Interstitial Li+ Controls the UV Transmission and the Radiation Hardness in YAG

Optical absorption spectra measured in as‐grown and gamma‐ray irradiated un‐doped YAG, Li‐doped YAG, and Ca‐doped YAG single crystals are compared for characterization of effects introduced by impurities. The studies are conducted on single crystals grown by the vertical Bridgman method. Basing on t...

Full description

Saved in:
Bibliographic Details
Published inphysica status solidi (b) Vol. 256; no. 8
Main Authors Derdzyan, Marina V., Hovhannesyan, Karine L., Novikov, Artur, Auffray, Etiennette, Petrosyan, Ashot G., Dujardin, Christophe
Format Journal Article
LanguageEnglish
Published Wiley 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Optical absorption spectra measured in as‐grown and gamma‐ray irradiated un‐doped YAG, Li‐doped YAG, and Ca‐doped YAG single crystals are compared for characterization of effects introduced by impurities. The studies are conducted on single crystals grown by the vertical Bridgman method. Basing on the Li+ incorporation mechanism, clarification is done regarding the optimal amounts of Li+ for preparation of YAG:Li crystals with low concentration of anion vacancies and related defects giving rise to absorption in the UV range. Differences in behavior are recorded in variously doped crystals subjected to gamma‐ray irradiation; in comparison to un‐doped YAG, the induced absorption coefficient in Li‐doped YAG of optimal composition is lower more than six times. High transmission in the UV and high radiation tolerance are important for most applications of YAG, especially when operated in high radiation fields. High transmission and high radiation hardness are the most demanding parameters for YAG single crystals, when operating in high radiation fields. Li+ dopant is efficient for the preparation of crystals with low concentration of anion vacancies and related F‐type centers, and of O− centers. In comparison to un‐doped YAG, the radiation induced absorption in the UV range in Li‐doped YAG is significantly lower.
AbstractList Optical absorption spectra measured in as‐grown and gamma‐ray irradiated un‐doped YAG, Li‐doped YAG, and Ca‐doped YAG single crystals are compared for characterization of effects introduced by impurities. The studies are conducted on single crystals grown by the vertical Bridgman method. Basing on the Li+ incorporation mechanism, clarification is done regarding the optimal amounts of Li+ for preparation of YAG:Li crystals with low concentration of anion vacancies and related defects giving rise to absorption in the UV range. Differences in behavior are recorded in variously doped crystals subjected to gamma‐ray irradiation; in comparison to un‐doped YAG, the induced absorption coefficient in Li‐doped YAG of optimal composition is lower more than six times. High transmission in the UV and high radiation tolerance are important for most applications of YAG, especially when operated in high radiation fields. High transmission and high radiation hardness are the most demanding parameters for YAG single crystals, when operating in high radiation fields. Li+ dopant is efficient for the preparation of crystals with low concentration of anion vacancies and related F‐type centers, and of O− centers. In comparison to un‐doped YAG, the radiation induced absorption in the UV range in Li‐doped YAG is significantly lower.
Optical absorption spectra measured in as‐grown and gamma‐ray irradiated un‐doped YAG, Li‐doped YAG, and Ca‐doped YAG single crystals are compared for characterization of effects introduced by impurities. The studies are conducted on single crystals grown by the vertical Bridgman method. Basing on the Li+ incorporation mechanism, clarification is done regarding the optimal amounts of Li+ for preparation of YAG:Li crystals with low concentration of anion vacancies and related defects giving rise to absorption in the UV range. Differences in behavior are recorded in variously doped crystals subjected to gamma‐ray irradiation; in comparison to un‐doped YAG, the induced absorption coefficient in Li‐doped YAG of optimal composition is lower more than six times. High transmission in the UV and high radiation tolerance are important for most applications of YAG, especially when operated in high radiation fields.
Optical absorption spectra measured in as‐grown and gamma‐ray irradiated un‐doped YAG, Li‐doped YAG, and Ca‐doped YAG single crystals are compared for characterization of effects introduced by impurities. The studies are conducted on single crystals grown by the vertical Bridgman method. Basing on the Li + incorporation mechanism, clarification is done regarding the optimal amounts of Li + for preparation of YAG:Li crystals with low concentration of anion vacancies and related defects giving rise to absorption in the UV range. Differences in behavior are recorded in variously doped crystals subjected to gamma‐ray irradiation; in comparison to un‐doped YAG, the induced absorption coefficient in Li‐doped YAG of optimal composition is lower more than six times. High transmission in the UV and high radiation tolerance are important for most applications of YAG, especially when operated in high radiation fields.
Author Hovhannesyan, Karine L.
Dujardin, Christophe
Novikov, Artur
Auffray, Etiennette
Derdzyan, Marina V.
