CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain
The CD11c enhanced yellow fluorescent protein (EYFP) transgenic mouse was constructed to identify dendritic cells in the periphery (Lindquist et al. [2004] Nat. Immunol. 5:1243–1250). In this study, we used this mouse to characterize dendritic cells within the CNS. Our anatomic results showed discre...
Saved in:
Published in | Journal of comparative neurology (1911) Vol. 508; no. 5; pp. 687 - 710 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
10.06.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The CD11c enhanced yellow fluorescent protein (EYFP) transgenic mouse was constructed to identify dendritic cells in the periphery (Lindquist et al. [2004] Nat. Immunol. 5:1243–1250). In this study, we used this mouse to characterize dendritic cells within the CNS. Our anatomic results showed discrete populations of EYFP+ brain dendritic cells (EYFP+ bDC) that colocalized with a small fraction of microglia immunoreactive for Mac‐1, Iba‐1, CD45, and F4/80 but not for NeuN, Dcx, NG2 proteoglycan, or GFAP. EYFP+ bDC, isolated by fluorescent activated cell sorting (FACS), expressed mRNA for the Itgax (CD11c) gene, whereas FACS anlaysis of EYFP+ bDC cultures revealed the presence of CD11c protein. Light microscopy studies revealed that EYFP+ bDC were present in the embryonic CNS when the blood–brain barrier is formed and postnatally when brain cells are amenable to culturing. In adult male mice, EYFP+ bDC distribution was prominent within regions of the CNS that 1) are subject to structural plasticity and neurogenesis, 2) receive sensory and humoral input from the external environment, and 3) lack a blood–brain barrier. Ultrastructural analysis of EYFP+ bDC in adult neurogenic niches showed their proximity to developing neurons and a morphology characteristic of immune/microglia cells. Kainic acid‐induced seizures revealed that EYFP+ bDC responded to damage of the hippocampus and displayed morphologies similar to those described for seizure‐activated EGFP+ microglia in the hippocampus of cfms (CSF‐1R) EGFP mice. Collectively, these findings suggest a new member of the dendritic cell family residing among the heterogeneous microglia population. J. Comp. Neurol. 508:687–710, 2008. © 2008 Wiley‐Liss, Inc. |
---|---|
AbstractList | The CD11c enhanced yellow fluorescent protein (EYFP) transgenic mouse was constructed to identify dendritic cells in the periphery (Lindquist et al. [2004] Nat. Immunol. 5:1243–1250). In this study, we used this mouse to characterize dendritic cells within the CNS. Our anatomic results showed discrete populations of EYFP+ brain dendritic cells (EYFP+ bDC) that colocalized with a small fraction of microglia immunoreactive for Mac‐1, Iba‐1, CD45, and F4/80 but not for NeuN, Dcx, NG2 proteoglycan, or GFAP. EYFP+ bDC, isolated by fluorescent activated cell sorting (FACS), expressed mRNA for the Itgax (CD11c) gene, whereas FACS anlaysis of EYFP+ bDC cultures revealed the presence of CD11c protein. Light microscopy studies revealed that EYFP+ bDC were present in the embryonic CNS when the blood–brain barrier is formed and postnatally when brain cells are amenable to culturing. In adult male mice, EYFP+ bDC distribution was prominent within regions of the CNS that 1) are subject to structural plasticity and neurogenesis, 2) receive sensory and humoral input from the external environment, and 3) lack a blood–brain barrier. Ultrastructural analysis of EYFP+ bDC in adult neurogenic niches showed their proximity to developing neurons and a morphology characteristic of immune/microglia cells. Kainic acid‐induced seizures revealed that EYFP+ bDC responded to damage of the hippocampus and displayed morphologies similar to those described for seizure‐activated EGFP+ microglia in the hippocampus of cfms (CSF‐1R) EGFP mice. Collectively, these findings suggest a new member of the dendritic cell family residing among the heterogeneous microglia population. J. Comp. Neurol. 508:687–710, 2008. © 2008 Wiley‐Liss, Inc. The CD11c enhanced yellow fluorescent protein (EYFP) transgenic mouse was constructed to identify dendritic cells in the periphery (Lindquist et al. [ 2004 ] Nat. Immunol. 5:1243–1250). In this study, we used this mouse to characterize dendritic cells within the CNS. Our anatomic results showed discrete populations of EYFP + brain dendritic cells (EYFP + bDC) that colocalized with a small fraction of microglia immunoreactive for Mac‐1, Iba‐1, CD45, and F4/80 but not for NeuN, Dcx, NG2 proteoglycan, or GFAP. EYFP + bDC, isolated by fluorescent activated cell sorting (FACS), expressed mRNA for the Itgax (CD11c) gene, whereas FACS anlaysis of EYFP + bDC cultures revealed the presence of CD11c protein. Light microscopy studies revealed that EYFP + bDC were present in the embryonic CNS when the blood–brain barrier is formed and postnatally when brain cells are amenable to culturing. In adult male mice, EYFP + bDC distribution was prominent within regions of the CNS that 1) are subject to structural plasticity and neurogenesis, 2) receive sensory and humoral input from the external environment, and 3) lack a blood–brain barrier. Ultrastructural analysis of EYFP + bDC in adult neurogenic niches showed their proximity to developing neurons and a morphology characteristic of immune/microglia cells. Kainic acid‐induced seizures revealed that EYFP + bDC responded to damage of the hippocampus and displayed morphologies similar to those described for seizure‐activated EGFP + microglia in the hippocampus of cfms (CSF‐1R) EGFP mice. Collectively, these findings suggest a new member of the dendritic cell family residing among the heterogeneous microglia population. J. Comp. Neurol. 508:687–710, 2008. © 2008 Wiley‐Liss, Inc. The CD11c enhanced yellow fluorescent protein (EYFP) transgenic mouse was constructed to identify dendritic cells in the periphery (Lindquist et al. [2004] Nat. Immunol. 5:1243-1250). In this study, we used this mouse to characterize dendritic cells within the CNS. Our anatomic results showed discrete populations of EYFP(+) brain dendritic cells (EYFP(+) bDC) that colocalized with a small fraction of microglia immunoreactive for Mac-1, Iba-1, CD45, and F4/80 but not for NeuN, Dcx, NG2 proteoglycan, or GFAP. EYFP(+) bDC, isolated by fluorescent activated cell sorting (FACS), expressed mRNA for the Itgax (CD11c) gene, whereas FACS anlaysis of EYFP(+) bDC cultures revealed the presence of CD11c protein. Light microscopy studies revealed that EYFP(+) bDC were present in the embryonic CNS when the blood-brain barrier is formed and postnatally when brain cells are amenable to culturing. In adult male mice, EYFP(+) bDC distribution was prominent within regions of the CNS that 1) are subject to structural plasticity and neurogenesis, 2) receive sensory and humoral input from the external environment, and 3) lack a blood-brain barrier. Ultrastructural analysis of EYFP(+) bDC in adult neurogenic niches showed their proximity to developing neurons and a morphology characteristic of immune/microglia cells. Kainic acid-induced seizures revealed that EYFP(+) bDC responded to damage of the hippocampus and displayed morphologies similar to those described for seizure-activated EGFP(+) microglia in the hippocampus of cfms (CSF-1R) EGFP mice. Collectively, these findings suggest a new member of the dendritic cell family residing among the heterogeneous microglia population. The CD11c enhanced yellow fluorescent protein (EYFP) transgenic mouse was constructed to identify dendritic cells in the periphery (Lindquist et al. [2004] Nat. Immunol. 5:1243-1250). In this study, we used this mouse to characterize dendritic cells within the CNS. Our anatomic results showed discrete populations of EYFP(+) brain dendritic cells (EYFP(+) bDC) that colocalized with a small fraction of microglia immunoreactive for Mac-1, Iba-1, CD45, and F4/80 but not for NeuN, Dcx, NG2 proteoglycan, or GFAP. EYFP(+) bDC, isolated by fluorescent activated cell sorting (FACS), expressed mRNA for the Itgax (CD11c) gene, whereas FACS anlaysis of EYFP(+) bDC cultures revealed the presence of CD11c protein. Light microscopy studies revealed that EYFP(+) bDC were present in the embryonic CNS when the blood-brain barrier is formed and postnatally when brain cells are amenable to culturing. In adult male mice, EYFP(+) bDC distribution was prominent within regions of the CNS that 1) are subject to structural plasticity and neurogenesis, 2) receive sensory and humoral input from the external environment, and 3) lack a blood-brain barrier. Ultrastructural analysis of EYFP(+) bDC in adult neurogenic niches showed their proximity to developing neurons and a morphology characteristic of immune/microglia cells. Kainic acid-induced seizures revealed that EYFP(+) bDC responded to damage of the hippocampus and displayed morphologies similar to those described for seizure-activated EGFP(+) microglia in the hippocampus of cfms (CSF-1R) EGFP mice. Collectively, these findings suggest a new member of the dendritic cell family residing among the heterogeneous microglia population.The CD11c enhanced yellow fluorescent protein (EYFP) transgenic mouse was constructed to identify dendritic cells in the periphery (Lindquist et al. [2004] Nat. Immunol. 5:1243-1250). In this study, we used this mouse to characterize dendritic cells within the CNS. Our anatomic results showed discrete populations of EYFP(+) brain dendritic cells (EYFP(+) bDC) that colocalized with a small fraction of microglia immunoreactive for Mac-1, Iba-1, CD45, and F4/80 but not for NeuN, Dcx, NG2 proteoglycan, or GFAP. EYFP(+) bDC, isolated by fluorescent activated cell sorting (FACS), expressed mRNA for the Itgax (CD11c) gene, whereas FACS anlaysis of EYFP(+) bDC cultures revealed the presence of CD11c protein. Light microscopy studies revealed that EYFP(+) bDC were present in the embryonic CNS when the blood-brain barrier is formed and postnatally when brain cells are amenable to culturing. In adult male mice, EYFP(+) bDC distribution was prominent within regions of the CNS that 1) are subject to structural plasticity and neurogenesis, 2) receive sensory and humoral input from the external environment, and 3) lack a blood-brain barrier. Ultrastructural analysis of EYFP(+) bDC in adult neurogenic niches showed their proximity to developing neurons and a morphology characteristic of immune/microglia cells. Kainic acid-induced seizures revealed that EYFP(+) bDC responded to damage of the hippocampus and displayed morphologies similar to those described for seizure-activated EGFP(+) microglia in the hippocampus of cfms (CSF-1R) EGFP mice. Collectively, these findings suggest a new member of the dendritic cell family residing among the heterogeneous microglia population. |
Author | Nussenzweig, Michel C. Bulloch, Karen Milner, Teresa A. Gottfried-Blackmore, Andres Lindquist, Randall McEwen, Bruce S. Liu, Kang Steinman, Ralph M. Gal-Toth, Judit Waters, Elizabeth M. Miller, Melinda M. Kaunzner, Ulrike W. |
Author_xml | – sequence: 1 givenname: Karen surname: Bulloch fullname: Bulloch, Karen email: bulloch@rockefeller.edu organization: Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York 10065 – sequence: 2 givenname: Melinda M. surname: Miller fullname: Miller, Melinda M. organization: Department of Neurology and Neuroscience, Weill-Cornell Medical College, New York, New York 10021 – sequence: 3 givenname: Judit surname: Gal-Toth fullname: Gal-Toth, Judit organization: Department of Neurology and Neuroscience, Weill-Cornell Medical College, New York, New York 10021 – sequence: 4 givenname: Teresa A. surname: Milner fullname: Milner, Teresa A. organization: Department of Neurology and Neuroscience, Weill-Cornell Medical College, New York, New York 10021 – sequence: 5 givenname: Andres surname: Gottfried-Blackmore fullname: Gottfried-Blackmore, Andres organization: Department of Neurology and Neuroscience, Weill-Cornell Medical College, New York, New York 10021 – sequence: 6 givenname: Elizabeth M. surname: Waters fullname: Waters, Elizabeth M. organization: Department of Neurology and Neuroscience, Weill-Cornell Medical College, New York, New York 10021 – sequence: 7 givenname: Ulrike W. surname: Kaunzner fullname: Kaunzner, Ulrike W. organization: Department of Neurology and Neuroscience, Weill-Cornell Medical College, New York, New York 10021 – sequence: 8 givenname: Kang surname: Liu fullname: Liu, Kang organization: Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York 10065 – sequence: 9 givenname: Randall surname: Lindquist fullname: Lindquist, Randall organization: Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065 – sequence: 10 givenname: Michel C. surname: Nussenzweig fullname: Nussenzweig, Michel C. organization: Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065 – sequence: 11 givenname: Ralph M. surname: Steinman fullname: Steinman, Ralph M. organization: Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York 10065 – sequence: 12 givenname: Bruce S. surname: McEwen fullname: McEwen, Bruce S. organization: Department of Neurology and Neuroscience, Weill-Cornell Medical College, New York, New York 10021 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18386786$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kcFu1DAURS1URKeFBT-AvEJCajp27DjxEoVpQRoNFQIhVpZjv1C3idPajob5AP4bw0y7QLB6C59z5XffCTrykweEXlJyTgkpl8bDeUmFaJ6gBSVSFLIR9Agt8hstpBT1MTqJ8YYQIiVrnqFj2rBG1I1YoJ_tO0rNcvXt4gqnoH38Dh6wG4Z5dF4niFhj66IJkAB7SNsp3OKpxxa8DS45gw0MQ8Rbl66dx-kaMIxd2E3embMsTDlED2dY23lIeXiLnb-ZA1g8TnME3AXt_HP0tNdDhBeHeYq-XKw-t--L9cfLD-3bdWF4WTeFraiGnllaVY0hxpSWWC47y-qK8q6rKHAiuWbQcc6MpqYqe0mg4SWvoDOcnaLX-9y7MN3PEJMa8255AZ1_OkclJC2prFkGXx3AuRvBqrvgRh126qG4DCz3gAlTjAF6ZVzSyU0-t-gGRYn6fRqVT6P-nCYbb_4yHkP_wR7St26A3f9B1W5WD0axN1xM8OPR0OFWiTr3o75uLpXcXH1al22pGPsFfxqtXw |
CitedBy_id | crossref_primary_10_1016_j_brainresbull_2017_05_013 crossref_primary_10_1016_j_jneumeth_2008_12_008 crossref_primary_10_1158_1078_0432_CCR_19_3874 crossref_primary_10_1038_s41577_020_00487_7 crossref_primary_10_2353_ajpath_2010_090909 crossref_primary_10_1002_cne_22259 crossref_primary_10_1364_BOE_7_002362 crossref_primary_10_1530_REP_10_0493 crossref_primary_10_4049_jimmunol_1401320 crossref_primary_10_1002_cyto_a_21046 crossref_primary_10_1002_glia_23034 crossref_primary_10_1002_glia_22343 crossref_primary_10_1016_j_brainresbull_2012_11_007 crossref_primary_10_3389_fimmu_2015_00661 crossref_primary_10_1016_j_bbadis_2016_07_007 crossref_primary_10_1111_ejn_15075 crossref_primary_10_3389_fimmu_2020_01185 crossref_primary_10_1002_cpmo_5 crossref_primary_10_1371_journal_pone_0056144 crossref_primary_10_1007_s00281_022_00931_x crossref_primary_10_1016_j_celrep_2020_108291 crossref_primary_10_1371_journal_pone_0036816 crossref_primary_10_1016_j_neuroscience_2012_08_039 crossref_primary_10_1016_j_bbi_2012_12_010 crossref_primary_10_12677_ACM_2023_133501 crossref_primary_10_1016_j_nbd_2009_10_006 crossref_primary_10_15252_embj_2019101997 crossref_primary_10_1128_JVI_02156_17 crossref_primary_10_1002_cne_21824 crossref_primary_10_1093_noajnl_vdab125 crossref_primary_10_1007_s11481_013_9490_4 crossref_primary_10_1002_glia_22727 crossref_primary_10_1097_NEN_0b013e3181edbc1a crossref_primary_10_1016_j_virol_2009_01_032 crossref_primary_10_3389_fphar_2024_1531288 crossref_primary_10_1016_j_neuron_2009_08_039 crossref_primary_10_1073_pnas_0911509106 crossref_primary_10_1016_j_jneuroim_2009_01_007 crossref_primary_10_3389_fnagi_2022_872134 crossref_primary_10_1016_j_nbd_2022_105654 crossref_primary_10_1038_nrneurol_2010_112 crossref_primary_10_1089_jir_2011_0052 crossref_primary_10_1016_j_bbi_2020_08_023 crossref_primary_10_1523_JNEUROSCI_3798_08_2008 crossref_primary_10_1523_JNEUROSCI_3449_11_2011 crossref_primary_10_1016_j_brainres_2010_12_064 crossref_primary_10_1016_j_bbi_2016_10_022 crossref_primary_10_1038_nn_4475 crossref_primary_10_1371_journal_pone_0199694 crossref_primary_10_1002_glia_22283 crossref_primary_10_1038_nn_4113 crossref_primary_10_1016_j_bbi_2015_07_007 crossref_primary_10_1016_j_neuint_2020_104860 crossref_primary_10_1159_000353820 crossref_primary_10_1016_j_yfrne_2014_04_004 crossref_primary_10_1016_j_jneuroim_2010_03_021 crossref_primary_10_1007_s12026_014_8530_3 crossref_primary_10_1073_pnas_1203941109 crossref_primary_10_1016_j_yfrne_2017_11_001 crossref_primary_10_1038_s41593_021_00975_6 crossref_primary_10_1007_s00418_008_0531_7 crossref_primary_10_1016_j_wneu_2012_11_059 crossref_primary_10_1016_j_neuron_2008_06_014 crossref_primary_10_1364_BOE_8_003329 crossref_primary_10_1007_s00429_013_0542_6 crossref_primary_10_1016_j_pneurobio_2017_05_002 crossref_primary_10_1002_glia_23005 crossref_primary_10_4236_nm_2012_33026 crossref_primary_10_1016_j_neuron_2008_10_013 crossref_primary_10_1189_jlb_0810472 crossref_primary_10_3390_ijms14010547 crossref_primary_10_1038_nri3265 crossref_primary_10_1016_j_neuro_2009_07_005 crossref_primary_10_1371_journal_ppat_1001326 crossref_primary_10_7554_eLife_42025 crossref_primary_10_1002_cne_22018 crossref_primary_10_1172_jci_insight_148719 crossref_primary_10_3389_fonc_2018_00656 crossref_primary_10_1007_s11481_012_9414_8 crossref_primary_10_1016_j_bbadis_2015_11_003 crossref_primary_10_1254_fpj_22157 crossref_primary_10_1073_pnas_1300392110 crossref_primary_10_1007_s11481_013_9470_8 crossref_primary_10_1016_j_pneurobio_2017_08_007 crossref_primary_10_1002_cne_23145 crossref_primary_10_1016_j_ejphar_2024_176690 crossref_primary_10_1210_me_2016_1026 crossref_primary_10_4049_jimmunol_1900468 crossref_primary_10_3389_fimmu_2022_862053 crossref_primary_10_3389_fimmu_2023_1236398 crossref_primary_10_1038_nri2971 crossref_primary_10_1111_iwj_13349 crossref_primary_10_1177_0004867418796955 crossref_primary_10_1016_j_jneuroim_2008_09_010 crossref_primary_10_1126_science_abf6805 crossref_primary_10_3389_fimmu_2015_00463 crossref_primary_10_1186_1465_9921_15_73 crossref_primary_10_1186_s12974_015_0235_6 crossref_primary_10_1158_1078_0432_CCR_12_2130 crossref_primary_10_3389_fncel_2015_00037 crossref_primary_10_1002_hipo_20719 crossref_primary_10_3389_fphys_2021_766511 crossref_primary_10_1093_brain_awx315 crossref_primary_10_1002_ana_25169 crossref_primary_10_1097_NEN_0b013e31829e8375 crossref_primary_10_1016_j_mehy_2010_02_023 crossref_primary_10_1038_icb_2012_52 crossref_primary_10_1371_journal_pone_0307577 crossref_primary_10_3389_fnhum_2016_00566 crossref_primary_10_1172_jci_insight_174753 crossref_primary_10_3389_fimmu_2015_00632 crossref_primary_10_3389_fimmu_2020_00430 crossref_primary_10_1155_2015_168574 crossref_primary_10_1002_glia_22771 crossref_primary_10_1007_s00281_016_0608_7 crossref_primary_10_1155_2014_507905 crossref_primary_10_1016_j_neurobiolaging_2010_06_007 crossref_primary_10_1038_nri_2016_144 crossref_primary_10_3389_fncel_2021_765217 crossref_primary_10_4049_jimmunol_2000340 crossref_primary_10_1089_vim_2011_0091 crossref_primary_10_1016_j_jneuroim_2013_03_013 crossref_primary_10_1177_2398212819901082 crossref_primary_10_1016_j_bbi_2009_09_010 crossref_primary_10_1016_j_ejphar_2018_10_040 crossref_primary_10_1016_j_brainres_2010_06_038 crossref_primary_10_3389_fncel_2016_00021 crossref_primary_10_1016_j_jneuroim_2014_09_016 crossref_primary_10_3389_fphar_2019_00200 crossref_primary_10_3390_cells12081207 crossref_primary_10_1007_s10571_018_0598_1 crossref_primary_10_4161_intv_22823 crossref_primary_10_1002_glia_22889 crossref_primary_10_1155_2016_1681590 crossref_primary_10_2217_clp_11_12 crossref_primary_10_1186_s13041_024_01098_2 crossref_primary_10_4161_pri_18853 crossref_primary_10_1017_S1431927612000281 crossref_primary_10_1002_jnr_23821 crossref_primary_10_1113_jphysiol_2013_256388 crossref_primary_10_1111_ejn_12341 crossref_primary_10_1007_s12035_021_02622_4 crossref_primary_10_1186_1742_2094_5_44 crossref_primary_10_1016_j_tins_2023_05_001 crossref_primary_10_3389_fnins_2019_00916 crossref_primary_10_3389_fpsyt_2023_1231750 crossref_primary_10_1371_journal_pone_0034730 crossref_primary_10_1084_jem_20142047 crossref_primary_10_1371_journal_ppat_1003395 crossref_primary_10_1111_imr_13050 crossref_primary_10_1096_fj_201802830RR crossref_primary_10_3389_fimmu_2017_00517 crossref_primary_10_1128_CMR_00118_13 crossref_primary_10_1038_mi_2008_36 crossref_primary_10_1038_nri2528 crossref_primary_10_1038_s44321_024_00046_w crossref_primary_10_1073_pnas_1710493114 crossref_primary_10_1172_JCI71544 crossref_primary_10_5411_wji_v5_i3_113 crossref_primary_10_1002_glia_22749 crossref_primary_10_1007_s00401_012_1018_0 crossref_primary_10_1080_10717544_2022_2064562 crossref_primary_10_1016_j_jneuroim_2009_03_016 crossref_primary_10_1016_j_bbi_2009_11_002 |
Cites_doi | 10.1016/j.neuroscience.2004.05.029 10.1038/nm1197 10.1034/j.1600-0463.2003.11107802.x 10.1615/CritRevImmunol.v26.i2.40 10.1006/meth.2001.1262 10.1385/NMM:7:3:197 10.1182/blood-2005-01-0154 10.1016/j.neuint.2006.04.004 10.1002/glia.20468 10.1002/eji.1830111013 10.1002/jnr.20086 10.1038/nn1629 10.1002/cne.10390 10.4049/jimmunol.176.6.3566 10.1016/S0361-9230(99)00037-4 10.1093/intimm/11.8.1265 10.1002/cne.20780 10.1038/nbt0102-87 10.1002/jnr.20354 10.1007/BF00239182 10.1089/neu.2006.23.360 10.1084/jem.166.6.1685 10.1016/0165-0270(90)90015-8 10.1016/0006-8993(81)91308-1 10.1093/jnen/65.2.124 10.1007/978-1-4757-9966-8_9 10.1016/j.mcn.2005.10.006 10.1046/j.0953-816x.2001.01683.x 10.1002/cne.901370404 10.1016/S0891-5849(01)00691-8 10.1016/S0165-5728(99)00190-3 10.1084/jem.158.2.586 10.1002/hep.21378 10.1002/eji.200323611 10.1016/j.tins.2005.12.005 10.1002/cne.10342 10.1111/j.1750-3639.2003.tb00003.x 10.1242/dev.116.1.201 10.1002/ar.1092100311 10.1016/0306-4522(85)90215-5 10.1016/S0165-0173(99)00007-7 10.1073/pnas.111152498 10.1073/pnas.0603747103 10.1084/jem.171.5.1753 10.1016/S1074-7613(02)00365-5 10.1016/j.mcn.2005.03.005 10.1002/(SICI)1096-9861(19990322)405:4<553::AID-CNE8>3.0.CO;2-6 10.1084/jem.20021598 10.3109/08830189009056621 10.1016/S0165-5728(02)00184-4 10.1128/MCB.13.6.3191 10.1177/29.4.6166661 10.1016/j.brainres.2004.04.032 10.4049/jimmunol.172.11.6587 10.1016/j.jneuroim.2005.04.017 10.1016/S0079-6123(02)35012-X 10.1016/j.virol.2004.06.027 10.1002/cne.10874 10.4049/jimmunol.166.4.2717 10.1002/(SICI)1098-1136(199609)18:1<1::AID-GLIA1>3.0.CO;2-6 10.1016/j.jneuroim.2004.08.040 10.1002/(SICI)1098-1136(199801)22:1<72::AID-GLIA7>3.0.CO;2-A 10.1016/j.jneuroim.2005.04.026 10.1073/pnas.0601992103 10.1083/jcb.97.1.253 10.1210/mend.11.11.0009 10.4049/jimmunol.173.4.2353 10.1016/j.expneurol.2005.08.010 10.1111/j.1460-9568.2007.05652.x 10.1111/j.1439-0264.2004.00573.x 10.1159/000111392 10.1084/jem.20042307 10.1073/pnas.0604681103 10.4049/jimmunol.164.9.4826 10.1002/jlb.50.1.86 10.1111/j.1365-2990.1994.tb01008.x 10.1182/blood-2002-02-0569 10.1002/bies.950100503 10.1016/S0092-8674(00)80899-5 10.4049/jimmunol.177.11.7750 10.1111/1523-1747.ep12521052 10.1111/j.1365-2990.2006.00737.x 10.1083/jcb.111.6.3177 10.1038/nature05453 10.1016/S0022-510X(01)00532-9 10.1016/S0169-328X(98)00040-0 10.1093/jnen/62.6.593 10.1046/j.1440-1681.2000.03259.x |
ContentType | Journal Article |
Copyright | Copyright © 2008 Wiley‐Liss, Inc. |
Copyright_xml | – notice: Copyright © 2008 Wiley‐Liss, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/cne.21668 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1096-9861 |
EndPage | 710 |
ExternalDocumentID | 18386786 10_1002_cne_21668 CNE21668 ark_67375_WNG_9NPRL2C2_3 |
Genre | article Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health funderid: NA16765; NS007080; HL18974; PA08259 – fundername: P.D.T. Dendritics – fundername: NINDS NIH HHS grantid: NS007080 – fundername: PHS HHS grantid: PA08259 – fundername: NHLBI NIH HHS grantid: HL18974 – fundername: PHS HHS grantid: NA16765 |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABIVO ABJNI ABOCM ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AELAQ AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWD RWI RX1 RYL SUPJJ TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XV2 YQT ZZTAW ~IA ~WT AAHQN AAMMB AAMNL AANHP ACRPL ACYXJ ADNMO AEFGJ AEYWJ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c4278-d51aef3d1558c0cc2d0d49bd37514bb51e4094a3eb443ca1c52f90e84245ebc43 |
IEDL.DBID | DR2 |
ISSN | 0021-9967 1096-9861 |
IngestDate | Fri Jul 11 04:43:43 EDT 2025 Mon Jul 21 05:42:29 EDT 2025 Tue Jul 01 01:57:20 EDT 2025 Thu Apr 24 22:58:26 EDT 2025 Wed Aug 20 07:25:05 EDT 2025 Wed Oct 30 09:52:07 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4278-d51aef3d1558c0cc2d0d49bd37514bb51e4094a3eb443ca1c52f90e84245ebc43 |
Notes | National Institutes of Health - No. NA16765; No. NS007080; No. HL18974; No. PA08259 ark:/67375/WNG-9NPRL2C2-3 ArticleID:CNE21668 P.D.T. Dendritics istex:16309D9CD786E725FBB41A2C513A3F7A6C7EA4F6 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 18386786 |
PQID | 69121973 |
PQPubID | 23479 |
PageCount | 24 |
ParticipantIDs | proquest_miscellaneous_69121973 pubmed_primary_18386786 crossref_citationtrail_10_1002_cne_21668 crossref_primary_10_1002_cne_21668 wiley_primary_10_1002_cne_21668_CNE21668 istex_primary_ark_67375_WNG_9NPRL2C2_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 10 June 2008 |
PublicationDateYYYYMMDD | 2008-06-10 |
PublicationDate_xml | – month: 06 year: 2008 text: 10 June 2008 day: 10 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Journal of comparative neurology (1911) |
PublicationTitleAlternate | J. Comp. Neurol |
PublicationYear | 2008 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Schwartz M, Butovsky O, Bruck W, Hanisch UK. 2006. Microglial phenotype: is the commitment reversible? Trends Neurosci 29: 68-74. Farrar CE, Huang CS, Clarke SG, Houser CR. 2005. Increased cell proliferation and granule cell number in the dentate gyrus of protein repair-deficient mice. J Comp Neurol 493: 524-537. Nacher J, Crespo C, McEwen BS. 2001. Double cortin expression in the adult rat telencephalon. Eur J Neurosci 14: 629-44. Bailey SL, Carpentier PA, McMahon EJ, Begolka WS, Miller SD. 2006. Innate and adaptive immune responses of the central nervous system. Crit Rev Immunol 26: 149-188. Stallcup WB, Dahlin K, Healy P. 1990. Interaction of the NG2 chondroitin sulfate proteoglycan with type VI collagen. J Cell Bio 111: 3177-3188. Sanchez-Madrid F, Thompson SS, Springer TA. 1983. Mapping of antigenic and functional epitopes on the alpha- and beta-subunits of two related mouse glycoproteins involved in cell interactions, LFA-1 and Mac 1. J Exp Med 158: 586-602. Carson MJ, Reilly CR, Sutcliffe JG, Lo D. 1998. Mature microglia resemble immature antigen-presenting cells. Glia 22: 72-85. Chang SC, Kao M, Fu M, Lin C. 2001. Modulation of NO and cytokines in microglial cells by CU/ZN-superoxide dismutase. Free Radic Biol Med 31: 1084-1089. Karman J, Chu HH, Co DO, Seroogy CM, Sandor M, Fabry Z. 2006. Dendritic cells amplify T cell-mediated immune responses in the central nervous system. J Immunol 177: 7750-7760. Fischer HG, Bielinsky AK. 1999. Antigen presentation function of brain-derived dendriform cells depends on astrocyte help. Int Immunol 11: 1265-2574. Sasmono RT, Oceandy D, Pollard JW, Tong W, Pavli P, Wainwright BJ, Ostrowski MC, Himes SR, Hume DA. 2003. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101: 1155-1163. Butovsky O, Talpalar AE, Ben-Yaakov K, Schwartz M. 2005. Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective. Mol Cell Neurosci 29: 381-393. Lindquist RL, Shakhar G, Dudziak D, Wardemann H, Eisenreich T, Dustin ML, Nussenzweig MC. 2004. Visualizing dendritic cell networks in vivo. Nat Immunol 5: 1243-1250. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 22deltadelta CT method. Methods 25: 402-408. Hume DA, Perry VH, Gordon S. 1984. The mononuclear phagocyte system of the mouse defined by immunohistochemical localisation of antigen F4/80: macrophages associated with epithelia. Anat Rec 210: 503-512. Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd. 2004. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127: 481-496. Yue X, Favot P, Dunn TL, Cassady AI, Hume DA. 1993. Expression of mRNA encoding the macrophage colony-stimulating factor receptor (c-fms) is controlled by a constitutive promoter and tissuespecific transcription elongation. Mol Cell Biol. 1993; 13: 3191-3201. Peters A, Palay SL, Webster HdeF. 1991. The fine structure of the nervous system, 3rd ed. New York: Oxford University Press. Fischer HG, Reichmann G. 2001. Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J Immunol 166: 2717-2726. Nagai T, Keiji I, Park ES. 2002. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20: 87-90. Parent JM, Lowenstein DH. 2002. Seizure-induced neurogenesis: are more new neurons good for an adult brain? Prog Brain Res 135: 121-31. Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. 2002. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 196: 1627-1638. Pashenkov M, Teleshova N, Link H. 2003. Inflammation in the central nervous system: the role for dendritic cells. Brain Pathol 13: 23-33. Agger R, Crowley MT, Witmer-Pack MD. 1990. The surface of dendritic cells in the mouse as studied with monoclonal antibodies. Int Rev Immunol 6: 89-101. Lowhagen P, Johansson BB, Nordborg C. 1994. The nasal route of cerebrospinal fluid drainage in man. A light-microscope study. Neuropathol Appl Neurobiol 20: 543-550. Mullen RJ, Buck CR, Smith AM. 1992. NeuN, a neuronal specific nuclear protein in vertebrates. Development 116: 201-211. Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, Cohen H, Kipnis J, Schwartz M. 2006b. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 9: 268-275. Liu XF, Fawcett JR, Thorne RG, DeFor TA, Frey WH 2nd. 2001. Intranasal administration of insulin-like growth factor-I bypasses the blood-brain barrier and protects against focal cerebral ischemic damage. J Neurol Sci 187: 91-97. Mercier F, Kitasako JT, Hatton GI. 2002. Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. J Comp Neurol 451: 170-88. Fischer HG, Bonifas U, Reichmann G. 2000. Phenotype and functions of brain dendritic cells emerging during chronic infection of mice with Toxoplasma gondii. J Immunol 164: 4826-4834. Cohen IR, Schwartz M. 1999. Autoimmune maintenance and neuroprotection of the central nervous system. J Neuroimmunol 100: 111-114. Gregerson DS, Sam TN, McPherson SW. 2004. The antigen-presenting activity of fresh, adult parenchymal microglia and perivascular cells from retina. J Immunol 172: 6587-6597. Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T, Noelle RJ, Becher B. 2005. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11: 328-334. Metlay JP, Witmer-Pack MD, Agger R, Crowley MT, Lawless D, Steinman RM. 1990. The distinct leukocyte integrins of mouse spleen dendritic cells as identified with new hamster monoclonal antibodies. J Exp Med 171: 1753-1771. Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW. 1999. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Rev 30: 77-105. Rosen H, Gordon S. 1987. Monoclonal antibody to the murine type 3 complement receptor inhibits adhesion of myelomonocytic cells in vitro and the inflammatory cell recruitment in vivo. J Exp Med 166: 1685-1701. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen L, Chen TM, Chin MC, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong HW, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C, Lemon TA, Liang AJ, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosqueda NF, Ng LL, Ng R, Orta GJ, Overly CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rockett HR, Rowland SA, Royall JJ, Ruiz MJ, Sarno NR, Schaffnit K, Shapovalova NV, Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Smith BI, Sodt AJ, Stewart NN, Stumpf KR, Sunkin SM, Sutram M, Tam A, Teemer CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock RM, Wohnoutka PE, Wolkey CK, Wong VY, Wood M, Yaylaoglu MB, Young RC, Youngstrom BL, Yuan XF, Zhang B, Zwingman TA, Jones AR. 2007. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445: 168-176. Iribarren P, Cui YH, Le Y, Wang JM. 2002. The role of dendritic cells in neurodegenerative diseases. Arch Immunol Ther Exp 50: 187-96. Steinman R, Inaba K. 1989. Immunogenicity: role of dendritic cells. Bioessays 10: 145-152. Encinas JM, Vaahtokari A, Enikolopov G. 2006. Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci U S A 103: 8233-8238. Lothman EW, Collins RC. 1981. Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates. Brain Res 218: 299-318. Santambrogio L, Belyanskaya SL, Fischer FR, Cipriani B, Brosnan CF, Ricciardi-Castagnoli P, Stern LJ, Strominger JL, Riese R. 2001. Developmental plasticity of CNS microglia. Proc Natl Acad Sci U S A 98: 6295-6300. Ziv Y, Avidan H, Pluchino S, Martino G, Schwartz M. 2006a. Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc Natl Acad Sci U S A 103: 13174-13179. Karman J, Ling C, Sandor M, Fabry Z. 2004. Initiation of immune responses in brain is promoted by local dendritic cells. J Immunol 173: 2353-2361. El-Nefiawy N, Abdel-Hakim K, Kanayama N, Terao T. 2005. Dendritic cell differentiation and maturation in embryonic rat liver: immunohistochemistry and electron microscopy with reference to dendritic cell contacts. Anat Histol Embryol 34: 72-79. Mikami Y, Okano H, Sakaguchi M, Nakamura M, Shimazaki T, Okano HJ, Kawakami Y, Toyama Y, Toda M. 2004. Implantation of dendritic cells in injured adult spinal cord results in activation of endogenous neural stem/progenitor cells leading to de novo neurogenesis and functional recovery. J Neurosci Res 76: 453-465. McClintock MK, Jacob S, Zelano B, Hayreh DJ. 2001. Pheromones and vasanas: the functions of social chemosignals. Nebr Symp Motiv 47: 75-112. Jouandet ML, Hartenstein V. 1983. Basal telencephalic origins of the anterior commissure of the rat. Exp Brain Res 50: 183-192. Hume DA, Perry VH, Gordon S. 1983. Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform lay 2002; 17 2001; 187 2006b; 9 1983; 158 2004; 127 2005; 493 2002; 50 2006; 32 2002; 196 1999; 49 1991; 50 1983; 97 2003; 13 2006; 176 2004; 5 1983; 50 1971 2004; 327 2005; 29 2001; 47 2003; 111 2006; 177 1999; 405 1994; 20 2004; 76 1997; 11 2001 2006; 23 1980; 75 2000 2006; 65 2004; 173 2004; 172 2006; 26 1992; 116 1990; 171 1999; 11 2006; 29 2000; 164 1998; 92 1969; 137 2001; 14 2004; 1015 1985; 15 2005; 34 2007; 26 2005; 79 1998; 57 2001; 98 2001; 166 2007; 445 1996; 18 1990; 33 2000; 27 2005; 196 1997; 417 1992; 140 1987; 166 2002; 451 2002; 135 2002; 453 1997 2006 1981; 29 1999; 100 1991 2006a; 103 2007; 55 2001; 25 1998; 22 2003; 33 1993; 13 2006b; 31 2004; 157 1989; 10 2005; 165 2002; 20 2005; 166 1984; 210 2005; 201 2006; 49 1984; 5 2002; 129 2005; 7 1999; 30 1981; 218 2003; 467 2006; 107 2003; 62 2003; 101 1990; 111 2005; 11 1990; 6 2001; 31 2006; 103 1981; 11 e_1_2_6_53_1 e_1_2_6_95_1 e_1_2_6_30_1 e_1_2_6_91_1 e_1_2_6_19_1 Muramoto T (e_1_2_6_61_1) 1992; 140 McClintock MK (e_1_2_6_54_1) 2001; 47 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_57_1 e_1_2_6_99_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_96_1 e_1_2_6_31_1 e_1_2_6_50_1 Peters A (e_1_2_6_72_1) 1991 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_65_1 Stichel CC (e_1_2_6_92_1) 2006 e_1_2_6_80_1 Atlas Navigator (e_1_2_6_4_1) 2000 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_46_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 Franklin KB (e_1_2_6_27_1) 1997 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 Paxinos G (e_1_2_6_69_1) 2001 e_1_2_6_100_1 e_1_2_6_7_1 Rasband WS (e_1_2_6_76_1) 1997 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_63_1 Iribarren P (e_1_2_6_38_1) 2002; 50 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_25_1 e_1_2_6_48_1 Pile‐Spellman JM (e_1_2_6_73_1) 1984; 5 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 Sidman RL (e_1_2_6_86_1) 1971 |
References_xml | – reference: Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, Wu S, Vuthoori S, Ko K, Zavala F, Pamer EG, Littman DR, Lang RA. 2002. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17: 211-220. – reference: Perry VH, Hume DA, Gordon S. 1985. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15: 313-326. – reference: Reichmann G, Schroeter M, Jander S, Fischer HG. 2002. Dendritic cells and dendritic-like microglia in focal cortical ischemia of the mouse brain. J Neuroimmunol 129: 125-132. – reference: Becher B, Antel JP. 1996. Comparison of phenotypic and functional properties of immediately ex vivo and cultured human adult microglia. Glia 18: 1-10. – reference: Agger R, Crowley MT, Witmer-Pack MD. 1990. The surface of dendritic cells in the mouse as studied with monoclonal antibodies. Int Rev Immunol 6: 89-101. – reference: McMahon EJ, Bailey SL, Miller SD. 2006. CNS dendritic cells: critical participants in CNS inflammation? Neurochem Int 49: 195-203. – reference: Stichel CC, Luebbert H. 2006. Inflammatory processes in the aging mouse brain: participation of dendritic cells and T-cells. Neurobiol Aging (in press). – reference: Yue X, Favot P, Dunn TL, Cassady AI, Hume DA. 1993. Expression of mRNA encoding the macrophage colony-stimulating factor receptor (c-fms) is controlled by a constitutive promoter and tissuespecific transcription elongation. Mol Cell Biol. 1993; 13: 3191-3201. – reference: Encinas JM, Vaahtokari A, Enikolopov G. 2006. Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci U S A 103: 8233-8238. – reference: Metlay JP, Witmer-Pack MD, Agger R, Crowley MT, Lawless D, Steinman RM. 1990. The distinct leukocyte integrins of mouse spleen dendritic cells as identified with new hamster monoclonal antibodies. J Exp Med 171: 1753-1771. – reference: Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. 2002. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 196: 1627-1638. – reference: Iribarren P, Cui YH, Le Y, Wang JM. 2002. The role of dendritic cells in neurodegenerative diseases. Arch Immunol Ther Exp 50: 187-96. – reference: Franklin KB, Paxinos G. 1997. The mouse brain in stereotaxic coordinates. San Diego: Academic Press. – reference: Hsu SM, Raine L, Fanger H. 1981. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29: 577-580. – reference: Lind D, Franken S, Kappler J, Jankowski J, Schilling K. 2005. Characterization of the neuronal marker NeuN as a multiply phosphorylated antigen with discrete subcellular localization. J Neurosci Res 79: 295-302. – reference: Fischer HG, Reichmann G. 2001. Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J Immunol 166: 2717-2726. – reference: Karman J, Ling C, Sandor M, Fabry Z. 2004. Initiation of immune responses in brain is promoted by local dendritic cells. J Immunol 173: 2353-2361. – reference: Gould E, Cameron HA. 1996. Regulation of neuronal birth, migration and death in the rat dentate gyrus. Dev Neurosci 18: 22-35. – reference: Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T, Noelle RJ, Becher B. 2005. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11: 328-334. – reference: Mullen RJ, Buck CR, Smith AM. 1992. NeuN, a neuronal specific nuclear protein in vertebrates. Development 116: 201-211. – reference: Kipnis J, Schwartz M. 2005. Controlled autoimmunity in CNS maintenance and repair: naturally occurring CD4+CD25+ regulatory T-cells at the crossroads of health and disease. Neuromol Med 7: 197-206. – reference: Austyn JM, Gordon S. 1981. F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol 11: 805-815. – reference: Rosicarelli B, Serafini B, Sbriccoli M, Lu M, Cardone F, Pocchiari M, Aloisi F. 2005. Migration of dendritic cells into the brain in a mouse model of prion disease. J Neuroimmunol 165: 114-120. – reference: Newman TA, Galea I, van Rooijen N, Perry VH. 2005. Blood-derived dendritic cells in an acute brain injury. J Neuroimmunol 166: 167-172. – reference: Trifilo MJ, Lane TE. 2004. The CC chemokine ligand 3 regulates CD11c+CD11b+CD8alpha- dendritic cell maturation and activation following viral infection of the central nervous system: implications for a role in T cell activation. Virology 327: 8-15. – reference: Brown JP, Couillard-Després S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG. 2003. Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467: 1-10. – reference: Lothman EW, Collins RC. 1981. Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates. Brain Res 218: 299-318. – reference: Altman J. 1969. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137: 433-157. – reference: Fischer HG, Bielinsky AK. 1999. Antigen presentation function of brain-derived dendriform cells depends on astrocyte help. Int Immunol 11: 1265-2574. – reference: Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 22deltadelta CT method. Methods 25: 402-408. – reference: Ramirez-Castillejo C, Nacher J, Molowny A, Ponsoda X, Lopez-Garcia C. 2002. PSA-NCAM immunocytochemistry in the cerebral cortex and other telencephalic areas of the lizard Podarcis hispanica: differential expression during medial cortex neuronal regeneration. J Comp Neurol 453: 145-156. – reference: Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW. 1999. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Rev 30: 77-105. – reference: Fischer HG, Bonifas U, Reichmann G. 2000. Phenotype and functions of brain dendritic cells emerging during chronic infection of mice with Toxoplasma gondii. J Immunol 164: 4826-4834. – reference: Rosen H, Gordon S. 1987. Monoclonal antibody to the murine type 3 complement receptor inhibits adhesion of myelomonocytic cells in vitro and the inflammatory cell recruitment in vivo. J Exp Med 166: 1685-1701. – reference: Carson MJ, Reilly CR, Sutcliffe JG, Lo D. 1998. Mature microglia resemble immature antigen-presenting cells. Glia 22: 72-85. – reference: Nair MP, Schwartz SA, Mahajan SD, Tsiao C, Chawda RP, Whitney R, Don Sykes BB, Hewitt R. 2004. Drug abuse and neuropathogenesis of HIV infection: role of DC-SIGN and IDO. J Neuroimmunol 157: 56-60. – reference: Gleeson JG, Allen KM, Fox JW, Lamperti ED, Berkovic S, Scheffer I, Cooper EC, Dobyns WB, Minnerath SR, Ross ME, Walsh CA. 1998. Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92: 63-72. – reference: Steinman RM, Witmer MD, Nussenzweig MC, Chen LL, Schlesinger S, Cohn ZA. 1980. Dendritic cells of the mouse: identification and characterization. J Invest Dermatol 75: 14-16. – reference: Karman J, Chu HH, Co DO, Seroogy CM, Sandor M, Fabry Z. 2006. Dendritic cells amplify T cell-mediated immune responses in the central nervous system. J Immunol 177: 7750-7760. – reference: Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, Cohen H, Kipnis J, Schwartz M. 2006b. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 9: 268-275. – reference: Butovsky O, Kunis G, Koronyo-Hamaoui M, Schwartz M. 2007. Selective ablation of bone marrow-derived dendritic cells increases amyloid plaques in a mouse Alzheimer's disease model. Eur J Neurosci 26: 413-416. – reference: Butovsky O, Koronyo-Hamaoui M, Kunis G, Ophir E, Landa G, Cohen H, Schwartz M. 2006a. Glatiramer acetate fights against Alzheimer's disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc Natl Acad Sci U S A 103: 11784-11789. – reference: Pashenkov M, Teleshova N, Link H. 2003. Inflammation in the central nervous system: the role for dendritic cells. Brain Pathol 13: 23-33. – reference: Chang SC, Kao M, Fu M, Lin C. 2001. Modulation of NO and cytokines in microglial cells by CU/ZN-superoxide dismutase. Free Radic Biol Med 31: 1084-1089. – reference: Curtin JF, King GD, Barcia C, Liu C, Hubert FX, Guillonneau C, Josien R, Anegon I, Lowenstein PR, Castro MG. 2006. Fms-like tyrosine kinase 3 ligand recruits plasmacytoid dendritic cells to the brain. J Immunol 176: 3566-3577. – reference: Sidman RL. 1971. Atlas of the mouse brain and spinal cord. Cambridge, MA: Harvard University Press. – reference: Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M. 2006b. Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 31: 149-160. – reference: Pile-Spellman JM, McKusick KA, Strauss HW, Cooney J, Taveras JM. 1984. Experimental in vivo imaging of the cranial perineural lymphatic pathway. AJNR Am J Neuroradiol 5: 539-545. – reference: Bailey SL, Carpentier PA, McMahon EJ, Begolka WS, Miller SD. 2006. Innate and adaptive immune responses of the central nervous system. Crit Rev Immunol 26: 149-188. – reference: Brocker t. Riedinger M. Karjalainen K. 1997 Driving gene expression specifically in dendritic cells. Adv Exp Med Biol 417: 55-57. – reference: Jouandet ML, Hartenstein V. 1983. Basal telencephalic origins of the anterior commissure of the rat. Exp Brain Res 50: 183-192. – reference: Mikami Y, Okano H, Sakaguchi M, Nakamura M, Shimazaki T, Okano HJ, Kawakami Y, Toyama Y, Toda M. 2004. Implantation of dendritic cells in injured adult spinal cord results in activation of endogenous neural stem/progenitor cells leading to de novo neurogenesis and functional recovery. J Neurosci Res 76: 453-465. – reference: Cohen PE, Hardy MP, Pollard JW. 1997. Colony-stimulating factor-1 plays a major role in the development of reproductive function in male mice. Mol Endocrinol 11: 1636-1650. – reference: Pachter JS, de Vries HE, Fabry Z. 2003. The blood-brain barrier and its role in immune privilege in the central nervous system. J Neuropathol Exp Neurol 62: 593-604. – reference: Rasband WS. 1997-2004. Image J. Bethesda, MD: National Institutes of Health. – reference: Santambrogio L, Belyanskaya SL, Fischer FR, Cipriani B, Brosnan CF, Ricciardi-Castagnoli P, Stern LJ, Strominger JL, Riese R. 2001. Developmental plasticity of CNS microglia. Proc Natl Acad Sci U S A 98: 6295-6300. – reference: Steinman R, Inaba K. 1989. Immunogenicity: role of dendritic cells. Bioessays 10: 145-152. – reference: Gregerson DS, Sam TN, McPherson SW. 2004. The antigen-presenting activity of fresh, adult parenchymal microglia and perivascular cells from retina. J Immunol 172: 6587-6597. – reference: Butovsky O, Talpalar AE, Ben-Yaakov K, Schwartz M. 2005. Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective. Mol Cell Neurosci 29: 381-393. – reference: Paxinos G, Franklin KBJ. 2001. The mouse brain in sterotaxic coordinates. San Diego: Academic Press. – reference: Peters A, Palay SL, Webster HdeF. 1991. The fine structure of the nervous system, 3rd ed. New York: Oxford University Press. – reference: Lin HH, Faunce DE, Stacey M, Terajewicz A, Nakamura T, Zhang-Hoover J, Kerley M, Mucenski ML, Gordon S, Stein-Streilein J. 2005. The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance. J Exp Med 201: 1615-1625. – reference: Steinman RM. 2003. Some interfaces of dendritic cell biology. APMIS 111: 675-697. – reference: Schwartz M, Butovsky O, Bruck W, Hanisch UK. 2006. Microglial phenotype: is the commitment reversible? Trends Neurosci 29: 68-74. – reference: Nacher J, Crespo C, McEwen BS. 2001. Double cortin expression in the adult rat telencephalon. Eur J Neurosci 14: 629-44. – reference: Hume DA, Perry VH, Gordon S. 1984. The mononuclear phagocyte system of the mouse defined by immunohistochemical localisation of antigen F4/80: macrophages associated with epithelia. Anat Rec 210: 503-512. – reference: Jessberger S, Romer B, Babu H, Kempermann G. 2005. Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells. Exp Neurol 196: 342-351. – reference: Mercier F, Kitasako JT, Hatton GI. 2002. Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. J Comp Neurol 451: 170-88. – reference: Chan J, Aoki C, Pickel VM. 1990. Optimization of differential immunogold-silver and peroxidase labeling with maintenance of ultrastructure in brain sections before plastic embedding. J Neurosci Methods 33: 113-127. – reference: Lowhagen P, Johansson BB, Nordborg C. 1994. The nasal route of cerebrospinal fluid drainage in man. A light-microscope study. Neuropathol Appl Neurobiol 20: 543-550. – reference: Hatterer E, Davoust N, Didier-Bazes M, Vuaillat C, Malcus C, Belin MF, Nataf S. 2006. How to drain without lymphatics? Dendritic cells migrate from the cerebrospinal fluid to the B-cell follicles of cervical lymph nodes. Blood 107: 806-812. – reference: Parent JM, Lowenstein DH. 2002. Seizure-induced neurogenesis: are more new neurons good for an adult brain? Prog Brain Res 135: 121-31. – reference: Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S. 1998. Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57: 1-9. – reference: Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd. 2004. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127: 481-496. – reference: Muramoto T, Kitamoto T, Tateishi J, Goto I. 1992. The sequential development of abnormal prion protein accumulation in mice with Creutzfeldt-Jakob disease. Am J Pathol 140: 1411-1420. – reference: Liu XF, Fawcett JR, Thorne RG, DeFor TA, Frey WH 2nd. 2001. Intranasal administration of insulin-like growth factor-I bypasses the blood-brain barrier and protects against focal cerebral ischemic damage. J Neurol Sci 187: 91-97. – reference: Nagai T, Keiji I, Park ES. 2002. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20: 87-90. – reference: Ziv Y, Avidan H, Pluchino S, Martino G, Schwartz M. 2006a. Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc Natl Acad Sci U S A 103: 13174-13179. – reference: McClintock MK, Jacob S, Zelano B, Hayreh DJ. 2001. Pheromones and vasanas: the functions of social chemosignals. Nebr Symp Motiv 47: 75-112. – reference: Suter T, Biollaz G, Gatto D, Bernasconi L, Herren T, Reith W, Fontana A. 2003. The brain as an immune privileged site: dendritic cells of the central nervous system inhibit T cell activation. Eur J Immunol 33: 2998-3006. – reference: Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen L, Chen TM, Chin MC, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong HW, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C, Lemon TA, Liang AJ, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosqueda NF, Ng LL, Ng R, Orta GJ, Overly CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rockett HR, Rowland SA, Royall JJ, Ruiz MJ, Sarno NR, Schaffnit K, Shapovalova NV, Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Smith BI, Sodt AJ, Stewart NN, Stumpf KR, Sunkin SM, Sutram M, Tam A, Teemer CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock RM, Wohnoutka PE, Wolkey CK, Wong VY, Wood M, Yaylaoglu MB, Young RC, Youngstrom BL, Yuan XF, Zhang B, Zwingman TA, Jones AR. 2007. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445: 168-176. – reference: Cohen IR, Schwartz M. 1999. Autoimmune maintenance and neuroprotection of the central nervous system. J Neuroimmunol 100: 111-114. – reference: McMenamin PG. 1999. Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations. J Comp Neurol 405: 553-62. – reference: Farrar CE, Huang CS, Clarke SG, Houser CR. 2005. Increased cell proliferation and granule cell number in the dentate gyrus of protein repair-deficient mice. J Comp Neurol 493: 524-537. – reference: Hassan NF, Rifat S, Campbell DE, McCawley LJ, Douglas SD. 1991. Isolation and flow cytometric characterization of newborn mouse brain-derived microglia maintained in vitro. J Leukoc Biol 50: 86-92. – reference: El-Nefiawy N, Abdel-Hakim K, Kanayama N, Terao T. 2005. Dendritic cell differentiation and maturation in embryonic rat liver: immunohistochemistry and electron microscopy with reference to dendritic cell contacts. Anat Histol Embryol 34: 72-79. – reference: Atlas Navigator, YTIG, Inc. 2000. Atlas from Comparative Cytoarchitectonic Atlas of the 129/Sv and C57BL/6 Mouse Brains. New York: Elsevier. – reference: Hume DA, Perry VH, Gordon S. 1983. Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. J Cell Biol 97: 253-257. – reference: Sasmono RT, Oceandy D, Pollard JW, Tong W, Pavli P, Wainwright BJ, Ostrowski MC, Himes SR, Hume DA. 2003. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101: 1155-1163. – reference: Sanchez-Madrid F, Thompson SS, Springer TA. 1983. Mapping of antigenic and functional epitopes on the alpha- and beta-subunits of two related mouse glycoproteins involved in cell interactions, LFA-1 and Mac 1. J Exp Med 158: 586-602. – reference: Walter BA, Valera VA, Takahashi S, Ushiki T. 2006. The olfactory route for cerebrospinal fluid drainage into the peripheral lymphatic system. Neuropathol Appl Neurobiol 32: 388-396. – reference: Ganong WF. 2000. Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clin Exp Pharmacol Physiol 27: 422-427. – reference: Stallcup WB, Dahlin K, Healy P. 1990. Interaction of the NG2 chondroitin sulfate proteoglycan with type VI collagen. J Cell Bio 111: 3177-3188. – reference: Unal-Cevik I, Kilinç M, Gürsoy-Ozdemir Y, Gurer G, Dalkara T. 2004. Loss of NeuN immunoreactivity after cerebral ischemia does not indicate neuronal cell loss: a cautionary note. Brain Res 1015: 169-174. – reference: Sierra A, Gottfried-Blackmore AC, McEwen BS, Bulloch K. 2007. Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 55: 412-424. – reference: Schwartz M, Yoles E. 2006. Immune-based therapy for spinal cord repair: autologous macrophages and beyond. J Neurotrauma 23: 360-370. – reference: Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Capello E, Mancardi GL, Aloisi F. 2006. Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells. J Neuropathol Exp Neurol 65: 124-141. – reference: Peretto P, Merighi A, Fasolo A, Bonfanti L. 1999. The subependymal layer in rodents: a site of structural plasticity and cell migration in the adult mammalian brain. Brain Res Bull 49: 221-243. – reference: Lindquist RL, Shakhar G, Dudziak D, Wardemann H, Eisenreich T, Dustin ML, Nussenzweig MC. 2004. Visualizing dendritic cell networks in vivo. Nat Immunol 5: 1243-1250. – volume: 75 start-page: 14 year: 1980 end-page: 16 article-title: Dendritic cells of the mouse: identification and characterization publication-title: J Invest Dermatol – volume: 20 start-page: 87 year: 2002 end-page: 90 article-title: A variant of yellow fluorescent protein with fast and efficient maturation for cell‐biological applications publication-title: Nat Biotechnol – volume: 137 start-page: 433 year: 1969 end-page: 157 article-title: Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb publication-title: J Comp Neurol – volume: 17 start-page: 211 year: 2002 end-page: 220 article-title: In vivo depletion of CD11c dendritic cells abrogates priming of CD8 T cells by exogenous cell‐associated antigens publication-title: Immunity – volume: 405 start-page: 553 year: 1999 end-page: 62 article-title: Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations publication-title: J Comp Neurol – volume: 111 start-page: 675 year: 2003 end-page: 697 article-title: Some interfaces of dendritic cell biology publication-title: APMIS – volume: 451 start-page: 170 year: 2002 end-page: 88 article-title: Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network publication-title: J Comp Neurol – volume: 65 start-page: 124 year: 2006 end-page: 141 article-title: Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells publication-title: J Neuropathol Exp Neurol – volume: 50 start-page: 187 year: 2002 end-page: 96 article-title: The role of dendritic cells in neurodegenerative diseases publication-title: Arch Immunol Ther Exp – volume: 129 start-page: 125 year: 2002 end-page: 132 article-title: Dendritic cells and dendritic‐like microglia in focal cortical ischemia of the mouse brain publication-title: J Neuroimmunol – volume: 10 start-page: 145 year: 1989 end-page: 152 article-title: Immunogenicity: role of dendritic cells publication-title: Bioessays – volume: 173 start-page: 2353 year: 2004 end-page: 2361 article-title: Initiation of immune responses in brain is promoted by local dendritic cells publication-title: J Immunol – volume: 47 start-page: 75 year: 2001 end-page: 112 article-title: Pheromones and vasanas: the functions of social chemosignals publication-title: Nebr Symp Motiv – volume: 13 start-page: 23 year: 2003 end-page: 33 article-title: Inflammation in the central nervous system: the role for dendritic cells publication-title: Brain Pathol – volume: 164 start-page: 4826 year: 2000 end-page: 4834 article-title: Phenotype and functions of brain dendritic cells emerging during chronic infection of mice with publication-title: J Immunol – volume: 493 start-page: 524 year: 2005 end-page: 537 article-title: Increased cell proliferation and granule cell number in the dentate gyrus of protein repair‐deficient mice publication-title: J Comp Neurol – volume: 11 start-page: 805 year: 1981 end-page: 815 article-title: F4/80, a monoclonal antibody directed specifically against the mouse macrophage publication-title: Eur J Immunol – year: 2006 article-title: Inflammatory processes in the aging mouse brain: participation of dendritic cells and T‐cells publication-title: Neurobiol Aging – volume: 49 start-page: 195 year: 2006 end-page: 203 article-title: CNS dendritic cells: critical participants in CNS inflammation? publication-title: Neurochem Int – volume: 445 start-page: 168 year: 2007 end-page: 176 article-title: Genome‐wide atlas of gene expression in the adult mouse brain publication-title: Nature – volume: 158 start-page: 586 year: 1983 end-page: 602 article-title: Mapping of antigenic and functional epitopes on the alpha‐ and beta‐subunits of two related mouse glycoproteins involved in cell interactions, LFA‐1 and Mac 1 publication-title: J Exp Med – volume: 7 start-page: 197 year: 2005 end-page: 206 article-title: Controlled autoimmunity in CNS maintenance and repair: naturally occurring CD4 CD25 regulatory T‐cells at the crossroads of health and disease publication-title: Neuromol Med – volume: 165 start-page: 114 year: 2005 end-page: 120 article-title: Migration of dendritic cells into the brain in a mouse model of prion disease publication-title: J Neuroimmunol – volume: 103 start-page: 13174 year: 2006a end-page: 13179 article-title: Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury publication-title: Proc Natl Acad Sci U S A – volume: 111 start-page: 3177 year: 1990 end-page: 3188 article-title: Interaction of the NG2 chondroitin sulfate proteoglycan with type VI collagen publication-title: J Cell Bio – volume: 50 start-page: 183 year: 1983 end-page: 192 article-title: Basal telencephalic origins of the anterior commissure of the rat publication-title: Exp Brain Res – volume: 210 start-page: 503 year: 1984 end-page: 512 article-title: The mononuclear phagocyte system of the mouse defined by immunohistochemical localisation of antigen F4/80: macrophages associated with epithelia publication-title: Anat Rec – volume: 55 start-page: 412 year: 2007 end-page: 424 article-title: Microglia derived from aging mice exhibit an altered inflammatory profile publication-title: Glia – volume: 100 start-page: 111 year: 1999 end-page: 114 article-title: Autoimmune maintenance and neuroprotection of the central nervous system publication-title: J Neuroimmunol – volume: 57 start-page: 1 year: 1998 end-page: 9 article-title: Microglia‐specific localisation of a novel calcium binding protein, Iba1 publication-title: Brain Res Mol Brain Res – volume: 172 start-page: 6587 year: 2004 end-page: 6597 article-title: The antigen‐presenting activity of fresh, adult parenchymal microglia and perivascular cells from retina publication-title: J Immunol – volume: 29 start-page: 577 year: 1981 end-page: 580 article-title: Use of avidin‐biotin‐peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures publication-title: J Histochem Cytochem – volume: 22 start-page: 72 year: 1998 end-page: 85 article-title: Mature microglia resemble immature antigen‐presenting cells publication-title: Glia – volume: 33 start-page: 113 year: 1990 end-page: 127 article-title: Optimization of differential immunogold‐silver and peroxidase labeling with maintenance of ultrastructure in brain sections before plastic embedding publication-title: J Neurosci Methods – volume: 11 start-page: 1265 year: 1999 end-page: 2574 article-title: Antigen presentation function of brain‐derived dendriform cells depends on astrocyte help publication-title: Int Immunol – volume: 14 start-page: 629 year: 2001 end-page: 44 article-title: Double cortin expression in the adult rat telencephalon publication-title: Eur J Neurosci – volume: 31 start-page: 1084 year: 2001 end-page: 1089 article-title: Modulation of NO and cytokines in microglial cells by CU/ZN‐superoxide dismutase publication-title: Free Radic Biol Med – volume: 140 start-page: 1411 year: 1992 end-page: 1420 article-title: The sequential development of abnormal prion protein accumulation in mice with Creutzfeldt‐Jakob disease publication-title: Am J Pathol – volume: 135 start-page: 121 year: 2002 end-page: 31 article-title: Seizure‐induced neurogenesis: are more new neurons good for an adult brain? publication-title: Prog Brain Res – volume: 171 start-page: 1753 year: 1990 end-page: 1771 article-title: The distinct leukocyte integrins of mouse spleen dendritic cells as identified with new hamster monoclonal antibodies publication-title: J Exp Med – volume: 26 start-page: 413 year: 2007 end-page: 416 article-title: Selective ablation of bone marrow‐derived dendritic cells increases amyloid plaques in a mouse Alzheimer's disease model publication-title: Eur J Neurosci – volume: 49 start-page: 221 year: 1999 end-page: 243 article-title: The subependymal layer in rodents: a site of structural plasticity and cell migration in the adult mammalian brain publication-title: Brain Res Bull – volume: 27 start-page: 422 year: 2000 end-page: 427 article-title: Circumventricular organs: definition and role in the regulation of endocrine and autonomic function publication-title: Clin Exp Pharmacol Physiol – volume: 5 start-page: 1243 year: 2004 end-page: 1250 article-title: Visualizing dendritic cell networks in vivo publication-title: Nat Immunol – volume: 15 start-page: 313 year: 1985 end-page: 326 article-title: Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain publication-title: Neuroscience – volume: 23 start-page: 360 year: 2006 end-page: 370 article-title: Immune‐based therapy for spinal cord repair: autologous macrophages and beyond publication-title: J Neurotrauma – volume: 327 start-page: 8 year: 2004 end-page: 15 article-title: The CC chemokine ligand 3 regulates CD11c CD11b CD8alpha‐ dendritic cell maturation and activation following viral infection of the central nervous system: implications for a role in T cell activation publication-title: Virology – volume: 453 start-page: 145 year: 2002 end-page: 156 article-title: PSA‐NCAM immunocytochemistry in the cerebral cortex and other telencephalic areas of the lizard Podarcis hispanica: differential expression during medial cortex neuronal regeneration publication-title: J Comp Neurol – volume: 177 start-page: 7750 year: 2006 end-page: 7760 article-title: Dendritic cells amplify T cell‐mediated immune responses in the central nervous system publication-title: J Immunol – volume: 98 start-page: 6295 year: 2001 end-page: 6300 article-title: Developmental plasticity of CNS microglia publication-title: Proc Natl Acad Sci U S A – volume: 11 start-page: 1636 year: 1997 end-page: 1650 article-title: Colony‐stimulating factor‐1 plays a major role in the development of reproductive function in male mice publication-title: Mol Endocrinol – volume: 116 start-page: 201 year: 1992 end-page: 211 article-title: NeuN, a neuronal specific nuclear protein in vertebrates publication-title: Development – volume: 18 start-page: 22 year: 1996 end-page: 35 article-title: Regulation of neuronal birth, migration and death in the rat dentate gyrus publication-title: Dev Neurosci – volume: 196 start-page: 342 year: 2005 end-page: 351 article-title: Seizures induce proliferation and dispersion of doublecortin‐positive hippocampal progenitor cells publication-title: Exp Neurol – volume: 5 start-page: 539 year: 1984 end-page: 545 article-title: Experimental in vivo imaging of the cranial perineural lymphatic pathway publication-title: AJNR Am J Neuroradiol – volume: 107 start-page: 806 year: 2006 end-page: 812 article-title: How to drain without lymphatics? Dendritic cells migrate from the cerebrospinal fluid to the B‐cell follicles of cervical lymph nodes publication-title: Blood – year: 2001 – volume: 29 start-page: 68 year: 2006 end-page: 74 article-title: Microglial phenotype: is the commitment reversible? publication-title: Trends Neurosci – volume: 32 start-page: 388 year: 2006 end-page: 396 article-title: The olfactory route for cerebrospinal fluid drainage into the peripheral lymphatic system publication-title: Neuropathol Appl Neurobiol – year: 1971 – volume: 18 start-page: 1 year: 1996 end-page: 10 article-title: Comparison of phenotypic and functional properties of immediately ex vivo and cultured human adult microglia publication-title: Glia – volume: 79 start-page: 295 year: 2005 end-page: 302 article-title: Characterization of the neuronal marker NeuN as a multiply phosphorylated antigen with discrete subcellular localization publication-title: J Neurosci Res – volume: 30 start-page: 77 year: 1999 end-page: 105 article-title: Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function publication-title: Brain Res Rev – volume: 467 start-page: 1 year: 2003 end-page: 10 article-title: Transient expression of doublecortin during adult neurogenesis publication-title: J Comp Neurol – volume: 11 start-page: 328 year: 2005 end-page: 334 article-title: Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis publication-title: Nat Med – volume: 166 start-page: 1685 year: 1987 end-page: 1701 article-title: Monoclonal antibody to the murine type 3 complement receptor inhibits adhesion of myelomonocytic cells in vitro and the inflammatory cell recruitment in vivo publication-title: J Exp Med – year: 1997 – volume: 29 start-page: 381 year: 2005 end-page: 393 article-title: Activation of microglia by aggregated beta‐amyloid or lipopolysaccharide impairs MHC‐II expression and renders them cytotoxic whereas IFN‐gamma and IL‐4 render them protective publication-title: Mol Cell Neurosci – volume: 103 start-page: 8233 year: 2006 end-page: 8238 article-title: Fluoxetine targets early progenitor cells in the adult brain publication-title: Proc Natl Acad Sci U S A – volume: 1015 start-page: 169 year: 2004 end-page: 174 article-title: Loss of NeuN immunoreactivity after cerebral ischemia does not indicate neuronal cell loss: a cautionary note publication-title: Brain Res – volume: 127 start-page: 481 year: 2004 end-page: 496 article-title: Delivery of insulin‐like growth factor‐I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration publication-title: Neuroscience – volume: 6 start-page: 89 year: 1990 end-page: 101 article-title: The surface of dendritic cells in the mouse as studied with monoclonal antibodies publication-title: Int Rev Immunol – volume: 26 start-page: 149 year: 2006 end-page: 188 article-title: Innate and adaptive immune responses of the central nervous system publication-title: Crit Rev Immunol – volume: 176 start-page: 3566 year: 2006 end-page: 3577 article-title: Fms‐like tyrosine kinase 3 ligand recruits plasmacytoid dendritic cells to the brain publication-title: J Immunol – volume: 103 start-page: 11784 year: 2006a end-page: 11789 article-title: Glatiramer acetate fights against Alzheimer's disease by inducing dendritic‐like microglia expressing insulin‐like growth factor 1 publication-title: Proc Natl Acad Sci U S A – volume: 76 start-page: 453 year: 2004 end-page: 465 article-title: Implantation of dendritic cells in injured adult spinal cord results in activation of endogenous neural stem/progenitor cells leading to de novo neurogenesis and functional recovery publication-title: J Neurosci Res – volume: 187 start-page: 91 year: 2001 end-page: 97 article-title: Intranasal administration of insulin‐like growth factor‐I bypasses the blood–brain barrier and protects against focal cerebral ischemic damage publication-title: J Neurol Sci – volume: 33 start-page: 2998 year: 2003 end-page: 3006 article-title: The brain as an immune privileged site: dendritic cells of the central nervous system inhibit T cell activation publication-title: Eur J Immunol – volume: 20 start-page: 543 year: 1994 end-page: 550 article-title: The nasal route of cerebrospinal fluid drainage in man. A light‐microscope study publication-title: Neuropathol Appl Neurobiol – year: 2000 – volume: 218 start-page: 299 year: 1981 end-page: 318 article-title: Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates publication-title: Brain Res – volume: 157 start-page: 56 year: 2004 end-page: 60 article-title: Drug abuse and neuropathogenesis of HIV infection: role of DC‐SIGN and IDO publication-title: J Neuroimmunol – volume: 31 start-page: 149 year: 2006b end-page: 160 article-title: Microglia activated by IL‐4 or IFN‐gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells publication-title: Mol Cell Neurosci – volume: 166 start-page: 167 year: 2005 end-page: 172 article-title: Blood‐derived dendritic cells in an acute brain injury publication-title: J Neuroimmunol – volume: 62 start-page: 593 year: 2003 end-page: 604 article-title: The blood–brain barrier and its role in immune privilege in the central nervous system publication-title: J Neuropathol Exp Neurol – volume: 13 start-page: 3191 year: 1993 end-page: 3201 article-title: Expression of mRNA encoding the macrophage colony‐stimulating factor receptor (c‐fms) is controlled by a constitutive promoter and tissuespecific transcription elongation publication-title: Mol Cell Biol. – volume: 50 start-page: 86 year: 1991 end-page: 92 article-title: Isolation and flow cytometric characterization of newborn mouse brain‐derived microglia maintained in vitro publication-title: J Leukoc Biol – volume: 25 start-page: 402 year: 2001 end-page: 408 article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 22deltadelta CT method publication-title: Methods – volume: 101 start-page: 1155 year: 2003 end-page: 1163 article-title: A macrophage colony‐stimulating factor receptor‐green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse publication-title: Blood – volume: 9 start-page: 268 year: 2006b end-page: 275 article-title: Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood publication-title: Nat Neurosci – volume: 196 start-page: 1627 year: 2002 end-page: 1638 article-title: Efficient targeting of protein antigen to the dendritic cell receptor DEC‐205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8 T cell tolerance publication-title: J Exp Med – year: 1991 – volume: 201 start-page: 1615 year: 2005 end-page: 1625 article-title: The macrophage F4/80 receptor is required for the induction of antigen‐specific efferent regulatory T cells in peripheral tolerance publication-title: J Exp Med – volume: 166 start-page: 2717 year: 2001 end-page: 2726 article-title: Brain dendritic cells and macrophages/microglia in central nervous system inflammation publication-title: J Immunol – volume: 92 start-page: 63 year: 1998 end-page: 72 article-title: Doublecortin, a brain‐specific gene mutated in human X‐linked lissencephaly and double cortex syndrome, encodes a putative signaling protein publication-title: Cell – volume: 417 start-page: 55 year: 1997 end-page: 57 article-title: Driving gene expression specifically in dendritic cells publication-title: Adv Exp Med Biol – volume: 97 start-page: 253 year: 1983 end-page: 257 article-title: Immunohistochemical localization of a macrophage‐specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers publication-title: J Cell Biol – volume: 34 start-page: 72 year: 2005 end-page: 79 article-title: Dendritic cell differentiation and maturation in embryonic rat liver: immunohistochemistry and electron microscopy with reference to dendritic cell contacts publication-title: Anat Histol Embryol – ident: e_1_2_6_94_1 doi: 10.1016/j.neuroscience.2004.05.029 – ident: e_1_2_6_32_1 doi: 10.1038/nm1197 – volume-title: Atlas of the mouse brain and spinal cord year: 1971 ident: e_1_2_6_86_1 – ident: e_1_2_6_89_1 doi: 10.1034/j.1600-0463.2003.11107802.x – ident: e_1_2_6_6_1 doi: 10.1615/CritRevImmunol.v26.i2.40 – ident: e_1_2_6_51_1 doi: 10.1006/meth.2001.1262 – volume: 140 start-page: 1411 year: 1992 ident: e_1_2_6_61_1 article-title: The sequential development of abnormal prion protein accumulation in mice with Creutzfeldt‐Jakob disease publication-title: Am J Pathol – ident: e_1_2_6_45_1 doi: 10.1385/NMM:7:3:197 – ident: e_1_2_6_34_1 doi: 10.1182/blood-2005-01-0154 – ident: e_1_2_6_55_1 doi: 10.1016/j.neuint.2006.04.004 – ident: e_1_2_6_87_1 doi: 10.1002/glia.20468 – ident: e_1_2_6_5_1 doi: 10.1002/eji.1830111013 – ident: e_1_2_6_59_1 doi: 10.1002/jnr.20086 – ident: e_1_2_6_100_1 doi: 10.1038/nn1629 – ident: e_1_2_6_75_1 doi: 10.1002/cne.10390 – ident: e_1_2_6_20_1 doi: 10.4049/jimmunol.176.6.3566 – ident: e_1_2_6_70_1 doi: 10.1016/S0361-9230(99)00037-4 – volume: 50 start-page: 187 year: 2002 ident: e_1_2_6_38_1 article-title: The role of dendritic cells in neurodegenerative diseases publication-title: Arch Immunol Ther Exp – ident: e_1_2_6_24_1 doi: 10.1093/intimm/11.8.1265 – ident: e_1_2_6_23_1 doi: 10.1002/cne.20780 – ident: e_1_2_6_63_1 doi: 10.1038/nbt0102-87 – ident: e_1_2_6_48_1 doi: 10.1002/jnr.20354 – ident: e_1_2_6_41_1 doi: 10.1007/BF00239182 – ident: e_1_2_6_83_1 doi: 10.1089/neu.2006.23.360 – ident: e_1_2_6_78_1 doi: 10.1084/jem.166.6.1685 – year: 2006 ident: e_1_2_6_92_1 article-title: Inflammatory processes in the aging mouse brain: participation of dendritic cells and T‐cells publication-title: Neurobiol Aging – ident: e_1_2_6_16_1 doi: 10.1016/0165-0270(90)90015-8 – ident: e_1_2_6_52_1 doi: 10.1016/0006-8993(81)91308-1 – ident: e_1_2_6_85_1 doi: 10.1093/jnen/65.2.124 – ident: e_1_2_6_9_1 doi: 10.1007/978-1-4757-9966-8_9 – ident: e_1_2_6_13_1 doi: 10.1016/j.mcn.2005.10.006 – ident: e_1_2_6_62_1 doi: 10.1046/j.0953-816x.2001.01683.x – ident: e_1_2_6_3_1 doi: 10.1002/cne.901370404 – ident: e_1_2_6_17_1 doi: 10.1016/S0891-5849(01)00691-8 – ident: e_1_2_6_18_1 doi: 10.1016/S0165-5728(99)00190-3 – ident: e_1_2_6_80_1 doi: 10.1084/jem.158.2.586 – volume: 5 start-page: 539 year: 1984 ident: e_1_2_6_73_1 article-title: Experimental in vivo imaging of the cranial perineural lymphatic pathway publication-title: AJNR Am J Neuroradiol – ident: e_1_2_6_49_1 doi: 10.1002/hep.21378 – ident: e_1_2_6_93_1 doi: 10.1002/eji.200323611 – ident: e_1_2_6_84_1 doi: 10.1016/j.tins.2005.12.005 – ident: e_1_2_6_57_1 doi: 10.1002/cne.10342 – ident: e_1_2_6_68_1 doi: 10.1111/j.1750-3639.2003.tb00003.x – ident: e_1_2_6_60_1 doi: 10.1242/dev.116.1.201 – volume-title: Image J year: 1997 ident: e_1_2_6_76_1 – ident: e_1_2_6_37_1 doi: 10.1002/ar.1092100311 – ident: e_1_2_6_71_1 doi: 10.1016/0306-4522(85)90215-5 – ident: e_1_2_6_74_1 doi: 10.1016/S0165-0173(99)00007-7 – ident: e_1_2_6_81_1 doi: 10.1073/pnas.111152498 – ident: e_1_2_6_99_1 doi: 10.1073/pnas.0603747103 – ident: e_1_2_6_58_1 doi: 10.1084/jem.171.5.1753 – ident: e_1_2_6_42_1 doi: 10.1016/S1074-7613(02)00365-5 – ident: e_1_2_6_11_1 doi: 10.1016/j.mcn.2005.03.005 – volume-title: Atlas from Comparative Cytoarchitectonic Atlas of the 129/Sv and C57BL/6 Mouse Brains year: 2000 ident: e_1_2_6_4_1 – ident: e_1_2_6_56_1 doi: 10.1002/(SICI)1096-9861(19990322)405:4<553::AID-CNE8>3.0.CO;2-6 – ident: e_1_2_6_8_1 doi: 10.1084/jem.20021598 – volume-title: The mouse brain in stereotaxic coordinates year: 1997 ident: e_1_2_6_27_1 – ident: e_1_2_6_2_1 doi: 10.3109/08830189009056621 – ident: e_1_2_6_77_1 doi: 10.1016/S0165-5728(02)00184-4 – volume-title: The mouse brain in sterotaxic coordinates year: 2001 ident: e_1_2_6_69_1 – ident: e_1_2_6_98_1 doi: 10.1128/MCB.13.6.3191 – ident: e_1_2_6_35_1 doi: 10.1177/29.4.6166661 – ident: e_1_2_6_96_1 doi: 10.1016/j.brainres.2004.04.032 – ident: e_1_2_6_31_1 doi: 10.4049/jimmunol.172.11.6587 – ident: e_1_2_6_79_1 doi: 10.1016/j.jneuroim.2005.04.017 – volume: 47 start-page: 75 year: 2001 ident: e_1_2_6_54_1 article-title: Pheromones and vasanas: the functions of social chemosignals publication-title: Nebr Symp Motiv – ident: e_1_2_6_67_1 doi: 10.1016/S0079-6123(02)35012-X – ident: e_1_2_6_95_1 doi: 10.1016/j.virol.2004.06.027 – ident: e_1_2_6_10_1 doi: 10.1002/cne.10874 – ident: e_1_2_6_25_1 doi: 10.4049/jimmunol.166.4.2717 – ident: e_1_2_6_7_1 doi: 10.1002/(SICI)1098-1136(199609)18:1<1::AID-GLIA1>3.0.CO;2-6 – ident: e_1_2_6_64_1 doi: 10.1016/j.jneuroim.2004.08.040 – ident: e_1_2_6_15_1 doi: 10.1002/(SICI)1098-1136(199801)22:1<72::AID-GLIA7>3.0.CO;2-A – ident: e_1_2_6_65_1 doi: 10.1016/j.jneuroim.2005.04.026 – ident: e_1_2_6_22_1 doi: 10.1073/pnas.0601992103 – ident: e_1_2_6_36_1 doi: 10.1083/jcb.97.1.253 – ident: e_1_2_6_19_1 doi: 10.1210/mend.11.11.0009 – ident: e_1_2_6_43_1 doi: 10.4049/jimmunol.173.4.2353 – ident: e_1_2_6_40_1 doi: 10.1016/j.expneurol.2005.08.010 – ident: e_1_2_6_14_1 doi: 10.1111/j.1460-9568.2007.05652.x – ident: e_1_2_6_21_1 doi: 10.1111/j.1439-0264.2004.00573.x – ident: e_1_2_6_30_1 doi: 10.1159/000111392 – ident: e_1_2_6_47_1 doi: 10.1084/jem.20042307 – ident: e_1_2_6_12_1 doi: 10.1073/pnas.0604681103 – ident: e_1_2_6_26_1 doi: 10.4049/jimmunol.164.9.4826 – ident: e_1_2_6_33_1 doi: 10.1002/jlb.50.1.86 – ident: e_1_2_6_53_1 doi: 10.1111/j.1365-2990.1994.tb01008.x – ident: e_1_2_6_82_1 doi: 10.1182/blood-2002-02-0569 – ident: e_1_2_6_90_1 doi: 10.1002/bies.950100503 – ident: e_1_2_6_29_1 doi: 10.1016/S0092-8674(00)80899-5 – ident: e_1_2_6_44_1 doi: 10.4049/jimmunol.177.11.7750 – volume-title: The fine structure of the nervous system year: 1991 ident: e_1_2_6_72_1 – ident: e_1_2_6_91_1 doi: 10.1111/1523-1747.ep12521052 – ident: e_1_2_6_97_1 doi: 10.1111/j.1365-2990.2006.00737.x – ident: e_1_2_6_88_1 doi: 10.1083/jcb.111.6.3177 – ident: e_1_2_6_46_1 doi: 10.1038/nature05453 – ident: e_1_2_6_50_1 doi: 10.1016/S0022-510X(01)00532-9 – ident: e_1_2_6_39_1 doi: 10.1016/S0169-328X(98)00040-0 – ident: e_1_2_6_66_1 doi: 10.1093/jnen/62.6.593 – ident: e_1_2_6_28_1 doi: 10.1046/j.1440-1681.2000.03259.x |
SSID | ssj0009938 |
Score | 2.36239 |
Snippet | The CD11c enhanced yellow fluorescent protein (EYFP) transgenic mouse was constructed to identify dendritic cells in the periphery (Lindquist et al. [2004]... The CD11c enhanced yellow fluorescent protein (EYFP) transgenic mouse was constructed to identify dendritic cells in the periphery (Lindquist et al. [ 2004 ]... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 687 |
SubjectTerms | Age Factors Animals Animals, Newborn Bacterial Proteins - analysis Bacterial Proteins - biosynthesis Bacterial Proteins - genetics Brain - cytology Brain - embryology Brain - physiology Brain Injuries - genetics Brain Injuries - metabolism Brain Injuries - pathology CD11c Antigen - analysis CD11c Antigen - biosynthesis CD11c Antigen - genetics Cells, Cultured central nervous system Dendritic Cells - cytology Dendritic Cells - physiology Female immune system Luminescent Proteins - analysis Luminescent Proteins - biosynthesis Luminescent Proteins - genetics Male Mice Mice, Inbred C57BL Mice, Inbred CBA Mice, Transgenic neurogenesis Pregnancy steady state Transgenes - physiology transgenic mouse |
Title | CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain |
URI | https://api.istex.fr/ark:/67375/WNG-9NPRL2C2-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcne.21668 https://www.ncbi.nlm.nih.gov/pubmed/18386786 https://www.proquest.com/docview/69121973 |
Volume | 508 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KRfDFb-3ZqouI-NDcJZvNJsEnOe8sokcpFqsIy35M4GzNldwdVN_9v53ZXO6oVBCfkodZspnM7vwyO_Mbxp57C0Y5cFFlBUTSQRKVVqZRYV3unVHCGCpw_jBRB8fy3Ul2ssVedbUwLT_EOuBGKyPs17TAjZ0PNqShroa-SJSiQl_K1SJAdLShjkK_2-7ClIJQqrxjFYrFYD3yki-6Rmq9uApoXsatwfGMb7Gv3ZTbfJPT_nJh--7nH2yO__lOt9nNFSDlr1sLusO2oL7Lrn-ZhXD7PfZr-CZJ3GD0eXzIF-TX0OCAT6k_8rQmnMoNp8reBsE3r9uccj6rOG5nPnRR4HQ0MOcU753WHOEmh--2-UGMvPs4gIL35myfBx4QvNSeT-tvywY8p6AEcEs9LO6z4_Ho4_AgWrVuiBz17oh8lhioUo9opXCxc8LHXpbWpzkCNGuzBOi_0qRgpUydSVwmqjKGgs5hwTqZPmDb9ayGHcaTAhFcFYOQ4KQq0kJWUhhEOUVF25HpsZfdR9RuxWtO7TXOdMvILDRqVQet9tizteh5S-ZxldCLYAlrCdOcUvZbnulPk7e6nBwevRdDodMee9qZisY1Sdo0qLblXKsyQUeQo8TD1oI2T8P5IzxQOOlgB3-fhh5ORuHm0b-L7rIbbTqLQu-6x7YXzRIeI2Za2CdhcfwGLw8Sxw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9qi9gX62c9v7qIiA_NXbLZbBLwRc47T72GUlqsgiz7FThbc5Lege17_29nNpc7KhXEp-RhlmwmMzu_zM7-hpCXVjsljDNBqZkLuHFRkGseB5k2qTVKMKXwgPNeIUZH_ONxcrxG3rRnYRp-iGXCDT3Dr9fo4JiQ7q1YQ03luiwSIrtBNrCjt_-hOliRR0HkbdZhLELIRdryCoWstxx6JRptoGJ_XQc1ryJXH3qGW-RbO-mm4uSkO5_prrn4g8_xf9_qDrm9wKT0bWNEd8maq-6Rm1-nPuN-n1z230WR6Q2-DPfpDEMb2JyjE2yRPKkQqlJF8XBvDfibVk1ZOZ2WFFY06xspUNwdOKOY8p1UFBAndT90fY6kvLswAPP36nSXeioQuFSWTqrv89pZinkJRzW2sXhAjoaDw_4oWHRvCAy27whsEilXxhYAS2ZCY5gNLc-1jVPAaFonkcNfSxU7zXlsVGQSVuahy3Ar1mnD44dkvZpW7hGhUQYgrgwd485wkcUZLzlTAHSyElck1SGv268ozYLaHDtsnMqGlJlJ0Kr0Wu2QF0vRnw2fx3VCr7wpLCVUfYIFcGkiPxfvZV7sH4xZn8m4Q3ZaW5HglqhNBWqbn0mRRxALUpDYbkxo9TSYPyAEAZP2hvD3ach-MfA3j_9ddIfcGh3ujeX4Q_HpCdlsqlsEBNunZH1Wz90zgFAz_dx7ym9JJhbi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9qi9IXv63nVxcR8aG5SzabTYJPch9WreEoFqsIy34FztZcSe_A9r3_d2c2lzsqFcSn5GGWbCYzO7_Mzv6GkFdWOyWMM0GpmQu4cVGQax4HmTapNUowpfCA8-dC7B7wj4fJ4Rp5256Fafghlgk39Ay_XqODn9iytyINNZXrskiI7AbZ4CLM0KQH-yvuKAi8zTKMNQi5SFtaoZD1lkOvBKMN1Ovv65DmVeDqI8_oDvnRzrkpODnqzme6a87_oHP8z5e6S24vECl915jQPbLmqvvk5vepz7c_IBf9QRSZ3vDbaExnGNjA4hydYIPkSYVAlSqKR3trQN-0aorK6bSksJ5Z30aB4t7AKcWE76SigDep-6XrM6Tk3YEBmL1XxzvUE4HApbJ0Uv2c185SzEo4qrGJxUNyMBp-6e8Gi94NgcHmHYFNIuXK2AJcyUxoDLOh5bm2cQoITeskcvhjqWKnOY-NikzCyjx0GW7EOm14_IisV9PKPSY0ygDClaFj3BkusjjjJWcKYE5W4nqkOuRN-xGlWRCbY3-NY9lQMjMJWpVeqx3ycil60rB5XCf02lvCUkLVR1j-libya_Fe5sV4f4_1mYw7ZLs1FQlOidpUoLb5qRR5BJEgBYmtxoJWT4P5Az4QMGlvB3-fhuwXQ3_z5N9Ft8mt8WAk9z4Un56Szaa0RUCkfUbWZ_XcPQf8NNMvvJ9cAhMSFZo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CD11c%2FEYFP+transgene+illuminates+a+discrete+network+of+dendritic+cells+within+the+embryonic%2C+neonatal%2C+adult%2C+and+injured+mouse+brain&rft.jtitle=Journal+of+comparative+neurology+%281911%29&rft.au=Bulloch%2C+Karen&rft.au=Miller%2C+Melinda+M.&rft.au=Gal%E2%80%90Toth%2C+Judit&rft.au=Milner%2C+Teresa+A.&rft.date=2008-06-10&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0021-9967&rft.eissn=1096-9861&rft.volume=508&rft.issue=5&rft.spage=687&rft.epage=710&rft_id=info:doi/10.1002%2Fcne.21668&rft.externalDBID=10.1002%252Fcne.21668&rft.externalDocID=CNE21668 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9967&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9967&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9967&client=summon |