CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain

The CD11c enhanced yellow fluorescent protein (EYFP) transgenic mouse was constructed to identify dendritic cells in the periphery (Lindquist et al. [2004] Nat. Immunol. 5:1243–1250). In this study, we used this mouse to characterize dendritic cells within the CNS. Our anatomic results showed discre...

Full description

Saved in:
Bibliographic Details
Published inJournal of comparative neurology (1911) Vol. 508; no. 5; pp. 687 - 710
Main Authors Bulloch, Karen, Miller, Melinda M., Gal-Toth, Judit, Milner, Teresa A., Gottfried-Blackmore, Andres, Waters, Elizabeth M., Kaunzner, Ulrike W., Liu, Kang, Lindquist, Randall, Nussenzweig, Michel C., Steinman, Ralph M., McEwen, Bruce S.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 10.06.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The CD11c enhanced yellow fluorescent protein (EYFP) transgenic mouse was constructed to identify dendritic cells in the periphery (Lindquist et al. [2004] Nat. Immunol. 5:1243–1250). In this study, we used this mouse to characterize dendritic cells within the CNS. Our anatomic results showed discrete populations of EYFP+ brain dendritic cells (EYFP+ bDC) that colocalized with a small fraction of microglia immunoreactive for Mac‐1, Iba‐1, CD45, and F4/80 but not for NeuN, Dcx, NG2 proteoglycan, or GFAP. EYFP+ bDC, isolated by fluorescent activated cell sorting (FACS), expressed mRNA for the Itgax (CD11c) gene, whereas FACS anlaysis of EYFP+ bDC cultures revealed the presence of CD11c protein. Light microscopy studies revealed that EYFP+ bDC were present in the embryonic CNS when the blood–brain barrier is formed and postnatally when brain cells are amenable to culturing. In adult male mice, EYFP+ bDC distribution was prominent within regions of the CNS that 1) are subject to structural plasticity and neurogenesis, 2) receive sensory and humoral input from the external environment, and 3) lack a blood–brain barrier. Ultrastructural analysis of EYFP+ bDC in adult neurogenic niches showed their proximity to developing neurons and a morphology characteristic of immune/microglia cells. Kainic acid‐induced seizures revealed that EYFP+ bDC responded to damage of the hippocampus and displayed morphologies similar to those described for seizure‐activated EGFP+ microglia in the hippocampus of cfms (CSF‐1R) EGFP mice. Collectively, these findings suggest a new member of the dendritic cell family residing among the heterogeneous microglia population. J. Comp. Neurol. 508:687–710, 2008. © 2008 Wiley‐Liss, Inc.
AbstractList The CD11c enhanced yellow fluorescent protein (EYFP) transgenic mouse was constructed to identify dendritic cells in the periphery (Lindquist et al. [2004] Nat. Immunol. 5:1243–1250). In this study, we used this mouse to characterize dendritic cells within the CNS. Our anatomic results showed discrete populations of EYFP+ brain dendritic cells (EYFP+ bDC) that colocalized with a small fraction of microglia immunoreactive for Mac‐1, Iba‐1, CD45, and F4/80 but not for NeuN, Dcx, NG2 proteoglycan, or GFAP. EYFP+ bDC, isolated by fluorescent activated cell sorting (FACS), expressed mRNA for the Itgax (CD11c) gene, whereas FACS anlaysis of EYFP+ bDC cultures revealed the presence of CD11c protein. Light microscopy studies revealed that EYFP+ bDC were present in the embryonic CNS when the blood–brain barrier is formed and postnatally when brain cells are amenable to culturing. In adult male mice, EYFP+ bDC distribution was prominent within regions of the CNS that 1) are subject to structural plasticity and neurogenesis, 2) receive sensory and humoral input from the external environment, and 3) lack a blood–brain barrier. Ultrastructural analysis of EYFP+ bDC in adult neurogenic niches showed their proximity to developing neurons and a morphology characteristic of immune/microglia cells. Kainic acid‐induced seizures revealed that EYFP+ bDC responded to damage of the hippocampus and displayed morphologies similar to those described for seizure‐activated EGFP+ microglia in the hippocampus of cfms (CSF‐1R) EGFP mice. Collectively, these findings suggest a new member of the dendritic cell family residing among the heterogeneous microglia population. J. Comp. Neurol. 508:687–710, 2008. © 2008 Wiley‐Liss, Inc.
The CD11c enhanced yellow fluorescent protein (EYFP) transgenic mouse was constructed to identify dendritic cells in the periphery (Lindquist et al. [ 2004 ] Nat. Immunol. 5:1243–1250). In this study, we used this mouse to characterize dendritic cells within the CNS. Our anatomic results showed discrete populations of EYFP + brain dendritic cells (EYFP + bDC) that colocalized with a small fraction of microglia immunoreactive for Mac‐1, Iba‐1, CD45, and F4/80 but not for NeuN, Dcx, NG2 proteoglycan, or GFAP. EYFP + bDC, isolated by fluorescent activated cell sorting (FACS), expressed mRNA for the Itgax (CD11c) gene, whereas FACS anlaysis of EYFP + bDC cultures revealed the presence of CD11c protein. Light microscopy studies revealed that EYFP + bDC were present in the embryonic CNS when the blood–brain barrier is formed and postnatally when brain cells are amenable to culturing. In adult male mice, EYFP + bDC distribution was prominent within regions of the CNS that 1) are subject to structural plasticity and neurogenesis, 2) receive sensory and humoral input from the external environment, and 3) lack a blood–brain barrier. Ultrastructural analysis of EYFP + bDC in adult neurogenic niches showed their proximity to developing neurons and a morphology characteristic of immune/microglia cells. Kainic acid‐induced seizures revealed that EYFP + bDC responded to damage of the hippocampus and displayed morphologies similar to those described for seizure‐activated EGFP + microglia in the hippocampus of cfms (CSF‐1R) EGFP mice. Collectively, these findings suggest a new member of the dendritic cell family residing among the heterogeneous microglia population. J. Comp. Neurol. 508:687–710, 2008. © 2008 Wiley‐Liss, Inc.
The CD11c enhanced yellow fluorescent protein (EYFP) transgenic mouse was constructed to identify dendritic cells in the periphery (Lindquist et al. [2004] Nat. Immunol. 5:1243-1250). In this study, we used this mouse to characterize dendritic cells within the CNS. Our anatomic results showed discrete populations of EYFP(+) brain dendritic cells (EYFP(+) bDC) that colocalized with a small fraction of microglia immunoreactive for Mac-1, Iba-1, CD45, and F4/80 but not for NeuN, Dcx, NG2 proteoglycan, or GFAP. EYFP(+) bDC, isolated by fluorescent activated cell sorting (FACS), expressed mRNA for the Itgax (CD11c) gene, whereas FACS anlaysis of EYFP(+) bDC cultures revealed the presence of CD11c protein. Light microscopy studies revealed that EYFP(+) bDC were present in the embryonic CNS when the blood-brain barrier is formed and postnatally when brain cells are amenable to culturing. In adult male mice, EYFP(+) bDC distribution was prominent within regions of the CNS that 1) are subject to structural plasticity and neurogenesis, 2) receive sensory and humoral input from the external environment, and 3) lack a blood-brain barrier. Ultrastructural analysis of EYFP(+) bDC in adult neurogenic niches showed their proximity to developing neurons and a morphology characteristic of immune/microglia cells. Kainic acid-induced seizures revealed that EYFP(+) bDC responded to damage of the hippocampus and displayed morphologies similar to those described for seizure-activated EGFP(+) microglia in the hippocampus of cfms (CSF-1R) EGFP mice. Collectively, these findings suggest a new member of the dendritic cell family residing among the heterogeneous microglia population.
The CD11c enhanced yellow fluorescent protein (EYFP) transgenic mouse was constructed to identify dendritic cells in the periphery (Lindquist et al. [2004] Nat. Immunol. 5:1243-1250). In this study, we used this mouse to characterize dendritic cells within the CNS. Our anatomic results showed discrete populations of EYFP(+) brain dendritic cells (EYFP(+) bDC) that colocalized with a small fraction of microglia immunoreactive for Mac-1, Iba-1, CD45, and F4/80 but not for NeuN, Dcx, NG2 proteoglycan, or GFAP. EYFP(+) bDC, isolated by fluorescent activated cell sorting (FACS), expressed mRNA for the Itgax (CD11c) gene, whereas FACS anlaysis of EYFP(+) bDC cultures revealed the presence of CD11c protein. Light microscopy studies revealed that EYFP(+) bDC were present in the embryonic CNS when the blood-brain barrier is formed and postnatally when brain cells are amenable to culturing. In adult male mice, EYFP(+) bDC distribution was prominent within regions of the CNS that 1) are subject to structural plasticity and neurogenesis, 2) receive sensory and humoral input from the external environment, and 3) lack a blood-brain barrier. Ultrastructural analysis of EYFP(+) bDC in adult neurogenic niches showed their proximity to developing neurons and a morphology characteristic of immune/microglia cells. Kainic acid-induced seizures revealed that EYFP(+) bDC responded to damage of the hippocampus and displayed morphologies similar to those described for seizure-activated EGFP(+) microglia in the hippocampus of cfms (CSF-1R) EGFP mice. Collectively, these findings suggest a new member of the dendritic cell family residing among the heterogeneous microglia population.The CD11c enhanced yellow fluorescent protein (EYFP) transgenic mouse was constructed to identify dendritic cells in the periphery (Lindquist et al. [2004] Nat. Immunol. 5:1243-1250). In this study, we used this mouse to characterize dendritic cells within the CNS. Our anatomic results showed discrete populations of EYFP(+) brain dendritic cells (EYFP(+) bDC) that colocalized with a small fraction of microglia immunoreactive for Mac-1, Iba-1, CD45, and F4/80 but not for NeuN, Dcx, NG2 proteoglycan, or GFAP. EYFP(+) bDC, isolated by fluorescent activated cell sorting (FACS), expressed mRNA for the Itgax (CD11c) gene, whereas FACS anlaysis of EYFP(+) bDC cultures revealed the presence of CD11c protein. Light microscopy studies revealed that EYFP(+) bDC were present in the embryonic CNS when the blood-brain barrier is formed and postnatally when brain cells are amenable to culturing. In adult male mice, EYFP(+) bDC distribution was prominent within regions of the CNS that 1) are subject to structural plasticity and neurogenesis, 2) receive sensory and humoral input from the external environment, and 3) lack a blood-brain barrier. Ultrastructural analysis of EYFP(+) bDC in adult neurogenic niches showed their proximity to developing neurons and a morphology characteristic of immune/microglia cells. Kainic acid-induced seizures revealed that EYFP(+) bDC responded to damage of the hippocampus and displayed morphologies similar to those described for seizure-activated EGFP(+) microglia in the hippocampus of cfms (CSF-1R) EGFP mice. Collectively, these findings suggest a new member of the dendritic cell family residing among the heterogeneous microglia population.
Author Nussenzweig, Michel C.
Bulloch, Karen
Milner, Teresa A.
Gottfried-Blackmore, Andres
Lindquist, Randall
McEwen, Bruce S.
Liu, Kang
Steinman, Ralph M.
Gal-Toth, Judit
Waters, Elizabeth M.
Miller, Melinda M.
Kaunzner, Ulrike W.
Author_xml – sequence: 1
  givenname: Karen
  surname: Bulloch
  fullname: Bulloch, Karen
  email: bulloch@rockefeller.edu
  organization: Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York 10065
– sequence: 2
  givenname: Melinda M.
  surname: Miller
  fullname: Miller, Melinda M.
  organization: Department of Neurology and Neuroscience, Weill-Cornell Medical College, New York, New York 10021
– sequence: 3
  givenname: Judit
  surname: Gal-Toth
  fullname: Gal-Toth, Judit
  organization: Department of Neurology and Neuroscience, Weill-Cornell Medical College, New York, New York 10021
– sequence: 4
  givenname: Teresa A.
  surname: Milner
  fullname: Milner, Teresa A.
  organization: Department of Neurology and Neuroscience, Weill-Cornell Medical College, New York, New York 10021
– sequence: 5
  givenname: Andres
  surname: Gottfried-Blackmore
  fullname: Gottfried-Blackmore, Andres
  organization: Department of Neurology and Neuroscience, Weill-Cornell Medical College, New York, New York 10021
– sequence: 6
  givenname: Elizabeth M.
  surname: Waters
  fullname: Waters, Elizabeth M.
  organization: Department of Neurology and Neuroscience, Weill-Cornell Medical College, New York, New York 10021
– sequence: 7
  givenname: Ulrike W.
  surname: Kaunzner
  fullname: Kaunzner, Ulrike W.
  organization: Department of Neurology and Neuroscience, Weill-Cornell Medical College, New York, New York 10021
– sequence: 8
  givenname: Kang
  surname: Liu
  fullname: Liu, Kang
  organization: Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York 10065
– sequence: 9
  givenname: Randall
  surname: Lindquist
  fullname: Lindquist, Randall
  organization: Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065
– sequence: 10
  givenname: Michel C.
  surname: Nussenzweig
  fullname: Nussenzweig, Michel C.
  organization: Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065
– sequence: 11
  givenname: Ralph M.
  surname: Steinman
  fullname: Steinman, Ralph M.
  organization: Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York 10065
– sequence: 12
  givenname: Bruce S.
  surname: McEwen
  fullname: McEwen, Bruce S.
  organization: Department of Neurology and Neuroscience, Weill-Cornell Medical College, New York, New York 10021
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18386786$$D View this record in MEDLINE/PubMed
BookMark eNp1kcFu1DAURS1URKeFBT-AvEJCajp27DjxEoVpQRoNFQIhVpZjv1C3idPajob5AP4bw0y7QLB6C59z5XffCTrykweEXlJyTgkpl8bDeUmFaJ6gBSVSFLIR9Agt8hstpBT1MTqJ8YYQIiVrnqFj2rBG1I1YoJ_tO0rNcvXt4gqnoH38Dh6wG4Z5dF4niFhj66IJkAB7SNsp3OKpxxa8DS45gw0MQ8Rbl66dx-kaMIxd2E3embMsTDlED2dY23lIeXiLnb-ZA1g8TnME3AXt_HP0tNdDhBeHeYq-XKw-t--L9cfLD-3bdWF4WTeFraiGnllaVY0hxpSWWC47y-qK8q6rKHAiuWbQcc6MpqYqe0mg4SWvoDOcnaLX-9y7MN3PEJMa8255AZ1_OkclJC2prFkGXx3AuRvBqrvgRh126qG4DCz3gAlTjAF6ZVzSyU0-t-gGRYn6fRqVT6P-nCYbb_4yHkP_wR7St26A3f9B1W5WD0axN1xM8OPR0OFWiTr3o75uLpXcXH1al22pGPsFfxqtXw
CitedBy_id crossref_primary_10_1016_j_brainresbull_2017_05_013
crossref_primary_10_1016_j_jneumeth_2008_12_008
crossref_primary_10_1158_1078_0432_CCR_19_3874
crossref_primary_10_1038_s41577_020_00487_7
crossref_primary_10_2353_ajpath_2010_090909
crossref_primary_10_1002_cne_22259
crossref_primary_10_1364_BOE_7_002362
crossref_primary_10_1530_REP_10_0493
crossref_primary_10_4049_jimmunol_1401320
crossref_primary_10_1002_cyto_a_21046
crossref_primary_10_1002_glia_23034
crossref_primary_10_1002_glia_22343
crossref_primary_10_1016_j_brainresbull_2012_11_007
crossref_primary_10_3389_fimmu_2015_00661
crossref_primary_10_1016_j_bbadis_2016_07_007
crossref_primary_10_1111_ejn_15075
crossref_primary_10_3389_fimmu_2020_01185
crossref_primary_10_1002_cpmo_5
crossref_primary_10_1371_journal_pone_0056144
crossref_primary_10_1007_s00281_022_00931_x
crossref_primary_10_1016_j_celrep_2020_108291
crossref_primary_10_1371_journal_pone_0036816
crossref_primary_10_1016_j_neuroscience_2012_08_039
crossref_primary_10_1016_j_bbi_2012_12_010
crossref_primary_10_12677_ACM_2023_133501
crossref_primary_10_1016_j_nbd_2009_10_006
crossref_primary_10_15252_embj_2019101997
crossref_primary_10_1128_JVI_02156_17
crossref_primary_10_1002_cne_21824
crossref_primary_10_1093_noajnl_vdab125
crossref_primary_10_1007_s11481_013_9490_4
crossref_primary_10_1002_glia_22727
crossref_primary_10_1097_NEN_0b013e3181edbc1a
crossref_primary_10_1016_j_virol_2009_01_032
crossref_primary_10_3389_fphar_2024_1531288
crossref_primary_10_1016_j_neuron_2009_08_039
crossref_primary_10_1073_pnas_0911509106
crossref_primary_10_1016_j_jneuroim_2009_01_007
crossref_primary_10_3389_fnagi_2022_872134
crossref_primary_10_1016_j_nbd_2022_105654
crossref_primary_10_1038_nrneurol_2010_112
crossref_primary_10_1089_jir_2011_0052
crossref_primary_10_1016_j_bbi_2020_08_023
crossref_primary_10_1523_JNEUROSCI_3798_08_2008
crossref_primary_10_1523_JNEUROSCI_3449_11_2011
crossref_primary_10_1016_j_brainres_2010_12_064
crossref_primary_10_1016_j_bbi_2016_10_022
crossref_primary_10_1038_nn_4475
crossref_primary_10_1371_journal_pone_0199694
crossref_primary_10_1002_glia_22283
crossref_primary_10_1038_nn_4113
crossref_primary_10_1016_j_bbi_2015_07_007
crossref_primary_10_1016_j_neuint_2020_104860
crossref_primary_10_1159_000353820
crossref_primary_10_1016_j_yfrne_2014_04_004
crossref_primary_10_1016_j_jneuroim_2010_03_021
crossref_primary_10_1007_s12026_014_8530_3
crossref_primary_10_1073_pnas_1203941109
crossref_primary_10_1016_j_yfrne_2017_11_001
crossref_primary_10_1038_s41593_021_00975_6
crossref_primary_10_1007_s00418_008_0531_7
crossref_primary_10_1016_j_wneu_2012_11_059
crossref_primary_10_1016_j_neuron_2008_06_014
crossref_primary_10_1364_BOE_8_003329
crossref_primary_10_1007_s00429_013_0542_6
crossref_primary_10_1016_j_pneurobio_2017_05_002
crossref_primary_10_1002_glia_23005
crossref_primary_10_4236_nm_2012_33026
crossref_primary_10_1016_j_neuron_2008_10_013
crossref_primary_10_1189_jlb_0810472
crossref_primary_10_3390_ijms14010547
crossref_primary_10_1038_nri3265
crossref_primary_10_1016_j_neuro_2009_07_005
crossref_primary_10_1371_journal_ppat_1001326
crossref_primary_10_7554_eLife_42025
crossref_primary_10_1002_cne_22018
crossref_primary_10_1172_jci_insight_148719
crossref_primary_10_3389_fonc_2018_00656
crossref_primary_10_1007_s11481_012_9414_8
crossref_primary_10_1016_j_bbadis_2015_11_003
crossref_primary_10_1254_fpj_22157
crossref_primary_10_1073_pnas_1300392110
crossref_primary_10_1007_s11481_013_9470_8
crossref_primary_10_1016_j_pneurobio_2017_08_007
crossref_primary_10_1002_cne_23145
crossref_primary_10_1016_j_ejphar_2024_176690
crossref_primary_10_1210_me_2016_1026
crossref_primary_10_4049_jimmunol_1900468
crossref_primary_10_3389_fimmu_2022_862053
crossref_primary_10_3389_fimmu_2023_1236398
crossref_primary_10_1038_nri2971
crossref_primary_10_1111_iwj_13349
crossref_primary_10_1177_0004867418796955
crossref_primary_10_1016_j_jneuroim_2008_09_010
crossref_primary_10_1126_science_abf6805
crossref_primary_10_3389_fimmu_2015_00463
crossref_primary_10_1186_1465_9921_15_73
crossref_primary_10_1186_s12974_015_0235_6
crossref_primary_10_1158_1078_0432_CCR_12_2130
crossref_primary_10_3389_fncel_2015_00037
crossref_primary_10_1002_hipo_20719
crossref_primary_10_3389_fphys_2021_766511
crossref_primary_10_1093_brain_awx315
crossref_primary_10_1002_ana_25169
crossref_primary_10_1097_NEN_0b013e31829e8375
crossref_primary_10_1016_j_mehy_2010_02_023
crossref_primary_10_1038_icb_2012_52
crossref_primary_10_1371_journal_pone_0307577
crossref_primary_10_3389_fnhum_2016_00566
crossref_primary_10_1172_jci_insight_174753
crossref_primary_10_3389_fimmu_2015_00632
crossref_primary_10_3389_fimmu_2020_00430
crossref_primary_10_1155_2015_168574
crossref_primary_10_1002_glia_22771
crossref_primary_10_1007_s00281_016_0608_7
crossref_primary_10_1155_2014_507905
crossref_primary_10_1016_j_neurobiolaging_2010_06_007
crossref_primary_10_1038_nri_2016_144
crossref_primary_10_3389_fncel_2021_765217
crossref_primary_10_4049_jimmunol_2000340
crossref_primary_10_1089_vim_2011_0091
crossref_primary_10_1016_j_jneuroim_2013_03_013
crossref_primary_10_1177_2398212819901082
crossref_primary_10_1016_j_bbi_2009_09_010
crossref_primary_10_1016_j_ejphar_2018_10_040
crossref_primary_10_1016_j_brainres_2010_06_038
crossref_primary_10_3389_fncel_2016_00021
crossref_primary_10_1016_j_jneuroim_2014_09_016
crossref_primary_10_3389_fphar_2019_00200
crossref_primary_10_3390_cells12081207
crossref_primary_10_1007_s10571_018_0598_1
crossref_primary_10_4161_intv_22823
crossref_primary_10_1002_glia_22889
crossref_primary_10_1155_2016_1681590
crossref_primary_10_2217_clp_11_12
crossref_primary_10_1186_s13041_024_01098_2
crossref_primary_10_4161_pri_18853
crossref_primary_10_1017_S1431927612000281
crossref_primary_10_1002_jnr_23821
crossref_primary_10_1113_jphysiol_2013_256388
crossref_primary_10_1111_ejn_12341
crossref_primary_10_1007_s12035_021_02622_4
crossref_primary_10_1186_1742_2094_5_44
crossref_primary_10_1016_j_tins_2023_05_001
crossref_primary_10_3389_fnins_2019_00916
crossref_primary_10_3389_fpsyt_2023_1231750
crossref_primary_10_1371_journal_pone_0034730
crossref_primary_10_1084_jem_20142047
crossref_primary_10_1371_journal_ppat_1003395
crossref_primary_10_1111_imr_13050
crossref_primary_10_1096_fj_201802830RR
crossref_primary_10_3389_fimmu_2017_00517
crossref_primary_10_1128_CMR_00118_13
crossref_primary_10_1038_mi_2008_36
crossref_primary_10_1038_nri2528
crossref_primary_10_1038_s44321_024_00046_w
crossref_primary_10_1073_pnas_1710493114
crossref_primary_10_1172_JCI71544
crossref_primary_10_5411_wji_v5_i3_113
crossref_primary_10_1002_glia_22749
crossref_primary_10_1007_s00401_012_1018_0
crossref_primary_10_1080_10717544_2022_2064562
crossref_primary_10_1016_j_jneuroim_2009_03_016
crossref_primary_10_1016_j_bbi_2009_11_002
Cites_doi 10.1016/j.neuroscience.2004.05.029
10.1038/nm1197
10.1034/j.1600-0463.2003.11107802.x
10.1615/CritRevImmunol.v26.i2.40
10.1006/meth.2001.1262
10.1385/NMM:7:3:197
10.1182/blood-2005-01-0154
10.1016/j.neuint.2006.04.004
10.1002/glia.20468
10.1002/eji.1830111013
10.1002/jnr.20086
10.1038/nn1629
10.1002/cne.10390
10.4049/jimmunol.176.6.3566
10.1016/S0361-9230(99)00037-4
10.1093/intimm/11.8.1265
10.1002/cne.20780
10.1038/nbt0102-87
10.1002/jnr.20354
10.1007/BF00239182
10.1089/neu.2006.23.360
10.1084/jem.166.6.1685
10.1016/0165-0270(90)90015-8
10.1016/0006-8993(81)91308-1
10.1093/jnen/65.2.124
10.1007/978-1-4757-9966-8_9
10.1016/j.mcn.2005.10.006
10.1046/j.0953-816x.2001.01683.x
10.1002/cne.901370404
10.1016/S0891-5849(01)00691-8
10.1016/S0165-5728(99)00190-3
10.1084/jem.158.2.586
10.1002/hep.21378
10.1002/eji.200323611
10.1016/j.tins.2005.12.005
10.1002/cne.10342
10.1111/j.1750-3639.2003.tb00003.x
10.1242/dev.116.1.201
10.1002/ar.1092100311
10.1016/0306-4522(85)90215-5
10.1016/S0165-0173(99)00007-7
10.1073/pnas.111152498
10.1073/pnas.0603747103
10.1084/jem.171.5.1753
10.1016/S1074-7613(02)00365-5
10.1016/j.mcn.2005.03.005
10.1002/(SICI)1096-9861(19990322)405:4<553::AID-CNE8>3.0.CO;2-6
10.1084/jem.20021598
10.3109/08830189009056621
10.1016/S0165-5728(02)00184-4
10.1128/MCB.13.6.3191
10.1177/29.4.6166661
10.1016/j.brainres.2004.04.032
10.4049/jimmunol.172.11.6587
10.1016/j.jneuroim.2005.04.017
10.1016/S0079-6123(02)35012-X
10.1016/j.virol.2004.06.027
10.1002/cne.10874
10.4049/jimmunol.166.4.2717
10.1002/(SICI)1098-1136(199609)18:1<1::AID-GLIA1>3.0.CO;2-6
10.1016/j.jneuroim.2004.08.040
10.1002/(SICI)1098-1136(199801)22:1<72::AID-GLIA7>3.0.CO;2-A
10.1016/j.jneuroim.2005.04.026
10.1073/pnas.0601992103
10.1083/jcb.97.1.253
10.1210/mend.11.11.0009
10.4049/jimmunol.173.4.2353
10.1016/j.expneurol.2005.08.010
10.1111/j.1460-9568.2007.05652.x
10.1111/j.1439-0264.2004.00573.x
10.1159/000111392
10.1084/jem.20042307
10.1073/pnas.0604681103
10.4049/jimmunol.164.9.4826
10.1002/jlb.50.1.86
10.1111/j.1365-2990.1994.tb01008.x
10.1182/blood-2002-02-0569
10.1002/bies.950100503
10.1016/S0092-8674(00)80899-5
10.4049/jimmunol.177.11.7750
10.1111/1523-1747.ep12521052
10.1111/j.1365-2990.2006.00737.x
10.1083/jcb.111.6.3177
10.1038/nature05453
10.1016/S0022-510X(01)00532-9
10.1016/S0169-328X(98)00040-0
10.1093/jnen/62.6.593
10.1046/j.1440-1681.2000.03259.x
ContentType Journal Article
Copyright Copyright © 2008 Wiley‐Liss, Inc.
Copyright_xml – notice: Copyright © 2008 Wiley‐Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/cne.21668
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1096-9861
EndPage 710
ExternalDocumentID 18386786
10_1002_cne_21668
CNE21668
ark_67375_WNG_9NPRL2C2_3
Genre article
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: NA16765; NS007080; HL18974; PA08259
– fundername: P.D.T. Dendritics
– fundername: NINDS NIH HHS
  grantid: NS007080
– fundername: PHS HHS
  grantid: PA08259
– fundername: NHLBI NIH HHS
  grantid: HL18974
– fundername: PHS HHS
  grantid: NA16765
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABJNI
ABOCM
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AELAQ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWD
RWI
RX1
RYL
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XV2
YQT
ZZTAW
~IA
~WT
AAHQN
AAMMB
AAMNL
AANHP
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4278-d51aef3d1558c0cc2d0d49bd37514bb51e4094a3eb443ca1c52f90e84245ebc43
IEDL.DBID DR2
ISSN 0021-9967
1096-9861
IngestDate Fri Jul 11 04:43:43 EDT 2025
Mon Jul 21 05:42:29 EDT 2025
Tue Jul 01 01:57:20 EDT 2025
Thu Apr 24 22:58:26 EDT 2025
Wed Aug 20 07:25:05 EDT 2025
Wed Oct 30 09:52:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4278-d51aef3d1558c0cc2d0d49bd37514bb51e4094a3eb443ca1c52f90e84245ebc43
Notes National Institutes of Health - No. NA16765; No. NS007080; No. HL18974; No. PA08259
ark:/67375/WNG-9NPRL2C2-3
ArticleID:CNE21668
P.D.T. Dendritics
istex:16309D9CD786E725FBB41A2C513A3F7A6C7EA4F6
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 18386786
PQID 69121973
PQPubID 23479
PageCount 24
ParticipantIDs proquest_miscellaneous_69121973
pubmed_primary_18386786
crossref_citationtrail_10_1002_cne_21668
crossref_primary_10_1002_cne_21668
wiley_primary_10_1002_cne_21668_CNE21668
istex_primary_ark_67375_WNG_9NPRL2C2_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 June 2008
PublicationDateYYYYMMDD 2008-06-10
PublicationDate_xml – month: 06
  year: 2008
  text: 10 June 2008
  day: 10
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of comparative neurology (1911)
PublicationTitleAlternate J. Comp. Neurol
PublicationYear 2008
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Schwartz M, Butovsky O, Bruck W, Hanisch UK. 2006. Microglial phenotype: is the commitment reversible? Trends Neurosci 29: 68-74.
Farrar CE, Huang CS, Clarke SG, Houser CR. 2005. Increased cell proliferation and granule cell number in the dentate gyrus of protein repair-deficient mice. J Comp Neurol 493: 524-537.
Nacher J, Crespo C, McEwen BS. 2001. Double cortin expression in the adult rat telencephalon. Eur J Neurosci 14: 629-44.
Bailey SL, Carpentier PA, McMahon EJ, Begolka WS, Miller SD. 2006. Innate and adaptive immune responses of the central nervous system. Crit Rev Immunol 26: 149-188.
Stallcup WB, Dahlin K, Healy P. 1990. Interaction of the NG2 chondroitin sulfate proteoglycan with type VI collagen. J Cell Bio 111: 3177-3188.
Sanchez-Madrid F, Thompson SS, Springer TA. 1983. Mapping of antigenic and functional epitopes on the alpha- and beta-subunits of two related mouse glycoproteins involved in cell interactions, LFA-1 and Mac 1. J Exp Med 158: 586-602.
Carson MJ, Reilly CR, Sutcliffe JG, Lo D. 1998. Mature microglia resemble immature antigen-presenting cells. Glia 22: 72-85.
Chang SC, Kao M, Fu M, Lin C. 2001. Modulation of NO and cytokines in microglial cells by CU/ZN-superoxide dismutase. Free Radic Biol Med 31: 1084-1089.
Karman J, Chu HH, Co DO, Seroogy CM, Sandor M, Fabry Z. 2006. Dendritic cells amplify T cell-mediated immune responses in the central nervous system. J Immunol 177: 7750-7760.
Fischer HG, Bielinsky AK. 1999. Antigen presentation function of brain-derived dendriform cells depends on astrocyte help. Int Immunol 11: 1265-2574.
Sasmono RT, Oceandy D, Pollard JW, Tong W, Pavli P, Wainwright BJ, Ostrowski MC, Himes SR, Hume DA. 2003. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101: 1155-1163.
Butovsky O, Talpalar AE, Ben-Yaakov K, Schwartz M. 2005. Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective. Mol Cell Neurosci 29: 381-393.
Lindquist RL, Shakhar G, Dudziak D, Wardemann H, Eisenreich T, Dustin ML, Nussenzweig MC. 2004. Visualizing dendritic cell networks in vivo. Nat Immunol 5: 1243-1250.
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 22deltadelta CT method. Methods 25: 402-408.
Hume DA, Perry VH, Gordon S. 1984. The mononuclear phagocyte system of the mouse defined by immunohistochemical localisation of antigen F4/80: macrophages associated with epithelia. Anat Rec 210: 503-512.
Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd. 2004. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127: 481-496.
Yue X, Favot P, Dunn TL, Cassady AI, Hume DA. 1993. Expression of mRNA encoding the macrophage colony-stimulating factor receptor (c-fms) is controlled by a constitutive promoter and tissuespecific transcription elongation. Mol Cell Biol. 1993; 13: 3191-3201.
Peters A, Palay SL, Webster HdeF. 1991. The fine structure of the nervous system, 3rd ed. New York: Oxford University Press.
Fischer HG, Reichmann G. 2001. Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J Immunol 166: 2717-2726.
Nagai T, Keiji I, Park ES. 2002. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20: 87-90.
Parent JM, Lowenstein DH. 2002. Seizure-induced neurogenesis: are more new neurons good for an adult brain? Prog Brain Res 135: 121-31.
Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. 2002. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 196: 1627-1638.
Pashenkov M, Teleshova N, Link H. 2003. Inflammation in the central nervous system: the role for dendritic cells. Brain Pathol 13: 23-33.
Agger R, Crowley MT, Witmer-Pack MD. 1990. The surface of dendritic cells in the mouse as studied with monoclonal antibodies. Int Rev Immunol 6: 89-101.
Lowhagen P, Johansson BB, Nordborg C. 1994. The nasal route of cerebrospinal fluid drainage in man. A light-microscope study. Neuropathol Appl Neurobiol 20: 543-550.
Mullen RJ, Buck CR, Smith AM. 1992. NeuN, a neuronal specific nuclear protein in vertebrates. Development 116: 201-211.
Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, Cohen H, Kipnis J, Schwartz M. 2006b. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 9: 268-275.
Liu XF, Fawcett JR, Thorne RG, DeFor TA, Frey WH 2nd. 2001. Intranasal administration of insulin-like growth factor-I bypasses the blood-brain barrier and protects against focal cerebral ischemic damage. J Neurol Sci 187: 91-97.
Mercier F, Kitasako JT, Hatton GI. 2002. Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. J Comp Neurol 451: 170-88.
Fischer HG, Bonifas U, Reichmann G. 2000. Phenotype and functions of brain dendritic cells emerging during chronic infection of mice with Toxoplasma gondii. J Immunol 164: 4826-4834.
Cohen IR, Schwartz M. 1999. Autoimmune maintenance and neuroprotection of the central nervous system. J Neuroimmunol 100: 111-114.
Gregerson DS, Sam TN, McPherson SW. 2004. The antigen-presenting activity of fresh, adult parenchymal microglia and perivascular cells from retina. J Immunol 172: 6587-6597.
Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T, Noelle RJ, Becher B. 2005. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11: 328-334.
Metlay JP, Witmer-Pack MD, Agger R, Crowley MT, Lawless D, Steinman RM. 1990. The distinct leukocyte integrins of mouse spleen dendritic cells as identified with new hamster monoclonal antibodies. J Exp Med 171: 1753-1771.
Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW. 1999. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Rev 30: 77-105.
Rosen H, Gordon S. 1987. Monoclonal antibody to the murine type 3 complement receptor inhibits adhesion of myelomonocytic cells in vitro and the inflammatory cell recruitment in vivo. J Exp Med 166: 1685-1701.
Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen L, Chen TM, Chin MC, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong HW, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C, Lemon TA, Liang AJ, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosqueda NF, Ng LL, Ng R, Orta GJ, Overly CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rockett HR, Rowland SA, Royall JJ, Ruiz MJ, Sarno NR, Schaffnit K, Shapovalova NV, Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Smith BI, Sodt AJ, Stewart NN, Stumpf KR, Sunkin SM, Sutram M, Tam A, Teemer CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock RM, Wohnoutka PE, Wolkey CK, Wong VY, Wood M, Yaylaoglu MB, Young RC, Youngstrom BL, Yuan XF, Zhang B, Zwingman TA, Jones AR. 2007. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445: 168-176.
Iribarren P, Cui YH, Le Y, Wang JM. 2002. The role of dendritic cells in neurodegenerative diseases. Arch Immunol Ther Exp 50: 187-96.
Steinman R, Inaba K. 1989. Immunogenicity: role of dendritic cells. Bioessays 10: 145-152.
Encinas JM, Vaahtokari A, Enikolopov G. 2006. Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci U S A 103: 8233-8238.
Lothman EW, Collins RC. 1981. Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates. Brain Res 218: 299-318.
Santambrogio L, Belyanskaya SL, Fischer FR, Cipriani B, Brosnan CF, Ricciardi-Castagnoli P, Stern LJ, Strominger JL, Riese R. 2001. Developmental plasticity of CNS microglia. Proc Natl Acad Sci U S A 98: 6295-6300.
Ziv Y, Avidan H, Pluchino S, Martino G, Schwartz M. 2006a. Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc Natl Acad Sci U S A 103: 13174-13179.
Karman J, Ling C, Sandor M, Fabry Z. 2004. Initiation of immune responses in brain is promoted by local dendritic cells. J Immunol 173: 2353-2361.
El-Nefiawy N, Abdel-Hakim K, Kanayama N, Terao T. 2005. Dendritic cell differentiation and maturation in embryonic rat liver: immunohistochemistry and electron microscopy with reference to dendritic cell contacts. Anat Histol Embryol 34: 72-79.
Mikami Y, Okano H, Sakaguchi M, Nakamura M, Shimazaki T, Okano HJ, Kawakami Y, Toyama Y, Toda M. 2004. Implantation of dendritic cells in injured adult spinal cord results in activation of endogenous neural stem/progenitor cells leading to de novo neurogenesis and functional recovery. J Neurosci Res 76: 453-465.
McClintock MK, Jacob S, Zelano B, Hayreh DJ. 2001. Pheromones and vasanas: the functions of social chemosignals. Nebr Symp Motiv 47: 75-112.
Jouandet ML, Hartenstein V. 1983. Basal telencephalic origins of the anterior commissure of the rat. Exp Brain Res 50: 183-192.
Hume DA, Perry VH, Gordon S. 1983. Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform lay
2002; 17
2001; 187
2006b; 9
1983; 158
2004; 127
2005; 493
2002; 50
2006; 32
2002; 196
1999; 49
1991; 50
1983; 97
2003; 13
2006; 176
2004; 5
1983; 50
1971
2004; 327
2005; 29
2001; 47
2003; 111
2006; 177
1999; 405
1994; 20
2004; 76
1997; 11
2001
2006; 23
1980; 75
2000
2006; 65
2004; 173
2004; 172
2006; 26
1992; 116
1990; 171
1999; 11
2006; 29
2000; 164
1998; 92
1969; 137
2001; 14
2004; 1015
1985; 15
2005; 34
2007; 26
2005; 79
1998; 57
2001; 98
2001; 166
2007; 445
1996; 18
1990; 33
2000; 27
2005; 196
1997; 417
1992; 140
1987; 166
2002; 451
2002; 135
2002; 453
1997
2006
1981; 29
1999; 100
1991
2006a; 103
2007; 55
2001; 25
1998; 22
2003; 33
1993; 13
2006b; 31
2004; 157
1989; 10
2005; 165
2002; 20
2005; 166
1984; 210
2005; 201
2006; 49
1984; 5
2002; 129
2005; 7
1999; 30
1981; 218
2003; 467
2006; 107
2003; 62
2003; 101
1990; 111
2005; 11
1990; 6
2001; 31
2006; 103
1981; 11
e_1_2_6_53_1
e_1_2_6_95_1
e_1_2_6_30_1
e_1_2_6_91_1
e_1_2_6_19_1
Muramoto T (e_1_2_6_61_1) 1992; 140
McClintock MK (e_1_2_6_54_1) 2001; 47
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_96_1
e_1_2_6_31_1
e_1_2_6_50_1
Peters A (e_1_2_6_72_1) 1991
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_65_1
Stichel CC (e_1_2_6_92_1) 2006
e_1_2_6_80_1
Atlas Navigator (e_1_2_6_4_1) 2000
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_88_1
e_1_2_6_46_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
Franklin KB (e_1_2_6_27_1) 1997
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
Paxinos G (e_1_2_6_69_1) 2001
e_1_2_6_100_1
e_1_2_6_7_1
Rasband WS (e_1_2_6_76_1) 1997
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_63_1
Iribarren P (e_1_2_6_38_1) 2002; 50
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_8_1
e_1_2_6_25_1
e_1_2_6_48_1
Pile‐Spellman JM (e_1_2_6_73_1) 1984; 5
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
Sidman RL (e_1_2_6_86_1) 1971
References_xml – reference: Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, Wu S, Vuthoori S, Ko K, Zavala F, Pamer EG, Littman DR, Lang RA. 2002. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17: 211-220.
– reference: Perry VH, Hume DA, Gordon S. 1985. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15: 313-326.
– reference: Reichmann G, Schroeter M, Jander S, Fischer HG. 2002. Dendritic cells and dendritic-like microglia in focal cortical ischemia of the mouse brain. J Neuroimmunol 129: 125-132.
– reference: Becher B, Antel JP. 1996. Comparison of phenotypic and functional properties of immediately ex vivo and cultured human adult microglia. Glia 18: 1-10.
– reference: Agger R, Crowley MT, Witmer-Pack MD. 1990. The surface of dendritic cells in the mouse as studied with monoclonal antibodies. Int Rev Immunol 6: 89-101.
– reference: McMahon EJ, Bailey SL, Miller SD. 2006. CNS dendritic cells: critical participants in CNS inflammation? Neurochem Int 49: 195-203.
– reference: Stichel CC, Luebbert H. 2006. Inflammatory processes in the aging mouse brain: participation of dendritic cells and T-cells. Neurobiol Aging (in press).
– reference: Yue X, Favot P, Dunn TL, Cassady AI, Hume DA. 1993. Expression of mRNA encoding the macrophage colony-stimulating factor receptor (c-fms) is controlled by a constitutive promoter and tissuespecific transcription elongation. Mol Cell Biol. 1993; 13: 3191-3201.
– reference: Encinas JM, Vaahtokari A, Enikolopov G. 2006. Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci U S A 103: 8233-8238.
– reference: Metlay JP, Witmer-Pack MD, Agger R, Crowley MT, Lawless D, Steinman RM. 1990. The distinct leukocyte integrins of mouse spleen dendritic cells as identified with new hamster monoclonal antibodies. J Exp Med 171: 1753-1771.
– reference: Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. 2002. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 196: 1627-1638.
– reference: Iribarren P, Cui YH, Le Y, Wang JM. 2002. The role of dendritic cells in neurodegenerative diseases. Arch Immunol Ther Exp 50: 187-96.
– reference: Franklin KB, Paxinos G. 1997. The mouse brain in stereotaxic coordinates. San Diego: Academic Press.
– reference: Hsu SM, Raine L, Fanger H. 1981. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29: 577-580.
– reference: Lind D, Franken S, Kappler J, Jankowski J, Schilling K. 2005. Characterization of the neuronal marker NeuN as a multiply phosphorylated antigen with discrete subcellular localization. J Neurosci Res 79: 295-302.
– reference: Fischer HG, Reichmann G. 2001. Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J Immunol 166: 2717-2726.
– reference: Karman J, Ling C, Sandor M, Fabry Z. 2004. Initiation of immune responses in brain is promoted by local dendritic cells. J Immunol 173: 2353-2361.
– reference: Gould E, Cameron HA. 1996. Regulation of neuronal birth, migration and death in the rat dentate gyrus. Dev Neurosci 18: 22-35.
– reference: Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T, Noelle RJ, Becher B. 2005. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11: 328-334.
– reference: Mullen RJ, Buck CR, Smith AM. 1992. NeuN, a neuronal specific nuclear protein in vertebrates. Development 116: 201-211.
– reference: Kipnis J, Schwartz M. 2005. Controlled autoimmunity in CNS maintenance and repair: naturally occurring CD4+CD25+ regulatory T-cells at the crossroads of health and disease. Neuromol Med 7: 197-206.
– reference: Austyn JM, Gordon S. 1981. F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol 11: 805-815.
– reference: Rosicarelli B, Serafini B, Sbriccoli M, Lu M, Cardone F, Pocchiari M, Aloisi F. 2005. Migration of dendritic cells into the brain in a mouse model of prion disease. J Neuroimmunol 165: 114-120.
– reference: Newman TA, Galea I, van Rooijen N, Perry VH. 2005. Blood-derived dendritic cells in an acute brain injury. J Neuroimmunol 166: 167-172.
– reference: Trifilo MJ, Lane TE. 2004. The CC chemokine ligand 3 regulates CD11c+CD11b+CD8alpha- dendritic cell maturation and activation following viral infection of the central nervous system: implications for a role in T cell activation. Virology 327: 8-15.
– reference: Brown JP, Couillard-Després S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG. 2003. Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467: 1-10.
– reference: Lothman EW, Collins RC. 1981. Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates. Brain Res 218: 299-318.
– reference: Altman J. 1969. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137: 433-157.
– reference: Fischer HG, Bielinsky AK. 1999. Antigen presentation function of brain-derived dendriform cells depends on astrocyte help. Int Immunol 11: 1265-2574.
– reference: Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 22deltadelta CT method. Methods 25: 402-408.
– reference: Ramirez-Castillejo C, Nacher J, Molowny A, Ponsoda X, Lopez-Garcia C. 2002. PSA-NCAM immunocytochemistry in the cerebral cortex and other telencephalic areas of the lizard Podarcis hispanica: differential expression during medial cortex neuronal regeneration. J Comp Neurol 453: 145-156.
– reference: Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW. 1999. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Rev 30: 77-105.
– reference: Fischer HG, Bonifas U, Reichmann G. 2000. Phenotype and functions of brain dendritic cells emerging during chronic infection of mice with Toxoplasma gondii. J Immunol 164: 4826-4834.
– reference: Rosen H, Gordon S. 1987. Monoclonal antibody to the murine type 3 complement receptor inhibits adhesion of myelomonocytic cells in vitro and the inflammatory cell recruitment in vivo. J Exp Med 166: 1685-1701.
– reference: Carson MJ, Reilly CR, Sutcliffe JG, Lo D. 1998. Mature microglia resemble immature antigen-presenting cells. Glia 22: 72-85.
– reference: Nair MP, Schwartz SA, Mahajan SD, Tsiao C, Chawda RP, Whitney R, Don Sykes BB, Hewitt R. 2004. Drug abuse and neuropathogenesis of HIV infection: role of DC-SIGN and IDO. J Neuroimmunol 157: 56-60.
– reference: Gleeson JG, Allen KM, Fox JW, Lamperti ED, Berkovic S, Scheffer I, Cooper EC, Dobyns WB, Minnerath SR, Ross ME, Walsh CA. 1998. Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92: 63-72.
– reference: Steinman RM, Witmer MD, Nussenzweig MC, Chen LL, Schlesinger S, Cohn ZA. 1980. Dendritic cells of the mouse: identification and characterization. J Invest Dermatol 75: 14-16.
– reference: Karman J, Chu HH, Co DO, Seroogy CM, Sandor M, Fabry Z. 2006. Dendritic cells amplify T cell-mediated immune responses in the central nervous system. J Immunol 177: 7750-7760.
– reference: Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, Cohen H, Kipnis J, Schwartz M. 2006b. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 9: 268-275.
– reference: Butovsky O, Kunis G, Koronyo-Hamaoui M, Schwartz M. 2007. Selective ablation of bone marrow-derived dendritic cells increases amyloid plaques in a mouse Alzheimer's disease model. Eur J Neurosci 26: 413-416.
– reference: Butovsky O, Koronyo-Hamaoui M, Kunis G, Ophir E, Landa G, Cohen H, Schwartz M. 2006a. Glatiramer acetate fights against Alzheimer's disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc Natl Acad Sci U S A 103: 11784-11789.
– reference: Pashenkov M, Teleshova N, Link H. 2003. Inflammation in the central nervous system: the role for dendritic cells. Brain Pathol 13: 23-33.
– reference: Chang SC, Kao M, Fu M, Lin C. 2001. Modulation of NO and cytokines in microglial cells by CU/ZN-superoxide dismutase. Free Radic Biol Med 31: 1084-1089.
– reference: Curtin JF, King GD, Barcia C, Liu C, Hubert FX, Guillonneau C, Josien R, Anegon I, Lowenstein PR, Castro MG. 2006. Fms-like tyrosine kinase 3 ligand recruits plasmacytoid dendritic cells to the brain. J Immunol 176: 3566-3577.
– reference: Sidman RL. 1971. Atlas of the mouse brain and spinal cord. Cambridge, MA: Harvard University Press.
– reference: Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M. 2006b. Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 31: 149-160.
– reference: Pile-Spellman JM, McKusick KA, Strauss HW, Cooney J, Taveras JM. 1984. Experimental in vivo imaging of the cranial perineural lymphatic pathway. AJNR Am J Neuroradiol 5: 539-545.
– reference: Bailey SL, Carpentier PA, McMahon EJ, Begolka WS, Miller SD. 2006. Innate and adaptive immune responses of the central nervous system. Crit Rev Immunol 26: 149-188.
– reference: Brocker t. Riedinger M. Karjalainen K. 1997 Driving gene expression specifically in dendritic cells. Adv Exp Med Biol 417: 55-57.
– reference: Jouandet ML, Hartenstein V. 1983. Basal telencephalic origins of the anterior commissure of the rat. Exp Brain Res 50: 183-192.
– reference: Mikami Y, Okano H, Sakaguchi M, Nakamura M, Shimazaki T, Okano HJ, Kawakami Y, Toyama Y, Toda M. 2004. Implantation of dendritic cells in injured adult spinal cord results in activation of endogenous neural stem/progenitor cells leading to de novo neurogenesis and functional recovery. J Neurosci Res 76: 453-465.
– reference: Cohen PE, Hardy MP, Pollard JW. 1997. Colony-stimulating factor-1 plays a major role in the development of reproductive function in male mice. Mol Endocrinol 11: 1636-1650.
– reference: Pachter JS, de Vries HE, Fabry Z. 2003. The blood-brain barrier and its role in immune privilege in the central nervous system. J Neuropathol Exp Neurol 62: 593-604.
– reference: Rasband WS. 1997-2004. Image J. Bethesda, MD: National Institutes of Health.
– reference: Santambrogio L, Belyanskaya SL, Fischer FR, Cipriani B, Brosnan CF, Ricciardi-Castagnoli P, Stern LJ, Strominger JL, Riese R. 2001. Developmental plasticity of CNS microglia. Proc Natl Acad Sci U S A 98: 6295-6300.
– reference: Steinman R, Inaba K. 1989. Immunogenicity: role of dendritic cells. Bioessays 10: 145-152.
– reference: Gregerson DS, Sam TN, McPherson SW. 2004. The antigen-presenting activity of fresh, adult parenchymal microglia and perivascular cells from retina. J Immunol 172: 6587-6597.
– reference: Butovsky O, Talpalar AE, Ben-Yaakov K, Schwartz M. 2005. Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective. Mol Cell Neurosci 29: 381-393.
– reference: Paxinos G, Franklin KBJ. 2001. The mouse brain in sterotaxic coordinates. San Diego: Academic Press.
– reference: Peters A, Palay SL, Webster HdeF. 1991. The fine structure of the nervous system, 3rd ed. New York: Oxford University Press.
– reference: Lin HH, Faunce DE, Stacey M, Terajewicz A, Nakamura T, Zhang-Hoover J, Kerley M, Mucenski ML, Gordon S, Stein-Streilein J. 2005. The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance. J Exp Med 201: 1615-1625.
– reference: Steinman RM. 2003. Some interfaces of dendritic cell biology. APMIS 111: 675-697.
– reference: Schwartz M, Butovsky O, Bruck W, Hanisch UK. 2006. Microglial phenotype: is the commitment reversible? Trends Neurosci 29: 68-74.
– reference: Nacher J, Crespo C, McEwen BS. 2001. Double cortin expression in the adult rat telencephalon. Eur J Neurosci 14: 629-44.
– reference: Hume DA, Perry VH, Gordon S. 1984. The mononuclear phagocyte system of the mouse defined by immunohistochemical localisation of antigen F4/80: macrophages associated with epithelia. Anat Rec 210: 503-512.
– reference: Jessberger S, Romer B, Babu H, Kempermann G. 2005. Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells. Exp Neurol 196: 342-351.
– reference: Mercier F, Kitasako JT, Hatton GI. 2002. Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. J Comp Neurol 451: 170-88.
– reference: Chan J, Aoki C, Pickel VM. 1990. Optimization of differential immunogold-silver and peroxidase labeling with maintenance of ultrastructure in brain sections before plastic embedding. J Neurosci Methods 33: 113-127.
– reference: Lowhagen P, Johansson BB, Nordborg C. 1994. The nasal route of cerebrospinal fluid drainage in man. A light-microscope study. Neuropathol Appl Neurobiol 20: 543-550.
– reference: Hatterer E, Davoust N, Didier-Bazes M, Vuaillat C, Malcus C, Belin MF, Nataf S. 2006. How to drain without lymphatics? Dendritic cells migrate from the cerebrospinal fluid to the B-cell follicles of cervical lymph nodes. Blood 107: 806-812.
– reference: Parent JM, Lowenstein DH. 2002. Seizure-induced neurogenesis: are more new neurons good for an adult brain? Prog Brain Res 135: 121-31.
– reference: Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S. 1998. Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57: 1-9.
– reference: Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd. 2004. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127: 481-496.
– reference: Muramoto T, Kitamoto T, Tateishi J, Goto I. 1992. The sequential development of abnormal prion protein accumulation in mice with Creutzfeldt-Jakob disease. Am J Pathol 140: 1411-1420.
– reference: Liu XF, Fawcett JR, Thorne RG, DeFor TA, Frey WH 2nd. 2001. Intranasal administration of insulin-like growth factor-I bypasses the blood-brain barrier and protects against focal cerebral ischemic damage. J Neurol Sci 187: 91-97.
– reference: Nagai T, Keiji I, Park ES. 2002. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20: 87-90.
– reference: Ziv Y, Avidan H, Pluchino S, Martino G, Schwartz M. 2006a. Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc Natl Acad Sci U S A 103: 13174-13179.
– reference: McClintock MK, Jacob S, Zelano B, Hayreh DJ. 2001. Pheromones and vasanas: the functions of social chemosignals. Nebr Symp Motiv 47: 75-112.
– reference: Suter T, Biollaz G, Gatto D, Bernasconi L, Herren T, Reith W, Fontana A. 2003. The brain as an immune privileged site: dendritic cells of the central nervous system inhibit T cell activation. Eur J Immunol 33: 2998-3006.
– reference: Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen L, Chen TM, Chin MC, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong HW, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C, Lemon TA, Liang AJ, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosqueda NF, Ng LL, Ng R, Orta GJ, Overly CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rockett HR, Rowland SA, Royall JJ, Ruiz MJ, Sarno NR, Schaffnit K, Shapovalova NV, Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Smith BI, Sodt AJ, Stewart NN, Stumpf KR, Sunkin SM, Sutram M, Tam A, Teemer CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock RM, Wohnoutka PE, Wolkey CK, Wong VY, Wood M, Yaylaoglu MB, Young RC, Youngstrom BL, Yuan XF, Zhang B, Zwingman TA, Jones AR. 2007. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445: 168-176.
– reference: Cohen IR, Schwartz M. 1999. Autoimmune maintenance and neuroprotection of the central nervous system. J Neuroimmunol 100: 111-114.
– reference: McMenamin PG. 1999. Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations. J Comp Neurol 405: 553-62.
– reference: Farrar CE, Huang CS, Clarke SG, Houser CR. 2005. Increased cell proliferation and granule cell number in the dentate gyrus of protein repair-deficient mice. J Comp Neurol 493: 524-537.
– reference: Hassan NF, Rifat S, Campbell DE, McCawley LJ, Douglas SD. 1991. Isolation and flow cytometric characterization of newborn mouse brain-derived microglia maintained in vitro. J Leukoc Biol 50: 86-92.
– reference: El-Nefiawy N, Abdel-Hakim K, Kanayama N, Terao T. 2005. Dendritic cell differentiation and maturation in embryonic rat liver: immunohistochemistry and electron microscopy with reference to dendritic cell contacts. Anat Histol Embryol 34: 72-79.
– reference: Atlas Navigator, YTIG, Inc. 2000. Atlas from Comparative Cytoarchitectonic Atlas of the 129/Sv and C57BL/6 Mouse Brains. New York: Elsevier.
– reference: Hume DA, Perry VH, Gordon S. 1983. Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. J Cell Biol 97: 253-257.
– reference: Sasmono RT, Oceandy D, Pollard JW, Tong W, Pavli P, Wainwright BJ, Ostrowski MC, Himes SR, Hume DA. 2003. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101: 1155-1163.
– reference: Sanchez-Madrid F, Thompson SS, Springer TA. 1983. Mapping of antigenic and functional epitopes on the alpha- and beta-subunits of two related mouse glycoproteins involved in cell interactions, LFA-1 and Mac 1. J Exp Med 158: 586-602.
– reference: Walter BA, Valera VA, Takahashi S, Ushiki T. 2006. The olfactory route for cerebrospinal fluid drainage into the peripheral lymphatic system. Neuropathol Appl Neurobiol 32: 388-396.
– reference: Ganong WF. 2000. Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clin Exp Pharmacol Physiol 27: 422-427.
– reference: Stallcup WB, Dahlin K, Healy P. 1990. Interaction of the NG2 chondroitin sulfate proteoglycan with type VI collagen. J Cell Bio 111: 3177-3188.
– reference: Unal-Cevik I, Kilinç M, Gürsoy-Ozdemir Y, Gurer G, Dalkara T. 2004. Loss of NeuN immunoreactivity after cerebral ischemia does not indicate neuronal cell loss: a cautionary note. Brain Res 1015: 169-174.
– reference: Sierra A, Gottfried-Blackmore AC, McEwen BS, Bulloch K. 2007. Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 55: 412-424.
– reference: Schwartz M, Yoles E. 2006. Immune-based therapy for spinal cord repair: autologous macrophages and beyond. J Neurotrauma 23: 360-370.
– reference: Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Capello E, Mancardi GL, Aloisi F. 2006. Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells. J Neuropathol Exp Neurol 65: 124-141.
– reference: Peretto P, Merighi A, Fasolo A, Bonfanti L. 1999. The subependymal layer in rodents: a site of structural plasticity and cell migration in the adult mammalian brain. Brain Res Bull 49: 221-243.
– reference: Lindquist RL, Shakhar G, Dudziak D, Wardemann H, Eisenreich T, Dustin ML, Nussenzweig MC. 2004. Visualizing dendritic cell networks in vivo. Nat Immunol 5: 1243-1250.
– volume: 75
  start-page: 14
  year: 1980
  end-page: 16
  article-title: Dendritic cells of the mouse: identification and characterization
  publication-title: J Invest Dermatol
– volume: 20
  start-page: 87
  year: 2002
  end-page: 90
  article-title: A variant of yellow fluorescent protein with fast and efficient maturation for cell‐biological applications
  publication-title: Nat Biotechnol
– volume: 137
  start-page: 433
  year: 1969
  end-page: 157
  article-title: Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb
  publication-title: J Comp Neurol
– volume: 17
  start-page: 211
  year: 2002
  end-page: 220
  article-title: In vivo depletion of CD11c dendritic cells abrogates priming of CD8 T cells by exogenous cell‐associated antigens
  publication-title: Immunity
– volume: 405
  start-page: 553
  year: 1999
  end-page: 62
  article-title: Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations
  publication-title: J Comp Neurol
– volume: 111
  start-page: 675
  year: 2003
  end-page: 697
  article-title: Some interfaces of dendritic cell biology
  publication-title: APMIS
– volume: 451
  start-page: 170
  year: 2002
  end-page: 88
  article-title: Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network
  publication-title: J Comp Neurol
– volume: 65
  start-page: 124
  year: 2006
  end-page: 141
  article-title: Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells
  publication-title: J Neuropathol Exp Neurol
– volume: 50
  start-page: 187
  year: 2002
  end-page: 96
  article-title: The role of dendritic cells in neurodegenerative diseases
  publication-title: Arch Immunol Ther Exp
– volume: 129
  start-page: 125
  year: 2002
  end-page: 132
  article-title: Dendritic cells and dendritic‐like microglia in focal cortical ischemia of the mouse brain
  publication-title: J Neuroimmunol
– volume: 10
  start-page: 145
  year: 1989
  end-page: 152
  article-title: Immunogenicity: role of dendritic cells
  publication-title: Bioessays
– volume: 173
  start-page: 2353
  year: 2004
  end-page: 2361
  article-title: Initiation of immune responses in brain is promoted by local dendritic cells
  publication-title: J Immunol
– volume: 47
  start-page: 75
  year: 2001
  end-page: 112
  article-title: Pheromones and vasanas: the functions of social chemosignals
  publication-title: Nebr Symp Motiv
– volume: 13
  start-page: 23
  year: 2003
  end-page: 33
  article-title: Inflammation in the central nervous system: the role for dendritic cells
  publication-title: Brain Pathol
– volume: 164
  start-page: 4826
  year: 2000
  end-page: 4834
  article-title: Phenotype and functions of brain dendritic cells emerging during chronic infection of mice with
  publication-title: J Immunol
– volume: 493
  start-page: 524
  year: 2005
  end-page: 537
  article-title: Increased cell proliferation and granule cell number in the dentate gyrus of protein repair‐deficient mice
  publication-title: J Comp Neurol
– volume: 11
  start-page: 805
  year: 1981
  end-page: 815
  article-title: F4/80, a monoclonal antibody directed specifically against the mouse macrophage
  publication-title: Eur J Immunol
– year: 2006
  article-title: Inflammatory processes in the aging mouse brain: participation of dendritic cells and T‐cells
  publication-title: Neurobiol Aging
– volume: 49
  start-page: 195
  year: 2006
  end-page: 203
  article-title: CNS dendritic cells: critical participants in CNS inflammation?
  publication-title: Neurochem Int
– volume: 445
  start-page: 168
  year: 2007
  end-page: 176
  article-title: Genome‐wide atlas of gene expression in the adult mouse brain
  publication-title: Nature
– volume: 158
  start-page: 586
  year: 1983
  end-page: 602
  article-title: Mapping of antigenic and functional epitopes on the alpha‐ and beta‐subunits of two related mouse glycoproteins involved in cell interactions, LFA‐1 and Mac 1
  publication-title: J Exp Med
– volume: 7
  start-page: 197
  year: 2005
  end-page: 206
  article-title: Controlled autoimmunity in CNS maintenance and repair: naturally occurring CD4 CD25 regulatory T‐cells at the crossroads of health and disease
  publication-title: Neuromol Med
– volume: 165
  start-page: 114
  year: 2005
  end-page: 120
  article-title: Migration of dendritic cells into the brain in a mouse model of prion disease
  publication-title: J Neuroimmunol
– volume: 103
  start-page: 13174
  year: 2006a
  end-page: 13179
  article-title: Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury
  publication-title: Proc Natl Acad Sci U S A
– volume: 111
  start-page: 3177
  year: 1990
  end-page: 3188
  article-title: Interaction of the NG2 chondroitin sulfate proteoglycan with type VI collagen
  publication-title: J Cell Bio
– volume: 50
  start-page: 183
  year: 1983
  end-page: 192
  article-title: Basal telencephalic origins of the anterior commissure of the rat
  publication-title: Exp Brain Res
– volume: 210
  start-page: 503
  year: 1984
  end-page: 512
  article-title: The mononuclear phagocyte system of the mouse defined by immunohistochemical localisation of antigen F4/80: macrophages associated with epithelia
  publication-title: Anat Rec
– volume: 55
  start-page: 412
  year: 2007
  end-page: 424
  article-title: Microglia derived from aging mice exhibit an altered inflammatory profile
  publication-title: Glia
– volume: 100
  start-page: 111
  year: 1999
  end-page: 114
  article-title: Autoimmune maintenance and neuroprotection of the central nervous system
  publication-title: J Neuroimmunol
– volume: 57
  start-page: 1
  year: 1998
  end-page: 9
  article-title: Microglia‐specific localisation of a novel calcium binding protein, Iba1
  publication-title: Brain Res Mol Brain Res
– volume: 172
  start-page: 6587
  year: 2004
  end-page: 6597
  article-title: The antigen‐presenting activity of fresh, adult parenchymal microglia and perivascular cells from retina
  publication-title: J Immunol
– volume: 29
  start-page: 577
  year: 1981
  end-page: 580
  article-title: Use of avidin‐biotin‐peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures
  publication-title: J Histochem Cytochem
– volume: 22
  start-page: 72
  year: 1998
  end-page: 85
  article-title: Mature microglia resemble immature antigen‐presenting cells
  publication-title: Glia
– volume: 33
  start-page: 113
  year: 1990
  end-page: 127
  article-title: Optimization of differential immunogold‐silver and peroxidase labeling with maintenance of ultrastructure in brain sections before plastic embedding
  publication-title: J Neurosci Methods
– volume: 11
  start-page: 1265
  year: 1999
  end-page: 2574
  article-title: Antigen presentation function of brain‐derived dendriform cells depends on astrocyte help
  publication-title: Int Immunol
– volume: 14
  start-page: 629
  year: 2001
  end-page: 44
  article-title: Double cortin expression in the adult rat telencephalon
  publication-title: Eur J Neurosci
– volume: 31
  start-page: 1084
  year: 2001
  end-page: 1089
  article-title: Modulation of NO and cytokines in microglial cells by CU/ZN‐superoxide dismutase
  publication-title: Free Radic Biol Med
– volume: 140
  start-page: 1411
  year: 1992
  end-page: 1420
  article-title: The sequential development of abnormal prion protein accumulation in mice with Creutzfeldt‐Jakob disease
  publication-title: Am J Pathol
– volume: 135
  start-page: 121
  year: 2002
  end-page: 31
  article-title: Seizure‐induced neurogenesis: are more new neurons good for an adult brain?
  publication-title: Prog Brain Res
– volume: 171
  start-page: 1753
  year: 1990
  end-page: 1771
  article-title: The distinct leukocyte integrins of mouse spleen dendritic cells as identified with new hamster monoclonal antibodies
  publication-title: J Exp Med
– volume: 26
  start-page: 413
  year: 2007
  end-page: 416
  article-title: Selective ablation of bone marrow‐derived dendritic cells increases amyloid plaques in a mouse Alzheimer's disease model
  publication-title: Eur J Neurosci
– volume: 49
  start-page: 221
  year: 1999
  end-page: 243
  article-title: The subependymal layer in rodents: a site of structural plasticity and cell migration in the adult mammalian brain
  publication-title: Brain Res Bull
– volume: 27
  start-page: 422
  year: 2000
  end-page: 427
  article-title: Circumventricular organs: definition and role in the regulation of endocrine and autonomic function
  publication-title: Clin Exp Pharmacol Physiol
– volume: 5
  start-page: 1243
  year: 2004
  end-page: 1250
  article-title: Visualizing dendritic cell networks in vivo
  publication-title: Nat Immunol
– volume: 15
  start-page: 313
  year: 1985
  end-page: 326
  article-title: Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain
  publication-title: Neuroscience
– volume: 23
  start-page: 360
  year: 2006
  end-page: 370
  article-title: Immune‐based therapy for spinal cord repair: autologous macrophages and beyond
  publication-title: J Neurotrauma
– volume: 327
  start-page: 8
  year: 2004
  end-page: 15
  article-title: The CC chemokine ligand 3 regulates CD11c CD11b CD8alpha‐ dendritic cell maturation and activation following viral infection of the central nervous system: implications for a role in T cell activation
  publication-title: Virology
– volume: 453
  start-page: 145
  year: 2002
  end-page: 156
  article-title: PSA‐NCAM immunocytochemistry in the cerebral cortex and other telencephalic areas of the lizard Podarcis hispanica: differential expression during medial cortex neuronal regeneration
  publication-title: J Comp Neurol
– volume: 177
  start-page: 7750
  year: 2006
  end-page: 7760
  article-title: Dendritic cells amplify T cell‐mediated immune responses in the central nervous system
  publication-title: J Immunol
– volume: 98
  start-page: 6295
  year: 2001
  end-page: 6300
  article-title: Developmental plasticity of CNS microglia
  publication-title: Proc Natl Acad Sci U S A
– volume: 11
  start-page: 1636
  year: 1997
  end-page: 1650
  article-title: Colony‐stimulating factor‐1 plays a major role in the development of reproductive function in male mice
  publication-title: Mol Endocrinol
– volume: 116
  start-page: 201
  year: 1992
  end-page: 211
  article-title: NeuN, a neuronal specific nuclear protein in vertebrates
  publication-title: Development
– volume: 18
  start-page: 22
  year: 1996
  end-page: 35
  article-title: Regulation of neuronal birth, migration and death in the rat dentate gyrus
  publication-title: Dev Neurosci
– volume: 196
  start-page: 342
  year: 2005
  end-page: 351
  article-title: Seizures induce proliferation and dispersion of doublecortin‐positive hippocampal progenitor cells
  publication-title: Exp Neurol
– volume: 5
  start-page: 539
  year: 1984
  end-page: 545
  article-title: Experimental in vivo imaging of the cranial perineural lymphatic pathway
  publication-title: AJNR Am J Neuroradiol
– volume: 107
  start-page: 806
  year: 2006
  end-page: 812
  article-title: How to drain without lymphatics? Dendritic cells migrate from the cerebrospinal fluid to the B‐cell follicles of cervical lymph nodes
  publication-title: Blood
– year: 2001
– volume: 29
  start-page: 68
  year: 2006
  end-page: 74
  article-title: Microglial phenotype: is the commitment reversible?
  publication-title: Trends Neurosci
– volume: 32
  start-page: 388
  year: 2006
  end-page: 396
  article-title: The olfactory route for cerebrospinal fluid drainage into the peripheral lymphatic system
  publication-title: Neuropathol Appl Neurobiol
– year: 1971
– volume: 18
  start-page: 1
  year: 1996
  end-page: 10
  article-title: Comparison of phenotypic and functional properties of immediately ex vivo and cultured human adult microglia
  publication-title: Glia
– volume: 79
  start-page: 295
  year: 2005
  end-page: 302
  article-title: Characterization of the neuronal marker NeuN as a multiply phosphorylated antigen with discrete subcellular localization
  publication-title: J Neurosci Res
– volume: 30
  start-page: 77
  year: 1999
  end-page: 105
  article-title: Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function
  publication-title: Brain Res Rev
– volume: 467
  start-page: 1
  year: 2003
  end-page: 10
  article-title: Transient expression of doublecortin during adult neurogenesis
  publication-title: J Comp Neurol
– volume: 11
  start-page: 328
  year: 2005
  end-page: 334
  article-title: Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis
  publication-title: Nat Med
– volume: 166
  start-page: 1685
  year: 1987
  end-page: 1701
  article-title: Monoclonal antibody to the murine type 3 complement receptor inhibits adhesion of myelomonocytic cells in vitro and the inflammatory cell recruitment in vivo
  publication-title: J Exp Med
– year: 1997
– volume: 29
  start-page: 381
  year: 2005
  end-page: 393
  article-title: Activation of microglia by aggregated beta‐amyloid or lipopolysaccharide impairs MHC‐II expression and renders them cytotoxic whereas IFN‐gamma and IL‐4 render them protective
  publication-title: Mol Cell Neurosci
– volume: 103
  start-page: 8233
  year: 2006
  end-page: 8238
  article-title: Fluoxetine targets early progenitor cells in the adult brain
  publication-title: Proc Natl Acad Sci U S A
– volume: 1015
  start-page: 169
  year: 2004
  end-page: 174
  article-title: Loss of NeuN immunoreactivity after cerebral ischemia does not indicate neuronal cell loss: a cautionary note
  publication-title: Brain Res
– volume: 127
  start-page: 481
  year: 2004
  end-page: 496
  article-title: Delivery of insulin‐like growth factor‐I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration
  publication-title: Neuroscience
– volume: 6
  start-page: 89
  year: 1990
  end-page: 101
  article-title: The surface of dendritic cells in the mouse as studied with monoclonal antibodies
  publication-title: Int Rev Immunol
– volume: 26
  start-page: 149
  year: 2006
  end-page: 188
  article-title: Innate and adaptive immune responses of the central nervous system
  publication-title: Crit Rev Immunol
– volume: 176
  start-page: 3566
  year: 2006
  end-page: 3577
  article-title: Fms‐like tyrosine kinase 3 ligand recruits plasmacytoid dendritic cells to the brain
  publication-title: J Immunol
– volume: 103
  start-page: 11784
  year: 2006a
  end-page: 11789
  article-title: Glatiramer acetate fights against Alzheimer's disease by inducing dendritic‐like microglia expressing insulin‐like growth factor 1
  publication-title: Proc Natl Acad Sci U S A
– volume: 76
  start-page: 453
  year: 2004
  end-page: 465
  article-title: Implantation of dendritic cells in injured adult spinal cord results in activation of endogenous neural stem/progenitor cells leading to de novo neurogenesis and functional recovery
  publication-title: J Neurosci Res
– volume: 187
  start-page: 91
  year: 2001
  end-page: 97
  article-title: Intranasal administration of insulin‐like growth factor‐I bypasses the blood–brain barrier and protects against focal cerebral ischemic damage
  publication-title: J Neurol Sci
– volume: 33
  start-page: 2998
  year: 2003
  end-page: 3006
  article-title: The brain as an immune privileged site: dendritic cells of the central nervous system inhibit T cell activation
  publication-title: Eur J Immunol
– volume: 20
  start-page: 543
  year: 1994
  end-page: 550
  article-title: The nasal route of cerebrospinal fluid drainage in man. A light‐microscope study
  publication-title: Neuropathol Appl Neurobiol
– year: 2000
– volume: 218
  start-page: 299
  year: 1981
  end-page: 318
  article-title: Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates
  publication-title: Brain Res
– volume: 157
  start-page: 56
  year: 2004
  end-page: 60
  article-title: Drug abuse and neuropathogenesis of HIV infection: role of DC‐SIGN and IDO
  publication-title: J Neuroimmunol
– volume: 31
  start-page: 149
  year: 2006b
  end-page: 160
  article-title: Microglia activated by IL‐4 or IFN‐gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells
  publication-title: Mol Cell Neurosci
– volume: 166
  start-page: 167
  year: 2005
  end-page: 172
  article-title: Blood‐derived dendritic cells in an acute brain injury
  publication-title: J Neuroimmunol
– volume: 62
  start-page: 593
  year: 2003
  end-page: 604
  article-title: The blood–brain barrier and its role in immune privilege in the central nervous system
  publication-title: J Neuropathol Exp Neurol
– volume: 13
  start-page: 3191
  year: 1993
  end-page: 3201
  article-title: Expression of mRNA encoding the macrophage colony‐stimulating factor receptor (c‐fms) is controlled by a constitutive promoter and tissuespecific transcription elongation
  publication-title: Mol Cell Biol.
– volume: 50
  start-page: 86
  year: 1991
  end-page: 92
  article-title: Isolation and flow cytometric characterization of newborn mouse brain‐derived microglia maintained in vitro
  publication-title: J Leukoc Biol
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 22deltadelta CT method
  publication-title: Methods
– volume: 101
  start-page: 1155
  year: 2003
  end-page: 1163
  article-title: A macrophage colony‐stimulating factor receptor‐green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse
  publication-title: Blood
– volume: 9
  start-page: 268
  year: 2006b
  end-page: 275
  article-title: Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood
  publication-title: Nat Neurosci
– volume: 196
  start-page: 1627
  year: 2002
  end-page: 1638
  article-title: Efficient targeting of protein antigen to the dendritic cell receptor DEC‐205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8 T cell tolerance
  publication-title: J Exp Med
– year: 1991
– volume: 201
  start-page: 1615
  year: 2005
  end-page: 1625
  article-title: The macrophage F4/80 receptor is required for the induction of antigen‐specific efferent regulatory T cells in peripheral tolerance
  publication-title: J Exp Med
– volume: 166
  start-page: 2717
  year: 2001
  end-page: 2726
  article-title: Brain dendritic cells and macrophages/microglia in central nervous system inflammation
  publication-title: J Immunol
– volume: 92
  start-page: 63
  year: 1998
  end-page: 72
  article-title: Doublecortin, a brain‐specific gene mutated in human X‐linked lissencephaly and double cortex syndrome, encodes a putative signaling protein
  publication-title: Cell
– volume: 417
  start-page: 55
  year: 1997
  end-page: 57
  article-title: Driving gene expression specifically in dendritic cells
  publication-title: Adv Exp Med Biol
– volume: 97
  start-page: 253
  year: 1983
  end-page: 257
  article-title: Immunohistochemical localization of a macrophage‐specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers
  publication-title: J Cell Biol
– volume: 34
  start-page: 72
  year: 2005
  end-page: 79
  article-title: Dendritic cell differentiation and maturation in embryonic rat liver: immunohistochemistry and electron microscopy with reference to dendritic cell contacts
  publication-title: Anat Histol Embryol
– ident: e_1_2_6_94_1
  doi: 10.1016/j.neuroscience.2004.05.029
– ident: e_1_2_6_32_1
  doi: 10.1038/nm1197
– volume-title: Atlas of the mouse brain and spinal cord
  year: 1971
  ident: e_1_2_6_86_1
– ident: e_1_2_6_89_1
  doi: 10.1034/j.1600-0463.2003.11107802.x
– ident: e_1_2_6_6_1
  doi: 10.1615/CritRevImmunol.v26.i2.40
– ident: e_1_2_6_51_1
  doi: 10.1006/meth.2001.1262
– volume: 140
  start-page: 1411
  year: 1992
  ident: e_1_2_6_61_1
  article-title: The sequential development of abnormal prion protein accumulation in mice with Creutzfeldt‐Jakob disease
  publication-title: Am J Pathol
– ident: e_1_2_6_45_1
  doi: 10.1385/NMM:7:3:197
– ident: e_1_2_6_34_1
  doi: 10.1182/blood-2005-01-0154
– ident: e_1_2_6_55_1
  doi: 10.1016/j.neuint.2006.04.004
– ident: e_1_2_6_87_1
  doi: 10.1002/glia.20468
– ident: e_1_2_6_5_1
  doi: 10.1002/eji.1830111013
– ident: e_1_2_6_59_1
  doi: 10.1002/jnr.20086
– ident: e_1_2_6_100_1
  doi: 10.1038/nn1629
– ident: e_1_2_6_75_1
  doi: 10.1002/cne.10390
– ident: e_1_2_6_20_1
  doi: 10.4049/jimmunol.176.6.3566
– ident: e_1_2_6_70_1
  doi: 10.1016/S0361-9230(99)00037-4
– volume: 50
  start-page: 187
  year: 2002
  ident: e_1_2_6_38_1
  article-title: The role of dendritic cells in neurodegenerative diseases
  publication-title: Arch Immunol Ther Exp
– ident: e_1_2_6_24_1
  doi: 10.1093/intimm/11.8.1265
– ident: e_1_2_6_23_1
  doi: 10.1002/cne.20780
– ident: e_1_2_6_63_1
  doi: 10.1038/nbt0102-87
– ident: e_1_2_6_48_1
  doi: 10.1002/jnr.20354
– ident: e_1_2_6_41_1
  doi: 10.1007/BF00239182
– ident: e_1_2_6_83_1
  doi: 10.1089/neu.2006.23.360
– ident: e_1_2_6_78_1
  doi: 10.1084/jem.166.6.1685
– year: 2006
  ident: e_1_2_6_92_1
  article-title: Inflammatory processes in the aging mouse brain: participation of dendritic cells and T‐cells
  publication-title: Neurobiol Aging
– ident: e_1_2_6_16_1
  doi: 10.1016/0165-0270(90)90015-8
– ident: e_1_2_6_52_1
  doi: 10.1016/0006-8993(81)91308-1
– ident: e_1_2_6_85_1
  doi: 10.1093/jnen/65.2.124
– ident: e_1_2_6_9_1
  doi: 10.1007/978-1-4757-9966-8_9
– ident: e_1_2_6_13_1
  doi: 10.1016/j.mcn.2005.10.006
– ident: e_1_2_6_62_1
  doi: 10.1046/j.0953-816x.2001.01683.x
– ident: e_1_2_6_3_1
  doi: 10.1002/cne.901370404
– ident: e_1_2_6_17_1
  doi: 10.1016/S0891-5849(01)00691-8
– ident: e_1_2_6_18_1
  doi: 10.1016/S0165-5728(99)00190-3
– ident: e_1_2_6_80_1
  doi: 10.1084/jem.158.2.586
– volume: 5
  start-page: 539
  year: 1984
  ident: e_1_2_6_73_1
  article-title: Experimental in vivo imaging of the cranial perineural lymphatic pathway
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_6_49_1
  doi: 10.1002/hep.21378
– ident: e_1_2_6_93_1
  doi: 10.1002/eji.200323611
– ident: e_1_2_6_84_1
  doi: 10.1016/j.tins.2005.12.005
– ident: e_1_2_6_57_1
  doi: 10.1002/cne.10342
– ident: e_1_2_6_68_1
  doi: 10.1111/j.1750-3639.2003.tb00003.x
– ident: e_1_2_6_60_1
  doi: 10.1242/dev.116.1.201
– volume-title: Image J
  year: 1997
  ident: e_1_2_6_76_1
– ident: e_1_2_6_37_1
  doi: 10.1002/ar.1092100311
– ident: e_1_2_6_71_1
  doi: 10.1016/0306-4522(85)90215-5
– ident: e_1_2_6_74_1
  doi: 10.1016/S0165-0173(99)00007-7
– ident: e_1_2_6_81_1
  doi: 10.1073/pnas.111152498
– ident: e_1_2_6_99_1
  doi: 10.1073/pnas.0603747103
– ident: e_1_2_6_58_1
  doi: 10.1084/jem.171.5.1753
– ident: e_1_2_6_42_1
  doi: 10.1016/S1074-7613(02)00365-5
– ident: e_1_2_6_11_1
  doi: 10.1016/j.mcn.2005.03.005
– volume-title: Atlas from Comparative Cytoarchitectonic Atlas of the 129/Sv and C57BL/6 Mouse Brains
  year: 2000
  ident: e_1_2_6_4_1
– ident: e_1_2_6_56_1
  doi: 10.1002/(SICI)1096-9861(19990322)405:4<553::AID-CNE8>3.0.CO;2-6
– ident: e_1_2_6_8_1
  doi: 10.1084/jem.20021598
– volume-title: The mouse brain in stereotaxic coordinates
  year: 1997
  ident: e_1_2_6_27_1
– ident: e_1_2_6_2_1
  doi: 10.3109/08830189009056621
– ident: e_1_2_6_77_1
  doi: 10.1016/S0165-5728(02)00184-4
– volume-title: The mouse brain in sterotaxic coordinates
  year: 2001
  ident: e_1_2_6_69_1
– ident: e_1_2_6_98_1
  doi: 10.1128/MCB.13.6.3191
– ident: e_1_2_6_35_1
  doi: 10.1177/29.4.6166661
– ident: e_1_2_6_96_1
  doi: 10.1016/j.brainres.2004.04.032
– ident: e_1_2_6_31_1
  doi: 10.4049/jimmunol.172.11.6587
– ident: e_1_2_6_79_1
  doi: 10.1016/j.jneuroim.2005.04.017
– volume: 47
  start-page: 75
  year: 2001
  ident: e_1_2_6_54_1
  article-title: Pheromones and vasanas: the functions of social chemosignals
  publication-title: Nebr Symp Motiv
– ident: e_1_2_6_67_1
  doi: 10.1016/S0079-6123(02)35012-X
– ident: e_1_2_6_95_1
  doi: 10.1016/j.virol.2004.06.027
– ident: e_1_2_6_10_1
  doi: 10.1002/cne.10874
– ident: e_1_2_6_25_1
  doi: 10.4049/jimmunol.166.4.2717
– ident: e_1_2_6_7_1
  doi: 10.1002/(SICI)1098-1136(199609)18:1<1::AID-GLIA1>3.0.CO;2-6
– ident: e_1_2_6_64_1
  doi: 10.1016/j.jneuroim.2004.08.040
– ident: e_1_2_6_15_1
  doi: 10.1002/(SICI)1098-1136(199801)22:1<72::AID-GLIA7>3.0.CO;2-A
– ident: e_1_2_6_65_1
  doi: 10.1016/j.jneuroim.2005.04.026
– ident: e_1_2_6_22_1
  doi: 10.1073/pnas.0601992103
– ident: e_1_2_6_36_1
  doi: 10.1083/jcb.97.1.253
– ident: e_1_2_6_19_1
  doi: 10.1210/mend.11.11.0009
– ident: e_1_2_6_43_1
  doi: 10.4049/jimmunol.173.4.2353
– ident: e_1_2_6_40_1
  doi: 10.1016/j.expneurol.2005.08.010
– ident: e_1_2_6_14_1
  doi: 10.1111/j.1460-9568.2007.05652.x
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1439-0264.2004.00573.x
– ident: e_1_2_6_30_1
  doi: 10.1159/000111392
– ident: e_1_2_6_47_1
  doi: 10.1084/jem.20042307
– ident: e_1_2_6_12_1
  doi: 10.1073/pnas.0604681103
– ident: e_1_2_6_26_1
  doi: 10.4049/jimmunol.164.9.4826
– ident: e_1_2_6_33_1
  doi: 10.1002/jlb.50.1.86
– ident: e_1_2_6_53_1
  doi: 10.1111/j.1365-2990.1994.tb01008.x
– ident: e_1_2_6_82_1
  doi: 10.1182/blood-2002-02-0569
– ident: e_1_2_6_90_1
  doi: 10.1002/bies.950100503
– ident: e_1_2_6_29_1
  doi: 10.1016/S0092-8674(00)80899-5
– ident: e_1_2_6_44_1
  doi: 10.4049/jimmunol.177.11.7750
– volume-title: The fine structure of the nervous system
  year: 1991
  ident: e_1_2_6_72_1
– ident: e_1_2_6_91_1
  doi: 10.1111/1523-1747.ep12521052
– ident: e_1_2_6_97_1
  doi: 10.1111/j.1365-2990.2006.00737.x
– ident: e_1_2_6_88_1
  doi: 10.1083/jcb.111.6.3177
– ident: e_1_2_6_46_1
  doi: 10.1038/nature05453
– ident: e_1_2_6_50_1
  doi: 10.1016/S0022-510X(01)00532-9
– ident: e_1_2_6_39_1
  doi: 10.1016/S0169-328X(98)00040-0
– ident: e_1_2_6_66_1
  doi: 10.1093/jnen/62.6.593
– ident: e_1_2_6_28_1
  doi: 10.1046/j.1440-1681.2000.03259.x
SSID ssj0009938
Score 2.36239
Snippet The CD11c enhanced yellow fluorescent protein (EYFP) transgenic mouse was constructed to identify dendritic cells in the periphery (Lindquist et al. [2004]...
The CD11c enhanced yellow fluorescent protein (EYFP) transgenic mouse was constructed to identify dendritic cells in the periphery (Lindquist et al. [ 2004 ]...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 687
SubjectTerms Age Factors
Animals
Animals, Newborn
Bacterial Proteins - analysis
Bacterial Proteins - biosynthesis
Bacterial Proteins - genetics
Brain - cytology
Brain - embryology
Brain - physiology
Brain Injuries - genetics
Brain Injuries - metabolism
Brain Injuries - pathology
CD11c Antigen - analysis
CD11c Antigen - biosynthesis
CD11c Antigen - genetics
Cells, Cultured
central nervous system
Dendritic Cells - cytology
Dendritic Cells - physiology
Female
immune system
Luminescent Proteins - analysis
Luminescent Proteins - biosynthesis
Luminescent Proteins - genetics
Male
Mice
Mice, Inbred C57BL
Mice, Inbred CBA
Mice, Transgenic
neurogenesis
Pregnancy
steady state
Transgenes - physiology
transgenic mouse
Title CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain
URI https://api.istex.fr/ark:/67375/WNG-9NPRL2C2-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcne.21668
https://www.ncbi.nlm.nih.gov/pubmed/18386786
https://www.proquest.com/docview/69121973
Volume 508
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KRfDFb-3ZqouI-NDcJZvNJsEnOe8sokcpFqsIy35M4GzNldwdVN_9v53ZXO6oVBCfkodZspnM7vwyO_Mbxp57C0Y5cFFlBUTSQRKVVqZRYV3unVHCGCpw_jBRB8fy3Ul2ssVedbUwLT_EOuBGKyPs17TAjZ0PNqShroa-SJSiQl_K1SJAdLShjkK_2-7ClIJQqrxjFYrFYD3yki-6Rmq9uApoXsatwfGMb7Gv3ZTbfJPT_nJh--7nH2yO__lOt9nNFSDlr1sLusO2oL7Lrn-ZhXD7PfZr-CZJ3GD0eXzIF-TX0OCAT6k_8rQmnMoNp8reBsE3r9uccj6rOG5nPnRR4HQ0MOcU753WHOEmh--2-UGMvPs4gIL35myfBx4QvNSeT-tvywY8p6AEcEs9LO6z4_Ho4_AgWrVuiBz17oh8lhioUo9opXCxc8LHXpbWpzkCNGuzBOi_0qRgpUydSVwmqjKGgs5hwTqZPmDb9ayGHcaTAhFcFYOQ4KQq0kJWUhhEOUVF25HpsZfdR9RuxWtO7TXOdMvILDRqVQet9tizteh5S-ZxldCLYAlrCdOcUvZbnulPk7e6nBwevRdDodMee9qZisY1Sdo0qLblXKsyQUeQo8TD1oI2T8P5IzxQOOlgB3-fhh5ORuHm0b-L7rIbbTqLQu-6x7YXzRIeI2Za2CdhcfwGLw8Sxw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9qi9gX62c9v7qIiA_NXbLZbBLwRc47T72GUlqsgiz7FThbc5Lege17_29nNpc7KhXEp-RhlmwmMzu_zM7-hpCXVjsljDNBqZkLuHFRkGseB5k2qTVKMKXwgPNeIUZH_ONxcrxG3rRnYRp-iGXCDT3Dr9fo4JiQ7q1YQ03luiwSIrtBNrCjt_-hOliRR0HkbdZhLELIRdryCoWstxx6JRptoGJ_XQc1ryJXH3qGW-RbO-mm4uSkO5_prrn4g8_xf9_qDrm9wKT0bWNEd8maq-6Rm1-nPuN-n1z230WR6Q2-DPfpDEMb2JyjE2yRPKkQqlJF8XBvDfibVk1ZOZ2WFFY06xspUNwdOKOY8p1UFBAndT90fY6kvLswAPP36nSXeioQuFSWTqrv89pZinkJRzW2sXhAjoaDw_4oWHRvCAy27whsEilXxhYAS2ZCY5gNLc-1jVPAaFonkcNfSxU7zXlsVGQSVuahy3Ar1mnD44dkvZpW7hGhUQYgrgwd485wkcUZLzlTAHSyElck1SGv268ozYLaHDtsnMqGlJlJ0Kr0Wu2QF0vRnw2fx3VCr7wpLCVUfYIFcGkiPxfvZV7sH4xZn8m4Q3ZaW5HglqhNBWqbn0mRRxALUpDYbkxo9TSYPyAEAZP2hvD3ach-MfA3j_9ddIfcGh3ujeX4Q_HpCdlsqlsEBNunZH1Wz90zgFAz_dx7ym9JJhbi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9qi9IXv63nVxcR8aG5SzabTYJPch9WreEoFqsIy34FztZcSe_A9r3_d2c2lzsqFcSn5GGWbCYzO7_Mzv6GkFdWOyWMM0GpmQu4cVGQax4HmTapNUowpfCA8-dC7B7wj4fJ4Rp5256Fafghlgk39Ay_XqODn9iytyINNZXrskiI7AbZ4CLM0KQH-yvuKAi8zTKMNQi5SFtaoZD1lkOvBKMN1Ovv65DmVeDqI8_oDvnRzrkpODnqzme6a87_oHP8z5e6S24vECl915jQPbLmqvvk5vepz7c_IBf9QRSZ3vDbaExnGNjA4hydYIPkSYVAlSqKR3trQN-0aorK6bSksJ5Z30aB4t7AKcWE76SigDep-6XrM6Tk3YEBmL1XxzvUE4HApbJ0Uv2c185SzEo4qrGJxUNyMBp-6e8Gi94NgcHmHYFNIuXK2AJcyUxoDLOh5bm2cQoITeskcvhjqWKnOY-NikzCyjx0GW7EOm14_IisV9PKPSY0ygDClaFj3BkusjjjJWcKYE5W4nqkOuRN-xGlWRCbY3-NY9lQMjMJWpVeqx3ycil60rB5XCf02lvCUkLVR1j-libya_Fe5sV4f4_1mYw7ZLs1FQlOidpUoLb5qRR5BJEgBYmtxoJWT4P5Az4QMGlvB3-fhuwXQ3_z5N9Ft8mt8WAk9z4Un56Szaa0RUCkfUbWZ_XcPQf8NNMvvJ9cAhMSFZo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CD11c%2FEYFP+transgene+illuminates+a+discrete+network+of+dendritic+cells+within+the+embryonic%2C+neonatal%2C+adult%2C+and+injured+mouse+brain&rft.jtitle=Journal+of+comparative+neurology+%281911%29&rft.au=Bulloch%2C+Karen&rft.au=Miller%2C+Melinda+M.&rft.au=Gal%E2%80%90Toth%2C+Judit&rft.au=Milner%2C+Teresa+A.&rft.date=2008-06-10&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0021-9967&rft.eissn=1096-9861&rft.volume=508&rft.issue=5&rft.spage=687&rft.epage=710&rft_id=info:doi/10.1002%2Fcne.21668&rft.externalDBID=10.1002%252Fcne.21668&rft.externalDocID=CNE21668
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9967&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9967&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9967&client=summon