Petrosyan, Ashot G.
Author_xml – sequence: 1
  givenname: Marina V.
  surname: Derdzyan
  fullname: Derdzyan, Marina V.
  organization: National Academy of Science
– sequence: 2
  givenname: Karine L.
  surname: Hovhannesyan
  fullname: Hovhannesyan, Karine L.
  organization: National Academy of Science
– sequence: 3
  givenname: Artur
  surname: Novikov
  fullname: Novikov, Artur
  organization: National Academy of Science
– sequence: 4
  givenname: Etiennette
  surname: Auffray
  fullname: Auffray, Etiennette
  organization: CERN Experimental Physics Department
– sequence: 5
  givenname: Ashot G.
  surname: Petrosyan
  fullname: Petrosyan, Ashot G.
  email: ashot.petrosyan783@gmail.com
  organization: National Academy of Science
– sequence: 6
  givenname: Christophe
  surname: Dujardin
  fullname: Dujardin, Christophe
  organization: UMR 5306: Université Lyon 1 and CNRS
BackLink https://univ-lyon1.hal.science/hal-02363332$$DView record in HAL
BookMark eNqFkMFLwzAUxoNMcJtePecq0vlekq7NcQ7dBoWJm4KnkLUpi3TpSIpj_72tk3n09ODj9_t4fAPSc7UzhNwijBCAPexD2IwYYAqQMHFB-hgzjLiMsUf6wBOIUCbsigxC-ISWQY59sly4xvjQ2Mbqimb2nk5r1_i6CrTZGvr2Ttdeu7CzIdjaUe2Kn_xVF1Y3XTLXvnAmBGod_ZjMrsllqatgbn7vkKyfn9bTeZQtZ4vpJItywRIRCZMKbnRiSohzLoXE9tlSAIw5gtF5yQuUaZnHBdvEclNIyE2sNY5ZLFNI-JDcnWq3ulJ7b3faH1WtrZpPMtVlwPiYc86-sGVHJzb3dQjelGcBQXXLqW45dV6uFeRJONjKHP-h1ctq9fjnfgOkEHK7
CitedBy_id crossref_primary_10_1002_pssa_202300386
Cites_doi 10.1103/PhysRevB.38.8555
10.1063/1.346717
10.1016/S0022-0248(03)01460-X
10.1007/978-3-642-81835-6
10.1007/978-3-642-79017-1
10.1117/12.916181
10.1117/12.724737
10.1016/j.optmat.2014.06.019
10.1007/978-3-540-70749-3
10.1109/TNS.2005.852664
10.3934/matersci.2015.4.560
10.1002/pssb.2220790121
10.1039/C7CE02194A
10.1088/1757-899X/15/1/012060
10.1002/crat.200310254
10.1002/pssa.2210150160
10.1016/0038-1098(74)90151-3
10.1016/0022-0248(94)90190-2
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1002/pssb.201800724
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1521-3951
EndPage n/a
ExternalDocumentID oai_HAL_hal_02363332v1
10_1002_pssb_201800724
PSSB201800724
Genre article
GrantInformation_xml – fundername: European Union's Horizon 2020 research the Marie Skłodowska‐Curie Intelum
  funderid: project 644260
GroupedDBID .GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUQT
AEUYR
AFFNX
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
FEDTE
G.N
GNP
GODZA
GYQRN
H.T
H.X
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
SAMSI
W8V
W99
WBKPD
WGJPS
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
1XC
ID FETCH-LOGICAL-c4274-4e843ea7ef05c39491152f4006310eacf3d198fc5d2b59bd90ce5aa162598073
IEDL.DBID DR2
ISSN 0370-1972
IngestDate Fri Sep 06 12:36:13 EDT 2024
Fri Aug 23 03:42:13 EDT 2024
Sat Aug 24 01:14:24 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords aliovalent doping
radiation‐induced absorption
YAG
UV‐transmission
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4274-4e843ea7ef05c39491152f4006310eacf3d198fc5d2b59bd90ce5aa162598073
ORCID 0000-0002-0205-9837
OpenAccessLink https://zenodo.org/record/2564840/files/pssb.201800724_R1%20%283%29.pdf
PageCount 5
ParticipantIDs hal_primary_oai_HAL_hal_02363332v1
crossref_primary_10_1002_pssb_201800724
wiley_primary_10_1002_pssb_201800724_PSSB201800724
PublicationCentury 2000
PublicationDate August 2019
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationTitle physica status solidi (b)
PublicationYear 2019
Publisher Wiley
Publisher_xml – name: Wiley
References 2015; 2
2007; 6586
1974; 14
1990; 66
1994; 139
2010; 15
1990
2012; 8235
1973; 15
1988; 38
2004; 9
2018
2014; 36
2017
1984
2005; 52/4
1994
1977; 79
1951; 36
2003; 257
2018; 20
Yoder H. S. (e_1_2_7_2_1) 1951; 36
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_22_1
e_1_2_7_10_1
e_1_2_7_21_1
Dujardin C. (e_1_2_7_5_1) 2018
e_1_2_7_20_1
References_xml – volume: 79
  start-page: 203
  year: 1977
  publication-title: Phys. Status Solidi B
– year: 2018
  publication-title: IEEE Trans. Nucl. Sci
– year: 1984
– volume: 36
  start-page: 519
  year: 1951
  publication-title: Am. Mineral
– volume: 2
  start-page: 560
  year: 2015
  publication-title: AIMS Mater. Sci
– volume: 20
  start-page: 1520
  year: 2018
  publication-title: CrystEngComm
– volume: 139
  start-page: 372
  year: 1994
  publication-title: J. Cryst. Growth
– volume: 6586
  start-page: 65860E
  year: 2007
  publication-title: Proc. SPIE
– volume: 15
  start-page: 012060
  year: 2010
– volume: 14
  start-page: 861
  year: 1974
  publication-title: Solid State Commun
– volume: 15
  start-page: 71
  year: 1973
  publication-title: Phys. Status Solidi A
– volume: 52/4
  start-page: 1105
  year: 2005
  publication-title: IEEE Trans. Nucl. Sci
– volume: 66
  start-page: 1200
  year: 1990
  publication-title: J. Appl. Phys
– volume: 257
  start-page: 301
  year: 2003
  publication-title: J. Cryst. Growth
– volume: 38
  start-page: 8555
  year: 1988
  publication-title: Phys. Rev. B
– year: 2017
– year: 1990
– year: 1994
– volume: 36
  start-page: 1926
  year: 2014
  publication-title: Opt. Mater
– volume: 9
  start-page: 788
  year: 2004
  publication-title: Cryst. Res. Technol
– volume: 8235
  start-page: 823505
  year: 2012
– ident: e_1_2_7_10_1
  doi: 10.1103/PhysRevB.38.8555
– ident: e_1_2_7_9_1
  doi: 10.1063/1.346717
– ident: e_1_2_7_12_1
  doi: 10.1016/S0022-0248(03)01460-X
– ident: e_1_2_7_14_1
  doi: 10.1007/978-3-642-81835-6
– ident: e_1_2_7_4_1
  doi: 10.1007/978-3-642-79017-1
– ident: e_1_2_7_6_1
  doi: 10.1117/12.916181
– ident: e_1_2_7_16_1
  doi: 10.1117/12.724737
– ident: e_1_2_7_8_1
  doi: 10.1016/j.optmat.2014.06.019
– year: 2018
  ident: e_1_2_7_5_1
  publication-title: IEEE Trans. Nucl. Sci
  contributor:
    fullname: Dujardin C.
– volume: 36
  start-page: 519
  year: 1951
  ident: e_1_2_7_2_1
  publication-title: Am. Mineral
  contributor:
    fullname: Yoder H. S.
– ident: e_1_2_7_3_1
  doi: 10.1007/978-3-540-70749-3
– ident: e_1_2_7_22_1
  doi: 10.1109/TNS.2005.852664
– ident: e_1_2_7_11_1
  doi: 10.3934/matersci.2015.4.560
– ident: e_1_2_7_18_1
  doi: 10.1002/pssb.2220790121
– ident: e_1_2_7_13_1
  doi: 10.1039/C7CE02194A
– ident: e_1_2_7_17_1
  doi: 10.1088/1757-899X/15/1/012060
– ident: e_1_2_7_7_1
– ident: e_1_2_7_21_1
  doi: 10.1002/crat.200310254
– ident: e_1_2_7_20_1
  doi: 10.1002/pssa.2210150160
– ident: e_1_2_7_19_1
  doi: 10.1016/0038-1098(74)90151-3
– ident: e_1_2_7_15_1
  doi: 10.1016/0022-0248(94)90190-2
SSID ssj0007131
ssj0047196
Score 2.3181996
Snippet Optical absorption spectra measured in as‐grown and gamma‐ray irradiated un‐doped YAG, Li‐doped YAG, and Ca‐doped YAG single crystals are compared for...
SourceID hal
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
SubjectTerms aliovalent doping
Chemical Sciences
Engineering Sciences
Physics
radiation‐induced absorption
UV‐transmission
YAG
Title Interstitial Li+ Controls the UV Transmission and the Radiation Hardness in YAG
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssb.201800724
https://univ-lyon1.hal.science/hal-02363332
Volume 256
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60IHjxLdYXiwgeJDXdbGz2WIu1SFHpQ-op7CtYhFhM68Ff78ymTVsvgt6SJVmSmdnZbzZfviXkHEGpUApGWlJjHreR9ZRk3IMqzArtc8kTx_J9uG71-f0gHCz8xZ_rQxQLbjgyXL7GAS5VdjUXDR1lmUJqVoTi1ygIimp6iIo6c_0oqMAKwgdkYZF_uaz5Hm62NZNw9NnVcl9LU9TqKxIkF4Grm3mam0TOnjknnLxVJmNV0V8_5Bz_81JbZGMKS2k9j6NtsmLTHbLm6KE62yWPbuEQaQUQrrQ9vKSNnOKeUQCQtP9M3ZwHMYOLb1SmxrV3UPgAPU-RIIBJlQ5T-lK_2yO95m2v0fKmWzF4mkPdik7kgZU1m_ihDgSHFBmyhCPAqfqQu5PAVEWU6NAwFQplhK9tKGUVq6sIssg-KaXvqT0glEkNRZEBIGQibqwvAQFpHmgTGRFKPymTi5nx41EuuBHn0sosRuvEhXXK5Ax8U1yEOtmtejvGNpTFD4KAfVbLhDl7_9JX_NTt3hRnh3-56Yisw7HIyYHHpDT-mNgTACxjdeqC8hvmE97W
link.rule.ids 230,315,786,790,891,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58IHrxLdbnIoIHiU03G5s9VlGr1ipaRU9hX0ERotjqwV_vzMam6kXQY5YkJLMzs99MvnwLsEmgVGqNkZbVeSBc4gKtuAiwCnPShEKJzLN827vNa3FyG_fZhPQvTKEPUTbcKDJ8vqYAp4Z0daAa-tztauJmJaR-LYZhFGM-9lXV5UBBCmuwkvKBeVgW3y7rYUDbbfVFHENe_X6zb4vU8D1RJL9CV7_2HE6B7j91QTl53Hnt6R3z_kPQ8V-vNQ2Tn8iUNQpXmoEhl8_CmGeImu4cnPveITEL0GNZ62Gb7Rcs9y5DDMmub5hf9tBtqP_GVG79-CVpH9DkM-IIUF5lDzm7axzNQ-fwoLPfDD53YwiMwNKV5lFETtVdFsYmkgKzZMwzQRinFmL6ziJbk0lmYst1LLWVoXGxUjUqsBJMJAswkj_lbhEYVwbrIotYyCbCulAhCDIiMjaxMlZhVoGtvvXT50JzIy3UlXlK1klL61RgAyenPImkspuNVkpjpIwfRRF_q1WAe4P_cq_04upqrzxa-stF6zDe7Jy10tZx-3QZJnBcFlzBFRjpvby6VcQvPb3mPfQDAEri-A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgCMSFN2I8I4TEARW6NN2a49gYAyZAvASnKk1SgZDKxDYO_HrslJXBBQmOjdqotR3nc_L1C8AOgVKZJDjS0hr3hI2slyguPKzCrNS-UCJ1LN_zavtWnN6H9yN_8ef6EMWCG40Ml69pgHdNevAlGtrt9RKiZkUkfi3GYUJUA05x3bz6EpDCEqxgfGAalvnWZc336LStoYajzw--d_Ztjhp_JIbkKHJ1U09rFtTwpXPGyfP-oJ_s6_cfeo7_-ao5mPnEpayeB9I8jNlsASYdP1T3FuHCrRwSrwDjlXWe9lgj57j3GCJIdnvH3KSHQUOrb0xlxrVfkfIBuZ4RQ4CyKnvK2EP9eAluWkc3jbb3eRaDpwUWruRFEVhVs6kf6kAKzJEhTwUhnIqPyTsNTEVGqQ4NT0KZGOlrGypVofIqwjSyDKXsJbMrwLjSWBUZREImEsb6CiGQFoE2kZGh8tMy7A6NH3dzxY0411bmMVknLqxThm30TXETCWW3652Y2kgXPwgC_lYpA3f2_qWv-PL6-rC4Wv3LQ1swddlsxZ2T87M1mMZmmRMF16HUfx3YDQQv_WTTxecHZLbhpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interstitial+Li%2B+Controls+the+UV+Transmission+and+the+Radiation+Hardness+in+YAG&rft.jtitle=physica+status+solidi+%28b%29&rft.au=Derdzyan%2C+Marina&rft.au=Hovhannesyan%2C+Karine&rft.au=Novikov%2C+Artur&rft.au=Auffray%2C+Etiennette&rft.date=2019-08-01&rft.pub=Wiley&rft.issn=0370-1972&rft.eissn=1521-3951&rft.volume=256&rft.issue=8&rft_id=info:doi/10.1002%2Fpssb.201800724&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02363332v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-1972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-1972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-1972&client=summon