Large eddy simulation of turbulent shallow water flows using multi-relaxation-time lattice Boltzmann model

SUMMARY In this paper, the standard Smagorinsky's algorithm is embedded into the multiple relaxation time (MRT) lattice Boltzmann model (LBM) for large eddy simulation (LES) of turbulent shallow water flows (MRT‐LABSWETM). The model is based on the two‐dimensional nonlinear shallow water equati...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in fluids Vol. 70; no. 12; pp. 1573 - 1589
Main Authors Liu, Haifei, Li, Min, Shu, Anping
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 30.12.2012
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SUMMARY In this paper, the standard Smagorinsky's algorithm is embedded into the multiple relaxation time (MRT) lattice Boltzmann model (LBM) for large eddy simulation (LES) of turbulent shallow water flows (MRT‐LABSWETM). The model is based on the two‐dimensional nonlinear shallow water equations, giving the depth‐averaged features. It is verified by applying the model in three typical cases in engineering with turbulence: (i) the flow around a square cylinder, (ii) plane cavity flow, and (iii) flows in a junction of 90°. The results obtained by the MRT‐LABSWETM are compared with BGK‐LABSWETM results and experimental data. The objectives of this study are to validate the MRT‐LABSWETM in a turbulence simulation and perform a comparative analysis between the results of BGK‐LABSWETM and MRT‐LABSWETM. Copyright © 2012 John Wiley & Sons, Ltd.
AbstractList SUMMARY In this paper, the standard Smagorinsky's algorithm is embedded into the multiple relaxation time (MRT) lattice Boltzmann model (LBM) for large eddy simulation (LES) of turbulent shallow water flows (MRT-LABSWETM). The model is based on the two-dimensional nonlinear shallow water equations, giving the depth-averaged features. It is verified by applying the model in three typical cases in engineering with turbulence: (i) the flow around a square cylinder, (ii) plane cavity flow, and (iii) flows in a junction of 90°. The results obtained by the MRT-LABSWETM are compared with BGK-LABSWETM results and experimental data. The objectives of this study are to validate the MRT-LABSWETM in a turbulence simulation and perform a comparative analysis between the results of BGK-LABSWETM and MRT-LABSWETM. Copyright © 2012 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
SUMMARY In this paper, the standard Smagorinsky's algorithm is embedded into the multiple relaxation time (MRT) lattice Boltzmann model (LBM) for large eddy simulation (LES) of turbulent shallow water flows (MRT‐LABSWE TM ). The model is based on the two‐dimensional nonlinear shallow water equations, giving the depth‐averaged features. It is verified by applying the model in three typical cases in engineering with turbulence: (i) the flow around a square cylinder, (ii) plane cavity flow, and (iii) flows in a junction of 90°. The results obtained by the MRT‐LABSWE TM are compared with BGK‐LABSWE TM results and experimental data. The objectives of this study are to validate the MRT‐LABSWE TM in a turbulence simulation and perform a comparative analysis between the results of BGK‐LABSWE TM and MRT‐LABSWE TM . Copyright © 2012 John Wiley & Sons, Ltd.
SUMMARY In this paper, the standard Smagorinsky's algorithm is embedded into the multiple relaxation time (MRT) lattice Boltzmann model (LBM) for large eddy simulation (LES) of turbulent shallow water flows (MRT‐LABSWETM). The model is based on the two‐dimensional nonlinear shallow water equations, giving the depth‐averaged features. It is verified by applying the model in three typical cases in engineering with turbulence: (i) the flow around a square cylinder, (ii) plane cavity flow, and (iii) flows in a junction of 90°. The results obtained by the MRT‐LABSWETM are compared with BGK‐LABSWETM results and experimental data. The objectives of this study are to validate the MRT‐LABSWETM in a turbulence simulation and perform a comparative analysis between the results of BGK‐LABSWETM and MRT‐LABSWETM. Copyright © 2012 John Wiley & Sons, Ltd.
Author Shu, Anping
Liu, Haifei
Li, Min
Author_xml – sequence: 1
  givenname: Haifei
  surname: Liu
  fullname: Liu, Haifei
  organization: Key Laboratory of Water and Sediment Sciences of the Ministry of Education, School of Environment, Beijing Normal University, 19 Xinjiekou Wai Street, 100875, Beijing, China
– sequence: 2
  givenname: Min
  surname: Li
  fullname: Li, Min
  organization: Key Laboratory of Water and Sediment Sciences of the Ministry of Education, School of Environment, Beijing Normal University, 19 Xinjiekou Wai Street, 100875, Beijing, China
– sequence: 3
  givenname: Anping
  surname: Shu
  fullname: Shu, Anping
  email: Anping Shu, School of Environment, Beijing Normal University, 19 Xinjiekou Wai Street, Beijing 100875, China., shuap@bnu.edu.cn
  organization: Key Laboratory of Water and Sediment Sciences of the Ministry of Education, School of Environment, Beijing Normal University, 19 Xinjiekou Wai Street, 100875, Beijing, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26674577$$DView record in Pascal Francis
BookMark eNp1kE1v1DAQhi1UJLYFiZ9gCSFxSfFHYidHaGkBRcsFKDfLOOPixbFb29F2-fV42VVvnGYOzzyv5j1FJyEGQOglJeeUEPbW-umci5Y_QStKBtkQLvgJWhEmacPIQJ-h05w3hJCB9XyFNqNOt4BhmnY4u3nxurgYcLS4LOnn4iEUnH9p7-MWb3WBhG1dM16yC7e48sU1Cbx--HfXFDcDro7iDOD30Zc_sw4Bz3EC_xw9tdpneHGcZ-jb1YevFx-b8cv1p4t3Y2NaJnnT9bbVTLdmEJpoaq3pzaQH1nbQSyGkkJYKyScmB-jBtmygnWVCDLKjbW86foZeHbx3Kd4vkIvaxCWFGqkolZQRLjtZqTcHyqSYcwKr7pKbddopStS-SVWbVPsmK_r6KNTZaG-TDsblR75my7aTe2Vz4LbOw-6_PnU1Xh69R97lAg-PvE6_VX1Qdupmfa3WN5c_xs_f14rxv5hvkzk
CODEN IJNFDW
CitedBy_id crossref_primary_10_1016_j_advwatres_2014_01_003
crossref_primary_10_1016_j_oceaneng_2022_111199
crossref_primary_10_1142_S0129183115500990
crossref_primary_10_1002_fld_5055
crossref_primary_10_1016_j_jhydrol_2022_127472
crossref_primary_10_1016_j_nucengdes_2023_112159
crossref_primary_10_2208_jscejhe_72_I_409
crossref_primary_10_2208_jscejoe_72_I_145
crossref_primary_10_1142_S0129183115500138
crossref_primary_10_3390_w11010155
crossref_primary_10_1007_s11069_015_1765_z
crossref_primary_10_1016_j_oceaneng_2020_107623
crossref_primary_10_1002_fld_3991
crossref_primary_10_1016_j_compfluid_2023_105860
crossref_primary_10_2208_kaigan_74_I_175
crossref_primary_10_1016_j_camwa_2015_09_027
crossref_primary_10_1080_00221686_2019_1573761
Cites_doi 10.1209/0295-5075/17/6/001
10.1142/S0217979203017059
10.1357/002224099321514079
10.1103/PhysRevA.45.R5339
10.1103/PhysRev.94.511
10.1002/1097-0363(20010415)35:7<763::AID-FLD112>3.0.CO;2-S
10.1103/PhysRevE.65.036309
10.1002/nme.2435
10.1142/S0129183102003814
10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
10.1103/PhysRevE.61.6546
10.1142/S0129183101001833
10.1007/978-3-662-08276-8
10.1098/rsta.2001.0955
10.1061/(ASCE)0733-9429(2002)128:3(268)
10.1002/fld.1836
10.1016/j.advwatres.2010.01.005
10.1007/978-3-540-27982-2
10.1146/annurev.fluid.30.1.329
10.1016/j.compfluid.2008.11.005
10.1016/S0045-7825(02)00291-8
10.1080/10618560902754924
10.1017/S0022112095004435
10.1006/jcph.2001.6850
10.1504/PCFD.2012.044850
10.1016/0021-9991(82)90058-4
10.1103/PhysRevE.68.036706
10.1016/j.compfluid.2005.04.009
ContentType Journal Article
Copyright Copyright © 2012 John Wiley & Sons, Ltd.
2014 INIST-CNRS
Copyright_xml – notice: Copyright © 2012 John Wiley & Sons, Ltd.
– notice: 2014 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
DOI 10.1002/fld.3643
DatabaseName Istex
Pascal-Francis
CrossRef
Aqualine
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1097-0363
EndPage 1589
ExternalDocumentID 2819279421
10_1002_fld_3643
26674577
FLD3643
ark_67375_WNG_NWDXLJVN_2
Genre article
GrantInformation_xml – fundername: National Basic Research Program of China (973)
  funderid: 2011CB403304; 2010CB429003
– fundername: State Key Joint Laboratory of Environment Simulation and Pollution Control
  funderid: 10Y03ESPCN
– fundername: National Natural Science Foundation of China
  funderid: 51009007
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
31~
6TJ
AAPBV
ABEML
ABHUG
ABTAH
ACSCC
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
AI.
IQODW
M6O
PALCI
RIWAO
RJQFR
SAMSI
VH1
VOH
ZY4
~A~
AAYXX
CITATION
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c4273-58f4a2a4c96a0a1ffc8cda9245e8766767f1673d279e8ef42915f266975148c53
IEDL.DBID DR2
ISSN 0271-2091
IngestDate Thu Oct 10 17:18:51 EDT 2024
Fri Aug 23 02:24:17 EDT 2024
Sun Oct 29 04:30:54 EDT 2023
Sat Aug 24 00:42:06 EDT 2024
Wed Oct 30 09:57:02 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Boltzmann equation
Turbulent flow
Pipe flow
Computational fluid dynamics
Digital simulation
Cavity flow
Relaxation time
multi-relaxation-time
Large eddy simulation
Lattice model
Vorticity
LABSWE
shallow water equations
lattice Boltzmann method
Modelling
Turbulence structure
Shallow-water equations
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4273-58f4a2a4c96a0a1ffc8cda9245e8766767f1673d279e8ef42915f266975148c53
Notes ArticleID:FLD3643
National Natural Science Foundation of China - No. 51009007
State Key Joint Laboratory of Environment Simulation and Pollution Control - No. 10Y03ESPCN
ark:/67375/WNG-NWDXLJVN-2
National Basic Research Program of China (973) - No. 2011CB403304; No. 2010CB429003
istex:EA6F058CC8F4512DB8FF49479C9A22F8CC9175EC
PQID 1171203757
PQPubID 996375
PageCount 17
ParticipantIDs proquest_journals_1171203757
crossref_primary_10_1002_fld_3643
pascalfrancis_primary_26674577
wiley_primary_10_1002_fld_3643_FLD3643
istex_primary_ark_67375_WNG_NWDXLJVN_2
PublicationCentury 2000
PublicationDate 30 December 2012
PublicationDateYYYYMMDD 2012-12-30
PublicationDate_xml – month: 12
  year: 2012
  text: 30 December 2012
  day: 30
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
– name: Bognor Regis
PublicationTitle International journal for numerical methods in fluids
PublicationTitleAlternate Int. J. Numer. Meth. Fluids
PublicationYear 2012
Publisher John Wiley & Sons, Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References Sukop MC, Thorne DT. Lattice Boltzmann Modeling-An Introduction for Geoscientists and Engineers. Springer: New York, US, 2006.
Zhou JG. An elastic-collision scheme for lattice Boltzmann methods. International Journal of Modern Physics C 2001; 12:387-401.
Zhou JG. Lattice Boltzmann Methods for Shallow Water Flows. Springer: Berlin, Germany, 2004.
Davidson L. An Introduction to Turbulence Models, Vol. 97/2. http://www.tfd.chalmers.se/lada: Göteborg, Sweden, 2003.
Zhou JG. A lattice Boltzmann model for the shallow water equations with turbulence modeling. International Journal of Modern Physics C 2002; 13(8):1135-1150.
Liu H, Zhou JG, Burrows R. Inlet and outlet boundary conditions for the lattice-Boltzmann modelling of shallow water flows. Progess in Computational Fluid Dynamics 2012; 12(1):11-18.
Banda1 MK, Seaïd M, Thömmes G. Lattice Boltzmann simulation of dispersion in two-dimensional tidal flows. International Journal for Numerical Methods in Engineering 2009; 77:878-900.
Bouzidi M, d'Humières D, Lallemand P, Luo LS. Lattice Boltzmann equation on a two-dimensional rectangular grid. Journal of Computational Physics 2001; 172:704-717.
Lyn DA, Einav S, Rodi W, Park JH. A laser-doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder. Journal of Fluid Mechanics 1995; 304:285-319.
Bhatnagar P, Gross EP, Krook MK. A model for collision processes in gases: I. small amplitude processes in charged and neutral one-component system. Physical Review 1954; 94:511-525.
Tutar M, Hold AE. Computational modelling of flow around a circular cylinder in sub-critical flow regime with various turbulence models. International Journal for Numerical Methods in Fluids, 35 2001:763-784.
Liu H, Zhou JG, Burrows R. Lattice Boltzmann model for shallow water flows in curved and meandering channels. International Journal of Computational Fluid Dynamics 2009; 23(3):209-220.
Krafczyk M, Tölke J. Large-eddy simulations with a multiple-relaxation-time LBE model. International Journal of Modern Physics B 2003; 17:33-39.
Huang J, Weber LJ, Lai GY. Three-dimensional numerical study of flows in open'channel junctions. Journal of Hydraulic Engineering ASCE 2002; 128:268-280.
d'Humières D, Ginzburg I, Krafczyk M, Lallemand P, Luo LS. Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 2002; 360:437-451.
Chen S, Doolen GD. Lattice Boltzmann method for fluid flows. Annual Review of Fluids Mechanics 1998; 30:329-364.
Liu H, Zhou JG, Burrows R. Lattice Boltzmann simulations of the transient shallow water flows. Advances in Water Resources 2010; 33:387-396.
Qian YH, D'Humieres D, Lallemand P. Lattice BGK models for Navier-Stokes equation. Europhysics Letter 1992; 17:479-484.
Hou S, Sterling J, Chen S, Doolen GD. A lattice Boltzmann subgrid model for high Reynolds number flows. Fidlds Institute Communications 1996; 6:151-166.
Liu H, Zhou JG, Burrows R. Multi-block lattice Boltzmann simulations of subcritical flow in open channel junctions. Computers and Fluids 2009; 38(6):1108-1117.
Lallemand P, Luo LS. Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Physical Review E 2000; 61(6):6546-6562.
Dellar P. Non-hydrodynamic modes and a priori construction of shallow water lattice Boltzmann equations. Physical Review E 2002; 65:036309.
Lallemand P, Luo LS. Theory of the lattice Boltzmann method:acoustic and thermal properties in two and three dimensions. Physical Review E 2003; 68:036706.
Zhou JG. A lattice Boltzmann model for the shallow water equations. Computer Methods in Applied Mechanics and Engineering 2002; 191:3527-3539.
Liu H, Zhou JG, Burrows R. Numerical modeling of turbulent compound channel flow using the lattice Boltzmann method. International Journal for Numerical Methods in Fluids 2009; 59(7):753-765.
Ghia U, Ghia KN, Shin CT. High-Resolutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics 1982; 48:387-441.
Yu H., Luo L. -S., Girimaji S. S. LES of turbulent square jet flow using an MRT lattice Boltzmann model. Computers and Fluids 2006; 35:975-965.
Chen H, Chen S, Matthaeus WH. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Physical Review A 1992; 45:R5539-42.
Salmon R. Lattice Boltzmann solutions of the three-dimensional planetary geostrophic equations. Journal of Marine Research 1999; 57:847C884.
Smagorinsky J. General circulation experiments with the primitive equations i: the basic experiment. Monthly Weather Review 1963; 91(3):99-164.
2009; 23
2010; 33
2002; 191
2003; 97/2
2006; 35
2002; 13
1992; 17
1998
2007
2006
2003; 17
2004
2012; 12
2009; 77
1954; 94
1982; 48
2001; 172
2001
2002; 360
1963; 91
2002; 65
1999; 57
2000; 61
2003; 68
2002; 128
1995; 304
1998; 30
2001; 12
1992; 45
2009; 38
2009; 59
1996; 6
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
Hou S (e_1_2_6_26_1) 1996; 6
e_1_2_6_9_1
Davidson L (e_1_2_6_2_1) 2003
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
References_xml – volume: 191
  start-page: 3527
  year: 2002
  end-page: 3539
  article-title: A lattice Boltzmann model for the shallow water equations
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 33
  start-page: 387
  year: 2010
  end-page: 396
  article-title: Lattice Boltzmann simulations of the transient shallow water flows
  publication-title: Advances in Water Resources
– volume: 13
  start-page: 1135
  issue: 8
  year: 2002
  end-page: 1150
  article-title: A lattice Boltzmann model for the shallow water equations with turbulence modeling
  publication-title: International Journal of Modern Physics C
– year: 2007
– volume: 12
  start-page: 11
  issue: 1
  year: 2012
  end-page: 18
  article-title: Inlet and outlet boundary conditions for the lattice‐Boltzmann modelling of shallow water flows
  publication-title: Progess in Computational Fluid Dynamics
– volume: 304
  start-page: 285
  year: 1995
  end-page: 319
  article-title: A laser‐doppler velocimetry study of ensemble‐averaged characteristics of the turbulent near wake of a square cylinder
  publication-title: Journal of Fluid Mechanics
– volume: 45
  start-page: R5539
  year: 1992
  end-page: 42
  article-title: Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method
  publication-title: Physical Review A
– volume: 61
  start-page: 6546
  issue: 6
  year: 2000
  end-page: 6562
  article-title: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability
  publication-title: Physical Review E
– volume: 77
  start-page: 878
  year: 2009
  end-page: 900
  article-title: Lattice Boltzmann simulation of dispersion in two‐dimensional tidal flows
  publication-title: International Journal for Numerical Methods in Engineering
– start-page: 763
  year: 2001
  end-page: 784
  article-title: Computational modelling of flow around a circular cylinder in sub‐critical flow regime with various turbulence models
  publication-title: International Journal for Numerical Methods in Fluids, 35
– volume: 6
  start-page: 151
  year: 1996
  end-page: 166
  article-title: A lattice Boltzmann subgrid model for high Reynolds number flows
  publication-title: Fidlds Institute Communications
– volume: 59
  start-page: 753
  issue: 7
  year: 2009
  end-page: 765
  article-title: Numerical modeling of turbulent compound channel flow using the lattice Boltzmann method
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 17
  start-page: 33
  year: 2003
  end-page: 39
  article-title: Large‐eddy simulations with a multiple‐relaxation‐time LBE model
  publication-title: International Journal of Modern Physics B
– volume: 360
  start-page: 437
  year: 2002
  end-page: 451
  article-title: Multiple‐relaxation‐time lattice Boltzmann models in three dimensions
  publication-title: Philosophical Transactions A: Mathematical, Physical and Engineering Sciences
– year: 1998
– volume: 57
  start-page: 847C884
  year: 1999
  article-title: Lattice Boltzmann solutions of the three‐dimensional planetary geostrophic equations
  publication-title: Journal of Marine Research
– volume: 172
  start-page: 704
  year: 2001
  end-page: 717
  article-title: Lattice Boltzmann equation on a two‐dimensional rectangular grid
  publication-title: Journal of Computational Physics
– volume: 68
  start-page: 036706
  year: 2003
  article-title: Theory of the lattice Boltzmann method:acoustic and thermal properties in two and three dimensions
  publication-title: Physical Review E
– volume: 17
  start-page: 479
  year: 1992
  end-page: 484
  article-title: Lattice BGK models for Navier–Stokes equation
  publication-title: Europhysics Letter
– volume: 23
  start-page: 209
  issue: 3
  year: 2009
  end-page: 220
  article-title: Lattice Boltzmann model for shallow water flows in curved and meandering channels
  publication-title: International Journal of Computational Fluid Dynamics
– volume: 65
  start-page: 036309
  year: 2002
  article-title: Non‐hydrodynamic modes and a priori construction of shallow water lattice Boltzmann equations
  publication-title: Physical Review E
– year: 2006
– year: 2004
– volume: 38
  start-page: 1108
  issue: 6
  year: 2009
  end-page: 1117
  article-title: Multi‐block lattice Boltzmann simulations of subcritical flow in open channel junctions
  publication-title: Computers and Fluids
– volume: 91
  start-page: 99
  issue: 3
  year: 1963
  end-page: 164
  article-title: General circulation experiments with the primitive equations : the basic experiment
  publication-title: Monthly Weather Review
– volume: 30
  start-page: 329
  year: 1998
  end-page: 364
  article-title: Lattice Boltzmann method for fluid flows
  publication-title: Annual Review of Fluids Mechanics
– volume: 128
  start-page: 268
  year: 2002
  end-page: 280
  article-title: Three‐dimensional numerical study of flows in open'channel junctions
  publication-title: Journal of Hydraulic Engineering ASCE
– volume: 12
  start-page: 387
  year: 2001
  end-page: 401
  article-title: An elastic‐collision scheme for lattice Boltzmann methods
  publication-title: International Journal of Modern Physics C
– volume: 35
  start-page: 975
  year: 2006
  end-page: 965
  article-title: LES of turbulent square jet flow using an MRT lattice Boltzmann model
  publication-title: Computers and Fluids
– volume: 97/2
  year: 2003
– volume: 48
  start-page: 387
  year: 1982
  end-page: 441
  article-title: High‐Resolutions for incompressible flow using the Navier–Stokes equations and a multigrid method
  publication-title: Journal of Computational Physics
– volume: 94
  start-page: 511
  year: 1954
  end-page: 525
  article-title: A model for collision processes in gases: I. small amplitude processes in charged and neutral one‐component system
  publication-title: Physical Review
– ident: e_1_2_6_7_1
  doi: 10.1209/0295-5075/17/6/001
– ident: e_1_2_6_22_1
  doi: 10.1142/S0217979203017059
– ident: e_1_2_6_9_1
  doi: 10.1357/002224099321514079
– ident: e_1_2_6_6_1
  doi: 10.1103/PhysRevA.45.R5339
– ident: e_1_2_6_25_1
  doi: 10.1103/PhysRev.94.511
– ident: e_1_2_6_4_1
  doi: 10.1002/1097-0363(20010415)35:7<763::AID-FLD112>3.0.CO;2-S
– ident: e_1_2_6_12_1
  doi: 10.1103/PhysRevE.65.036309
– ident: e_1_2_6_14_1
  doi: 10.1002/nme.2435
– ident: e_1_2_6_24_1
  doi: 10.1142/S0129183102003814
– ident: e_1_2_6_3_1
  doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
– ident: e_1_2_6_19_1
– ident: e_1_2_6_20_1
  doi: 10.1103/PhysRevE.61.6546
– ident: e_1_2_6_10_1
  doi: 10.1142/S0129183101001833
– ident: e_1_2_6_13_1
  doi: 10.1007/978-3-662-08276-8
– ident: e_1_2_6_28_1
  doi: 10.1098/rsta.2001.0955
– ident: e_1_2_6_33_1
  doi: 10.1061/(ASCE)0733-9429(2002)128:3(268)
– ident: e_1_2_6_17_1
  doi: 10.1002/fld.1836
– ident: e_1_2_6_18_1
  doi: 10.1016/j.advwatres.2010.01.005
– ident: e_1_2_6_8_1
  doi: 10.1007/978-3-540-27982-2
– ident: e_1_2_6_5_1
  doi: 10.1146/annurev.fluid.30.1.329
– ident: e_1_2_6_15_1
  doi: 10.1016/j.compfluid.2008.11.005
– ident: e_1_2_6_32_1
– ident: e_1_2_6_11_1
  doi: 10.1016/S0045-7825(02)00291-8
– ident: e_1_2_6_16_1
  doi: 10.1080/10618560902754924
– ident: e_1_2_6_30_1
  doi: 10.1017/S0022112095004435
– volume: 6
  start-page: 151
  year: 1996
  ident: e_1_2_6_26_1
  article-title: A lattice Boltzmann subgrid model for high Reynolds number flows
  publication-title: Fidlds Institute Communications
  contributor:
    fullname: Hou S
– ident: e_1_2_6_27_1
  doi: 10.1006/jcph.2001.6850
– ident: e_1_2_6_29_1
  doi: 10.1504/PCFD.2012.044850
– ident: e_1_2_6_31_1
  doi: 10.1016/0021-9991(82)90058-4
– ident: e_1_2_6_21_1
  doi: 10.1103/PhysRevE.68.036706
– ident: e_1_2_6_23_1
  doi: 10.1016/j.compfluid.2005.04.009
– volume-title: An Introduction to Turbulence Models
  year: 2003
  ident: e_1_2_6_2_1
  contributor:
    fullname: Davidson L
SSID ssj0009283
Score 2.1583183
Snippet SUMMARY In this paper, the standard Smagorinsky's algorithm is embedded into the multiple relaxation time (MRT) lattice Boltzmann model (LBM) for large eddy...
SUMMARY In this paper, the standard Smagorinsky's algorithm is embedded into the multiple relaxation time (MRT) lattice Boltzmann model (LBM) for large eddy...
SourceID proquest
crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1573
SubjectTerms Computational methods in fluid dynamics
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
LABSWE
large eddy simulation
lattice Boltzmann method
multi-relaxation-time
Physics
shallow water equations
Turbulence simulation and modeling
Turbulent flows, convection, and heat transfer
Title Large eddy simulation of turbulent shallow water flows using multi-relaxation-time lattice Boltzmann model
URI https://api.istex.fr/ark:/67375/WNG-NWDXLJVN-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.3643
https://www.proquest.com/docview/1171203757
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVQucCBQgGxpVRGQr1lu_FncgSWbVUte0CUrsTBchwbobbZarOrlp74CfxGfgkzTrLtVkJCnJIoduSMZzwv0fMbQt4Eqb1VvkwU81kiXCETi7q3XHDhebAq17hR-ONEHR6Lo6mctqxK3AvT6EOsfrhhZMT1GgPcFvX-jWhoOCv7HPIpLL8p18jmGn66UY7KWaPAyXQKjpCnne7sgO13Hdcy0X006hUyI20NxglNVYs12HkbvMbsM9okX7txN6ST0_5yUfTd9R1Jx_97scfkUQtK6dvGi56Qe77aIpstQKVt-Ndb5OEt9cKnpBoji5z6svxB6-_nbR0wOgsU0lixxHRGa6zVMruklwBp5zTAaU2Rav-NRibj75-_cDPNVewJF1jpnsJzkJFH383OFtfntqpoLNfzjByPPnx-f5i05RsSJwAUJTILwjIrXK7swKYhuMyVFr73pIclGIXiQqo0L5nOfeYDJMZUBsALuQYQlznJn5ONalb5F4QyBb4WXAA0UwhuM5tbVWoAIxbyRq5cj7zuptJcNCodptFjZgbMadCcPbIX53jVwM5PkdWmpTmZHJjJyXA6PvoyMaxHdtecYNUBxqaF1LpHdjqvMG3E1yianjIsKAy39-L0_nUkZjQe4nH7Xxu-JA8Ap8UiNHywQzYW86V_BVhoUexGr_8DpDYJcQ
link.rule.ids 315,783,787,1378,27937,27938,46307,46731
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB2V9gAcKBQQC6UYCfWW7caJ40ScgGVZSpoDaukekCwnsRFqm0WbXbX0xCfwjXwJM06y7SIhIU5JlDhyxjOeF2v8HsALK6TRkSm9iJvYC4tceJp4b4MwCE1gdZRI2ih8kEXjo3B_IiZr8LLbC9PwQywX3Cgy3HxNAU4L0ntXrKH2tOwHmFBvwAZGe0BROfx4xR2V8IaDk0sfXSHxO-bZAd_rWq7kog0y6wXVRuoazWMbXYsV4Hkdvrr8M9qEz13Pm7KTk_5inveLyz9IHf_z0-7CnRaXsleNI92DNVNtwWaLUVk7A9RbcPsageF9qFIqJGemLL-z-utZKwXGppZhJssXlNFYTXIt03N2jqh2xiye1oyq7b8wV8z468dP2k9z4VriBYndM3wPFeWx19PT-eWZrirmFHsewNHo7eGbsdcqOHhFiLjIE7ENNddhkUR6oH1ri7goNf7yCYOzMHHFWR-HruQyMbGxmBt9YREyJBJxXFyI4CGsV9PKPALGI3Q3W1gENHkY6FgnOiol4hGNqSOJih4878ZSfWuIOlRDycwVmlOROXuw6wZ5-YCenVBhmxTqOHunsuPhJN3_lCneg50VL1g2wL7JUEjZg-3OLVQb9DXxpvucNIXx9q4b37_2RI3SIR0f_-uDz-Dm-PAgVen77MMTuIWwzWnSBINtWJ_PFuYpQqN5vuNC4DcUfw2K
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BKyE4UCggFkoxEuot243jj-QILEspS4QQpStxsJzERqhtttrsqqUnfgK_kV_CTD62XSQkxCmJYkfOeMbzEo3fA3jupXZWuSJQ3MWByDMZWOK9jUQkXOStSjRtFH6fqr0DsT-Rk7aqkvbCNPwQyx9uFBn1ek0Bflr43UvSUH9c9CPMp9dhXSj0VAJEHy-poxLeUHByHaInJGFHPDvgu13PlVS0TlY9p9JIW6F1fCNrsYI7r6LXOv2MNuBLN_Cm6uSov5hn_fziD07H_3uzO3C7RaXsReNGd-GaKzdho0WorI3_ahNuXaEvvAflmMrImSuK76z6dtIKgbGpZ5jHsgXlM1aRWMv0jJ0hpp0xj6cVo1r7r6wuZfz14yftpjmve-IFSd0zfA6V5LGX0-P5xYktS1br9dyHg9HrT6_2gla_IcgFoqJAxl5YbkWeKDuwofd5nBcWP_ikwzWYmOJ8qHRUcJ242HnMjKH0CBgSjSguzmX0ANbKaekeAuMKnc3nHuFMJiIb28SqQiMasZg4EpX34Fk3lea0oekwDSEzN2hOQ-bswU49x8sGdnZEZW1amsP0jUkPh5Px_ufU8B5srzjBsgOOTQupdQ-2Oq8wbchXxJoeclIUxts79fT-dSRmNB7S8dG_NnwKNz4MR2b8Nn33GG4iZqsFaaLBFqzNZwv3BHHRPNuuA-A39B0MOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+eddy+simulation+of+turbulent+shallow+water+flows+using+multi-relaxation-time+lattice+Boltzmann+model&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Liu%2C+Haifei&rft.au=Li%2C+Min&rft.au=Shu%2C+Anping&rft.date=2012-12-30&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=70&rft.issue=12&rft.spage=1573&rft.epage=1589&rft_id=info:doi/10.1002%2Ffld.3643&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_NWDXLJVN_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon