Initial Carbon−Carbon Bond Formation during the Early Stages of Methane Dehydroaromatization

Methane dehydroaromatization (MDA) is among the most challenging processes in catalysis science owing to the inherent harsh reaction conditions and fast catalyst deactivation. To improve this process, understanding the mechanism of the initial C−C bond formation is essential. However, consensus abou...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 38; pp. 16741 - 16746
Main Authors Çağlayan, Mustafa, Lucini Paioni, Alessandra, Abou‐Hamad, Edy, Shterk, Genrikh, Pustovarenko, Alexey, Baldus, Marc, Chowdhury, Abhishek Dutta, Gascon, Jorge
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 14.09.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Methane dehydroaromatization (MDA) is among the most challenging processes in catalysis science owing to the inherent harsh reaction conditions and fast catalyst deactivation. To improve this process, understanding the mechanism of the initial C−C bond formation is essential. However, consensus about the actual reaction mechanism is still to be achieved. In this work, using advanced magic‐angle spinning (MAS) solid‐state NMR spectroscopy, we study in detail the early stages of the reaction over a well‐dispersed Mo/H‐ZSM‐5 catalyst. Simultaneous detection of acetylene (i.e., presumably the direct C−C bond‐forming product from methane), methylidene, allenes, acetal, and surface‐formate species, along with the typical olefinic/aromatic species, allow us to conclude the existence of at least two independent C−H activation pathways. Moreover, this study emphasizes the significance of mobility‐dependent host–guest chemistry between an inorganic zeolite and its trapped organic species during heterogeneous catalysis. The initial C−C bond formation during the early stages of methane dehydroaromatization was investigated by employing “mobility‐dependent” solid‐state NMR spectroscopy. Based on the detected species (such as acetylene, acetal etc.) at least two different mechanisms (mono‐functional vs. bi‐functional) for the formation of direct C−C bonds were identified.
AbstractList Methane dehydroaromatization (MDA) is among the most challenging processes in catalysis science owing to the inherent harsh reaction conditions and fast catalyst deactivation. To improve this process, understanding the mechanism of the initial C−C bond formation is essential. However, consensus about the actual reaction mechanism is still to be achieved. In this work, using advanced magic‐angle spinning (MAS) solid‐state NMR spectroscopy, we study in detail the early stages of the reaction over a well‐dispersed Mo/H‐ZSM‐5 catalyst. Simultaneous detection of acetylene (i.e., presumably the direct C−C bond‐forming product from methane), methylidene, allenes, acetal, and surface‐formate species, along with the typical olefinic/aromatic species, allow us to conclude the existence of at least two independent C−H activation pathways. Moreover, this study emphasizes the significance of mobility‐dependent host–guest chemistry between an inorganic zeolite and its trapped organic species during heterogeneous catalysis.
Methane dehydroaromatization (MDA) is among the most challenging processes in catalysis science owing to the inherent harsh reaction conditions and fast catalyst deactivation. To improve this process, understanding the mechanism of the initial C−C bond formation is essential. However, consensus about the actual reaction mechanism is still to be achieved. In this work, using advanced magic‐angle spinning (MAS) solid‐state NMR spectroscopy, we study in detail the early stages of the reaction over a well‐dispersed Mo/H‐ZSM‐5 catalyst. Simultaneous detection of acetylene (i.e., presumably the direct C−C bond‐forming product from methane), methylidene, allenes, acetal, and surface‐formate species, along with the typical olefinic/aromatic species, allow us to conclude the existence of at least two independent C−H activation pathways. Moreover, this study emphasizes the significance of mobility‐dependent host–guest chemistry between an inorganic zeolite and its trapped organic species during heterogeneous catalysis. The initial C−C bond formation during the early stages of methane dehydroaromatization was investigated by employing “mobility‐dependent” solid‐state NMR spectroscopy. Based on the detected species (such as acetylene, acetal etc.) at least two different mechanisms (mono‐functional vs. bi‐functional) for the formation of direct C−C bonds were identified.
Methane dehydroaromatization (MDA) is among the most challenging processes in catalysis science owing to the inherent harsh reaction conditions and fast catalyst deactivation. To improve this process, understanding the mechanism of the initial C-C bond formation is essential. However, consensus about the actual reaction mechanism is still to be achieved. In this work, using advanced magic-angle spinning (MAS) solid-state NMR spectroscopy, we study in detail the early stages of the reaction over a well-dispersed Mo/H-ZSM-5 catalyst. Simultaneous detection of acetylene (i.e., presumably the direct C-C bond-forming product from methane), methylidene, allenes, acetal, and surface-formate species, along with the typical olefinic/aromatic species, allow us to conclude the existence of at least two independent C-H activation pathways. Moreover, this study emphasizes the significance of mobility-dependent host-guest chemistry between an inorganic zeolite and its trapped organic species during heterogeneous catalysis.Methane dehydroaromatization (MDA) is among the most challenging processes in catalysis science owing to the inherent harsh reaction conditions and fast catalyst deactivation. To improve this process, understanding the mechanism of the initial C-C bond formation is essential. However, consensus about the actual reaction mechanism is still to be achieved. In this work, using advanced magic-angle spinning (MAS) solid-state NMR spectroscopy, we study in detail the early stages of the reaction over a well-dispersed Mo/H-ZSM-5 catalyst. Simultaneous detection of acetylene (i.e., presumably the direct C-C bond-forming product from methane), methylidene, allenes, acetal, and surface-formate species, along with the typical olefinic/aromatic species, allow us to conclude the existence of at least two independent C-H activation pathways. Moreover, this study emphasizes the significance of mobility-dependent host-guest chemistry between an inorganic zeolite and its trapped organic species during heterogeneous catalysis.
Author Baldus, Marc
Chowdhury, Abhishek Dutta
Gascon, Jorge
Lucini Paioni, Alessandra
Çağlayan, Mustafa
Pustovarenko, Alexey
Abou‐Hamad, Edy
Shterk, Genrikh
Author_xml – sequence: 1
  givenname: Mustafa
  surname: Çağlayan
  fullname: Çağlayan, Mustafa
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Alessandra
  surname: Lucini Paioni
  fullname: Lucini Paioni, Alessandra
  organization: Utrecht University
– sequence: 3
  givenname: Edy
  surname: Abou‐Hamad
  fullname: Abou‐Hamad, Edy
  organization: King Abdullah University of Science and Technology
– sequence: 4
  givenname: Genrikh
  surname: Shterk
  fullname: Shterk, Genrikh
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: Alexey
  surname: Pustovarenko
  fullname: Pustovarenko, Alexey
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 6
  givenname: Marc
  surname: Baldus
  fullname: Baldus, Marc
  organization: Utrecht University
– sequence: 7
  givenname: Abhishek Dutta
  orcidid: 0000-0002-4121-7375
  surname: Chowdhury
  fullname: Chowdhury, Abhishek Dutta
  email: abhishek@whu.edu.cn
  organization: Wuhan University
– sequence: 8
  givenname: Jorge
  orcidid: 0000-0001-7558-7123
  surname: Gascon
  fullname: Gascon, Jorge
  email: jorge.gascon@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
BookMark eNqFkE1LAzEQhoMoWD-ungNevGzNx6bJHmtttVD1YM8u2d1ZG9kmNdki9Rd49if6S0ytKBTEUybM8wwz7wHatc4CQieUdCkh7FxbA11GGCGSKb6DOlQwmnAp-W6sU84TqQTdRwchPEVeKdLroIexNa3RDR5oXzj78fa-KfCFsxUeOT_XrYnfaumNfcTtDPBQ-2aF71v9CAG7Gt9AO9MW8CXMVpV32ru18_rlHaG9WjcBjr_fQzQdDaeD62RydzUe9CdJmTLJE-ixqlaFIBmrBNBC1UwVJaNayqLKCBS65GUtVEZ0T2hegBKFjl2RiVSmwA_R2WbswrvnJYQ2n5tQQtPEvdwy5CyljDHKUhLR0y30yS29jctFKiU9LriQkUo3VOldCB7qvDTt10Wt16bJKcnXmefrzPOfzKPW3dIW3sy1X_0tZBvhxTSw-ofO-7fj4a_7CUz-l-Q
CitedBy_id crossref_primary_10_1002_anie_202411197
crossref_primary_10_3390_app11125465
crossref_primary_10_1002_anie_202306133
crossref_primary_10_1016_j_apcata_2022_118916
crossref_primary_10_1016_j_ccr_2022_214691
crossref_primary_10_1021_acs_chemrev_2c00076
crossref_primary_10_1002_anie_202414724
crossref_primary_10_1016_j_fuproc_2023_107739
crossref_primary_10_1021_acscatal_1c02763
crossref_primary_10_1002_slct_202303226
crossref_primary_10_1021_acscatal_4c01827
crossref_primary_10_1002_anie_202017074
crossref_primary_10_1016_j_apcata_2023_119184
crossref_primary_10_1016_j_apcatb_2022_121194
crossref_primary_10_1002_ange_202414724
crossref_primary_10_1016_j_apcata_2023_119100
crossref_primary_10_1016_j_nantod_2020_100992
crossref_primary_10_1038_s41467_023_42955_3
crossref_primary_10_1038_s41467_023_41192_y
crossref_primary_10_1016_j_cattod_2022_10_007
crossref_primary_10_1002_ange_202303124
crossref_primary_10_1002_ange_202411197
crossref_primary_10_1002_ange_202306133
crossref_primary_10_3390_membranes12121175
crossref_primary_10_1021_acscatal_2c04600
crossref_primary_10_1016_j_apcata_2020_117870
crossref_primary_10_1039_D0CS01506G
crossref_primary_10_1039_D0NR07044K
crossref_primary_10_1039_D1OB01370J
crossref_primary_10_1039_D0CS01459A
crossref_primary_10_1016_j_mtsust_2024_100913
crossref_primary_10_1038_s41563_025_02134_9
crossref_primary_10_1038_s41467_021_26090_5
crossref_primary_10_1016_j_checat_2022_07_026
crossref_primary_10_1039_D3CY00103B
crossref_primary_10_1002_ange_202017074
crossref_primary_10_1021_jacsau_3c00768
crossref_primary_10_1007_s13738_021_02291_z
crossref_primary_10_1007_s11705_024_2505_2
crossref_primary_10_1039_D3CC03517D
crossref_primary_10_1021_acscatal_2c03747
crossref_primary_10_2139_ssrn_4172702
crossref_primary_10_1007_s12633_023_02617_x
crossref_primary_10_1002_anie_202303124
Cites_doi 10.1021/ja00497a058
10.1002/ange.200503898
10.1006/jcat.1998.2310
10.1021/jp4071357
10.1021/acscatal.6b02497
10.1021/acscatal.9b02213
10.1021/ja061018y
10.1039/C8SC01263F
10.1126/science.aal0121
10.1016/S1381-1169(01)00373-9
10.1021/jp209037c
10.1002/cctc.201801299
10.1002/anie.201711098
10.1002/ange.201909834
10.1002/ange.201108634
10.1006/jcat.1995.1279
10.1002/cphc.201500427
10.1016/j.jcat.2019.01.013
10.1515/zna-1972-1033
10.1007/BF02113855
10.1002/ange.201803279
10.1002/ange.201608643
10.1006/jcat.1998.2011
10.1002/ange.201209907
10.1016/S2095-4956(13)60001-7
10.1021/acsearthspacechem.8b00214
10.1016/S1381-1169(99)00050-3
10.1016/j.jcat.2009.12.021
10.1002/anie.201909834
10.1002/anie.201108634
10.1021/jacs.9b09710
10.1038/s41929-018-0078-5
10.1021/acscatal.7b02193
10.1002/anie.201803279
10.1002/anie.201608643
10.1021/acscentsci.5b00226
10.1021/acscatal.9b04307
10.1021/acscatal.6b03036
10.1016/0165-2370(93)80058-8
10.1038/s41929-017-0002-4
10.1002/anie.201209907
10.1021/jp3052592
10.1126/science.aaa7048
10.1021/acscatal.7b03114
10.1016/j.jcat.2016.12.006
10.1021/ja00117a032
10.1006/jcat.1997.1478
10.1002/cctc.201800880
10.1002/cctc.201901655
10.1021/jp012377c
10.1021/jp953294x
10.1006/jcat.1997.1726
10.1002/anie.200503898
10.1007/BF00813680
10.1021/ja0530164
10.1063/1.1680061
10.1016/j.molcata.2009.10.007
10.1039/C9CC06334J
10.1002/ange.201711098
10.1038/emboj.2012.302
10.1016/j.molcata.2008.10.044
10.1021/jp064599m
10.1007/BF00767368
10.1039/C9SC02215E
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley‐VCH GmbH
2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202007283
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 16746
ExternalDocumentID 10_1002_anie_202007283
ANIE202007283
Genre article
GrantInformation_xml – fundername: King Abdullah University of Science and Technology
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c4273-e62df8b5092d5e1b8f28bc21a77bd90ebac3cf5890a65a3be85ba1a7595474e3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 15:04:08 EDT 2025
Fri Jul 25 10:13:22 EDT 2025
Tue Jul 01 01:17:42 EDT 2025
Thu Apr 24 23:12:56 EDT 2025
Wed Jan 22 16:32:14 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4273-e62df8b5092d5e1b8f28bc21a77bd90ebac3cf5890a65a3be85ba1a7595474e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7558-7123
0000-0002-4121-7375
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/anie.202007283
PQID 2440635357
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2412221240
proquest_journals_2440635357
crossref_citationtrail_10_1002_anie_202007283
crossref_primary_10_1002_anie_202007283
wiley_primary_10_1002_anie_202007283_ANIE202007283
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 14, 2020
PublicationDateYYYYMMDD 2020-09-14
PublicationDate_xml – month: 09
  year: 2020
  text: September 14, 2020
  day: 14
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1995; 30
1993; 25
2017; 7
1979; 101
2013; 22
2019; 11
2019; 55
2019; 10
1973; 59
1993; 21
2020 2020; 59 132
1996; 100
2020; 12
2015; 348
2020; 10
2017; 355
2013 2013; 52 125
2001; 105
2018; 9
2002; 181
2010; 316
2018; 1
2018 2018; 57 130
2012 2012; 51 124
1999; 181
2013; 117
2010; 270
1996; 3
2006; 128
2015; 1
2019; 9
2019; 3
2015; 16
1995; 117
1995; 157
1999; 144
2019; 141
2012; 32
1998; 175
1972; 27
2006 2006; 45 118
2016 2016; 55 128
1997; 165
2007; 111
2005; 127
2009; 300
1997; 170
2012; 116
2019; 370
2017; 346
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_11_2
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_9_2
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_47_2
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_49_2
e_1_2_6_22_1
e_1_2_6_28_2
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_29_2
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_48_2
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 55 128
  start-page: 15840 16072
  year: 2016 2016
  end-page: 15845 16077
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 7987
  year: 2017
  end-page: 7994
  publication-title: ACS Catal.
– volume: 346
  start-page: 125
  year: 2017
  end-page: 133
  publication-title: J. Catal.
– volume: 1
  start-page: 398
  year: 2018
  end-page: 411
  publication-title: Nat. Catal.
– volume: 30
  start-page: 135
  year: 1995
  end-page: 149
  publication-title: Catal. Lett.
– volume: 1
  start-page: 313
  year: 2015
  end-page: 319
  publication-title: ACS Cent. Sci.
– volume: 117
  start-page: 3615
  year: 1995
  end-page: 3616
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 8731
  year: 2019
  end-page: 8737
  publication-title: ACS Catal.
– volume: 101
  start-page: 760
  year: 1979
  end-page: 762
  publication-title: J. Am. Chem. Soc.
– volume: 100
  start-page: 8408
  year: 1996
  end-page: 8417
  publication-title: J. Phys. Chem.
– volume: 355
  start-page: 1051
  year: 2017
  end-page: 1054
  publication-title: Science
– volume: 316
  start-page: 106
  year: 2010
  end-page: 111
  publication-title: J. Mol. Catal. A
– volume: 128
  start-page: 11679
  year: 2006
  end-page: 11692
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 4801
  year: 2018
  end-page: 4807
  publication-title: Chem. Sci.
– volume: 55
  start-page: 13804
  year: 2019
  end-page: 13807
  publication-title: Chem. Commun.
– volume: 3
  start-page: 324
  year: 2019
  end-page: 328
  publication-title: ACS Earth Sp. Chem.
– volume: 32
  start-page: 204
  year: 2012
  end-page: 218
  publication-title: EMBO J.
– volume: 300
  start-page: 41
  year: 2009
  end-page: 47
  publication-title: J. Mol. Catal. A
– volume: 181
  start-page: 175
  year: 1999
  end-page: 188
  publication-title: J. Catal.
– volume: 127
  start-page: 12965
  year: 2005
  end-page: 12974
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 18814
  year: 2019
  end-page: 18824
  publication-title: J. Am. Chem. Soc.
– volume: 116
  start-page: 4060
  year: 2012
  end-page: 4070
  publication-title: J. Phys. Chem. C
– volume: 59
  start-page: 569
  year: 1973
  end-page: 590
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 842
  year: 2020
  end-page: 851
  publication-title: ACS Catal.
– volume: 370
  start-page: 321
  year: 2019
  end-page: 331
  publication-title: J. Catal.
– volume: 51 124
  start-page: 3850 3916
  year: 2012 2012
  end-page: 3853 3919
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 8235
  year: 2017
  end-page: 8246
  publication-title: ACS Catal.
– volume: 52 125
  start-page: 5138 5242
  year: 2013 2013
  end-page: 5141 5245
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 8946
  year: 2019
  end-page: 8954
  publication-title: Chem. Sci.
– volume: 117
  start-page: 22867
  year: 2013
  end-page: 22873
  publication-title: J. Phys. Chem. C
– volume: 1
  start-page: 23
  year: 2018
  end-page: 31
  publication-title: Nat. Catal.
– volume: 111
  start-page: 1725
  year: 2007
  end-page: 1732
  publication-title: J. Phys. Chem. C
– volume: 157
  start-page: 190
  year: 1995
  end-page: 200
  publication-title: J. Catal.
– volume: 181
  start-page: 283
  year: 2002
  end-page: 290
  publication-title: J. Mol. Catal. A
– volume: 27
  start-page: 1536
  year: 1972
  end-page: 1537
  publication-title: Z. Naturforsch. A
– volume: 16
  start-page: 3334
  year: 2015
  end-page: 3339
  publication-title: ChemPhysChem
– volume: 59 132
  start-page: 819 829
  year: 2020 2020
  end-page: 825 835
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 8095 8227
  year: 2018 2018
  end-page: 8099 8231
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 1818
  year: 2017
  end-page: 1830
  publication-title: ACS Catal.
– volume: 45 118
  start-page: 1617 1647
  year: 2006 2006
  end-page: 1620 1650
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 473
  year: 2019
  end-page: 480
  publication-title: ChemCatChem
– volume: 22
  start-page: 1
  year: 2013
  end-page: 20
  publication-title: J. Energy Chem.
– volume: 3
  start-page: 289
  year: 1996
  end-page: 297
  publication-title: Top. Catal.
– volume: 25
  start-page: 395
  year: 1993
  end-page: 405
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 12
  start-page: 544
  year: 2020
  end-page: 549
  publication-title: ChemCatChem
– volume: 105
  start-page: 10454
  year: 2001
  end-page: 10461
  publication-title: J. Phys. Chem. A
– volume: 165
  start-page: 150
  year: 1997
  end-page: 161
  publication-title: J. Catal.
– volume: 21
  start-page: 35
  year: 1993
  end-page: 41
  publication-title: Catal. Lett.
– volume: 11
  start-page: 39
  year: 2019
  end-page: 52
  publication-title: ChemCatChem
– volume: 7
  start-page: 520
  year: 2017
  end-page: 529
  publication-title: ACS Catal.
– volume: 144
  start-page: 469
  year: 1999
  end-page: 471
  publication-title: J. Mol. Catal. A
– volume: 116
  start-page: 17101
  year: 2012
  end-page: 17109
  publication-title: J. Phys. Chem. C
– volume: 175
  start-page: 347
  year: 1998
  end-page: 351
  publication-title: J. Catal.
– volume: 57 130
  start-page: 1016 1028
  year: 2018 2018
  end-page: 1020 1032
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 270
  start-page: 185
  year: 2010
  end-page: 195
  publication-title: J. Catal.
– volume: 348
  start-page: 686
  year: 2015
  end-page: 690
  publication-title: Science
– volume: 170
  start-page: 11
  year: 1997
  end-page: 19
  publication-title: J. Catal.
– ident: e_1_2_6_27_1
  doi: 10.1021/ja00497a058
– ident: e_1_2_6_47_2
  doi: 10.1002/ange.200503898
– ident: e_1_2_6_21_1
  doi: 10.1006/jcat.1998.2310
– ident: e_1_2_6_34_1
  doi: 10.1021/jp4071357
– ident: e_1_2_6_10_1
  doi: 10.1021/acscatal.6b02497
– ident: e_1_2_6_14_1
  doi: 10.1021/acscatal.9b02213
– ident: e_1_2_6_46_1
  doi: 10.1021/ja061018y
– ident: e_1_2_6_12_1
  doi: 10.1039/C8SC01263F
– ident: e_1_2_6_5_1
  doi: 10.1126/science.aal0121
– ident: e_1_2_6_23_1
  doi: 10.1016/S1381-1169(01)00373-9
– ident: e_1_2_6_52_1
  doi: 10.1021/jp209037c
– ident: e_1_2_6_13_1
  doi: 10.1002/cctc.201801299
– ident: e_1_2_6_11_1
  doi: 10.1002/anie.201711098
– ident: e_1_2_6_9_2
  doi: 10.1002/ange.201909834
– ident: e_1_2_6_48_2
  doi: 10.1002/ange.201108634
– ident: e_1_2_6_17_1
  doi: 10.1006/jcat.1995.1279
– ident: e_1_2_6_43_1
  doi: 10.1002/cphc.201500427
– ident: e_1_2_6_15_1
  doi: 10.1016/j.jcat.2019.01.013
– ident: e_1_2_6_38_1
  doi: 10.1515/zna-1972-1033
– ident: e_1_2_6_18_1
  doi: 10.1007/BF02113855
– ident: e_1_2_6_29_2
  doi: 10.1002/ange.201803279
– ident: e_1_2_6_28_2
  doi: 10.1002/ange.201608643
– ident: e_1_2_6_4_1
  doi: 10.1006/jcat.1998.2011
– ident: e_1_2_6_49_2
  doi: 10.1002/ange.201209907
– ident: e_1_2_6_3_1
  doi: 10.1016/S2095-4956(13)60001-7
– ident: e_1_2_6_37_1
  doi: 10.1021/acsearthspacechem.8b00214
– ident: e_1_2_6_22_1
  doi: 10.1016/S1381-1169(99)00050-3
– ident: e_1_2_6_50_1
  doi: 10.1016/j.jcat.2009.12.021
– ident: e_1_2_6_9_1
  doi: 10.1002/anie.201909834
– ident: e_1_2_6_48_1
  doi: 10.1002/anie.201108634
– ident: e_1_2_6_24_1
  doi: 10.1021/jacs.9b09710
– ident: e_1_2_6_6_1
  doi: 10.1038/s41929-018-0078-5
– ident: e_1_2_6_57_1
  doi: 10.1021/acscatal.7b02193
– ident: e_1_2_6_29_1
  doi: 10.1002/anie.201803279
– ident: e_1_2_6_28_1
  doi: 10.1002/anie.201608643
– ident: e_1_2_6_42_1
  doi: 10.1021/acscentsci.5b00226
– ident: e_1_2_6_51_1
  doi: 10.1021/acscatal.9b04307
– ident: e_1_2_6_33_1
  doi: 10.1021/acscatal.6b03036
– ident: e_1_2_6_39_1
  doi: 10.1016/0165-2370(93)80058-8
– ident: e_1_2_6_30_1
  doi: 10.1038/s41929-017-0002-4
– ident: e_1_2_6_49_1
  doi: 10.1002/anie.201209907
– ident: e_1_2_6_35_1
  doi: 10.1021/jp3052592
– ident: e_1_2_6_7_1
  doi: 10.1126/science.aaa7048
– ident: e_1_2_6_54_1
  doi: 10.1021/acscatal.7b03114
– ident: e_1_2_6_8_1
  doi: 10.1016/j.jcat.2016.12.006
– ident: e_1_2_6_56_1
  doi: 10.1021/ja00117a032
– ident: e_1_2_6_19_1
  doi: 10.1006/jcat.1997.1478
– ident: e_1_2_6_2_1
  doi: 10.1002/cctc.201800880
– ident: e_1_2_6_25_1
  doi: 10.1002/cctc.201901655
– ident: e_1_2_6_36_1
  doi: 10.1021/jp012377c
– ident: e_1_2_6_40_1
  doi: 10.1021/jp953294x
– ident: e_1_2_6_20_1
  doi: 10.1006/jcat.1997.1726
– ident: e_1_2_6_47_1
  doi: 10.1002/anie.200503898
– ident: e_1_2_6_16_1
  doi: 10.1007/BF00813680
– ident: e_1_2_6_31_1
  doi: 10.1021/ja0530164
– ident: e_1_2_6_26_1
  doi: 10.1063/1.1680061
– ident: e_1_2_6_45_1
  doi: 10.1016/j.molcata.2009.10.007
– ident: e_1_2_6_55_1
  doi: 10.1039/C9CC06334J
– ident: e_1_2_6_11_2
  doi: 10.1002/ange.201711098
– ident: e_1_2_6_32_1
  doi: 10.1038/emboj.2012.302
– ident: e_1_2_6_44_1
  doi: 10.1016/j.molcata.2008.10.044
– ident: e_1_2_6_53_1
  doi: 10.1021/jp064599m
– ident: e_1_2_6_1_1
  doi: 10.1007/BF00767368
– ident: e_1_2_6_41_1
  doi: 10.1039/C9SC02215E
SSID ssj0028806
Score 2.5061967
Snippet Methane dehydroaromatization (MDA) is among the most challenging processes in catalysis science owing to the inherent harsh reaction conditions and fast...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16741
SubjectTerms Acetylene
bifunctional catalysts
Bonding
Carbon
Catalysis
Catalysts
Deactivation
Magnetic resonance spectroscopy
Methane
methane dehydroaromatization
NMR
NMR spectroscopy
Nuclear magnetic resonance
Reaction mechanisms
solid-state NMR spectroscopy
Species
Supramolecular compounds
Zeolites
Title Initial Carbon−Carbon Bond Formation during the Early Stages of Methane Dehydroaromatization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202007283
https://www.proquest.com/docview/2440635357
https://www.proquest.com/docview/2412221240
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQF7i0tFB1gVauhNRTIHbi2DmihRVUgkMFEqdGnmTcSq02aH8O8AQ99xH7JJ2JNwEqVZXamyOPlXjssT87M98IcVCUVoEJOtGYYZI3ZOkeME0aBcrYMnW249K7uCzOrvMPN-bmURR_5IcYLtzYMrr1mg3cw_zogTSUI7DpfMd3bbRF0iLMDluMij4O_FGaJmcML8qyhLPQ96yNqT562vzprvQANR8D1m7HmTwXvv_W6Gjy9XC5gMP6_jcax__pzJZ4toKj8jjOnxdiDacvxca4zwK3LT6ds3cRiYz9DNrpz-8_YkFyPmI56UMfZQx3lAQnZceZLAnFfsa5bIO8QL6eR3mCX-6aWetnLbeJ4Z874mpyejU-S1Y5GZI6J6STYKGb4IBghm4MKnBBO6i18tZCU6YIvs7qYFyZ-sL4DNAZ8FRrSpPbHLNXYn3aTvG1kAEaLLIQVCgdnZrQBe8KVQQLhcvBNiOR9ENS1Su-ck6b8a2KTMu6YqVVg9JG4v0gfxuZOv4oud-PcLWy2HlFMIfQmsmMHYl3QzUpm3-gkJLaJcsoglOEiNKR0N1w_uVN1fHl-enwtPsvjfbEJpfZRUXl-2J9MVviG8JBC3jbzfVf5swAng
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwEB7Bclgu_CMKCxgJiVN2YyeOneOqbNXCtgdUJE5EdjJeJFCDuu0BnoAzj8iTMBM3WRYJIcEticdKMvbEnycz3wA8L0ojvQ4qUZhhkjdk6c5jmjTSS23K1JqOS2--KKZv81fvdB9NyLkwkR9icLixZXTfazZwdkgfXbCGcgo2bfDY2UZr5FW4xmW9u13Vm4FBStH0jAlGWZZwHfqetzFVR5f7X16XLsDmr5C1W3MmN8H3TxtDTT4ebjf-sP76G5Hjf73OLbixQ6TiOE6h23AFV3dgf9wXgrsL72ccYEQiY7f27erHt-_xQHBJYjHpsx9FzHgUhChFR5ssCMie4blog5gje-hRvMQPX5p169Yt94kZoPdgOTlZjqfJrixDUucEdhIsVBOsJ6ShGo3S26Csr5V0xvimTNG7OquDtmXqCu0yj1Z7R6261LnJMbsPe6t2hQ9ABN9gkYUgQ2lp44Q2OFvIIhhf2NybZgRJPyZVvaMs58oZn6pItqwqVlo1KG0ELwb5z5Gs44-SB_0QVzujPa8I6RBg05k2I3g2NJOy-R8KKandsowkREWgKB2B6sbzL3eqjhezk-Hs4b90egr70-X8tDqdLV4_gut8nSNWZH4Ae5v1Fh8TLNr4J93E_wntgAS5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkYAL_4iFAkZC4pQ2duKfHKvdrrpAVwgVqSciOx4XCbSptrsHeALOPCJPwjjepC0SQoJbEo-VZDwTf554vgF4qSrNnQwiE1hgVnrydOswzzx3XOoqN7rj0jucq4MP5etjeXwhiz_xQwwBt-gZ3fc6OvipD7vnpKExA5vWdzHWRlPkVbhWqtxEu568HwikBFlnyi8qiiyWoe9pG3Oxe7n_5WnpHGteRKzdlDO9DbZ_2LTT5PPOeuV2mm-_8Tj-z9vcgVsbPMr2kgHdhSu4uAc3xn0ZuPvwcRa3F5HI2C5du_j5_Uc6YLEgMZv2uY8s5TsywpOsI01mBGNP8Iy1gR1ijM8jm-Cnr37Z2mUb-6T8zwdwNN0_Gh9km6IMWVMS1MlQCR-MI5whvETuTBDGNYJbrZ2vcnS2KZogTZVbJW3h0EhnqVVWstQlFg9ha9Eu8BGw4DyqIgQeKkPLJjTBGsVV0E6Z0mk_gqwfkrrZEJbHuhlf6kS1LOqotHpQ2gheDfKniarjj5Lb_QjXG5c9qwnnEFyThdQjeDE0k7LjHxRSUruOMpzwFEGifASiG86_3Knem8_2h7PH_9LpOVx_N5nWb2fzN0_gZrwct6vwchu2Vss1PiVMtHLPOrP_BfUmA3E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Initial+Carbon%E2%88%92Carbon+Bond+Formation+during+the+Early+Stages+of+Methane+Dehydroaromatization&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=%C3%87a%C4%9Flayan%2C+Mustafa&rft.au=Lucini+Paioni%2C+Alessandra&rft.au=Abou%E2%80%90Hamad%2C+Edy&rft.au=Shterk%2C+Genrikh&rft.date=2020-09-14&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=38&rft.spage=16741&rft.epage=16746&rft_id=info:doi/10.1002%2Fanie.202007283&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202007283
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon