Initial Carbon−Carbon Bond Formation during the Early Stages of Methane Dehydroaromatization
Methane dehydroaromatization (MDA) is among the most challenging processes in catalysis science owing to the inherent harsh reaction conditions and fast catalyst deactivation. To improve this process, understanding the mechanism of the initial C−C bond formation is essential. However, consensus abou...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 38; pp. 16741 - 16746 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
14.09.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Methane dehydroaromatization (MDA) is among the most challenging processes in catalysis science owing to the inherent harsh reaction conditions and fast catalyst deactivation. To improve this process, understanding the mechanism of the initial C−C bond formation is essential. However, consensus about the actual reaction mechanism is still to be achieved. In this work, using advanced magic‐angle spinning (MAS) solid‐state NMR spectroscopy, we study in detail the early stages of the reaction over a well‐dispersed Mo/H‐ZSM‐5 catalyst. Simultaneous detection of acetylene (i.e., presumably the direct C−C bond‐forming product from methane), methylidene, allenes, acetal, and surface‐formate species, along with the typical olefinic/aromatic species, allow us to conclude the existence of at least two independent C−H activation pathways. Moreover, this study emphasizes the significance of mobility‐dependent host–guest chemistry between an inorganic zeolite and its trapped organic species during heterogeneous catalysis.
The initial C−C bond formation during the early stages of methane dehydroaromatization was investigated by employing “mobility‐dependent” solid‐state NMR spectroscopy. Based on the detected species (such as acetylene, acetal etc.) at least two different mechanisms (mono‐functional vs. bi‐functional) for the formation of direct C−C bonds were identified. |
---|---|
AbstractList | Methane dehydroaromatization (MDA) is among the most challenging processes in catalysis science owing to the inherent harsh reaction conditions and fast catalyst deactivation. To improve this process, understanding the mechanism of the initial C−C bond formation is essential. However, consensus about the actual reaction mechanism is still to be achieved. In this work, using advanced magic‐angle spinning (MAS) solid‐state NMR spectroscopy, we study in detail the early stages of the reaction over a well‐dispersed Mo/H‐ZSM‐5 catalyst. Simultaneous detection of acetylene (i.e., presumably the direct C−C bond‐forming product from methane), methylidene, allenes, acetal, and surface‐formate species, along with the typical olefinic/aromatic species, allow us to conclude the existence of at least two independent C−H activation pathways. Moreover, this study emphasizes the significance of mobility‐dependent host–guest chemistry between an inorganic zeolite and its trapped organic species during heterogeneous catalysis. Methane dehydroaromatization (MDA) is among the most challenging processes in catalysis science owing to the inherent harsh reaction conditions and fast catalyst deactivation. To improve this process, understanding the mechanism of the initial C−C bond formation is essential. However, consensus about the actual reaction mechanism is still to be achieved. In this work, using advanced magic‐angle spinning (MAS) solid‐state NMR spectroscopy, we study in detail the early stages of the reaction over a well‐dispersed Mo/H‐ZSM‐5 catalyst. Simultaneous detection of acetylene (i.e., presumably the direct C−C bond‐forming product from methane), methylidene, allenes, acetal, and surface‐formate species, along with the typical olefinic/aromatic species, allow us to conclude the existence of at least two independent C−H activation pathways. Moreover, this study emphasizes the significance of mobility‐dependent host–guest chemistry between an inorganic zeolite and its trapped organic species during heterogeneous catalysis. The initial C−C bond formation during the early stages of methane dehydroaromatization was investigated by employing “mobility‐dependent” solid‐state NMR spectroscopy. Based on the detected species (such as acetylene, acetal etc.) at least two different mechanisms (mono‐functional vs. bi‐functional) for the formation of direct C−C bonds were identified. Methane dehydroaromatization (MDA) is among the most challenging processes in catalysis science owing to the inherent harsh reaction conditions and fast catalyst deactivation. To improve this process, understanding the mechanism of the initial C-C bond formation is essential. However, consensus about the actual reaction mechanism is still to be achieved. In this work, using advanced magic-angle spinning (MAS) solid-state NMR spectroscopy, we study in detail the early stages of the reaction over a well-dispersed Mo/H-ZSM-5 catalyst. Simultaneous detection of acetylene (i.e., presumably the direct C-C bond-forming product from methane), methylidene, allenes, acetal, and surface-formate species, along with the typical olefinic/aromatic species, allow us to conclude the existence of at least two independent C-H activation pathways. Moreover, this study emphasizes the significance of mobility-dependent host-guest chemistry between an inorganic zeolite and its trapped organic species during heterogeneous catalysis.Methane dehydroaromatization (MDA) is among the most challenging processes in catalysis science owing to the inherent harsh reaction conditions and fast catalyst deactivation. To improve this process, understanding the mechanism of the initial C-C bond formation is essential. However, consensus about the actual reaction mechanism is still to be achieved. In this work, using advanced magic-angle spinning (MAS) solid-state NMR spectroscopy, we study in detail the early stages of the reaction over a well-dispersed Mo/H-ZSM-5 catalyst. Simultaneous detection of acetylene (i.e., presumably the direct C-C bond-forming product from methane), methylidene, allenes, acetal, and surface-formate species, along with the typical olefinic/aromatic species, allow us to conclude the existence of at least two independent C-H activation pathways. Moreover, this study emphasizes the significance of mobility-dependent host-guest chemistry between an inorganic zeolite and its trapped organic species during heterogeneous catalysis. |
Author | Baldus, Marc Chowdhury, Abhishek Dutta Gascon, Jorge Lucini Paioni, Alessandra Çağlayan, Mustafa Pustovarenko, Alexey Abou‐Hamad, Edy Shterk, Genrikh |
Author_xml | – sequence: 1 givenname: Mustafa surname: Çağlayan fullname: Çağlayan, Mustafa organization: King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Alessandra surname: Lucini Paioni fullname: Lucini Paioni, Alessandra organization: Utrecht University – sequence: 3 givenname: Edy surname: Abou‐Hamad fullname: Abou‐Hamad, Edy organization: King Abdullah University of Science and Technology – sequence: 4 givenname: Genrikh surname: Shterk fullname: Shterk, Genrikh organization: King Abdullah University of Science and Technology (KAUST) – sequence: 5 givenname: Alexey surname: Pustovarenko fullname: Pustovarenko, Alexey organization: King Abdullah University of Science and Technology (KAUST) – sequence: 6 givenname: Marc surname: Baldus fullname: Baldus, Marc organization: Utrecht University – sequence: 7 givenname: Abhishek Dutta orcidid: 0000-0002-4121-7375 surname: Chowdhury fullname: Chowdhury, Abhishek Dutta email: abhishek@whu.edu.cn organization: Wuhan University – sequence: 8 givenname: Jorge orcidid: 0000-0001-7558-7123 surname: Gascon fullname: Gascon, Jorge email: jorge.gascon@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) |
BookMark | eNqFkE1LAzEQhoMoWD-ungNevGzNx6bJHmtttVD1YM8u2d1ZG9kmNdki9Rd49if6S0ytKBTEUybM8wwz7wHatc4CQieUdCkh7FxbA11GGCGSKb6DOlQwmnAp-W6sU84TqQTdRwchPEVeKdLroIexNa3RDR5oXzj78fa-KfCFsxUeOT_XrYnfaumNfcTtDPBQ-2aF71v9CAG7Gt9AO9MW8CXMVpV32ru18_rlHaG9WjcBjr_fQzQdDaeD62RydzUe9CdJmTLJE-ixqlaFIBmrBNBC1UwVJaNayqLKCBS65GUtVEZ0T2hegBKFjl2RiVSmwA_R2WbswrvnJYQ2n5tQQtPEvdwy5CyljDHKUhLR0y30yS29jctFKiU9LriQkUo3VOldCB7qvDTt10Wt16bJKcnXmefrzPOfzKPW3dIW3sy1X_0tZBvhxTSw-ofO-7fj4a_7CUz-l-Q |
CitedBy_id | crossref_primary_10_1002_anie_202411197 crossref_primary_10_3390_app11125465 crossref_primary_10_1002_anie_202306133 crossref_primary_10_1016_j_apcata_2022_118916 crossref_primary_10_1016_j_ccr_2022_214691 crossref_primary_10_1021_acs_chemrev_2c00076 crossref_primary_10_1002_anie_202414724 crossref_primary_10_1016_j_fuproc_2023_107739 crossref_primary_10_1021_acscatal_1c02763 crossref_primary_10_1002_slct_202303226 crossref_primary_10_1021_acscatal_4c01827 crossref_primary_10_1002_anie_202017074 crossref_primary_10_1016_j_apcata_2023_119184 crossref_primary_10_1016_j_apcatb_2022_121194 crossref_primary_10_1002_ange_202414724 crossref_primary_10_1016_j_apcata_2023_119100 crossref_primary_10_1016_j_nantod_2020_100992 crossref_primary_10_1038_s41467_023_42955_3 crossref_primary_10_1038_s41467_023_41192_y crossref_primary_10_1016_j_cattod_2022_10_007 crossref_primary_10_1002_ange_202303124 crossref_primary_10_1002_ange_202411197 crossref_primary_10_1002_ange_202306133 crossref_primary_10_3390_membranes12121175 crossref_primary_10_1021_acscatal_2c04600 crossref_primary_10_1016_j_apcata_2020_117870 crossref_primary_10_1039_D0CS01506G crossref_primary_10_1039_D0NR07044K crossref_primary_10_1039_D1OB01370J crossref_primary_10_1039_D0CS01459A crossref_primary_10_1016_j_mtsust_2024_100913 crossref_primary_10_1038_s41563_025_02134_9 crossref_primary_10_1038_s41467_021_26090_5 crossref_primary_10_1016_j_checat_2022_07_026 crossref_primary_10_1039_D3CY00103B crossref_primary_10_1002_ange_202017074 crossref_primary_10_1021_jacsau_3c00768 crossref_primary_10_1007_s13738_021_02291_z crossref_primary_10_1007_s11705_024_2505_2 crossref_primary_10_1039_D3CC03517D crossref_primary_10_1021_acscatal_2c03747 crossref_primary_10_2139_ssrn_4172702 crossref_primary_10_1007_s12633_023_02617_x crossref_primary_10_1002_anie_202303124 |
Cites_doi | 10.1021/ja00497a058 10.1002/ange.200503898 10.1006/jcat.1998.2310 10.1021/jp4071357 10.1021/acscatal.6b02497 10.1021/acscatal.9b02213 10.1021/ja061018y 10.1039/C8SC01263F 10.1126/science.aal0121 10.1016/S1381-1169(01)00373-9 10.1021/jp209037c 10.1002/cctc.201801299 10.1002/anie.201711098 10.1002/ange.201909834 10.1002/ange.201108634 10.1006/jcat.1995.1279 10.1002/cphc.201500427 10.1016/j.jcat.2019.01.013 10.1515/zna-1972-1033 10.1007/BF02113855 10.1002/ange.201803279 10.1002/ange.201608643 10.1006/jcat.1998.2011 10.1002/ange.201209907 10.1016/S2095-4956(13)60001-7 10.1021/acsearthspacechem.8b00214 10.1016/S1381-1169(99)00050-3 10.1016/j.jcat.2009.12.021 10.1002/anie.201909834 10.1002/anie.201108634 10.1021/jacs.9b09710 10.1038/s41929-018-0078-5 10.1021/acscatal.7b02193 10.1002/anie.201803279 10.1002/anie.201608643 10.1021/acscentsci.5b00226 10.1021/acscatal.9b04307 10.1021/acscatal.6b03036 10.1016/0165-2370(93)80058-8 10.1038/s41929-017-0002-4 10.1002/anie.201209907 10.1021/jp3052592 10.1126/science.aaa7048 10.1021/acscatal.7b03114 10.1016/j.jcat.2016.12.006 10.1021/ja00117a032 10.1006/jcat.1997.1478 10.1002/cctc.201800880 10.1002/cctc.201901655 10.1021/jp012377c 10.1021/jp953294x 10.1006/jcat.1997.1726 10.1002/anie.200503898 10.1007/BF00813680 10.1021/ja0530164 10.1063/1.1680061 10.1016/j.molcata.2009.10.007 10.1039/C9CC06334J 10.1002/ange.201711098 10.1038/emboj.2012.302 10.1016/j.molcata.2008.10.044 10.1021/jp064599m 10.1007/BF00767368 10.1039/C9SC02215E |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley‐VCH GmbH 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202007283 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 16746 |
ExternalDocumentID | 10_1002_anie_202007283 ANIE202007283 |
Genre | article |
GrantInformation_xml | – fundername: King Abdullah University of Science and Technology |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4273-e62df8b5092d5e1b8f28bc21a77bd90ebac3cf5890a65a3be85ba1a7595474e3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 15:04:08 EDT 2025 Fri Jul 25 10:13:22 EDT 2025 Tue Jul 01 01:17:42 EDT 2025 Thu Apr 24 23:12:56 EDT 2025 Wed Jan 22 16:32:14 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4273-e62df8b5092d5e1b8f28bc21a77bd90ebac3cf5890a65a3be85ba1a7595474e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7558-7123 0000-0002-4121-7375 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/anie.202007283 |
PQID | 2440635357 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2412221240 proquest_journals_2440635357 crossref_citationtrail_10_1002_anie_202007283 crossref_primary_10_1002_anie_202007283 wiley_primary_10_1002_anie_202007283_ANIE202007283 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 14, 2020 |
PublicationDateYYYYMMDD | 2020-09-14 |
PublicationDate_xml | – month: 09 year: 2020 text: September 14, 2020 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1995; 30 1993; 25 2017; 7 1979; 101 2013; 22 2019; 11 2019; 55 2019; 10 1973; 59 1993; 21 2020 2020; 59 132 1996; 100 2020; 12 2015; 348 2020; 10 2017; 355 2013 2013; 52 125 2001; 105 2018; 9 2002; 181 2010; 316 2018; 1 2018 2018; 57 130 2012 2012; 51 124 1999; 181 2013; 117 2010; 270 1996; 3 2006; 128 2015; 1 2019; 9 2019; 3 2015; 16 1995; 117 1995; 157 1999; 144 2019; 141 2012; 32 1998; 175 1972; 27 2006 2006; 45 118 2016 2016; 55 128 1997; 165 2007; 111 2005; 127 2009; 300 1997; 170 2012; 116 2019; 370 2017; 346 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_11_2 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_9_2 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_47_2 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_49_2 e_1_2_6_22_1 e_1_2_6_28_2 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_29_2 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_48_2 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 55 128 start-page: 15840 16072 year: 2016 2016 end-page: 15845 16077 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 7987 year: 2017 end-page: 7994 publication-title: ACS Catal. – volume: 346 start-page: 125 year: 2017 end-page: 133 publication-title: J. Catal. – volume: 1 start-page: 398 year: 2018 end-page: 411 publication-title: Nat. Catal. – volume: 30 start-page: 135 year: 1995 end-page: 149 publication-title: Catal. Lett. – volume: 1 start-page: 313 year: 2015 end-page: 319 publication-title: ACS Cent. Sci. – volume: 117 start-page: 3615 year: 1995 end-page: 3616 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 8731 year: 2019 end-page: 8737 publication-title: ACS Catal. – volume: 101 start-page: 760 year: 1979 end-page: 762 publication-title: J. Am. Chem. Soc. – volume: 100 start-page: 8408 year: 1996 end-page: 8417 publication-title: J. Phys. Chem. – volume: 355 start-page: 1051 year: 2017 end-page: 1054 publication-title: Science – volume: 316 start-page: 106 year: 2010 end-page: 111 publication-title: J. Mol. Catal. A – volume: 128 start-page: 11679 year: 2006 end-page: 11692 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 4801 year: 2018 end-page: 4807 publication-title: Chem. Sci. – volume: 55 start-page: 13804 year: 2019 end-page: 13807 publication-title: Chem. Commun. – volume: 3 start-page: 324 year: 2019 end-page: 328 publication-title: ACS Earth Sp. Chem. – volume: 32 start-page: 204 year: 2012 end-page: 218 publication-title: EMBO J. – volume: 300 start-page: 41 year: 2009 end-page: 47 publication-title: J. Mol. Catal. A – volume: 181 start-page: 175 year: 1999 end-page: 188 publication-title: J. Catal. – volume: 127 start-page: 12965 year: 2005 end-page: 12974 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 18814 year: 2019 end-page: 18824 publication-title: J. Am. Chem. Soc. – volume: 116 start-page: 4060 year: 2012 end-page: 4070 publication-title: J. Phys. Chem. C – volume: 59 start-page: 569 year: 1973 end-page: 590 publication-title: J. Chem. Phys. – volume: 10 start-page: 842 year: 2020 end-page: 851 publication-title: ACS Catal. – volume: 370 start-page: 321 year: 2019 end-page: 331 publication-title: J. Catal. – volume: 51 124 start-page: 3850 3916 year: 2012 2012 end-page: 3853 3919 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 8235 year: 2017 end-page: 8246 publication-title: ACS Catal. – volume: 52 125 start-page: 5138 5242 year: 2013 2013 end-page: 5141 5245 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 8946 year: 2019 end-page: 8954 publication-title: Chem. Sci. – volume: 117 start-page: 22867 year: 2013 end-page: 22873 publication-title: J. Phys. Chem. C – volume: 1 start-page: 23 year: 2018 end-page: 31 publication-title: Nat. Catal. – volume: 111 start-page: 1725 year: 2007 end-page: 1732 publication-title: J. Phys. Chem. C – volume: 157 start-page: 190 year: 1995 end-page: 200 publication-title: J. Catal. – volume: 181 start-page: 283 year: 2002 end-page: 290 publication-title: J. Mol. Catal. A – volume: 27 start-page: 1536 year: 1972 end-page: 1537 publication-title: Z. Naturforsch. A – volume: 16 start-page: 3334 year: 2015 end-page: 3339 publication-title: ChemPhysChem – volume: 59 132 start-page: 819 829 year: 2020 2020 end-page: 825 835 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 8095 8227 year: 2018 2018 end-page: 8099 8231 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 1818 year: 2017 end-page: 1830 publication-title: ACS Catal. – volume: 45 118 start-page: 1617 1647 year: 2006 2006 end-page: 1620 1650 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 473 year: 2019 end-page: 480 publication-title: ChemCatChem – volume: 22 start-page: 1 year: 2013 end-page: 20 publication-title: J. Energy Chem. – volume: 3 start-page: 289 year: 1996 end-page: 297 publication-title: Top. Catal. – volume: 25 start-page: 395 year: 1993 end-page: 405 publication-title: J. Anal. Appl. Pyrolysis – volume: 12 start-page: 544 year: 2020 end-page: 549 publication-title: ChemCatChem – volume: 105 start-page: 10454 year: 2001 end-page: 10461 publication-title: J. Phys. Chem. A – volume: 165 start-page: 150 year: 1997 end-page: 161 publication-title: J. Catal. – volume: 21 start-page: 35 year: 1993 end-page: 41 publication-title: Catal. Lett. – volume: 11 start-page: 39 year: 2019 end-page: 52 publication-title: ChemCatChem – volume: 7 start-page: 520 year: 2017 end-page: 529 publication-title: ACS Catal. – volume: 144 start-page: 469 year: 1999 end-page: 471 publication-title: J. Mol. Catal. A – volume: 116 start-page: 17101 year: 2012 end-page: 17109 publication-title: J. Phys. Chem. C – volume: 175 start-page: 347 year: 1998 end-page: 351 publication-title: J. Catal. – volume: 57 130 start-page: 1016 1028 year: 2018 2018 end-page: 1020 1032 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 270 start-page: 185 year: 2010 end-page: 195 publication-title: J. Catal. – volume: 348 start-page: 686 year: 2015 end-page: 690 publication-title: Science – volume: 170 start-page: 11 year: 1997 end-page: 19 publication-title: J. Catal. – ident: e_1_2_6_27_1 doi: 10.1021/ja00497a058 – ident: e_1_2_6_47_2 doi: 10.1002/ange.200503898 – ident: e_1_2_6_21_1 doi: 10.1006/jcat.1998.2310 – ident: e_1_2_6_34_1 doi: 10.1021/jp4071357 – ident: e_1_2_6_10_1 doi: 10.1021/acscatal.6b02497 – ident: e_1_2_6_14_1 doi: 10.1021/acscatal.9b02213 – ident: e_1_2_6_46_1 doi: 10.1021/ja061018y – ident: e_1_2_6_12_1 doi: 10.1039/C8SC01263F – ident: e_1_2_6_5_1 doi: 10.1126/science.aal0121 – ident: e_1_2_6_23_1 doi: 10.1016/S1381-1169(01)00373-9 – ident: e_1_2_6_52_1 doi: 10.1021/jp209037c – ident: e_1_2_6_13_1 doi: 10.1002/cctc.201801299 – ident: e_1_2_6_11_1 doi: 10.1002/anie.201711098 – ident: e_1_2_6_9_2 doi: 10.1002/ange.201909834 – ident: e_1_2_6_48_2 doi: 10.1002/ange.201108634 – ident: e_1_2_6_17_1 doi: 10.1006/jcat.1995.1279 – ident: e_1_2_6_43_1 doi: 10.1002/cphc.201500427 – ident: e_1_2_6_15_1 doi: 10.1016/j.jcat.2019.01.013 – ident: e_1_2_6_38_1 doi: 10.1515/zna-1972-1033 – ident: e_1_2_6_18_1 doi: 10.1007/BF02113855 – ident: e_1_2_6_29_2 doi: 10.1002/ange.201803279 – ident: e_1_2_6_28_2 doi: 10.1002/ange.201608643 – ident: e_1_2_6_4_1 doi: 10.1006/jcat.1998.2011 – ident: e_1_2_6_49_2 doi: 10.1002/ange.201209907 – ident: e_1_2_6_3_1 doi: 10.1016/S2095-4956(13)60001-7 – ident: e_1_2_6_37_1 doi: 10.1021/acsearthspacechem.8b00214 – ident: e_1_2_6_22_1 doi: 10.1016/S1381-1169(99)00050-3 – ident: e_1_2_6_50_1 doi: 10.1016/j.jcat.2009.12.021 – ident: e_1_2_6_9_1 doi: 10.1002/anie.201909834 – ident: e_1_2_6_48_1 doi: 10.1002/anie.201108634 – ident: e_1_2_6_24_1 doi: 10.1021/jacs.9b09710 – ident: e_1_2_6_6_1 doi: 10.1038/s41929-018-0078-5 – ident: e_1_2_6_57_1 doi: 10.1021/acscatal.7b02193 – ident: e_1_2_6_29_1 doi: 10.1002/anie.201803279 – ident: e_1_2_6_28_1 doi: 10.1002/anie.201608643 – ident: e_1_2_6_42_1 doi: 10.1021/acscentsci.5b00226 – ident: e_1_2_6_51_1 doi: 10.1021/acscatal.9b04307 – ident: e_1_2_6_33_1 doi: 10.1021/acscatal.6b03036 – ident: e_1_2_6_39_1 doi: 10.1016/0165-2370(93)80058-8 – ident: e_1_2_6_30_1 doi: 10.1038/s41929-017-0002-4 – ident: e_1_2_6_49_1 doi: 10.1002/anie.201209907 – ident: e_1_2_6_35_1 doi: 10.1021/jp3052592 – ident: e_1_2_6_7_1 doi: 10.1126/science.aaa7048 – ident: e_1_2_6_54_1 doi: 10.1021/acscatal.7b03114 – ident: e_1_2_6_8_1 doi: 10.1016/j.jcat.2016.12.006 – ident: e_1_2_6_56_1 doi: 10.1021/ja00117a032 – ident: e_1_2_6_19_1 doi: 10.1006/jcat.1997.1478 – ident: e_1_2_6_2_1 doi: 10.1002/cctc.201800880 – ident: e_1_2_6_25_1 doi: 10.1002/cctc.201901655 – ident: e_1_2_6_36_1 doi: 10.1021/jp012377c – ident: e_1_2_6_40_1 doi: 10.1021/jp953294x – ident: e_1_2_6_20_1 doi: 10.1006/jcat.1997.1726 – ident: e_1_2_6_47_1 doi: 10.1002/anie.200503898 – ident: e_1_2_6_16_1 doi: 10.1007/BF00813680 – ident: e_1_2_6_31_1 doi: 10.1021/ja0530164 – ident: e_1_2_6_26_1 doi: 10.1063/1.1680061 – ident: e_1_2_6_45_1 doi: 10.1016/j.molcata.2009.10.007 – ident: e_1_2_6_55_1 doi: 10.1039/C9CC06334J – ident: e_1_2_6_11_2 doi: 10.1002/ange.201711098 – ident: e_1_2_6_32_1 doi: 10.1038/emboj.2012.302 – ident: e_1_2_6_44_1 doi: 10.1016/j.molcata.2008.10.044 – ident: e_1_2_6_53_1 doi: 10.1021/jp064599m – ident: e_1_2_6_1_1 doi: 10.1007/BF00767368 – ident: e_1_2_6_41_1 doi: 10.1039/C9SC02215E |
SSID | ssj0028806 |
Score | 2.5061967 |
Snippet | Methane dehydroaromatization (MDA) is among the most challenging processes in catalysis science owing to the inherent harsh reaction conditions and fast... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 16741 |
SubjectTerms | Acetylene bifunctional catalysts Bonding Carbon Catalysis Catalysts Deactivation Magnetic resonance spectroscopy Methane methane dehydroaromatization NMR NMR spectroscopy Nuclear magnetic resonance Reaction mechanisms solid-state NMR spectroscopy Species Supramolecular compounds Zeolites |
Title | Initial Carbon−Carbon Bond Formation during the Early Stages of Methane Dehydroaromatization |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202007283 https://www.proquest.com/docview/2440635357 https://www.proquest.com/docview/2412221240 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQF7i0tFB1gVauhNRTIHbi2DmihRVUgkMFEqdGnmTcSq02aH8O8AQ99xH7JJ2JNwEqVZXamyOPlXjssT87M98IcVCUVoEJOtGYYZI3ZOkeME0aBcrYMnW249K7uCzOrvMPN-bmURR_5IcYLtzYMrr1mg3cw_zogTSUI7DpfMd3bbRF0iLMDluMij4O_FGaJmcML8qyhLPQ96yNqT562vzprvQANR8D1m7HmTwXvv_W6Gjy9XC5gMP6_jcax__pzJZ4toKj8jjOnxdiDacvxca4zwK3LT6ds3cRiYz9DNrpz-8_YkFyPmI56UMfZQx3lAQnZceZLAnFfsa5bIO8QL6eR3mCX-6aWetnLbeJ4Z874mpyejU-S1Y5GZI6J6STYKGb4IBghm4MKnBBO6i18tZCU6YIvs7qYFyZ-sL4DNAZ8FRrSpPbHLNXYn3aTvG1kAEaLLIQVCgdnZrQBe8KVQQLhcvBNiOR9ENS1Su-ck6b8a2KTMu6YqVVg9JG4v0gfxuZOv4oud-PcLWy2HlFMIfQmsmMHYl3QzUpm3-gkJLaJcsoglOEiNKR0N1w_uVN1fHl-enwtPsvjfbEJpfZRUXl-2J9MVviG8JBC3jbzfVf5swAng |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwEB7Bclgu_CMKCxgJiVN2YyeOneOqbNXCtgdUJE5EdjJeJFCDuu0BnoAzj8iTMBM3WRYJIcEticdKMvbEnycz3wA8L0ojvQ4qUZhhkjdk6c5jmjTSS23K1JqOS2--KKZv81fvdB9NyLkwkR9icLixZXTfazZwdkgfXbCGcgo2bfDY2UZr5FW4xmW9u13Vm4FBStH0jAlGWZZwHfqetzFVR5f7X16XLsDmr5C1W3MmN8H3TxtDTT4ebjf-sP76G5Hjf73OLbixQ6TiOE6h23AFV3dgf9wXgrsL72ccYEQiY7f27erHt-_xQHBJYjHpsx9FzHgUhChFR5ssCMie4blog5gje-hRvMQPX5p169Yt94kZoPdgOTlZjqfJrixDUucEdhIsVBOsJ6ShGo3S26Csr5V0xvimTNG7OquDtmXqCu0yj1Z7R6261LnJMbsPe6t2hQ9ABN9gkYUgQ2lp44Q2OFvIIhhf2NybZgRJPyZVvaMs58oZn6pItqwqVlo1KG0ELwb5z5Gs44-SB_0QVzujPa8I6RBg05k2I3g2NJOy-R8KKandsowkREWgKB2B6sbzL3eqjhezk-Hs4b90egr70-X8tDqdLV4_gut8nSNWZH4Ae5v1Fh8TLNr4J93E_wntgAS5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkYAL_4iFAkZC4pQ2duKfHKvdrrpAVwgVqSciOx4XCbSptrsHeALOPCJPwjjepC0SQoJbEo-VZDwTf554vgF4qSrNnQwiE1hgVnrydOswzzx3XOoqN7rj0jucq4MP5etjeXwhiz_xQwwBt-gZ3fc6OvipD7vnpKExA5vWdzHWRlPkVbhWqtxEu568HwikBFlnyi8qiiyWoe9pG3Oxe7n_5WnpHGteRKzdlDO9DbZ_2LTT5PPOeuV2mm-_8Tj-z9vcgVsbPMr2kgHdhSu4uAc3xn0ZuPvwcRa3F5HI2C5du_j5_Uc6YLEgMZv2uY8s5TsywpOsI01mBGNP8Iy1gR1ijM8jm-Cnr37Z2mUb-6T8zwdwNN0_Gh9km6IMWVMS1MlQCR-MI5whvETuTBDGNYJbrZ2vcnS2KZogTZVbJW3h0EhnqVVWstQlFg9ha9Eu8BGw4DyqIgQeKkPLJjTBGsVV0E6Z0mk_gqwfkrrZEJbHuhlf6kS1LOqotHpQ2gheDfKniarjj5Lb_QjXG5c9qwnnEFyThdQjeDE0k7LjHxRSUruOMpzwFEGifASiG86_3Knem8_2h7PH_9LpOVx_N5nWb2fzN0_gZrwct6vwchu2Vss1PiVMtHLPOrP_BfUmA3E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Initial+Carbon%E2%88%92Carbon+Bond+Formation+during+the+Early+Stages+of+Methane+Dehydroaromatization&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=%C3%87a%C4%9Flayan%2C+Mustafa&rft.au=Lucini+Paioni%2C+Alessandra&rft.au=Abou%E2%80%90Hamad%2C+Edy&rft.au=Shterk%2C+Genrikh&rft.date=2020-09-14&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=38&rft.spage=16741&rft.epage=16746&rft_id=info:doi/10.1002%2Fanie.202007283&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202007283 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |