Reversible Intracellular Gelation of MCF10A Cells Enables Programmable Control Over 3D Spheroid Growth
In nature, some organisms survive extreme environments by inducing a biostatic state wherein cellular contents are effectively vitrified. Recently, a synthetic biostatic state in mammalian cells is achieved via intracellular network formation using bio-orthogonal strain-promoted azide-alkyne cycload...
Saved in:
Published in | Advanced healthcare materials Vol. 13; no. 7; p. e2302528 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
01.03.2024
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | In nature, some organisms survive extreme environments by inducing a biostatic state wherein cellular contents are effectively vitrified. Recently, a synthetic biostatic state in mammalian cells is achieved via intracellular network formation using bio-orthogonal strain-promoted azide-alkyne cycloaddition (SPAAC) reactions between functionalized poly(ethylene glycol) (PEG) macromers. In this work, the effects of intracellular network formation on a 3D epithelial MCF10A spheroid model are explored. Macromer-transfected cells are encapsulated in Matrigel, and spheroid area is reduced by ≈50% compared to controls. The intracellular hydrogel network increases the quiescent cell population, as indicated by increased p21 expression. Additionally, bioenergetics (ATP/ADP ratio) and functional metabolic rates are reduced. To enable reversibility of the biostasis effect, a photosensitive nitrobenzyl-containing macromer is incorporated into the PEG network, allowing for light-induced degradation. Following light exposure, cell state, and proliferation return to control levels, while SPAAC-treated spheroids without light exposure (i.e., containing intact intracellular networks) remain smaller and less proliferative through this same period. These results demonstrate that photodegradable intracellular hydrogels can induce a reversible slow-growing state in 3D spheroid culture. |
---|---|
ISSN: | 2192-2659 |
DOI: | 10.1002/adhm.202302528 |