactions and the high intrinsic activity of the unconventional fcc phase. The optimal electronic structures of fcc RuMo NFs supply strong adsorption of key intermediates with suppression of the competitive hydrogen evolution, which further determines the remarkable NO3RR performance. The successful demonstration of high‐performance zinc‐nitrate batteries with fcc RuMo NFs suggests their substantial application potential in electrochemical energy supply systems. Electrocatalytic nitrate reduction reaction (NO 3 RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle. However, it still remains a great challenge to achieve highly efficient ammonia production due to the complex proton‐coupled electron transfer process in NO 3 RR. Here, the controlled synthesis of RuMo alloy nanoflowers (NFs) with unconventional face‐centered cubic (fcc) phase and hexagonal close‐packed/fcc heterophase for highly efficient NO 3 RR is reported. Significantly, fcc RuMo NFs demonstrate high Faradaic efficiency of 95.2% and a large yield rate of 32.7 mg h −1 mg cat −1 toward ammonia production at 0 and −0.1 V (vs reversible hydrogen electrode), respectively. In situ characterizations and theoretical calculations have unraveled that fcc RuMo NFs possess the highest d‐band center with superior electroactivity, which originates from the strong Ru─Mo interactions and the high intrinsic activity of the unconventional fcc phase. The optimal electronic structures of fcc RuMo NFs supply strong adsorption of key intermediates with suppression of the competitive hydrogen evolution, which further determines the remarkable NO 3 RR performance. The successful demonstration of high‐performance zinc‐nitrate batteries with fcc RuMo NFs suggests their substantial application potential in electrochemical energy supply systems. |
Author | Xiong, Yuecheng Zhang, Qinghua Yin, Jinwen Wang, Yunhao Fan, Zhanxi Hao, Fengkun Wang, Juan Lu, Pengyi Liu, Fu Chen, Hao Ming Wang, Xixi Gu, Lin Zhou, Jingwen Liu, Meng‐Ting Huang, Bolong Sun, Mingzi Ye, Chenliang Ma, Yangbo Chen, Hsiao‐Chien |
Author_xml | – sequence: 1 givenname: Yunhao surname: Wang fullname: Wang, Yunhao organization: City University of Hong Kong – sequence: 2 givenname: Fengkun surname: Hao fullname: Hao, Fengkun organization: City University of Hong Kong – sequence: 3 givenname: Mingzi surname: Sun fullname: Sun, Mingzi organization: The Hong Kong Polytechnic University – sequence: 4 givenname: Meng‐Ting surname: Liu fullname: Liu, Meng‐Ting organization: National Taiwan University – sequence: 5 givenname: Jingwen surname: Zhou fullname: Zhou, Jingwen organization: City University of Hong Kong – sequence: 6 givenname: Yuecheng surname: Xiong fullname: Xiong, Yuecheng organization: City University of Hong Kong – sequence: 7 givenname: Chenliang surname: Ye fullname: Ye, Chenliang email: chenliangye@ncepu.edu.cn organization: North China Electric Power University – sequence: 8 givenname: Xixi surname: Wang fullname: Wang, Xixi organization: City University of Hong Kong – sequence: 9 givenname: Fu surname: Liu fullname: Liu, Fu organization: City University of Hong Kong – sequence: 10 givenname: Juan surname: Wang fullname: Wang, Juan organization: City University of Hong Kong – sequence: 11 givenname: Pengyi surname: Lu fullname: Lu, Pengyi organization: City University of Hong Kong – sequence: 12 givenname: Yangbo surname: Ma fullname: Ma, Yangbo organization: City University of Hong Kong – sequence: 13 givenname: Jinwen surname: Yin fullname: Yin, Jinwen organization: City University of Hong Kong – sequence: 14 givenname: Hsiao‐Chien surname: Chen fullname: Chen, Hsiao‐Chien organization: Chang Gung University – sequence: 15 givenname: Qinghua surname: Zhang fullname: Zhang, Qinghua organization: Chinese Academy of Sciences – sequence: 16 givenname: Lin surname: Gu fullname: Gu, Lin email: lingu@tsinghua.edu.cn organization: Tsinghua University – sequence: 17 givenname: Hao Ming surname: Chen fullname: Chen, Hao Ming email: haomingchen@ntu.edu.tw organization: Taipei Medical University – sequence: 18 givenname: Bolong surname: Huang fullname: Huang, Bolong email: bhuang@polyu.edu.hk organization: The Hong Kong Polytechnic University – sequence: 19 givenname: Zhanxi orcidid: 0000-0003-3133-6503 surname: Fan fullname: Fan, Zhanxi email: zhanxi.fan@cityu.edu.hk organization: City University of Hong Kong Shenzhen Research Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38279631$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1rFDEchoNU7LZ69SgBL15mzcd85TisqxVq9WDPIZP5ZTclk9QkQ5n_3hm2VSiIpwTyPC_hfS_QmQ8eEHpLyZYSwj6qYVRbRhinvCrbF2hDK0aLkojqDG2I4FUh6rI9Rxcp3RFCRE3qV-ict6wRNacb9LCLc8rK4R9HlQDv_cF6gGj9AQeDb12OKh-tx51zYcY3yoeU46TzFCFhEyK-soejm_HeGKst-Iz3DnSOIcKwYDb4NefGrjmAc8DdOAZv1Wv00iiX4M3jeYluP-9_7q6K6-9fvu6660KXrGkLQwdQDQxaMAK9Lqmi7SBKrgkAqwajWkGXZ2K06knJBIieLncKfdsaZji_RB9Oufcx_JogZTnapME55SFMSTLBBKmbkrIFff8MvQtT9MvvJCecNiVvuFiod4_U1I8wyPtoRxVn-VTpApQnQMeQUgQjtc1qbWLpwDpJiVyXk-ty8s9yi7Z9pj0l_1MQJ-HBOpj_Q8vu07fur_sbrEqthg |
CitedBy_id | crossref_primary_10_1002_ange_202400549 crossref_primary_10_1002_adma_202404774 crossref_primary_10_1007_s12274_024_6940_7 crossref_primary_10_1002_adfm_202417486 crossref_primary_10_1021_acsnano_4c01456 crossref_primary_10_1016_j_coelec_2025_101643 crossref_primary_10_1016_j_cej_2025_160985 crossref_primary_10_1021_acsami_4c04466 crossref_primary_10_1021_acscatal_4c05954 crossref_primary_10_1002_ange_202411796 crossref_primary_10_1039_D4TA02281E crossref_primary_10_1002_adma_202407889 crossref_primary_10_1007_s40843_024_3198_6 crossref_primary_10_1039_D4EE03987D crossref_primary_10_1002_agt2_70016 crossref_primary_10_1002_celc_202400499 crossref_primary_10_1016_j_fuel_2024_132746 crossref_primary_10_1002_adfm_202423612 crossref_primary_10_1021_acs_nanolett_4c03218 crossref_primary_10_1016_j_nxmate_2025_100555 crossref_primary_10_1002_adfm_202411491 crossref_primary_10_1002_adma_202417696 crossref_primary_10_1002_adma_202412363 crossref_primary_10_1016_j_apcatb_2025_125027 crossref_primary_10_1002_adfm_202425084 crossref_primary_10_1002_anie_202400549 crossref_primary_10_1002_ange_202414234 crossref_primary_10_1002_adfm_202420153 crossref_primary_10_1002_anie_202408382 crossref_primary_10_1021_acsami_4c16144 crossref_primary_10_1002_anie_202411796 crossref_primary_10_1002_cctc_202402050 crossref_primary_10_1002_adfm_202422339 crossref_primary_10_1002_adma_202314351 crossref_primary_10_1039_D4CS00517A crossref_primary_10_1002_adma_202402979 crossref_primary_10_1039_D4DT01578A crossref_primary_10_1002_aenm_202401834 crossref_primary_10_1016_j_jcis_2024_04_145 crossref_primary_10_1039_D4SC07619B crossref_primary_10_1007_s11426_024_2040_8 crossref_primary_10_1002_adfm_202420282 crossref_primary_10_1002_anie_202414234 crossref_primary_10_1002_aenm_202401591 crossref_primary_10_1002_adfm_202422585 crossref_primary_10_1021_acs_nanolett_4c04966 crossref_primary_10_1002_ange_202408382 crossref_primary_10_1021_acs_nanolett_4c03319 crossref_primary_10_1002_adfm_202406917 crossref_primary_10_1002_advs_202411705 crossref_primary_10_1002_adma_202408680 crossref_primary_10_1021_acs_chemrev_4c00368 crossref_primary_10_1002_smll_202402271 crossref_primary_10_1002_smll_202408602 crossref_primary_10_1016_j_cej_2024_153108 crossref_primary_10_1016_j_jpowsour_2025_236748 |
Cites_doi | 10.1039/C5CS00467E 10.1021/jacs.1c08973 10.1002/adfm.202202737 10.1021/jacs.1c11313 10.1021/acscatal.2c01367 10.1126/science.abg2371 10.1016/S1872-2067(23)64464-X 10.1021/acsnano.2c07911 10.1002/anie.202002647 10.1039/D2CS00931E 10.1039/D2EE04095F 10.1016/j.checat.2021.08.014 10.1038/s41565-022-01121-4 10.1016/j.chempr.2023.05.037 10.1002/sstr.202300168 10.1039/D2EE02076A 10.1021/jacs.5b12715 10.1002/ntls.20220026 10.1038/s41467-023-39366-9 10.1126/science.aar6611 10.1039/D1EE00545F 10.1002/adma.202202952 10.1002/aenm.202301409 10.1002/anie.202217337 10.1016/j.checat.2023.100595 10.1073/pnas.2204666119 10.1002/ange.202211373 10.1073/pnas.2311149120 10.1016/j.checat.2022.01.022 10.1021/acscatal.3c01315 10.1002/adma.202304021 10.1021/jacs.0c00418 10.1021/jacs.3c03432 10.1002/anie.202303327 10.1016/j.isci.2023.107100 10.1038/s41467-023-43897-6 10.1021/acsami.2c02048 10.1002/adma.202107399 10.1038/ncomms15131 10.1039/D3EE00371J 10.1021/acscatal.2c04584 10.1073/pnas.2115504119 10.1021/jacs.0c04981 10.1038/s41467-020-17068-w 10.1021/acsmaterialslett.2c00149 10.1038/s44160-023-00321-7 10.1038/s41929-023-00951-2 10.1038/s41467-022-28740-8 10.1021/jacs.0c09461 10.1002/aenm.202204236 10.1038/s41467-023-40174-4 10.1073/pnas.2306461120 10.1002/adma.202207305 10.1021/jacs.3c07320 10.1038/s41467-022-29926-w 10.1038/s41586-023-06339-3 10.1021/acs.accounts.6b00527 10.1038/s41570-020-0173-4 10.1039/D3EE01301D 10.1038/s41560-020-0654-1 10.1021/jacs.9b13347 10.1002/ange.202202556 10.1021/jacs.3c00334 10.1002/adma.201701331 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley-VCH GmbH. 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley-VCH GmbH. – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202313548 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 38279631 10_1002_adma_202313548 ADMA202313548 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Shenzhen Science and Technology Program funderid: JCYJ20220530140815035 – fundername: Hong Kong Branch of National Precious Metals Material Engineering Research Centre – fundername: National Natural Science Foundation of China funderid: 22175148; 22005258 – fundername: Research Grants Council of Hong Kong funderid: 21309322 – fundername: City University of Hong Kong funderid: 9610480; 9610663; 9680301; 7006007 – fundername: Shenzhen Science and Technology Program grantid: JCYJ20220530140815035 – fundername: National Natural Science Foundation of China grantid: 22175148 – fundername: City University of Hong Kong grantid: 7006007 – fundername: Research Grants Council of Hong Kong grantid: 21309322 – fundername: National Natural Science Foundation of China grantid: 22005258 – fundername: City University of Hong Kong grantid: 9610480 – fundername: City University of Hong Kong grantid: 9610663 – fundername: City University of Hong Kong grantid: 9680301 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4278-f1dea7edc920ebc41a18d943c0ee25dfa8917ed0fcab0429e9b1fca1eb88f2f33 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 12:23:24 EDT 2025 Sat Jul 26 02:14:16 EDT 2025 Thu Apr 03 06:58:57 EDT 2025 Tue Jul 01 00:54:44 EDT 2025 Thu Apr 24 22:54:06 EDT 2025 Wed Jan 22 16:12:40 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | ammonia nitrate reduction reaction ultrathin alloy nanostructures crystal phase engineering electrocatalysis |
Language | English |
License | 2024 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4278-f1dea7edc920ebc41a18d943c0ee25dfa8917ed0fcab0429e9b1fca1eb88f2f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3133-6503 |
PMID | 38279631 |
PQID | 3031743739 |
PQPubID | 2045203 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2929067412 proquest_journals_3031743739 pubmed_primary_38279631 crossref_citationtrail_10_1002_adma_202313548 crossref_primary_10_1002_adma_202313548 wiley_primary_10_1002_adma_202313548_ADMA202313548 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 134 2023; 52 2017; 8 2023; 35 2023; 13 2023; 14 2018; 360 2023; 4 2023; 120 2023; 17 2023; 6 2020; 142 2023; 16 2023; 145 2023; 9 2023; 621 2020; 59 2017; 29 2023; 2 2020; 11 2023; 3 2021; 143 2022; 119 2021; 1 2021; 14 2022; 144 2023; 62 2020; 5 2020; 4 2022; 4 2023; 26 2022; 34 2022; 12 2022; 13 2022; 14 2021; 372 2016; 138 2022; 32 2022; 2 2016; 49 2022; 17 2023; 50 2016; 45 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 2 start-page: 622 year: 2022 publication-title: Chem. Catal. – volume: 16 start-page: 2991 year: 2023 publication-title: Energy Environ. Sci. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 145 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 5702 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 134 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 17 start-page: 759 year: 2022 publication-title: Nat. Nanotechnol. – volume: 621 start-page: 300 year: 2023 publication-title: Nature. – volume: 13 start-page: 7529 year: 2023 publication-title: ACS Catal. – volume: 120 year: 2023 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 14 start-page: 3522 year: 2021 publication-title: Energy Environ. Sci. – volume: 16 start-page: 157 year: 2023 publication-title: Energy Environ. Sci. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 45 start-page: 63 year: 2016 publication-title: Chem. Soc. Rev. – volume: 14 start-page: 4554 year: 2023 publication-title: Nat. Commun. – volume: 49 start-page: 2841 year: 2016 publication-title: Acc. Chem. Res. – volume: 144 start-page: 547 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 402 year: 2023 publication-title: Nat. Catal. – volume: 145 start-page: 6471 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 119 year: 2022 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 12 year: 2022 publication-title: ACS Catal. – volume: 11 start-page: 3293 year: 2020 publication-title: Nat. Commun. – volume: 26 year: 2023 publication-title: iScience. – volume: 59 start-page: 9744 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces. – volume: 4 start-page: 243 year: 2020 publication-title: Nat. Rev. Chem. – volume: 5 start-page: 605 year: 2020 publication-title: Nat. Energy. – volume: 2 start-page: 612 year: 2023 publication-title: Nat. Synth. – volume: 16 start-page: 2483 year: 2023 publication-title: Energy Environ. Sci. – volume: 14 start-page: 3634 year: 2023 publication-title: Nat. Commun. – volume: 50 start-page: 6 year: 2023 publication-title: Chin. J. Catal. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 360 year: 2018 publication-title: Science. – volume: 16 start-page: 2611 year: 2023 publication-title: Energy Environ. Sci. – volume: 13 start-page: 1098 year: 2022 publication-title: Nat. Commun. – volume: 9 start-page: 1768 year: 2023 publication-title: Chem. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 138 start-page: 1414 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 1088 year: 2021 publication-title: Chem. Catal. – volume: 13 start-page: 2338 year: 2022 publication-title: Nat. Commun. – volume: 14 start-page: 8036 year: 2023 publication-title: Nat. Commun. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 4 year: 2023 publication-title: Small Struct. – volume: 372 start-page: 1187 year: 2021 publication-title: Science. – volume: 12 start-page: 6651 year: 2022 publication-title: ACS Catal. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 52 start-page: 1723 year: 2023 publication-title: Chem. Soc. Rev. – volume: 3 year: 2023 publication-title: Chem. Catal. – volume: 142 start-page: 7036 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 650 year: 2022 publication-title: ACS Mater. Lett. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 1081 year: 2023 publication-title: ACS Nano. – volume: 2 year: 2022 publication-title: Nat. Sci. – ident: e_1_2_7_39_1 doi: 10.1039/C5CS00467E – ident: e_1_2_7_46_1 doi: 10.1021/jacs.1c08973 – ident: e_1_2_7_52_1 doi: 10.1002/adfm.202202737 – ident: e_1_2_7_41_1 doi: 10.1021/jacs.1c11313 – ident: e_1_2_7_49_1 doi: 10.1021/acscatal.2c01367 – ident: e_1_2_7_7_1 doi: 10.1126/science.abg2371 – ident: e_1_2_7_14_1 doi: 10.1016/S1872-2067(23)64464-X – ident: e_1_2_7_30_1 doi: 10.1021/acsnano.2c07911 – ident: e_1_2_7_50_1 doi: 10.1002/anie.202002647 – ident: e_1_2_7_42_1 doi: 10.1039/D2CS00931E – ident: e_1_2_7_19_1 doi: 10.1039/D2EE04095F – ident: e_1_2_7_22_1 doi: 10.1016/j.checat.2021.08.014 – ident: e_1_2_7_6_1 doi: 10.1038/s41565-022-01121-4 – ident: e_1_2_7_12_1 doi: 10.1016/j.chempr.2023.05.037 – ident: e_1_2_7_13_1 doi: 10.1002/sstr.202300168 – ident: e_1_2_7_53_1 doi: 10.1039/D2EE02076A – ident: e_1_2_7_34_1 doi: 10.1021/jacs.5b12715 – ident: e_1_2_7_36_1 doi: 10.1002/ntls.20220026 – ident: e_1_2_7_5_1 doi: 10.1038/s41467-023-39366-9 – ident: e_1_2_7_8_1 doi: 10.1126/science.aar6611 – ident: e_1_2_7_18_1 doi: 10.1039/D1EE00545F – ident: e_1_2_7_24_1 doi: 10.1002/adma.202202952 – ident: e_1_2_7_31_1 doi: 10.1002/aenm.202301409 – ident: e_1_2_7_27_1 doi: 10.1002/anie.202217337 – ident: e_1_2_7_11_1 doi: 10.1016/j.checat.2023.100595 – ident: e_1_2_7_45_1 doi: 10.1073/pnas.2204666119 – ident: e_1_2_7_28_1 doi: 10.1002/ange.202211373 – ident: e_1_2_7_63_1 doi: 10.1073/pnas.2311149120 – ident: e_1_2_7_57_1 doi: 10.1016/j.checat.2022.01.022 – ident: e_1_2_7_61_1 doi: 10.1021/acscatal.3c01315 – ident: e_1_2_7_4_1 doi: 10.1002/adma.202304021 – ident: e_1_2_7_25_1 doi: 10.1021/jacs.0c00418 – ident: e_1_2_7_10_1 doi: 10.1021/jacs.3c03432 – ident: e_1_2_7_62_1 doi: 10.1002/anie.202303327 – ident: e_1_2_7_15_1 doi: 10.1016/j.isci.2023.107100 – ident: e_1_2_7_64_1 doi: 10.1038/s41467-023-43897-6 – ident: e_1_2_7_29_1 doi: 10.1021/acsami.2c02048 – ident: e_1_2_7_33_1 doi: 10.1002/adma.202107399 – ident: e_1_2_7_48_1 doi: 10.1038/ncomms15131 – ident: e_1_2_7_17_1 doi: 10.1039/D3EE00371J – ident: e_1_2_7_58_1 doi: 10.1021/acscatal.2c04584 – ident: e_1_2_7_21_1 doi: 10.1073/pnas.2115504119 – ident: e_1_2_7_44_1 doi: 10.1021/jacs.0c04981 – ident: e_1_2_7_43_1 doi: 10.1038/s41467-020-17068-w – ident: e_1_2_7_54_1 doi: 10.1021/acsmaterialslett.2c00149 – ident: e_1_2_7_3_1 doi: 10.1038/s44160-023-00321-7 – ident: e_1_2_7_2_1 doi: 10.1038/s41929-023-00951-2 – ident: e_1_2_7_23_1 doi: 10.1038/s41467-022-28740-8 – ident: e_1_2_7_35_1 doi: 10.1021/jacs.0c09461 – ident: e_1_2_7_16_1 doi: 10.1002/aenm.202204236 – ident: e_1_2_7_51_1 doi: 10.1038/s41467-023-40174-4 – ident: e_1_2_7_26_1 doi: 10.1073/pnas.2306461120 – ident: e_1_2_7_56_1 doi: 10.1002/adma.202207305 – ident: e_1_2_7_9_1 doi: 10.1021/jacs.3c07320 – ident: e_1_2_7_47_1 doi: 10.1038/s41467-022-29926-w – ident: e_1_2_7_40_1 doi: 10.1038/s41586-023-06339-3 – ident: e_1_2_7_38_1 doi: 10.1021/acs.accounts.6b00527 – ident: e_1_2_7_37_1 doi: 10.1038/s41570-020-0173-4 – ident: e_1_2_7_60_1 doi: 10.1039/D3EE01301D – ident: e_1_2_7_1_1 doi: 10.1038/s41560-020-0654-1 – ident: e_1_2_7_55_1 doi: 10.1021/jacs.9b13347 – ident: e_1_2_7_59_1 doi: 10.1002/ange.202202556 – ident: e_1_2_7_20_1 doi: 10.1021/jacs.3c00334 – ident: e_1_2_7_32_1 doi: 10.1002/adma.201701331 |
SSID | ssj0009606 |
Score | 2.6735423 |
Snippet | Electrocatalytic nitrate reduction reaction (NO3RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle.... Electrocatalytic nitrate reduction reaction (NO 3 RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle.... Electrocatalytic nitrate reduction reaction (NO RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2313548 |
SubjectTerms | Ammonia Chemical reduction Chemical synthesis crystal phase engineering Electroactivity electrocatalysis Electron transfer Hydrogen evolution Nanoalloys nitrate reduction reaction Nitrates ultrathin alloy nanostructures |
Title | Crystal Phase Engineering of Ultrathin Alloy Nanostructures for Highly Efficient Electroreduction of Nitrate to Ammonia |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202313548 https://www.ncbi.nlm.nih.gov/pubmed/38279631 https://www.proquest.com/docview/3031743739 https://www.proquest.com/docview/2929067412 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3ba9swFIcPo0_bQ2_bWrfd0KDQJzeW7NTyo-kSwqBhjAb6ZiRLpqHGLk1CSf_6niM7brIyCh1-sZHvPpefbPk7AKe5NBT5sZNjBEG1DcbByGo_FsKYJNZcu_cdV-OL0ST6ddO_WfuLv-FDdC_cyDNcvCYHV3rWe4GGKuO4QahPQlTdGIRpwBapoj8v_CiS5w62F_b95CKSK2pjIHqbm29mpVdSc1O5utQz3AG1OulmxMnd-WKuz_Onv3iO_3NVu7Dd6lKWNoa0Bx9stQ-f1miFn-Hx8mGJWrJkv28x9bG1NlYXbFIS5_Z2WrG0LOslw7BdN3DaBfboGWpjRmNKyiUbOGoFJjs2aGrwPBA-lgyE9jOeOl4um9csJR-Zqi8wGQ6uL0d-W7fBz6lwh19wY1VsTZ6IwOo84opLk0RhHlgr-qZQEvuI1gRFrjTlQ5tojvPcaikLUYThV9iq6soeArNWG0UlaHhcoHALFWbVgstAG5xiJT3wV88ty1uoOdXWKLMGxywyuqFZd0M9OOvWv29wHv9c82RlBlnr1rMM8z314OIw8eBH14wOSV9ZVGXrxSwTCRH0UagJDw4a8-kOFUoRY8TjHghnBG-cQ5b-vEq7paP3bHQMH3G-HWt0Alv43O03lFFz_d25yjOVrBWv |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Lb9NAEIdHUA7AgfKuocAiIXFy61079fpotakCNBFCjcRttetdqxGWXbWJUPjrmVk_2lChSqBcnPgZex6_2Wy-AfhQSEuRH4scKwiqbTEOJs6EqRDWZqnhxo93TGcHk3ny-fuon01I_4Vp-RDDgBt5ho_X5OA0IL1_RQ3V1oODUKDEKLvvwj1q6-2rqm9XBCkS6B63F4_C7CCRPbcxEvub-2_mpRtic1O7-uRzvA2mv-x2zsmPvdXS7BW__iA6_tf3egyPOmnK8taWnsAdVz-Fh9eAhc_g5-HFGuVkxb6eYfZj19axpmTzilC3Z4ua5VXVrBlG7qbl066wqGcojxlNK6nWbOzBFZjv2Lhtw3NBBFmyETrObOGRuWzZsJzcZKGfw_x4fHo4CbvWDWFBvTvCklunU2eLTETOFAnXXNosiYvIOTGypZZYJjoblYU2lBJdZjguc2ekLEUZxy9gq25qtwPMOWM1daHhaYnaLdaYWEsuI2PxlWoZQNg_OFV0XHNqr1GplsgsFN1QNdzQAD4O25-3RI-_brnb24HqPPtSYcqnIi6NswDeD6vRJ-mHFl27ZnWpREYQfdRqIoCXrf0Mp4qlSDHo8QCEt4JbrkHlR9N8ePfqX3Z6B_cnp9MTdfJp9uU1PMDPu6lHu7CFNuDeoKpamrfeb34D4qMZyg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3ba9RAFIcPWkH0Qes92uoIgk9pk0l2M3kM3V3qpUsRF_o2zGRm6GJISruLrH-950yy6a5FCkpecr-ey2-SyXcAPpTCUOTHRo7hBNU2GAdTq8OMc2PyTMfav-84mQ6PZ-nns8HZxl_8LR-if-FGnuHjNTn4hXGH19BQZTw3CPVJgqr7LtxLh5Egux59uwZIkT73tL1kEObDVKyxjRE_3N5-Oy3d0Jrb0tXnnsljUOuzbruc_DhYLvRB-esPoOP_XNYuPOqEKStaS3oCd2z9FB5u4Aqfwc-jyxWKyYqdnmPuYxvLWOPYrCLQ7fm8ZkVVNSuGcbtp6bRLbNIzFMeMOpVUKzb22ArMdmzcFuG5JH4sWQjtZzr3wFy2aFhBTjJXz2E2GX8_Og67wg1hSZU7QhcbqzJrypxHVpdprGJh8jQpI2v5wDglsJFoTeRKpSkh2lzHOB5bLYTjLklewE7d1PYVMGu1UVSDJs4cKrdEYVp1sYi0wSFTIoBw_dxk2VHNqbhGJVseM5d0Q2V_QwP42K9_0fI8_rrm3toMZOfXVxITPjXhsiQP4H2_GD2SPrOo2jbLK8lzQuijUuMBvGzNpz9UIniGIS8OgHsjuOUcZDE6Kfqp1_-y0Tu4fzqayK-fpl_ewAOc3fU72oMdNAG7j5Jqod96r_kNnNoYgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal+Phase+Engineering+of+Ultrathin+Alloy+Nanostructures+for+Highly+Efficient+Electroreduction+of+Nitrate+to+Ammonia&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Yunhao&rft.au=Fengkun+Hao&rft.au=Sun%2C+Mingzi&rft.au=Meng%E2%80%90Ting+Liu&rft.date=2024-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=14&rft_id=info:doi/10.1002%2Fadma.202313548&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |