Crystal Phase Engineering of Ultrathin Alloy Nanostructures for Highly Efficient Electroreduction of Nitrate to Ammonia

Electrocatalytic nitrate reduction reaction (NO3RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle. However, it still remains a great challenge to achieve highly efficient ammonia production due to the complex proton‐coupled electron transfer pr...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 14; pp. e2313548 - n/a
Main Authors Wang, Yunhao, Hao, Fengkun, Sun, Mingzi, Liu, Meng‐Ting, Zhou, Jingwen, Xiong, Yuecheng, Ye, Chenliang, Wang, Xixi, Liu, Fu, Wang, Juan, Lu, Pengyi, Ma, Yangbo, Yin, Jinwen, Chen, Hsiao‐Chien, Zhang, Qinghua, Gu, Lin, Chen, Hao Ming, Huang, Bolong, Fan, Zhanxi
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrocatalytic nitrate reduction reaction (NO3RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle. However, it still remains a great challenge to achieve highly efficient ammonia production due to the complex proton‐coupled electron transfer process in NO3RR. Here, the controlled synthesis of RuMo alloy nanoflowers (NFs) with unconventional face‐centered cubic (fcc) phase and hexagonal close‐packed/fcc heterophase for highly efficient NO3RR is reported. Significantly, fcc RuMo NFs demonstrate high Faradaic efficiency of 95.2% and a large yield rate of 32.7 mg h−1 mgcat−1 toward ammonia production at 0 and −0.1 V (vs reversible hydrogen electrode), respectively. In situ characterizations and theoretical calculations have unraveled that fcc RuMo NFs possess the highest d‐band center with superior electroactivity, which originates from the strong Ru─Mo interactions and the high intrinsic activity of the unconventional fcc phase. The optimal electronic structures of fcc RuMo NFs supply strong adsorption of key intermediates with suppression of the competitive hydrogen evolution, which further determines the remarkable NO3RR performance. The successful demonstration of high‐performance zinc‐nitrate batteries with fcc RuMo NFs suggests their substantial application potential in electrochemical energy supply systems. The controlled synthesis of RuMo alloy nanoflowers (NFs) with unconventional face‐centered cubic (fcc) phase and hexagonal close‐packed (hcp)/fcc heterophase is well achieved. Notably, fcc RuMo NFs demonstrate superior catalytic performance toward nitrate electroreduction to ammonia than hcp/fcc RuMo NFs. Mechanism studies reveal that crystal phase engineering of RuMo alloy nanostructures can significantly improve the electroactivity.
AbstractList Electrocatalytic nitrate reduction reaction (NO3RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle. However, it still remains a great challenge to achieve highly efficient ammonia production due to the complex proton‐coupled electron transfer process in NO3RR. Here, the controlled synthesis of RuMo alloy nanoflowers (NFs) with unconventional face‐centered cubic (fcc) phase and hexagonal close‐packed/fcc heterophase for highly efficient NO3RR is reported. Significantly, fcc RuMo NFs demonstrate high Faradaic efficiency of 95.2% and a large yield rate of 32.7 mg h−1 mgcat−1 toward ammonia production at 0 and −0.1 V (vs reversible hydrogen electrode), respectively. In situ characterizations and theoretical calculations have unraveled that fcc RuMo NFs possess the highest d‐band center with superior electroactivity, which originates from the strong Ru─Mo interactions and the high intrinsic activity of the unconventional fcc phase. The optimal electronic structures of fcc RuMo NFs supply strong adsorption of key intermediates with suppression of the competitive hydrogen evolution, which further determines the remarkable NO3RR performance. The successful demonstration of high‐performance zinc‐nitrate batteries with fcc RuMo NFs suggests their substantial application potential in electrochemical energy supply systems. The controlled synthesis of RuMo alloy nanoflowers (NFs) with unconventional face‐centered cubic (fcc) phase and hexagonal close‐packed (hcp)/fcc heterophase is well achieved. Notably, fcc RuMo NFs demonstrate superior catalytic performance toward nitrate electroreduction to ammonia than hcp/fcc RuMo NFs. Mechanism studies reveal that crystal phase engineering of RuMo alloy nanostructures can significantly improve the electroactivity.
Electrocatalytic nitrate reduction reaction (NO3RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle. However, it still remains a great challenge to achieve highly efficient ammonia production due to the complex proton-coupled electron transfer process in NO3RR. Here, the controlled synthesis of RuMo alloy nanoflowers (NFs) with unconventional face-centered cubic (fcc) phase and hexagonal close-packed/fcc heterophase for highly efficient NO3RR is reported. Significantly, fcc RuMo NFs demonstrate high Faradaic efficiency of 95.2% and a large yield rate of 32.7 mg h-1 mgcat -1 toward ammonia production at 0 and -0.1 V (vs reversible hydrogen electrode), respectively. In situ characterizations and theoretical calculations have unraveled that fcc RuMo NFs possess the highest d-band center with superior electroactivity, which originates from the strong Ru─Mo interactions and the high intrinsic activity of the unconventional fcc phase. The optimal electronic structures of fcc RuMo NFs supply strong adsorption of key intermediates with suppression of the competitive hydrogen evolution, which further determines the remarkable NO3RR performance. The successful demonstration of high-performance zinc-nitrate batteries with fcc RuMo NFs suggests their substantial application potential in electrochemical energy supply systems.Electrocatalytic nitrate reduction reaction (NO3RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle. However, it still remains a great challenge to achieve highly efficient ammonia production due to the complex proton-coupled electron transfer process in NO3RR. Here, the controlled synthesis of RuMo alloy nanoflowers (NFs) with unconventional face-centered cubic (fcc) phase and hexagonal close-packed/fcc heterophase for highly efficient NO3RR is reported. Significantly, fcc RuMo NFs demonstrate high Faradaic efficiency of 95.2% and a large yield rate of 32.7 mg h-1 mgcat -1 toward ammonia production at 0 and -0.1 V (vs reversible hydrogen electrode), respectively. In situ characterizations and theoretical calculations have unraveled that fcc RuMo NFs possess the highest d-band center with superior electroactivity, which originates from the strong Ru─Mo interactions and the high intrinsic activity of the unconventional fcc phase. The optimal electronic structures of fcc RuMo NFs supply strong adsorption of key intermediates with suppression of the competitive hydrogen evolution, which further determines the remarkable NO3RR performance. The successful demonstration of high-performance zinc-nitrate batteries with fcc RuMo NFs suggests their substantial application potential in electrochemical energy supply systems.
Electrocatalytic nitrate reduction reaction (NO RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle. However, it still remains a great challenge to achieve highly efficient ammonia production due to the complex proton-coupled electron transfer process in NO RR. Here, the controlled synthesis of RuMo alloy nanoflowers (NFs) with unconventional face-centered cubic (fcc) phase and hexagonal close-packed/fcc heterophase for highly efficient NO RR is reported. Significantly, fcc RuMo NFs demonstrate high Faradaic efficiency of 95.2% and a large yield rate of 32.7 mg h mg toward ammonia production at 0 and -0.1 V (vs reversible hydrogen electrode), respectively. In situ characterizations and theoretical calculations have unraveled that fcc RuMo NFs possess the highest d-band center with superior electroactivity, which originates from the strong Ru─Mo interactions and the high intrinsic activity of the unconventional fcc phase. The optimal electronic structures of fcc RuMo NFs supply strong adsorption of key intermediates with suppression of the competitive hydrogen evolution, which further determines the remarkable NO RR performance. The successful demonstration of high-performance zinc-nitrate batteries with fcc RuMo NFs suggests their substantial application potential in electrochemical energy supply systems.
Electrocatalytic nitrate reduction reaction (NO3RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle. However, it still remains a great challenge to achieve highly efficient ammonia production due to the complex proton‐coupled electron transfer process in NO3RR. Here, the controlled synthesis of RuMo alloy nanoflowers (NFs) with unconventional face‐centered cubic (fcc) phase and hexagonal close‐packed/fcc heterophase for highly efficient NO3RR is reported. Significantly, fcc RuMo NFs demonstrate high Faradaic efficiency of 95.2% and a large yield rate of 32.7 mg h−1 mgcat−1 toward ammonia production at 0 and −0.1 V (vs reversible hydrogen electrode), respectively. In situ characterizations and theoretical calculations have unraveled that fcc RuMo NFs possess the highest d‐band center with superior electroactivity, which originates from the strong Ru─Mo interactions and the high intrinsic activity of the unconventional fcc phase. The optimal electronic structures of fcc RuMo NFs supply strong adsorption of key intermediates with suppression of the competitive hydrogen evolution, which further determines the remarkable NO3RR performance. The successful demonstration of high‐performance zinc‐nitrate batteries with fcc RuMo NFs suggests their substantial application potential in electrochemical energy supply systems.
Electrocatalytic nitrate reduction reaction (NO 3 RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle. However, it still remains a great challenge to achieve highly efficient ammonia production due to the complex proton‐coupled electron transfer process in NO 3 RR. Here, the controlled synthesis of RuMo alloy nanoflowers (NFs) with unconventional face‐centered cubic (fcc) phase and hexagonal close‐packed/fcc heterophase for highly efficient NO 3 RR is reported. Significantly, fcc RuMo NFs demonstrate high Faradaic efficiency of 95.2% and a large yield rate of 32.7 mg h −1 mg cat −1 toward ammonia production at 0 and −0.1 V (vs reversible hydrogen electrode), respectively. In situ characterizations and theoretical calculations have unraveled that fcc RuMo NFs possess the highest d‐band center with superior electroactivity, which originates from the strong Ru─Mo interactions and the high intrinsic activity of the unconventional fcc phase. The optimal electronic structures of fcc RuMo NFs supply strong adsorption of key intermediates with suppression of the competitive hydrogen evolution, which further determines the remarkable NO 3 RR performance. The successful demonstration of high‐performance zinc‐nitrate batteries with fcc RuMo NFs suggests their substantial application potential in electrochemical energy supply systems.
Author Xiong, Yuecheng
Zhang, Qinghua
Yin, Jinwen
Wang, Yunhao
Fan, Zhanxi
Hao, Fengkun
Wang, Juan
Lu, Pengyi
Liu, Fu
Chen, Hao Ming
Wang, Xixi
Gu, Lin
Zhou, Jingwen
Liu, Meng‐Ting
Huang, Bolong
Sun, Mingzi
Ye, Chenliang
Ma, Yangbo
Chen, Hsiao‐Chien
Author_xml – sequence: 1
  givenname: Yunhao
  surname: Wang
  fullname: Wang, Yunhao
  organization: City University of Hong Kong
– sequence: 2
  givenname: Fengkun
  surname: Hao
  fullname: Hao, Fengkun
  organization: City University of Hong Kong
– sequence: 3
  givenname: Mingzi
  surname: Sun
  fullname: Sun, Mingzi
  organization: The Hong Kong Polytechnic University
– sequence: 4
  givenname: Meng‐Ting
  surname: Liu
  fullname: Liu, Meng‐Ting
  organization: National Taiwan University
– sequence: 5
  givenname: Jingwen
  surname: Zhou
  fullname: Zhou, Jingwen
  organization: City University of Hong Kong
– sequence: 6
  givenname: Yuecheng
  surname: Xiong
  fullname: Xiong, Yuecheng
  organization: City University of Hong Kong
– sequence: 7
  givenname: Chenliang
  surname: Ye
  fullname: Ye, Chenliang
  email: chenliangye@ncepu.edu.cn
  organization: North China Electric Power University
– sequence: 8
  givenname: Xixi
  surname: Wang
  fullname: Wang, Xixi
  organization: City University of Hong Kong
– sequence: 9
  givenname: Fu
  surname: Liu
  fullname: Liu, Fu
  organization: City University of Hong Kong
– sequence: 10
  givenname: Juan
  surname: Wang
  fullname: Wang, Juan
  organization: City University of Hong Kong
– sequence: 11
  givenname: Pengyi
  surname: Lu
  fullname: Lu, Pengyi
  organization: City University of Hong Kong
– sequence: 12
  givenname: Yangbo
  surname: Ma
  fullname: Ma, Yangbo
  organization: City University of Hong Kong
– sequence: 13
  givenname: Jinwen
  surname: Yin
  fullname: Yin, Jinwen
  organization: City University of Hong Kong
– sequence: 14
  givenname: Hsiao‐Chien
  surname: Chen
  fullname: Chen, Hsiao‐Chien
  organization: Chang Gung University
– sequence: 15
  givenname: Qinghua
  surname: Zhang
  fullname: Zhang, Qinghua
  organization: Chinese Academy of Sciences
– sequence: 16
  givenname: Lin
  surname: Gu
  fullname: Gu, Lin
  email: lingu@tsinghua.edu.cn
  organization: Tsinghua University
– sequence: 17
  givenname: Hao Ming
  surname: Chen
  fullname: Chen, Hao Ming
  email: haomingchen@ntu.edu.tw
  organization: Taipei Medical University
– sequence: 18
  givenname: Bolong
  surname: Huang
  fullname: Huang, Bolong
  email: bhuang@polyu.edu.hk
  organization: The Hong Kong Polytechnic University
– sequence: 19
  givenname: Zhanxi
  orcidid: 0000-0003-3133-6503
  surname: Fan
  fullname: Fan, Zhanxi
  email: zhanxi.fan@cityu.edu.hk
  organization: City University of Hong Kong Shenzhen Research Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38279631$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1rFDEchoNU7LZ69SgBL15mzcd85TisqxVq9WDPIZP5ZTclk9QkQ5n_3hm2VSiIpwTyPC_hfS_QmQ8eEHpLyZYSwj6qYVRbRhinvCrbF2hDK0aLkojqDG2I4FUh6rI9Rxcp3RFCRE3qV-ict6wRNacb9LCLc8rK4R9HlQDv_cF6gGj9AQeDb12OKh-tx51zYcY3yoeU46TzFCFhEyK-soejm_HeGKst-Iz3DnSOIcKwYDb4NefGrjmAc8DdOAZv1Wv00iiX4M3jeYluP-9_7q6K6-9fvu6660KXrGkLQwdQDQxaMAK9Lqmi7SBKrgkAqwajWkGXZ2K06knJBIieLncKfdsaZji_RB9Oufcx_JogZTnapME55SFMSTLBBKmbkrIFff8MvQtT9MvvJCecNiVvuFiod4_U1I8wyPtoRxVn-VTpApQnQMeQUgQjtc1qbWLpwDpJiVyXk-ty8s9yi7Z9pj0l_1MQJ-HBOpj_Q8vu07fur_sbrEqthg
CitedBy_id crossref_primary_10_1002_ange_202400549
crossref_primary_10_1002_adma_202404774
crossref_primary_10_1007_s12274_024_6940_7
crossref_primary_10_1002_adfm_202417486
crossref_primary_10_1021_acsnano_4c01456
crossref_primary_10_1016_j_coelec_2025_101643
crossref_primary_10_1016_j_cej_2025_160985
crossref_primary_10_1021_acsami_4c04466
crossref_primary_10_1021_acscatal_4c05954
crossref_primary_10_1002_ange_202411796
crossref_primary_10_1039_D4TA02281E
crossref_primary_10_1002_adma_202407889
crossref_primary_10_1007_s40843_024_3198_6
crossref_primary_10_1039_D4EE03987D
crossref_primary_10_1002_agt2_70016
crossref_primary_10_1002_celc_202400499
crossref_primary_10_1016_j_fuel_2024_132746
crossref_primary_10_1002_adfm_202423612
crossref_primary_10_1021_acs_nanolett_4c03218
crossref_primary_10_1016_j_nxmate_2025_100555
crossref_primary_10_1002_adfm_202411491
crossref_primary_10_1002_adma_202417696
crossref_primary_10_1002_adma_202412363
crossref_primary_10_1016_j_apcatb_2025_125027
crossref_primary_10_1002_adfm_202425084
crossref_primary_10_1002_anie_202400549
crossref_primary_10_1002_ange_202414234
crossref_primary_10_1002_adfm_202420153
crossref_primary_10_1002_anie_202408382
crossref_primary_10_1021_acsami_4c16144
crossref_primary_10_1002_anie_202411796
crossref_primary_10_1002_cctc_202402050
crossref_primary_10_1002_adfm_202422339
crossref_primary_10_1002_adma_202314351
crossref_primary_10_1039_D4CS00517A
crossref_primary_10_1002_adma_202402979
crossref_primary_10_1039_D4DT01578A
crossref_primary_10_1002_aenm_202401834
crossref_primary_10_1016_j_jcis_2024_04_145
crossref_primary_10_1039_D4SC07619B
crossref_primary_10_1007_s11426_024_2040_8
crossref_primary_10_1002_adfm_202420282
crossref_primary_10_1002_anie_202414234
crossref_primary_10_1002_aenm_202401591
crossref_primary_10_1002_adfm_202422585
crossref_primary_10_1021_acs_nanolett_4c04966
crossref_primary_10_1002_ange_202408382
crossref_primary_10_1021_acs_nanolett_4c03319
crossref_primary_10_1002_adfm_202406917
crossref_primary_10_1002_advs_202411705
crossref_primary_10_1002_adma_202408680
crossref_primary_10_1021_acs_chemrev_4c00368
crossref_primary_10_1002_smll_202402271
crossref_primary_10_1002_smll_202408602
crossref_primary_10_1016_j_cej_2024_153108
crossref_primary_10_1016_j_jpowsour_2025_236748
Cites_doi 10.1039/C5CS00467E
10.1021/jacs.1c08973
10.1002/adfm.202202737
10.1021/jacs.1c11313
10.1021/acscatal.2c01367
10.1126/science.abg2371
10.1016/S1872-2067(23)64464-X
10.1021/acsnano.2c07911
10.1002/anie.202002647
10.1039/D2CS00931E
10.1039/D2EE04095F
10.1016/j.checat.2021.08.014
10.1038/s41565-022-01121-4
10.1016/j.chempr.2023.05.037
10.1002/sstr.202300168
10.1039/D2EE02076A
10.1021/jacs.5b12715
10.1002/ntls.20220026
10.1038/s41467-023-39366-9
10.1126/science.aar6611
10.1039/D1EE00545F
10.1002/adma.202202952
10.1002/aenm.202301409
10.1002/anie.202217337
10.1016/j.checat.2023.100595
10.1073/pnas.2204666119
10.1002/ange.202211373
10.1073/pnas.2311149120
10.1016/j.checat.2022.01.022
10.1021/acscatal.3c01315
10.1002/adma.202304021
10.1021/jacs.0c00418
10.1021/jacs.3c03432
10.1002/anie.202303327
10.1016/j.isci.2023.107100
10.1038/s41467-023-43897-6
10.1021/acsami.2c02048
10.1002/adma.202107399
10.1038/ncomms15131
10.1039/D3EE00371J
10.1021/acscatal.2c04584
10.1073/pnas.2115504119
10.1021/jacs.0c04981
10.1038/s41467-020-17068-w
10.1021/acsmaterialslett.2c00149
10.1038/s44160-023-00321-7
10.1038/s41929-023-00951-2
10.1038/s41467-022-28740-8
10.1021/jacs.0c09461
10.1002/aenm.202204236
10.1038/s41467-023-40174-4
10.1073/pnas.2306461120
10.1002/adma.202207305
10.1021/jacs.3c07320
10.1038/s41467-022-29926-w
10.1038/s41586-023-06339-3
10.1021/acs.accounts.6b00527
10.1038/s41570-020-0173-4
10.1039/D3EE01301D
10.1038/s41560-020-0654-1
10.1021/jacs.9b13347
10.1002/ange.202202556
10.1021/jacs.3c00334
10.1002/adma.201701331
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley-VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202313548
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 38279631
10_1002_adma_202313548
ADMA202313548
Genre article
Journal Article
GrantInformation_xml – fundername: Shenzhen Science and Technology Program
  funderid: JCYJ20220530140815035
– fundername: Hong Kong Branch of National Precious Metals Material Engineering Research Centre
– fundername: National Natural Science Foundation of China
  funderid: 22175148; 22005258
– fundername: Research Grants Council of Hong Kong
  funderid: 21309322
– fundername: City University of Hong Kong
  funderid: 9610480; 9610663; 9680301; 7006007
– fundername: Shenzhen Science and Technology Program
  grantid: JCYJ20220530140815035
– fundername: National Natural Science Foundation of China
  grantid: 22175148
– fundername: City University of Hong Kong
  grantid: 7006007
– fundername: Research Grants Council of Hong Kong
  grantid: 21309322
– fundername: National Natural Science Foundation of China
  grantid: 22005258
– fundername: City University of Hong Kong
  grantid: 9610480
– fundername: City University of Hong Kong
  grantid: 9610663
– fundername: City University of Hong Kong
  grantid: 9680301
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4278-f1dea7edc920ebc41a18d943c0ee25dfa8917ed0fcab0429e9b1fca1eb88f2f33
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 12:23:24 EDT 2025
Sat Jul 26 02:14:16 EDT 2025
Thu Apr 03 06:58:57 EDT 2025
Tue Jul 01 00:54:44 EDT 2025
Thu Apr 24 22:54:06 EDT 2025
Wed Jan 22 16:12:40 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords ammonia
nitrate reduction reaction
ultrathin alloy nanostructures
crystal phase engineering
electrocatalysis
Language English
License 2024 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4278-f1dea7edc920ebc41a18d943c0ee25dfa8917ed0fcab0429e9b1fca1eb88f2f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3133-6503
PMID 38279631
PQID 3031743739
PQPubID 2045203
PageCount 12
ParticipantIDs proquest_miscellaneous_2929067412
proquest_journals_3031743739
pubmed_primary_38279631
crossref_citationtrail_10_1002_adma_202313548
crossref_primary_10_1002_adma_202313548
wiley_primary_10_1002_adma_202313548_ADMA202313548
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 134
2023; 52
2017; 8
2023; 35
2023; 13
2023; 14
2018; 360
2023; 4
2023; 120
2023; 17
2023; 6
2020; 142
2023; 16
2023; 145
2023; 9
2023; 621
2020; 59
2017; 29
2023; 2
2020; 11
2023; 3
2021; 143
2022; 119
2021; 1
2021; 14
2022; 144
2023; 62
2020; 5
2020; 4
2022; 4
2023; 26
2022; 34
2022; 12
2022; 13
2022; 14
2021; 372
2016; 138
2022; 32
2022; 2
2016; 49
2022; 17
2023; 50
2016; 45
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 2
  start-page: 622
  year: 2022
  publication-title: Chem. Catal.
– volume: 16
  start-page: 2991
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 145
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 5702
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 134
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 17
  start-page: 759
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 621
  start-page: 300
  year: 2023
  publication-title: Nature.
– volume: 13
  start-page: 7529
  year: 2023
  publication-title: ACS Catal.
– volume: 120
  year: 2023
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 14
  start-page: 3522
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 16
  start-page: 157
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 45
  start-page: 63
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 14
  start-page: 4554
  year: 2023
  publication-title: Nat. Commun.
– volume: 49
  start-page: 2841
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 144
  start-page: 547
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 402
  year: 2023
  publication-title: Nat. Catal.
– volume: 145
  start-page: 6471
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 119
  year: 2022
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 12
  year: 2022
  publication-title: ACS Catal.
– volume: 11
  start-page: 3293
  year: 2020
  publication-title: Nat. Commun.
– volume: 26
  year: 2023
  publication-title: iScience.
– volume: 59
  start-page: 9744
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 4
  start-page: 243
  year: 2020
  publication-title: Nat. Rev. Chem.
– volume: 5
  start-page: 605
  year: 2020
  publication-title: Nat. Energy.
– volume: 2
  start-page: 612
  year: 2023
  publication-title: Nat. Synth.
– volume: 16
  start-page: 2483
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 3634
  year: 2023
  publication-title: Nat. Commun.
– volume: 50
  start-page: 6
  year: 2023
  publication-title: Chin. J. Catal.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 360
  year: 2018
  publication-title: Science.
– volume: 16
  start-page: 2611
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 1098
  year: 2022
  publication-title: Nat. Commun.
– volume: 9
  start-page: 1768
  year: 2023
  publication-title: Chem.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 138
  start-page: 1414
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 1088
  year: 2021
  publication-title: Chem. Catal.
– volume: 13
  start-page: 2338
  year: 2022
  publication-title: Nat. Commun.
– volume: 14
  start-page: 8036
  year: 2023
  publication-title: Nat. Commun.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 4
  year: 2023
  publication-title: Small Struct.
– volume: 372
  start-page: 1187
  year: 2021
  publication-title: Science.
– volume: 12
  start-page: 6651
  year: 2022
  publication-title: ACS Catal.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 52
  start-page: 1723
  year: 2023
  publication-title: Chem. Soc. Rev.
– volume: 3
  year: 2023
  publication-title: Chem. Catal.
– volume: 142
  start-page: 7036
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 650
  year: 2022
  publication-title: ACS Mater. Lett.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 1081
  year: 2023
  publication-title: ACS Nano.
– volume: 2
  year: 2022
  publication-title: Nat. Sci.
– ident: e_1_2_7_39_1
  doi: 10.1039/C5CS00467E
– ident: e_1_2_7_46_1
  doi: 10.1021/jacs.1c08973
– ident: e_1_2_7_52_1
  doi: 10.1002/adfm.202202737
– ident: e_1_2_7_41_1
  doi: 10.1021/jacs.1c11313
– ident: e_1_2_7_49_1
  doi: 10.1021/acscatal.2c01367
– ident: e_1_2_7_7_1
  doi: 10.1126/science.abg2371
– ident: e_1_2_7_14_1
  doi: 10.1016/S1872-2067(23)64464-X
– ident: e_1_2_7_30_1
  doi: 10.1021/acsnano.2c07911
– ident: e_1_2_7_50_1
  doi: 10.1002/anie.202002647
– ident: e_1_2_7_42_1
  doi: 10.1039/D2CS00931E
– ident: e_1_2_7_19_1
  doi: 10.1039/D2EE04095F
– ident: e_1_2_7_22_1
  doi: 10.1016/j.checat.2021.08.014
– ident: e_1_2_7_6_1
  doi: 10.1038/s41565-022-01121-4
– ident: e_1_2_7_12_1
  doi: 10.1016/j.chempr.2023.05.037
– ident: e_1_2_7_13_1
  doi: 10.1002/sstr.202300168
– ident: e_1_2_7_53_1
  doi: 10.1039/D2EE02076A
– ident: e_1_2_7_34_1
  doi: 10.1021/jacs.5b12715
– ident: e_1_2_7_36_1
  doi: 10.1002/ntls.20220026
– ident: e_1_2_7_5_1
  doi: 10.1038/s41467-023-39366-9
– ident: e_1_2_7_8_1
  doi: 10.1126/science.aar6611
– ident: e_1_2_7_18_1
  doi: 10.1039/D1EE00545F
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.202202952
– ident: e_1_2_7_31_1
  doi: 10.1002/aenm.202301409
– ident: e_1_2_7_27_1
  doi: 10.1002/anie.202217337
– ident: e_1_2_7_11_1
  doi: 10.1016/j.checat.2023.100595
– ident: e_1_2_7_45_1
  doi: 10.1073/pnas.2204666119
– ident: e_1_2_7_28_1
  doi: 10.1002/ange.202211373
– ident: e_1_2_7_63_1
  doi: 10.1073/pnas.2311149120
– ident: e_1_2_7_57_1
  doi: 10.1016/j.checat.2022.01.022
– ident: e_1_2_7_61_1
  doi: 10.1021/acscatal.3c01315
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.202304021
– ident: e_1_2_7_25_1
  doi: 10.1021/jacs.0c00418
– ident: e_1_2_7_10_1
  doi: 10.1021/jacs.3c03432
– ident: e_1_2_7_62_1
  doi: 10.1002/anie.202303327
– ident: e_1_2_7_15_1
  doi: 10.1016/j.isci.2023.107100
– ident: e_1_2_7_64_1
  doi: 10.1038/s41467-023-43897-6
– ident: e_1_2_7_29_1
  doi: 10.1021/acsami.2c02048
– ident: e_1_2_7_33_1
  doi: 10.1002/adma.202107399
– ident: e_1_2_7_48_1
  doi: 10.1038/ncomms15131
– ident: e_1_2_7_17_1
  doi: 10.1039/D3EE00371J
– ident: e_1_2_7_58_1
  doi: 10.1021/acscatal.2c04584
– ident: e_1_2_7_21_1
  doi: 10.1073/pnas.2115504119
– ident: e_1_2_7_44_1
  doi: 10.1021/jacs.0c04981
– ident: e_1_2_7_43_1
  doi: 10.1038/s41467-020-17068-w
– ident: e_1_2_7_54_1
  doi: 10.1021/acsmaterialslett.2c00149
– ident: e_1_2_7_3_1
  doi: 10.1038/s44160-023-00321-7
– ident: e_1_2_7_2_1
  doi: 10.1038/s41929-023-00951-2
– ident: e_1_2_7_23_1
  doi: 10.1038/s41467-022-28740-8
– ident: e_1_2_7_35_1
  doi: 10.1021/jacs.0c09461
– ident: e_1_2_7_16_1
  doi: 10.1002/aenm.202204236
– ident: e_1_2_7_51_1
  doi: 10.1038/s41467-023-40174-4
– ident: e_1_2_7_26_1
  doi: 10.1073/pnas.2306461120
– ident: e_1_2_7_56_1
  doi: 10.1002/adma.202207305
– ident: e_1_2_7_9_1
  doi: 10.1021/jacs.3c07320
– ident: e_1_2_7_47_1
  doi: 10.1038/s41467-022-29926-w
– ident: e_1_2_7_40_1
  doi: 10.1038/s41586-023-06339-3
– ident: e_1_2_7_38_1
  doi: 10.1021/acs.accounts.6b00527
– ident: e_1_2_7_37_1
  doi: 10.1038/s41570-020-0173-4
– ident: e_1_2_7_60_1
  doi: 10.1039/D3EE01301D
– ident: e_1_2_7_1_1
  doi: 10.1038/s41560-020-0654-1
– ident: e_1_2_7_55_1
  doi: 10.1021/jacs.9b13347
– ident: e_1_2_7_59_1
  doi: 10.1002/ange.202202556
– ident: e_1_2_7_20_1
  doi: 10.1021/jacs.3c00334
– ident: e_1_2_7_32_1
  doi: 10.1002/adma.201701331
SSID ssj0009606
Score 2.6735423
Snippet Electrocatalytic nitrate reduction reaction (NO3RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle....
Electrocatalytic nitrate reduction reaction (NO 3 RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle....
Electrocatalytic nitrate reduction reaction (NO RR) toward ammonia synthesis is recognized as a sustainable strategy to balance the global nitrogen cycle....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2313548
SubjectTerms Ammonia
Chemical reduction
Chemical synthesis
crystal phase engineering
Electroactivity
electrocatalysis
Electron transfer
Hydrogen evolution
Nanoalloys
nitrate reduction reaction
Nitrates
ultrathin alloy nanostructures
Title Crystal Phase Engineering of Ultrathin Alloy Nanostructures for Highly Efficient Electroreduction of Nitrate to Ammonia
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202313548
https://www.ncbi.nlm.nih.gov/pubmed/38279631
https://www.proquest.com/docview/3031743739
https://www.proquest.com/docview/2929067412
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3ba9swFIcPo0_bQ2_bWrfd0KDQJzeW7NTyo-kSwqBhjAb6ZiRLpqHGLk1CSf_6niM7brIyCh1-sZHvPpefbPk7AKe5NBT5sZNjBEG1DcbByGo_FsKYJNZcu_cdV-OL0ST6ddO_WfuLv-FDdC_cyDNcvCYHV3rWe4GGKuO4QahPQlTdGIRpwBapoj8v_CiS5w62F_b95CKSK2pjIHqbm29mpVdSc1O5utQz3AG1OulmxMnd-WKuz_Onv3iO_3NVu7Dd6lKWNoa0Bx9stQ-f1miFn-Hx8mGJWrJkv28x9bG1NlYXbFIS5_Z2WrG0LOslw7BdN3DaBfboGWpjRmNKyiUbOGoFJjs2aGrwPBA-lgyE9jOeOl4um9csJR-Zqi8wGQ6uL0d-W7fBz6lwh19wY1VsTZ6IwOo84opLk0RhHlgr-qZQEvuI1gRFrjTlQ5tojvPcaikLUYThV9iq6soeArNWG0UlaHhcoHALFWbVgstAG5xiJT3wV88ty1uoOdXWKLMGxywyuqFZd0M9OOvWv29wHv9c82RlBlnr1rMM8z314OIw8eBH14wOSV9ZVGXrxSwTCRH0UagJDw4a8-kOFUoRY8TjHghnBG-cQ5b-vEq7paP3bHQMH3G-HWt0Alv43O03lFFz_d25yjOVrBWv
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Lb9NAEIdHUA7AgfKuocAiIXFy61079fpotakCNBFCjcRttetdqxGWXbWJUPjrmVk_2lChSqBcnPgZex6_2Wy-AfhQSEuRH4scKwiqbTEOJs6EqRDWZqnhxo93TGcHk3ny-fuon01I_4Vp-RDDgBt5ho_X5OA0IL1_RQ3V1oODUKDEKLvvwj1q6-2rqm9XBCkS6B63F4_C7CCRPbcxEvub-2_mpRtic1O7-uRzvA2mv-x2zsmPvdXS7BW__iA6_tf3egyPOmnK8taWnsAdVz-Fh9eAhc_g5-HFGuVkxb6eYfZj19axpmTzilC3Z4ua5VXVrBlG7qbl066wqGcojxlNK6nWbOzBFZjv2Lhtw3NBBFmyETrObOGRuWzZsJzcZKGfw_x4fHo4CbvWDWFBvTvCklunU2eLTETOFAnXXNosiYvIOTGypZZYJjoblYU2lBJdZjguc2ekLEUZxy9gq25qtwPMOWM1daHhaYnaLdaYWEsuI2PxlWoZQNg_OFV0XHNqr1GplsgsFN1QNdzQAD4O25-3RI-_brnb24HqPPtSYcqnIi6NswDeD6vRJ-mHFl27ZnWpREYQfdRqIoCXrf0Mp4qlSDHo8QCEt4JbrkHlR9N8ePfqX3Z6B_cnp9MTdfJp9uU1PMDPu6lHu7CFNuDeoKpamrfeb34D4qMZyg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3ba9RAFIcPWkH0Qes92uoIgk9pk0l2M3kM3V3qpUsRF_o2zGRm6GJISruLrH-950yy6a5FCkpecr-ey2-SyXcAPpTCUOTHRo7hBNU2GAdTq8OMc2PyTMfav-84mQ6PZ-nns8HZxl_8LR-if-FGnuHjNTn4hXGH19BQZTw3CPVJgqr7LtxLh5Egux59uwZIkT73tL1kEObDVKyxjRE_3N5-Oy3d0Jrb0tXnnsljUOuzbruc_DhYLvRB-esPoOP_XNYuPOqEKStaS3oCd2z9FB5u4Aqfwc-jyxWKyYqdnmPuYxvLWOPYrCLQ7fm8ZkVVNSuGcbtp6bRLbNIzFMeMOpVUKzb22ArMdmzcFuG5JH4sWQjtZzr3wFy2aFhBTjJXz2E2GX8_Og67wg1hSZU7QhcbqzJrypxHVpdprGJh8jQpI2v5wDglsJFoTeRKpSkh2lzHOB5bLYTjLklewE7d1PYVMGu1UVSDJs4cKrdEYVp1sYi0wSFTIoBw_dxk2VHNqbhGJVseM5d0Q2V_QwP42K9_0fI8_rrm3toMZOfXVxITPjXhsiQP4H2_GD2SPrOo2jbLK8lzQuijUuMBvGzNpz9UIniGIS8OgHsjuOUcZDE6Kfqp1_-y0Tu4fzqayK-fpl_ewAOc3fU72oMdNAG7j5Jqod96r_kNnNoYgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal+Phase+Engineering+of+Ultrathin+Alloy+Nanostructures+for+Highly+Efficient+Electroreduction+of+Nitrate+to+Ammonia&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Yunhao&rft.au=Fengkun+Hao&rft.au=Sun%2C+Mingzi&rft.au=Meng%E2%80%90Ting+Liu&rft.date=2024-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=14&rft_id=info:doi/10.1002%2Fadma.202313548&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon