Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering

The use of multipotent human mesenchymal stem cells (hMSCs) for tissue engineering has been a subject of extensive research. The donor variation in growth, differentiation and in vivo bone forming ability of hMSCs is a bottleneck for standardization of therapeutic protocols. In this study, we isolat...

Full description

Saved in:
Bibliographic Details
Published inJournal of orthopaedic research Vol. 25; no. 8; pp. 1029 - 1041
Main Authors Siddappa, Ramakrishnaiah, Licht, Ruud, van Blitterswijk, Clemens, de Boer, Jan
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.08.2007
Subjects
Online AccessGet full text
ISSN0736-0266
1554-527X
DOI10.1002/jor.20402

Cover

Loading…
Abstract The use of multipotent human mesenchymal stem cells (hMSCs) for tissue engineering has been a subject of extensive research. The donor variation in growth, differentiation and in vivo bone forming ability of hMSCs is a bottleneck for standardization of therapeutic protocols. In this study, we isolated and characterized hMSCs from 19 independent donors, aged between 27 and 85 years, and investigated the extent of heterogeneity of the cells and the extent to which hMSCs can be expanded without loosing multipotency. Dexamethasone‐induced ALP expression varied between 1.2‐ and 3.7‐fold, but no correlation was found with age, gender, or source of isolation. The cells from donors with a higher percentage of ALP‐positive cells in control and dexamethasone‐induced groups showed more calcium deposition than cells with lower percentage of ALP positive cells. Despite the variability in osteogenic gene expression among the donors tested, ALP, Collagen type 1, osteocalcin, and S100A4 showed similar trends during the course of osteogenic differentiation. In vitro expansion studies showed that hMSCs can be effectively expanded up to four passages (approximately 10–12 population doublings from a P0 culture) while retaining their multipotency. Our in vivo studies suggest a correlation between in vitro ALP expression and in vivo bone formation. In conclusion, irrespective of age, gender, and source of isolation, cells from all donors showed osteogenic potential. The variability in ALP expression appears to be a result of sampling method and cellular heterogeneity among the donor population. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:1029–1041, 2007
AbstractList The use of multipotent human mesenchymal stem cells (hMSCs) for tissue engineering has been a subject of extensive research. The donor variation in growth, differentiation and in vivo bone forming ability of hMSCs is a bottleneck for standardization of therapeutic protocols. In this study, we isolated and characterized hMSCs from 19 independent donors, aged between 27 and 85 years, and investigated the extent of heterogeneity of the cells and the extent to which hMSCs can be expanded without loosing multipotency. Dexamethasone-induced ALP expression varied between 1.2- and 3.7-fold, but no correlation was found with age, gender, or source of isolation. The cells from donors with a higher percentage of ALP-positive cells in control and dexamethasone-induced groups showed more calcium deposition than cells with lower percentage of ALP positive cells. Despite the variability in osteogenic gene expression among the donors tested, ALP, Collagen type 1, osteocalcin, and S100A4 showed similar trends during the course of osteogenic differentiation. In vitro expansion studies showed that hMSCs can be effectively expanded up to four passages (approximately 10-12 population doublings from a P0 culture) while retaining their multipotency. Our in vivo studies suggest a correlation between in vitro ALP expression and in vivo bone formation. In conclusion, irrespective of age, gender, and source of isolation, cells from all donors showed osteogenic potential. The variability in ALP expression appears to be a result of sampling method and cellular heterogeneity among the donor population.The use of multipotent human mesenchymal stem cells (hMSCs) for tissue engineering has been a subject of extensive research. The donor variation in growth, differentiation and in vivo bone forming ability of hMSCs is a bottleneck for standardization of therapeutic protocols. In this study, we isolated and characterized hMSCs from 19 independent donors, aged between 27 and 85 years, and investigated the extent of heterogeneity of the cells and the extent to which hMSCs can be expanded without loosing multipotency. Dexamethasone-induced ALP expression varied between 1.2- and 3.7-fold, but no correlation was found with age, gender, or source of isolation. The cells from donors with a higher percentage of ALP-positive cells in control and dexamethasone-induced groups showed more calcium deposition than cells with lower percentage of ALP positive cells. Despite the variability in osteogenic gene expression among the donors tested, ALP, Collagen type 1, osteocalcin, and S100A4 showed similar trends during the course of osteogenic differentiation. In vitro expansion studies showed that hMSCs can be effectively expanded up to four passages (approximately 10-12 population doublings from a P0 culture) while retaining their multipotency. Our in vivo studies suggest a correlation between in vitro ALP expression and in vivo bone formation. In conclusion, irrespective of age, gender, and source of isolation, cells from all donors showed osteogenic potential. The variability in ALP expression appears to be a result of sampling method and cellular heterogeneity among the donor population.
The use of multipotent human mesenchymal stem cells (hMSCs) for tissue engineering has been a subject of extensive research. The donor variation in growth, differentiation and in vivo bone forming ability of hMSCs is a bottleneck for standardization of therapeutic protocols. In this study, we isolated and characterized hMSCs from 19 independent donors, aged between 27 and 85 years, and investigated the extent of heterogeneity of the cells and the extent to which hMSCs can be expanded without loosing multipotency. Dexamethasone‐induced ALP expression varied between 1.2‐ and 3.7‐fold, but no correlation was found with age, gender, or source of isolation. The cells from donors with a higher percentage of ALP‐positive cells in control and dexamethasone‐induced groups showed more calcium deposition than cells with lower percentage of ALP positive cells. Despite the variability in osteogenic gene expression among the donors tested, ALP, Collagen type 1, osteocalcin, and S100A4 showed similar trends during the course of osteogenic differentiation. In vitro expansion studies showed that hMSCs can be effectively expanded up to four passages (approximately 10–12 population doublings from a P0 culture) while retaining their multipotency. Our in vivo studies suggest a correlation between in vitro ALP expression and in vivo bone formation. In conclusion, irrespective of age, gender, and source of isolation, cells from all donors showed osteogenic potential. The variability in ALP expression appears to be a result of sampling method and cellular heterogeneity among the donor population. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:1029–1041, 2007
The use of multipotent human mesenchymal stem cells (hMSCs) for tissue engineering has been a subject of extensive research. The donor variation in growth, differentiation and in vivo bone forming ability of hMSCs is a bottleneck for standardization of therapeutic protocols. In this study, we isolated and characterized hMSCs from 19 independent donors, aged between 27 and 85 years, and investigated the extent of heterogeneity of the cells and the extent to which hMSCs can be expanded without loosing multipotency. Dexamethasone‐induced ALP expression varied between 1.2‐ and 3.7‐fold, but no correlation was found with age, gender, or source of isolation. The cells from donors with a higher percentage of ALP‐positive cells in control and dexamethasone‐induced groups showed more calcium deposition than cells with lower percentage of ALP positive cells. Despite the variability in osteogenic gene expression among the donors tested, ALP , Collagen type 1, osteocalcin , and S100A4 showed similar trends during the course of osteogenic differentiation. In vitro expansion studies showed that hMSCs can be effectively expanded up to four passages (approximately 10–12 population doublings from a P0 culture) while retaining their multipotency. Our in vivo studies suggest a correlation between in vitro ALP expression and in vivo bone formation. In conclusion, irrespective of age, gender, and source of isolation, cells from all donors showed osteogenic potential. The variability in ALP expression appears to be a result of sampling method and cellular heterogeneity among the donor population. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:1029–1041, 2007
The use of multipotent human mesenchymal stem cells (hMSCs) for tissue engineering has been a subject of extensive research. The donor variation in growth, differentiation and in vivo bone forming ability of hMSCs is a bottleneck for standardization of therapeutic protocols. In this study, we isolated and characterized hMSCs from 19 independent donors, aged between 27 and 85 years, and investigated the extent of heterogeneity of the cells and the extent to which hMSCs can be expanded without loosing multipotency. Dexamethasone-induced ALP expression varied between 1.2- and 3.7-fold, but no correlation was found with age, gender, or source of isolation. The cells from donors with a higher percentage of ALP-positive cells in control and dexamethasone-induced groups showed more calcium deposition than cells with lower percentage of ALP positive cells. Despite the variability in osteogenic gene expression among the donors tested, ALP, Collagen type 1, osteocalcin, and S100A4 showed similar trends during the course of osteogenic differentiation. In vitro expansion studies showed that hMSCs can be effectively expanded up to four passages (approximately 10-12 population doublings from a P0 culture) while retaining their multipotency. Our in vivo studies suggest a correlation between in vitro ALP expression and in vivo bone formation. In conclusion, irrespective of age, gender, and source of isolation, cells from all donors showed osteogenic potential. The variability in ALP expression appears to be a result of sampling method and cellular heterogeneity among the donor population.
Author Siddappa, Ramakrishnaiah
de Boer, Jan
Licht, Ruud
van Blitterswijk, Clemens
Author_xml – sequence: 1
  givenname: Ramakrishnaiah
  surname: Siddappa
  fullname: Siddappa, Ramakrishnaiah
  organization: Institute for BioMedical Technology, Department of Tissue Regeneration, University of Twente, Zuidhorst, P.O. Box 217, Enschede 7500 AE, The Netherlands
– sequence: 2
  givenname: Ruud
  surname: Licht
  fullname: Licht, Ruud
  organization: Institute for BioMedical Technology, Department of Tissue Regeneration, University of Twente, Zuidhorst, P.O. Box 217, Enschede 7500 AE, The Netherlands
– sequence: 3
  givenname: Clemens
  surname: van Blitterswijk
  fullname: van Blitterswijk, Clemens
  organization: Institute for BioMedical Technology, Department of Tissue Regeneration, University of Twente, Zuidhorst, P.O. Box 217, Enschede 7500 AE, The Netherlands
– sequence: 4
  givenname: Jan
  surname: de Boer
  fullname: de Boer, Jan
  email: j.deboer@tnw.utwente.nl
  organization: Institute for BioMedical Technology, Department of Tissue Regeneration, University of Twente, Zuidhorst, P.O. Box 217, Enschede 7500 AE, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17469183$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1PFTEUhhuDkQu48A-YrkxcDPRj2s4sDSofuZFAFAybptN2oDjTXtsOcjf-dnu5FxZGV2fzPO85ec8O2PLBWwDeYLSPESIHdyHuE1Qj8gLMMGN1xYj4vgVmSFBeIcL5NthJ6Q4hJDBpXoFtLGre4obOwO-PwYcI71V0KrvgofIGDiElGHo4TkN2i5Ct10topuj8DXQe3rscA7QPC-XTSink7TQqD0ebCnq7HNUAU7Yj1HYYEuzLgq5cDLNLabLQ-hvnrV3F7YGXvRqSfb2Zu-Db509fD4-r-dnRyeGHeaVrIkiljDa4NdYI2hnOmVC8ZXXLGo4Rp4p1NRNlEEMJ6gmuO6aF7XmPMeNaU0V3wbt17iKGn5NNWY4ura5T3oYpSd5gLNq2KeDbDTh1ozVyEd2o4lI-NVaAgzWgY2kp2l5qlx-ry1G5QWIkVz-R5Sfy8SfFeP-X8Rz6D3aT_ssNdvl_UJ6eXTwZ1dpwpfGHZ0PFH5ILKpi8-nIkT6_n1_X5JZbn9A_55ayu
CitedBy_id crossref_primary_10_1002_bit_27453
crossref_primary_10_1002_jbmr_3929
crossref_primary_10_3390_ijms222111395
crossref_primary_10_1002_term_352
crossref_primary_10_1186_1477_5956_10_46
crossref_primary_10_1089_ten_tea_2011_0484
crossref_primary_10_5966_sctm_2015_0022
crossref_primary_10_1089_scd_2014_0509
crossref_primary_10_1093_rb_rbad084
crossref_primary_10_3390_bioengineering4020035
crossref_primary_10_1089_ten_tea_2012_0646
crossref_primary_10_1089_rej_2015_1766
crossref_primary_10_1002_term_242
crossref_primary_10_1186_s13287_016_0373_5
crossref_primary_10_1590_1414_431x20186754
crossref_primary_10_3389_fimmu_2014_00608
crossref_primary_10_1097_BRS_0000000000003687
crossref_primary_10_1002_jcp_26445
crossref_primary_10_1038_s41598_022_25423_8
crossref_primary_10_15616_BSL_2016_22_1_1
crossref_primary_10_1016_j_bej_2015_06_018
crossref_primary_10_1016_j_bonr_2022_101636
crossref_primary_10_1002_term_2051
crossref_primary_10_2217_17460751_3_6_783
crossref_primary_10_1016_j_dental_2015_09_008
crossref_primary_10_1016_j_jcyt_2017_09_012
crossref_primary_10_1186_s13287_019_1445_0
crossref_primary_10_1186_s13287_021_02338_1
crossref_primary_10_5966_sctm_2015_0369
crossref_primary_10_1016_j_bbrc_2011_09_089
crossref_primary_10_1186_s13287_020_02045_3
crossref_primary_10_1016_j_joca_2014_07_022
crossref_primary_10_3389_fcell_2021_720477
crossref_primary_10_1016_j_jmbbm_2021_104806
crossref_primary_10_1039_C5IB00177C
crossref_primary_10_1515_BIOMAT_2008_9_3_4_83
crossref_primary_10_1038_s41598_020_76019_z
crossref_primary_10_1016_j_scr_2013_09_004
crossref_primary_10_1371_journal_pone_0026136
crossref_primary_10_1002_btm2_10509
crossref_primary_10_1016_j_biomaterials_2018_02_009
crossref_primary_10_1089_ten_tea_2019_0026
crossref_primary_10_1111_jcpe_12501
crossref_primary_10_1002_term_220
crossref_primary_10_3389_fbioe_2015_00169
crossref_primary_10_1089_scd_2014_0534
crossref_primary_10_1089_ten_tea_2008_0345
crossref_primary_10_1002_term_468
crossref_primary_10_1016_j_cytogfr_2018_06_002
crossref_primary_10_1073_pnas_0711190105
crossref_primary_10_1111_j_1582_4934_2009_00931_x
crossref_primary_10_1016_S0020_1383_14_70013_0
crossref_primary_10_1016_j_ymeth_2020_04_004
crossref_primary_10_1016_j_actbio_2022_06_045
crossref_primary_10_1111_aor_12892
crossref_primary_10_3390_cells14020132
crossref_primary_10_1186_s13287_021_02450_2
crossref_primary_10_3390_nano9020261
crossref_primary_10_1093_rb_rbaa046
crossref_primary_10_1038_srep18279
crossref_primary_10_1007_s12195_017_0517_4
crossref_primary_10_1016_j_addr_2017_09_003
crossref_primary_10_3389_fcell_2020_593386
crossref_primary_10_1007_s10439_009_9648_7
crossref_primary_10_1016_j_actbio_2021_03_069
crossref_primary_10_1177_0022034515624444
crossref_primary_10_1186_s13075_022_02828_4
crossref_primary_10_1002_stem_1783
crossref_primary_10_1186_s13619_022_00146_3
crossref_primary_10_1089_ten_tea_2012_0563
crossref_primary_10_3390_biology10040285
crossref_primary_10_2460_ajvr_71_10_1228
crossref_primary_10_1089_ten_tea_2012_0425_rev
crossref_primary_10_1155_2016_1659275
crossref_primary_10_3390_ijms23020715
crossref_primary_10_1016_j_jff_2015_01_046
crossref_primary_10_1016_j_bone_2016_04_013
crossref_primary_10_1098_rsos_150496
crossref_primary_10_4061_2010_215625
crossref_primary_10_1007_s00441_020_03315_5
crossref_primary_10_1073_pnas_0711662105
crossref_primary_10_1016_j_actbio_2013_03_037
crossref_primary_10_1016_j_bbrc_2009_03_023
crossref_primary_10_3727_096368914X685393
crossref_primary_10_1002_mabi_201600192
crossref_primary_10_1186_s13287_015_0178_y
crossref_primary_10_1142_S2339547816500084
crossref_primary_10_1002_term_1681
crossref_primary_10_1089_ten_tea_2009_0500
crossref_primary_10_1007_s10616_019_00365_8
crossref_primary_10_1002_jor_23501
crossref_primary_10_1371_journal_pone_0039500
crossref_primary_10_1111_evj_12142
crossref_primary_10_1089_ten_tea_2009_0190
crossref_primary_10_1016_j_biomaterials_2013_04_001
crossref_primary_10_1016_j_yrtph_2017_11_004
crossref_primary_10_1039_C7NR00352H
crossref_primary_10_1111_j_1474_9726_2008_00377_x
crossref_primary_10_1186_scrt165
crossref_primary_10_1089_ten_tea_2008_0666
crossref_primary_10_1002_term_303
crossref_primary_10_1186_s13287_018_1009_8
crossref_primary_10_1371_journal_pone_0213452
crossref_primary_10_1089_ten_tea_2011_0312
crossref_primary_10_1016_j_jormas_2025_102224
crossref_primary_10_1371_journal_pone_0133745
crossref_primary_10_1038_s41419_018_0914_1
crossref_primary_10_1186_s13287_017_0531_4
crossref_primary_10_1002_term_197
crossref_primary_10_1038_srep02683
crossref_primary_10_4239_wjd_v13_i12_1066
crossref_primary_10_1016_j_cobme_2024_100535
crossref_primary_10_1089_ten_tea_2010_0471
crossref_primary_10_3109_17453670903278241
crossref_primary_10_1016_j_jcyt_2016_05_013
crossref_primary_10_1002_jcb_27531
crossref_primary_10_1159_000485122
crossref_primary_10_1007_s10856_012_4710_7
crossref_primary_10_1177_1947603518812555
crossref_primary_10_1016_j_yexcr_2013_10_005
crossref_primary_10_1089_ten_tec_2012_0142
crossref_primary_10_1002_jbm_a_37544
crossref_primary_10_1098_rsif_2011_0357
crossref_primary_10_1016_j_drudis_2013_06_007
crossref_primary_10_1016_j_jbiosc_2015_03_011
crossref_primary_10_1186_s13287_015_0105_2
crossref_primary_10_1089_ten_tec_2011_0675
crossref_primary_10_1007_s00264_008_0524_0
crossref_primary_10_1002_stem_2385
crossref_primary_10_1002_term_403
crossref_primary_10_1016_j_jcyt_2013_03_015
crossref_primary_10_1186_s13287_017_0649_4
crossref_primary_10_1002_adhm_201900506
crossref_primary_10_1016_j_biomaterials_2012_01_020
crossref_primary_10_3109_14653240903313941
crossref_primary_10_1186_s13287_020_02054_2
crossref_primary_10_1359_jbmr_091110
crossref_primary_10_1088_1748_605X_ab4243
crossref_primary_10_1155_2021_6659244
crossref_primary_10_1089_ten_tea_2008_0617
crossref_primary_10_1155_2022_4711499
crossref_primary_10_1002_term_2453
crossref_primary_10_1016_j_biomaterials_2010_02_071
crossref_primary_10_3727_096368915X687697
crossref_primary_10_1002_btpr_1886
crossref_primary_10_3390_pharmaceutics14030651
crossref_primary_10_1002_stem_2296
crossref_primary_10_1371_journal_pone_0022980
crossref_primary_10_1016_j_injury_2011_06_014
crossref_primary_10_3389_fbioe_2021_698614
crossref_primary_10_1007_s00441_011_1203_9
crossref_primary_10_1002_jcp_24081
crossref_primary_10_1016_j_scr_2013_07_005
crossref_primary_10_1073_pnas_1522297113
crossref_primary_10_5966_sctm_2015_0404
crossref_primary_10_1016_j_biomaterials_2013_03_001
crossref_primary_10_1007_s00441_018_2894_y
crossref_primary_10_1038_s41598_022_12143_2
crossref_primary_10_1002_adma_201001763
crossref_primary_10_1016_j_actbio_2019_03_001
crossref_primary_10_3389_fbioe_2022_1074536
crossref_primary_10_1016_j_jcyt_2014_10_013
crossref_primary_10_1155_2013_387324
crossref_primary_10_3389_fcell_2020_581436
crossref_primary_10_1002_jcb_23058
crossref_primary_10_1016_j_mee_2016_12_020
crossref_primary_10_1038_cddiscovery_2016_64
crossref_primary_10_2217_rme_2016_0038
crossref_primary_10_1016_j_biomaterials_2007_05_032
crossref_primary_10_1038_s41536_018_0048_1
crossref_primary_10_1084_jem_20172139
crossref_primary_10_1302_2046_3758_87_BJR_2017_0248_R1
crossref_primary_10_5966_sctm_2013_0056
crossref_primary_10_1089_ten_tea_2017_0520
crossref_primary_10_1088_1748_605X_aa93c0
crossref_primary_10_1371_journal_pone_0005605
crossref_primary_10_1007_s00198_010_1434_8
crossref_primary_10_1016_j_jcyt_2016_02_004
crossref_primary_10_1186_1471_2121_9_60
crossref_primary_10_1016_j_diff_2015_08_002
crossref_primary_10_1111_jcmm_13137
crossref_primary_10_1186_scrt452
crossref_primary_10_1097_PRS_0b013e3181fad311
crossref_primary_10_1016_j_bbrc_2012_04_088
crossref_primary_10_1007_s13238_012_2107_5
crossref_primary_10_3390_cells9122559
crossref_primary_10_1002_jcp_25825
crossref_primary_10_1089_ten_tea_2007_0388
crossref_primary_10_1016_j_actbio_2010_01_037
crossref_primary_10_1016_j_scr_2013_12_006
crossref_primary_10_3389_fbioe_2023_1136827
crossref_primary_10_1089_ten_tea_2013_0321
crossref_primary_10_3390_ph17030350
crossref_primary_10_1016_j_actbio_2015_04_024
crossref_primary_10_3727_096368912X657990
crossref_primary_10_1016_j_bone_2009_08_005
crossref_primary_10_1016_j_scr_2013_12_001
crossref_primary_10_1038_s41536_018_0060_5
crossref_primary_10_1002_jor_21129
crossref_primary_10_1111_jcmm_12172
crossref_primary_10_1089_scd_2009_0510
crossref_primary_10_1186_s13287_015_0037_x
crossref_primary_10_1002_term_1738
crossref_primary_10_1089_ten_teb_2017_0093
crossref_primary_10_1002_term_250
crossref_primary_10_1007_s12195_025_00843_4
crossref_primary_10_1016_j_jcyt_2014_07_005
crossref_primary_10_1002_jcp_31014
crossref_primary_10_1089_ten_TEA_2012_0425
crossref_primary_10_3390_jcm11247328
crossref_primary_10_1038_s41598_021_92270_4
crossref_primary_10_3390_cells12131756
crossref_primary_10_1016_j_colcom_2023_100734
crossref_primary_10_1186_s13287_018_0914_1
crossref_primary_10_1016_j_bone_2010_06_020
crossref_primary_10_1016_j_jbiomech_2008_04_001
crossref_primary_10_1089_ten_tea_2011_0700
crossref_primary_10_3181_0712_RM_356
crossref_primary_10_1177_039463201402700309
crossref_primary_10_1089_ten_teb_2012_0273
crossref_primary_10_1038_bdjopen_2015_7
crossref_primary_10_3390_biomedicines10123071
crossref_primary_10_1038_s41598_024_62544_8
crossref_primary_10_1155_2018_8431053
crossref_primary_10_1007_s00216_008_2528_4
crossref_primary_10_2460_ajvr_73_2_313
crossref_primary_10_4137_BTRI_S30485
crossref_primary_10_3390_antiox9111165
crossref_primary_10_1016_j_heares_2012_11_009
crossref_primary_10_1016_j_scr_2019_101475
crossref_primary_10_1007_s00441_014_1830_z
crossref_primary_10_1016_j_coche_2013_01_005
crossref_primary_10_1097_BTO_0000000000000351
crossref_primary_10_1038_s12276_017_0014_9
crossref_primary_10_1186_1423_0127_21_21
crossref_primary_10_1002_term_2807
crossref_primary_10_1007_s00223_016_0184_9
crossref_primary_10_1111_evj_12311
crossref_primary_10_1186_s13287_024_03794_1
crossref_primary_10_1002_stem_2920
crossref_primary_10_1002_term_1957
crossref_primary_10_1016_j_jcyt_2012_10_002
crossref_primary_10_1021_acsbiomaterials_5b00277
crossref_primary_10_1177_1534734612463577
Cites_doi 10.1097/00003086-199810001-00025
10.1073/pnas.0507417102
10.1038/nbt0602-587
10.1002/(SICI)1097-4644(19991201)75:3<424::AID-JCB8>3.0.CO;2-8
10.1016/S8756-3282(97)00127-0
10.1038/79449
10.1016/j.exger.2005.07.006
10.1359/jbmr.2002.17.2.231
10.1097/00003086-200002000-00003
10.1074/jbc.275.13.9645
10.1038/345458a0
10.1073/pnas.202296599
10.1359/jbmr.1999.14.7.1115
10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I
10.1016/S1534-5807(04)00075-9
10.1002/jor.1100090504
10.1016/j.bbrc.2004.01.102
10.1126/science.286.5446.1946
10.1038/79676
10.1016/S1525-0016(02)00062-X
10.1042/cs0940549
10.1038/nbt0602-592
10.1089/ten.2006.12.2927
10.1016/j.yexcr.2003.10.031
10.1097/00003086-199910001-00008
10.1097/01.TP.0000102550.58160.39
10.1016/j.biocel.2003.11.001
10.1007/s002239900678
10.1126/science.1110364
10.1016/j.ymthe.2004.10.019
10.1016/j.bone.2005.02.015
10.1016/8756-3282(92)90363-2
10.1023/A:1021191432366
10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO;2-F
10.1126/science.1110955
10.1089/107632704323061753
10.1126/science.150.3698.893
10.1210/endo.138.10.5425
10.1016/j.bone.2004.01.016
10.1007/BF02652556
10.1002/jcb.10174
10.1126/science.1107627
10.1038/nbt958
10.1089/scd.2005.14.621
10.1016/j.orthres.2004.03.014
10.1089/ten.2005.0513
10.1111/j.1432-0436.1990.tb00619.x
10.1038/sj.gt.3302207
10.1126/science.1067404
10.1073/pnas.0402532101
10.1016/j.steroids.2003.12.005
10.1023/B:ABME.0000007800.89194.95
10.1016/S1465-3249(05)70787-8
10.1242/jcs.00369
10.1023/B:JMSM.0000046394.53153.21
10.1046/j.1440-1622.1999.01674.x
10.1016/S0047-6374(98)00114-6
10.1006/meth.2001.1262
10.1097/00001665-200409000-00007
ContentType Journal Article
Copyright Copyright © 2007 Orthopaedic Research Society
Copyright_xml – notice: Copyright © 2007 Orthopaedic Research Society
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/jor.20402
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1554-527X
EndPage 1041
ExternalDocumentID 17469183
10_1002_jor_20402
JOR20402
ark_67375_WNG_JZLZ4QV1_Q
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1B1
1KJ
1L6
1OB
1OC
1ZS
1~5
24P
29L
31~
33P
3SF
3V.
3WU
4.4
4G.
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
7-5
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8FI
8FJ
8R4
8R5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHHS
AALRI
AANLZ
AAONW
AAQFI
AAQQT
AAQXK
AASGY
AAXRX
AAXUO
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABMAC
ABPVW
ABQWH
ABUWG
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACGOF
ACIUM
ACMXC
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMXJE
BPHCQ
BQCPF
BROTX
BRXPI
BSCLL
BVXVI
BY8
C45
CCPQU
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
DWQXO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FDB
FEDTE
FGOYB
FUBAC
FYUFA
G-S
G.N
GNP
GNUQQ
GODZA
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HMCUK
HVGLF
HZ~
IHE
IX1
J0M
JPC
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M41
M56
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
NQ-
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q2X
QB0
QRW
R.K
R2-
RIG
RIWAO
RJQFR
RNS
ROL
RPZ
RWI
RWL
RWR
RX1
RXW
RYL
SAMSI
SEW
SSZ
SUPJJ
SV3
TAE
TEORI
UB1
UKHRP
UPT
V2E
V8K
W8V
W99
WBKPD
WIB
WIH
WIJ
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WXI
WXSBR
WYB
WYISQ
X7M
XG1
XV2
YCJ
YQT
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ABWVN
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ACVFH
ADCNI
AEUPX
AEYWJ
AFPUW
AGHNM
AGQPQ
AGYGG
AIGII
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c4272-adcd19ded73bd6657a695495861063a5b4573a52d320f214b5c7ef6f1156cc3a3
IEDL.DBID DR2
ISSN 0736-0266
IngestDate Fri Jul 11 07:11:36 EDT 2025
Wed Feb 19 01:43:40 EST 2025
Tue Jul 01 03:02:23 EDT 2025
Thu Apr 24 23:05:17 EDT 2025
Wed Jan 22 16:45:33 EST 2025
Wed Oct 30 09:51:05 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4272-adcd19ded73bd6657a695495861063a5b4573a52d320f214b5c7ef6f1156cc3a3
Notes ark:/67375/WNG-JZLZ4QV1-Q
istex:8236E99E7D8D29E1997DD95FC24404E4B7D14891
ArticleID:JOR20402
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 17469183
PQID 68117998
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_68117998
pubmed_primary_17469183
crossref_citationtrail_10_1002_jor_20402
crossref_primary_10_1002_jor_20402
wiley_primary_10_1002_jor_20402_JOR20402
istex_primary_ark_67375_WNG_JZLZ4QV1_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2007
PublicationDateYYYYMMDD 2007-08-01
PublicationDate_xml – month: 08
  year: 2007
  text: August 2007
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of orthopaedic research
PublicationTitleAlternate J. Orthop. Res
PublicationYear 2007
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Pola E, Gao W, Zhou Y, et al. 2004. Efficient bone formation by gene transfer of human LIM mineralization protein-3. Gene Ther 11: 683-693.
Bancroft GN, Sikavitsas VI, van den Dolder J, et al. 2002. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci USA 99: 12600-12605.
Bruder SP, Jaiswal N, Haynesworth SE. 1997. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64: 278-294.
Fehrer C, Lepperdinger G. 2005. Mesenchymal stem cell aging. Exp Gerontol 12: 926-930.
Cowan CM, et al. 2004. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 22: 560-567.
D'Ippolito G, Schiller PC, Ricordi C, et al. 1999. Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 14: 1115-1122.
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.
Le Blanc K, Pittenger M. 2005. Mesenchymal stem cells: progress toward promise. Cytotherapy 7: 36-45.
Simonsen JL, Rosada C, Serakinci N, et al. 2002. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol 20: 592-596.
Haynesworth SE, Baber MA, Caplan AI. 1995. Characterization of the unique mesenchymal stem cell phenotype in vitro. Trans 41st Ann Meet Orthop Res Soc 20: 7.
Kratchmarova I, Blagoev B, Haack-Sorensen M, et al. 2005. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308: 1472-1477.
Liu L, DiGirolamo CM, Navarro PA, et al. 2004. Telomerase deficiency impairs differentiation of mesenchymal stem cells. Exp Cell Res 294: 1-8.
Phinney DG, Kopen G, Righter W, et al. 1999. Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem 75: 424-436.
McBeath R, Pirone DM, Nelson CM, et al. 2004. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6: 483-495.
Jochum W, David JP, Elliott C, et al. 2000. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med 6: 980-984.
de Boer J, Siddappa R, Gaspar C, et al. 2004. Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells. Bone 34: 818-826.
Both SK, van der Muijsenberg AM, van Blitterswijk CA, et al. 2007. A rapid and labour efficient method for expansion of human mesenchymal stem cells for clinical applications. Tissue Eng 13: 3-9.
Balooch G, Balooch M, Nalla RK, et al. 2005. TGF-beta regulates the mechanical properties and composition of bone matrix. Proc Natl Acad Sci USA 102: 18813-18818.
Urist MR. 1965. Bone: formation by autoinduction. Science 150: 893-899.
Jaiswal N, Haynesworth SE, Caplan AI, et al. 1997. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64: 295-312.
Seiler JG 3rd, Johnson J. 2000. Iliac crest autogenous bone grafting: donor site complications. J South Orthop Assoc 9: 91-97.
Sugiyama O, An DS, Kung SP, et al. 2005. Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo. Mol Ther 11: 390-398.
Kassem M, Ankersen L, Eriksen EF, et al. 1997. Demonstration of cellular aging and senescence in serially passaged long-term cultures of human trabecular osteoblasts. Osteoporos Int 7: 514-524.
Hill NM, Horne JG, Devane PA. 1999. Donor site morbidity in the iliac crest bone graft. Aust N Z J Surg 69: 726-728.
Bruder SP, Fox BS. 1999. Tissue engineering of bone. Cell based strategies. Clin Orthop Related Res S68-S83.
Barry FP, Murphy JM. 2004. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36: 568-584.
Mundy G, Garrett R, Harris S, et al. 1999. Stimulation of bone formation in vitro and in rodents by statins. Science 286: 1946-1949.
Boer JD, Licht R, Bongers M, et al. 2006. Inhibition of histone acetylation as a tool in bone tissue engineering. Tissue Eng 12: 2927-2937.
Haynesworth SE, Baber MA, Caplan AI. 1992. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13: 69-80.
Gronthos S, Zannettino AC, Hay SJ, et al. 2003. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116: 1827-1835.
Jorgensen NR, Henriksen Z, Sorensen OH, et al. 2004. Dexamethasone, BMP-2, and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype: validation of an in vitro model for human bone marrow-derived primary osteoblasts. Steroids 69: 219-226.
Pittenger MF, et al. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147.
Derubeis AR, Cancedda R. 2004. Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances. Ann Biomed Eng 32: 160-165.
De Boer J, Wang HJ, Van Blitterswijk C. 2004. Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Eng 10: 393-401.
Yuan H, Van Den Doel M, Li S, et al. 2002. A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted intramuscularly in goats. J Mater Sci Mater Med 13: 1271-1275.
Bauer TW, Muschler GF. 2000. Bone graft materials. An overview of the basic science. Clin Orthop Related Res 10-27.
Pettway GJ, Schneider A, Koh AJ, et al. 2005. Anabolic actions of PTH (1-34): use of a novel tissue engineering model to investigate temporal effects on bone. Bone 36: 959-970.
Oreffo RO, Bord S, Triffitt JT. 1998. Skeletal progenitor cells and ageing human populations. Clin Sci (Lond) 94: 549-555.
Frank O, Heim M, Jakob M, et al. 2002. Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. J Cell Biochem 85: 737-746.
Liu P, Oyajobi BO, Russell RG, et al. 1999. Regulation of osteogenic differentiation of human bone marrow stromal cells: interaction between transforming growth factor-beta and 1,25(OH)(2) vitamin D(3) In vitro. Calcif Tissue Int 65: 173-180.
Jaiswal RK, Jaiswal N, Bruder SP, et al. 2000. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 275: 9645-9652.
Koch H, Jadlowiec JA, Campbell PG. 2005. Insulin-like growth factor-I induces early osteoblast gene expression in human mesenchymal stem cells. Stem Cells Dev 14: 621-631.
Martin I, Muraglia A, Campanile G, et al. 1997. Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology 138: 4456-4462.
Kruyt MC, de Bruijn JD, Yuan H, et al. 2004. Optimization of bone tissue engineering in goats: a peroperative seeding method using cryopreserved cells and localized bone formation in calcium phosphate scaffolds. Transplantation 77: 359-365.
Abdelaal MM, Tholpady SS, Kessler JD, et al. 2004. BMP-9-transduced prefabricated muscular flaps for the treatment of bony defects. J Craniofac Surg 15: 736-741; discussion 742-744.
Bertone AL, Pittman DD, Bouxsein ML, et al. 2004. Adenoviral-mediated transfer of human BMP-6 gene accelerates healing in a rabbit ulnar osteotomy model. J Orthop Res 22: 1261-1270.
Zernik J, Twarog K, Upholt WB. 1990. Regulation of alkaline phosphatase and alpha 2(I) procollagen synthesis during early intramembranous bone formation in the rat mandible. Differentiation 44: 207-215.
Tezuka K, Yasuda M, Watanabe N, et al. 2002. Stimulation of osteoblastic cell differentiation by Notch. J Bone Miner Res 17: 231-239.
Dezawa M, et al. 2005. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 309: 314-317.
Hong JH, Hwang ES, McManus MT, et al. 2005. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309: 1074-1078.
Xiaoxue Y, Zhongqiang C, Zhaoqing G, et al. 2004. Immortalization of human osteoblasts by transferring human telomerase reverse transcriptase gene. Biochem Biophys Res Commun 315: 643-651.
Tsuda H, Wada T, Ito Y, et al. 2003. Efficient BMP2 gene transfer and bone formation of mesenchymal stem cells by a fiber-mutant adenoviral vector. Mol Ther 7: 354-365.
Hench LL, Polak JM. 1965. Third-generation biomedical materials. Science 295: 1014-1017.
Kveiborg M, Kassem M, Langdahl B, et al. 1999. Telomere shortening during aging of human osteoblasts in vitro and leukocytes in vivo: lack of excessive telomere loss in osteoporotic patients. Mech Ageing Dev 106: 261-271.
Shi S, Gronthos S, Chen S, et al. 2002. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat Biotechnol 20: 587-591.
Bruder SP, Jaiswal N, Ricalton NS, et al. 1998. Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res S247-S256.
Petite H, Viateau V, Bensaid W, et al. 2000. Tissue-engineered bone regeneration. Nat Biotechnol 18: 959-963.
Mendes SC, Tibbe JM, Veenhof M, et al. 2004. Relation between in vitro and in vivo osteogenic potential of cultured human bone marrow stromal cells. J Mater Sci Mater Med 15: 1123-1128.
Bruder SP, Horowitz MC, Mosca JD, et al. 1997. Monoclonal antibodies reactive with human osteogenic cell surface antigens. Bone 21: 225-235.
Yu X, Botchwey EA, Levine EM, et al. 2004. Bioreactor-based bone tissue engineering: the influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization. Proc Natl Acad Sci USA 101: 11203-11208.
Harley CB, Futcher AB, Greider CW. 1990. Telomeres shorten during ageing of human fibroblasts. Nature 345: 458-460.
2004; 22
2002; 17
1990; 345
2003; 116
2000; 6
2004; 69
2000; 9
2002; 13
2002; 99
1999; 286
2004; 6
1999; 284
1992; 13
1997; 7
1995; 20
2004; 32
2004; 77
2000; 18
1990; 44
2002; 85
2000
2005; 102
2004; 36
1965; 150
2004; 294
2003; 7
2004; 34
1999; 14
2005; 308
2005; 309
1998; 94
2005; 36
2004; 101
1997; 138
2006; 12
1997; 21
1997; 64
1999; 69
1998
1999; 65
2000; 275
1999; 106
2001; 25
2007; 13
1999
2004; 10
2004; 11
2002; 20
2004; 15
1965; 295
2005; 7
1999; 75
2004; 315
2005; 11
2005; 12
2005; 14
e_1_2_1_41_2
e_1_2_1_22_2
e_1_2_1_45_2
e_1_2_1_60_2
e_1_2_1_20_2
e_1_2_1_43_2
e_1_2_1_62_2
e_1_2_1_26_2
e_1_2_1_49_2
e_1_2_1_24_2
e_1_2_1_47_2
e_1_2_1_28_2
e_1_2_1_6_2
e_1_2_1_54_2
e_1_2_1_56_2
e_1_2_1_2_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_50_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_16_2
e_1_2_1_37_2
e_1_2_1_14_2
e_1_2_1_35_2
e_1_2_1_58_2
e_1_2_1_8_2
e_1_2_1_18_2
e_1_2_1_39_2
e_1_2_1_40_2
e_1_2_1_23_2
e_1_2_1_44_2
e_1_2_1_61_2
e_1_2_1_21_2
e_1_2_1_42_2
e_1_2_1_27_2
e_1_2_1_48_2
e_1_2_1_25_2
e_1_2_1_46_2
e_1_2_1_29_2
Seiler JG (e_1_2_1_4_2) 2000; 9
e_1_2_1_30_2
e_1_2_1_53_2
e_1_2_1_7_2
e_1_2_1_55_2
e_1_2_1_5_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_32_2
e_1_2_1_51_2
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_13_2
e_1_2_1_36_2
Haynesworth SE (e_1_2_1_52_2) 1995; 20
e_1_2_1_19_2
e_1_2_1_57_2
e_1_2_1_17_2
e_1_2_1_59_2
e_1_2_1_9_2
References_xml – reference: Cowan CM, et al. 2004. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 22: 560-567.
– reference: Kratchmarova I, Blagoev B, Haack-Sorensen M, et al. 2005. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308: 1472-1477.
– reference: Sugiyama O, An DS, Kung SP, et al. 2005. Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo. Mol Ther 11: 390-398.
– reference: Pittenger MF, et al. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147.
– reference: Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.
– reference: Yu X, Botchwey EA, Levine EM, et al. 2004. Bioreactor-based bone tissue engineering: the influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization. Proc Natl Acad Sci USA 101: 11203-11208.
– reference: Frank O, Heim M, Jakob M, et al. 2002. Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. J Cell Biochem 85: 737-746.
– reference: Shi S, Gronthos S, Chen S, et al. 2002. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat Biotechnol 20: 587-591.
– reference: Le Blanc K, Pittenger M. 2005. Mesenchymal stem cells: progress toward promise. Cytotherapy 7: 36-45.
– reference: Xiaoxue Y, Zhongqiang C, Zhaoqing G, et al. 2004. Immortalization of human osteoblasts by transferring human telomerase reverse transcriptase gene. Biochem Biophys Res Commun 315: 643-651.
– reference: Liu P, Oyajobi BO, Russell RG, et al. 1999. Regulation of osteogenic differentiation of human bone marrow stromal cells: interaction between transforming growth factor-beta and 1,25(OH)(2) vitamin D(3) In vitro. Calcif Tissue Int 65: 173-180.
– reference: Petite H, Viateau V, Bensaid W, et al. 2000. Tissue-engineered bone regeneration. Nat Biotechnol 18: 959-963.
– reference: Pola E, Gao W, Zhou Y, et al. 2004. Efficient bone formation by gene transfer of human LIM mineralization protein-3. Gene Ther 11: 683-693.
– reference: Bauer TW, Muschler GF. 2000. Bone graft materials. An overview of the basic science. Clin Orthop Related Res 10-27.
– reference: Mendes SC, Tibbe JM, Veenhof M, et al. 2004. Relation between in vitro and in vivo osteogenic potential of cultured human bone marrow stromal cells. J Mater Sci Mater Med 15: 1123-1128.
– reference: Bruder SP, Jaiswal N, Ricalton NS, et al. 1998. Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res S247-S256.
– reference: Seiler JG 3rd, Johnson J. 2000. Iliac crest autogenous bone grafting: donor site complications. J South Orthop Assoc 9: 91-97.
– reference: Haynesworth SE, Baber MA, Caplan AI. 1995. Characterization of the unique mesenchymal stem cell phenotype in vitro. Trans 41st Ann Meet Orthop Res Soc 20: 7.
– reference: Bancroft GN, Sikavitsas VI, van den Dolder J, et al. 2002. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci USA 99: 12600-12605.
– reference: Harley CB, Futcher AB, Greider CW. 1990. Telomeres shorten during ageing of human fibroblasts. Nature 345: 458-460.
– reference: Urist MR. 1965. Bone: formation by autoinduction. Science 150: 893-899.
– reference: Tezuka K, Yasuda M, Watanabe N, et al. 2002. Stimulation of osteoblastic cell differentiation by Notch. J Bone Miner Res 17: 231-239.
– reference: Yuan H, Van Den Doel M, Li S, et al. 2002. A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted intramuscularly in goats. J Mater Sci Mater Med 13: 1271-1275.
– reference: Martin I, Muraglia A, Campanile G, et al. 1997. Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology 138: 4456-4462.
– reference: Hill NM, Horne JG, Devane PA. 1999. Donor site morbidity in the iliac crest bone graft. Aust N Z J Surg 69: 726-728.
– reference: Tsuda H, Wada T, Ito Y, et al. 2003. Efficient BMP2 gene transfer and bone formation of mesenchymal stem cells by a fiber-mutant adenoviral vector. Mol Ther 7: 354-365.
– reference: Hong JH, Hwang ES, McManus MT, et al. 2005. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309: 1074-1078.
– reference: Jochum W, David JP, Elliott C, et al. 2000. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med 6: 980-984.
– reference: Derubeis AR, Cancedda R. 2004. Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances. Ann Biomed Eng 32: 160-165.
– reference: Koch H, Jadlowiec JA, Campbell PG. 2005. Insulin-like growth factor-I induces early osteoblast gene expression in human mesenchymal stem cells. Stem Cells Dev 14: 621-631.
– reference: Kassem M, Ankersen L, Eriksen EF, et al. 1997. Demonstration of cellular aging and senescence in serially passaged long-term cultures of human trabecular osteoblasts. Osteoporos Int 7: 514-524.
– reference: Barry FP, Murphy JM. 2004. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36: 568-584.
– reference: Kruyt MC, de Bruijn JD, Yuan H, et al. 2004. Optimization of bone tissue engineering in goats: a peroperative seeding method using cryopreserved cells and localized bone formation in calcium phosphate scaffolds. Transplantation 77: 359-365.
– reference: D'Ippolito G, Schiller PC, Ricordi C, et al. 1999. Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 14: 1115-1122.
– reference: Jaiswal RK, Jaiswal N, Bruder SP, et al. 2000. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 275: 9645-9652.
– reference: Pettway GJ, Schneider A, Koh AJ, et al. 2005. Anabolic actions of PTH (1-34): use of a novel tissue engineering model to investigate temporal effects on bone. Bone 36: 959-970.
– reference: Zernik J, Twarog K, Upholt WB. 1990. Regulation of alkaline phosphatase and alpha 2(I) procollagen synthesis during early intramembranous bone formation in the rat mandible. Differentiation 44: 207-215.
– reference: Kveiborg M, Kassem M, Langdahl B, et al. 1999. Telomere shortening during aging of human osteoblasts in vitro and leukocytes in vivo: lack of excessive telomere loss in osteoporotic patients. Mech Ageing Dev 106: 261-271.
– reference: Abdelaal MM, Tholpady SS, Kessler JD, et al. 2004. BMP-9-transduced prefabricated muscular flaps for the treatment of bony defects. J Craniofac Surg 15: 736-741; discussion 742-744.
– reference: Fehrer C, Lepperdinger G. 2005. Mesenchymal stem cell aging. Exp Gerontol 12: 926-930.
– reference: Liu L, DiGirolamo CM, Navarro PA, et al. 2004. Telomerase deficiency impairs differentiation of mesenchymal stem cells. Exp Cell Res 294: 1-8.
– reference: Bruder SP, Jaiswal N, Haynesworth SE. 1997. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64: 278-294.
– reference: Hench LL, Polak JM. 1965. Third-generation biomedical materials. Science 295: 1014-1017.
– reference: Oreffo RO, Bord S, Triffitt JT. 1998. Skeletal progenitor cells and ageing human populations. Clin Sci (Lond) 94: 549-555.
– reference: Dezawa M, et al. 2005. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 309: 314-317.
– reference: Jaiswal N, Haynesworth SE, Caplan AI, et al. 1997. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64: 295-312.
– reference: Bruder SP, Horowitz MC, Mosca JD, et al. 1997. Monoclonal antibodies reactive with human osteogenic cell surface antigens. Bone 21: 225-235.
– reference: Gronthos S, Zannettino AC, Hay SJ, et al. 2003. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116: 1827-1835.
– reference: Bruder SP, Fox BS. 1999. Tissue engineering of bone. Cell based strategies. Clin Orthop Related Res S68-S83.
– reference: Bertone AL, Pittman DD, Bouxsein ML, et al. 2004. Adenoviral-mediated transfer of human BMP-6 gene accelerates healing in a rabbit ulnar osteotomy model. J Orthop Res 22: 1261-1270.
– reference: Simonsen JL, Rosada C, Serakinci N, et al. 2002. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol 20: 592-596.
– reference: Haynesworth SE, Baber MA, Caplan AI. 1992. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13: 69-80.
– reference: Balooch G, Balooch M, Nalla RK, et al. 2005. TGF-beta regulates the mechanical properties and composition of bone matrix. Proc Natl Acad Sci USA 102: 18813-18818.
– reference: De Boer J, Wang HJ, Van Blitterswijk C. 2004. Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Eng 10: 393-401.
– reference: Phinney DG, Kopen G, Righter W, et al. 1999. Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem 75: 424-436.
– reference: de Boer J, Siddappa R, Gaspar C, et al. 2004. Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells. Bone 34: 818-826.
– reference: Boer JD, Licht R, Bongers M, et al. 2006. Inhibition of histone acetylation as a tool in bone tissue engineering. Tissue Eng 12: 2927-2937.
– reference: Both SK, van der Muijsenberg AM, van Blitterswijk CA, et al. 2007. A rapid and labour efficient method for expansion of human mesenchymal stem cells for clinical applications. Tissue Eng 13: 3-9.
– reference: Jorgensen NR, Henriksen Z, Sorensen OH, et al. 2004. Dexamethasone, BMP-2, and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype: validation of an in vitro model for human bone marrow-derived primary osteoblasts. Steroids 69: 219-226.
– reference: McBeath R, Pirone DM, Nelson CM, et al. 2004. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6: 483-495.
– reference: Mundy G, Garrett R, Harris S, et al. 1999. Stimulation of bone formation in vitro and in rodents by statins. Science 286: 1946-1949.
– volume: 150
  start-page: 893
  year: 1965
  end-page: 899
  article-title: Bone: formation by autoinduction
  publication-title: Science
– volume: 13
  start-page: 3
  year: 2007
  end-page: 9
  article-title: A rapid and labour efficient method for expansion of human mesenchymal stem cells for clinical applications
  publication-title: Tissue Eng
– volume: 13
  start-page: 1271
  year: 2002
  end-page: 1275
  article-title: A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted intramuscularly in goats
  publication-title: J Mater Sci Mater Med
– volume: 116
  start-page: 1827
  year: 2003
  end-page: 1835
  article-title: Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow
  publication-title: J Cell Sci
– volume: 77
  start-page: 359
  year: 2004
  end-page: 365
  article-title: Optimization of bone tissue engineering in goats: a peroperative seeding method using cryopreserved cells and localized bone formation in calcium phosphate scaffolds
  publication-title: Transplantation
– volume: 295
  start-page: 1014
  year: 1965
  end-page: 1017
  article-title: Third‐generation biomedical materials
  publication-title: Science
– volume: 32
  start-page: 160
  year: 2004
  end-page: 165
  article-title: Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances
  publication-title: Ann Biomed Eng
– volume: 36
  start-page: 959
  year: 2005
  end-page: 970
  article-title: Anabolic actions of PTH (1–34): use of a novel tissue engineering model to investigate temporal effects on bone
  publication-title: Bone
– volume: 22
  start-page: 560
  year: 2004
  end-page: 567
  article-title: Adipose‐derived adult stromal cells heal critical‐size mouse calvarial defects
  publication-title: Nat Biotechnol
– volume: 106
  start-page: 261
  year: 1999
  end-page: 271
  article-title: Telomere shortening during aging of human osteoblasts in vitro and leukocytes in vivo: lack of excessive telomere loss in osteoporotic patients
  publication-title: Mech Ageing Dev
– volume: 20
  start-page: 587
  year: 2002
  end-page: 591
  article-title: Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression
  publication-title: Nat Biotechnol
– volume: 15
  start-page: 736
  year: 2004
  end-page: 741
  article-title: BMP‐9‐transduced prefabricated muscular flaps for the treatment of bony defects
  publication-title: J Craniofac Surg
– volume: 69
  start-page: 219
  year: 2004
  end-page: 226
  article-title: Dexamethasone, BMP‐2, and 1,25‐dihydroxyvitamin D enhance a more differentiated osteoblast phenotype: validation of an in vitro model for human bone marrow‐derived primary osteoblasts
  publication-title: Steroids
– volume: 7
  start-page: 354
  year: 2003
  end-page: 365
  article-title: Efficient BMP2 gene transfer and bone formation of mesenchymal stem cells by a fiber‐mutant adenoviral vector
  publication-title: Mol Ther
– volume: 85
  start-page: 737
  year: 2002
  end-page: 746
  article-title: Real‐time quantitative RT‐PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro
  publication-title: J Cell Biochem
– volume: 20
  start-page: 592
  year: 2002
  end-page: 596
  article-title: Telomerase expression extends the proliferative life‐span and maintains the osteogenic potential of human bone marrow stromal cells
  publication-title: Nat Biotechnol
– volume: 21
  start-page: 225
  year: 1997
  end-page: 235
  article-title: Monoclonal antibodies reactive with human osteogenic cell surface antigens
  publication-title: Bone
– volume: 17
  start-page: 231
  year: 2002
  end-page: 239
  article-title: Stimulation of osteoblastic cell differentiation by Notch
  publication-title: J Bone Miner Res
– volume: 10
  start-page: 393
  year: 2004
  end-page: 401
  article-title: Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells
  publication-title: Tissue Eng
– volume: 13
  start-page: 69
  year: 1992
  end-page: 80
  article-title: Cell surface antigens on human marrow‐derived mesenchymal cells are detected by monoclonal antibodies
  publication-title: Bone
– volume: 294
  start-page: 1
  year: 2004
  end-page: 8
  article-title: Telomerase deficiency impairs differentiation of mesenchymal stem cells
  publication-title: Exp Cell Res
– volume: 7
  start-page: 514
  year: 1997
  end-page: 524
  article-title: Demonstration of cellular aging and senescence in serially passaged long‐term cultures of human trabecular osteoblasts
  publication-title: Osteoporos Int
– volume: 138
  start-page: 4456
  year: 1997
  end-page: 4462
  article-title: Fibroblast growth factor‐2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow
  publication-title: Endocrinology
– volume: 12
  start-page: 926
  year: 2005
  end-page: 930
  article-title: Mesenchymal stem cell aging
  publication-title: Exp Gerontol
– volume: 64
  start-page: 295
  year: 1997
  end-page: 312
  article-title: Osteogenic differentiation of purified, culture‐expanded human mesenchymal stem cells in vitro
  publication-title: J Cell Biochem
– volume: 284
  start-page: 143
  year: 1999
  end-page: 147
  article-title: Multilineage potential of adult human mesenchymal stem cells
  publication-title: Science
– volume: 309
  start-page: 1074
  year: 2005
  end-page: 1078
  article-title: TAZ, a transcriptional modulator of mesenchymal stem cell differentiation
  publication-title: Science
– volume: 75
  start-page: 424
  year: 1999
  end-page: 436
  article-title: Donor variation in the growth properties and osteogenic potential of human marrow stromal cells
  publication-title: J Cell Biochem
– volume: 101
  start-page: 11203
  year: 2004
  end-page: 11208
  article-title: Bioreactor‐based bone tissue engineering: the influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization
  publication-title: Proc Natl Acad Sci USA
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta Delta C(T)) Method
  publication-title: Methods
– volume: 309
  start-page: 314
  year: 2005
  end-page: 317
  article-title: Bone marrow stromal cells generate muscle cells and repair muscle degeneration
  publication-title: Science
– volume: 14
  start-page: 1115
  year: 1999
  end-page: 1122
  article-title: Age‐related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow
  publication-title: J Bone Miner Res
– volume: 6
  start-page: 483
  year: 2004
  end-page: 495
  article-title: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment
  publication-title: Dev Cell
– start-page: 10
  year: 2000
  end-page: 27
  article-title: Bone graft materials. An overview of the basic science
  publication-title: Clin Orthop Related Res
– volume: 315
  start-page: 643
  year: 2004
  end-page: 651
  article-title: Immortalization of human osteoblasts by transferring human telomerase reverse transcriptase gene
  publication-title: Biochem Biophys Res Commun
– volume: 286
  start-page: 1946
  year: 1999
  end-page: 1949
  article-title: Stimulation of bone formation in vitro and in rodents by statins
  publication-title: Science
– volume: 7
  start-page: 36
  year: 2005
  end-page: 45
  article-title: Mesenchymal stem cells: progress toward promise
  publication-title: Cytotherapy
– volume: 345
  start-page: 458
  year: 1990
  end-page: 460
  article-title: Telomeres shorten during ageing of human fibroblasts
  publication-title: Nature
– volume: 6
  start-page: 980
  year: 2000
  end-page: 984
  article-title: Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra‐1
  publication-title: Nat Med
– volume: 11
  start-page: 683
  year: 2004
  end-page: 693
  article-title: Efficient bone formation by gene transfer of human LIM mineralization protein‐3
  publication-title: Gene Ther
– volume: 14
  start-page: 621
  year: 2005
  end-page: 631
  article-title: Insulin‐like growth factor‐I induces early osteoblast gene expression in human mesenchymal stem cells
  publication-title: Stem Cells Dev
– volume: 275
  start-page: 9645
  year: 2000
  end-page: 9652
  article-title: Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen‐activated protein kinase
  publication-title: J Biol Chem
– volume: 69
  start-page: 726
  year: 1999
  end-page: 728
  article-title: Donor site morbidity in the iliac crest bone graft
  publication-title: Aust N Z J Surg
– volume: 99
  start-page: 12600
  year: 2002
  end-page: 12605
  article-title: Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose‐dependent manner
  publication-title: Proc Natl Acad Sci USA
– volume: 308
  start-page: 1472
  year: 2005
  end-page: 1477
  article-title: Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation
  publication-title: Science
– start-page: S68
  year: 1999
  end-page: S83
  article-title: Tissue engineering of bone. Cell based strategies
  publication-title: Clin Orthop Related Res
– volume: 64
  start-page: 278
  year: 1997
  end-page: 294
  article-title: Growth kinetics, self‐renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation
  publication-title: J Cell Biochem
– volume: 44
  start-page: 207
  year: 1990
  end-page: 215
  article-title: Regulation of alkaline phosphatase and alpha 2(I) procollagen synthesis during early intramembranous bone formation in the rat mandible
  publication-title: Differentiation
– volume: 15
  start-page: 1123
  year: 2004
  end-page: 1128
  article-title: Relation between in vitro and in vivo osteogenic potential of cultured human bone marrow stromal cells
  publication-title: J Mater Sci Mater Med
– volume: 34
  start-page: 818
  year: 2004
  end-page: 826
  article-title: Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells
  publication-title: Bone
– volume: 36
  start-page: 568
  year: 2004
  end-page: 584
  article-title: Mesenchymal stem cells: clinical applications and biological characterization
  publication-title: Int J Biochem Cell Biol
– volume: 65
  start-page: 173
  year: 1999
  end-page: 180
  article-title: Regulation of osteogenic differentiation of human bone marrow stromal cells: interaction between transforming growth factor‐beta and 1,25(OH)(2) vitamin D(3) In vitro
  publication-title: Calcif Tissue Int
– volume: 20
  start-page: 7
  year: 1995
  article-title: Characterization of the unique mesenchymal stem cell phenotype in vitro
  publication-title: Trans 41st Ann Meet Orthop Res Soc
– start-page: S247
  year: 1998
  end-page: S256
  article-title: Mesenchymal stem cells in osteobiology and applied bone regeneration
  publication-title: Clin Orthop Relat Res
– volume: 11
  start-page: 390
  year: 2005
  end-page: 398
  article-title: Lentivirus‐mediated gene transfer induces long‐term transgene expression of BMP‐2 in vitro and new bone formation in vivo
  publication-title: Mol Ther
– volume: 94
  start-page: 549
  year: 1998
  end-page: 555
  article-title: Skeletal progenitor cells and ageing human populations
  publication-title: Clin Sci (Lond)
– volume: 22
  start-page: 1261
  year: 2004
  end-page: 1270
  article-title: Adenoviral‐mediated transfer of human BMP‐6 gene accelerates healing in a rabbit ulnar osteotomy model
  publication-title: J Orthop Res
– volume: 12
  start-page: 2927
  year: 2006
  end-page: 2937
  article-title: Inhibition of histone acetylation as a tool in bone tissue engineering
  publication-title: Tissue Eng
– volume: 9
  start-page: 91
  year: 2000
  end-page: 97
  article-title: Iliac crest autogenous bone grafting: donor site complications
  publication-title: J South Orthop Assoc
– volume: 18
  start-page: 959
  year: 2000
  end-page: 963
  article-title: Tissue‐engineered bone regeneration
  publication-title: Nat Biotechnol
– volume: 102
  start-page: 18813
  year: 2005
  end-page: 18818
  article-title: TGF‐beta regulates the mechanical properties and composition of bone matrix
  publication-title: Proc Natl Acad Sci USA
– ident: e_1_2_1_7_2
  doi: 10.1097/00003086-199810001-00025
– ident: e_1_2_1_14_2
  doi: 10.1073/pnas.0507417102
– ident: e_1_2_1_29_2
  doi: 10.1038/nbt0602-587
– ident: e_1_2_1_42_2
  doi: 10.1002/(SICI)1097-4644(19991201)75:3<424::AID-JCB8>3.0.CO;2-8
– ident: e_1_2_1_51_2
  doi: 10.1016/S8756-3282(97)00127-0
– ident: e_1_2_1_46_2
  doi: 10.1038/79449
– ident: e_1_2_1_22_2
  doi: 10.1016/j.exger.2005.07.006
– ident: e_1_2_1_62_2
  doi: 10.1359/jbmr.2002.17.2.231
– ident: e_1_2_1_2_2
  doi: 10.1097/00003086-200002000-00003
– ident: e_1_2_1_60_2
  doi: 10.1074/jbc.275.13.9645
– ident: e_1_2_1_25_2
  doi: 10.1038/345458a0
– ident: e_1_2_1_37_2
  doi: 10.1073/pnas.202296599
– ident: e_1_2_1_21_2
  doi: 10.1359/jbmr.1999.14.7.1115
– ident: e_1_2_1_48_2
  doi: 10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I
– ident: e_1_2_1_61_2
  doi: 10.1016/S1534-5807(04)00075-9
– ident: e_1_2_1_17_2
  doi: 10.1002/jor.1100090504
– ident: e_1_2_1_27_2
  doi: 10.1016/j.bbrc.2004.01.102
– ident: e_1_2_1_36_2
  doi: 10.1126/science.286.5446.1946
– ident: e_1_2_1_34_2
  doi: 10.1038/79676
– ident: e_1_2_1_31_2
  doi: 10.1016/S1525-0016(02)00062-X
– ident: e_1_2_1_20_2
  doi: 10.1042/cs0940549
– ident: e_1_2_1_28_2
  doi: 10.1038/nbt0602-592
– ident: e_1_2_1_41_2
  doi: 10.1089/ten.2006.12.2927
– ident: e_1_2_1_26_2
  doi: 10.1016/j.yexcr.2003.10.031
– ident: e_1_2_1_5_2
  doi: 10.1097/00003086-199910001-00008
– ident: e_1_2_1_56_2
  doi: 10.1097/01.TP.0000102550.58160.39
– ident: e_1_2_1_8_2
  doi: 10.1016/j.biocel.2003.11.001
– ident: e_1_2_1_11_2
  doi: 10.1007/s002239900678
– volume: 9
  start-page: 91
  year: 2000
  ident: e_1_2_1_4_2
  article-title: Iliac crest autogenous bone grafting: donor site complications
  publication-title: J South Orthop Assoc
– ident: e_1_2_1_18_2
  doi: 10.1126/science.1110364
– ident: e_1_2_1_30_2
  doi: 10.1016/j.ymthe.2004.10.019
– ident: e_1_2_1_15_2
  doi: 10.1016/j.bone.2005.02.015
– ident: e_1_2_1_50_2
  doi: 10.1016/8756-3282(92)90363-2
– ident: e_1_2_1_45_2
  doi: 10.1023/A:1021191432366
– ident: e_1_2_1_55_2
  doi: 10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO;2-F
– ident: e_1_2_1_59_2
  doi: 10.1126/science.1110955
– ident: e_1_2_1_39_2
  doi: 10.1089/107632704323061753
– ident: e_1_2_1_10_2
  doi: 10.1126/science.150.3698.893
– ident: e_1_2_1_58_2
  doi: 10.1210/endo.138.10.5425
– ident: e_1_2_1_40_2
  doi: 10.1016/j.bone.2004.01.016
– ident: e_1_2_1_23_2
  doi: 10.1007/BF02652556
– ident: e_1_2_1_49_2
  doi: 10.1002/jcb.10174
– ident: e_1_2_1_13_2
  doi: 10.1126/science.1107627
– ident: e_1_2_1_19_2
  doi: 10.1038/nbt958
– volume: 20
  start-page: 7
  year: 1995
  ident: e_1_2_1_52_2
  article-title: Characterization of the unique mesenchymal stem cell phenotype in vitro
  publication-title: Trans 41st Ann Meet Orthop Res Soc
– ident: e_1_2_1_12_2
  doi: 10.1089/scd.2005.14.621
– ident: e_1_2_1_32_2
  doi: 10.1016/j.orthres.2004.03.014
– ident: e_1_2_1_43_2
  doi: 10.1089/ten.2005.0513
– ident: e_1_2_1_47_2
  doi: 10.1111/j.1432-0436.1990.tb00619.x
– ident: e_1_2_1_35_2
  doi: 10.1038/sj.gt.3302207
– ident: e_1_2_1_9_2
  doi: 10.1126/science.1067404
– ident: e_1_2_1_38_2
  doi: 10.1073/pnas.0402532101
– ident: e_1_2_1_16_2
  doi: 10.1016/j.steroids.2003.12.005
– ident: e_1_2_1_57_2
  doi: 10.1023/B:ABME.0000007800.89194.95
– ident: e_1_2_1_6_2
  doi: 10.1016/S1465-3249(05)70787-8
– ident: e_1_2_1_53_2
  doi: 10.1242/jcs.00369
– ident: e_1_2_1_54_2
  doi: 10.1023/B:JMSM.0000046394.53153.21
– ident: e_1_2_1_3_2
  doi: 10.1046/j.1440-1622.1999.01674.x
– ident: e_1_2_1_24_2
  doi: 10.1016/S0047-6374(98)00114-6
– ident: e_1_2_1_44_2
  doi: 10.1006/meth.2001.1262
– ident: e_1_2_1_33_2
  doi: 10.1097/00001665-200409000-00007
SSID ssj0007128
Score 2.3684497
Snippet The use of multipotent human mesenchymal stem cells (hMSCs) for tissue engineering has been a subject of extensive research. The donor variation in growth,...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1029
SubjectTerms Acetabulum - cytology
Adult
Aged
Aged, 80 and over
Alkaline Phosphatase - analysis
Alkaline Phosphatase - genetics
Animals
Bone Substitutes
bone tissue engineering
Cell Differentiation - drug effects
Dexamethasone - pharmacology
Female
Gene Expression Profiling
Genetic Variation
human mesenchymal stem cells
Humans
Ilium - cytology
Male
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - physiology
Mice
Middle Aged
Multipotent Stem Cells - cytology
Multipotent Stem Cells - physiology
Osteogenesis
Tissue Donors - classification
Tissue Engineering - methods
Title Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering
URI https://api.istex.fr/ark:/67375/WNG-JZLZ4QV1-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjor.20402
https://www.ncbi.nlm.nih.gov/pubmed/17469183
https://www.proquest.com/docview/68117998
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhveTSB0nbTV9DKKUXJ1lblrz0VNo8WEJKQtOGUBB60jSJXXa9Iemhv70z0nqXhBRK8cE-jJGsmZE-j0bfMPa64s5z42VmROEpdGMyUwmbBVxavOEBMUNk-9wXu0d8eFweL7B33VmYxA8xC7iRZ8T5mhxcm_HGnDT0R0N0njwSSVKuFgGiwzl1lOzHuqpowZRkK0THKrSZb8zevLEW3aNhvboLaN7ErXHh2X7AvnVdTvkmZ-uT1qzbX7fYHP_zmx6y-1NACu-TBT1iC75eZr8_NnUzgkv8kY6aA107OMdvgCZAykFsCGxfQzrmCKc1XJ62owb8FU4vFIEjyVgAEC7ogJP9fn2BzRBtNNBmwRgQLYNpag9t1D34OTPiCjva3vr8YTebVmrILM9lnmlnXX_gvJOFcbSXowVtH5YVgjNR6NLwUuItd0W-GfI-N6WVPoiAcFRYW-jiMVusscWnDEqHV0CchFbCcz8wxIjHhRY2GCED77G3nc6UndKYUzWNc5UImHOFg6jiIPbY2kz0Z-LuuEvoTVT8TEKPzijZTZbq6_6OGp7snfCDL3110GOvOstQ6II0VLr2zWSsRBV59aoee5IMZt6a5GKAkyZ2Oqr9791Qw0-H8WH130WfsaUUaaZ0xOdssR1N_AuESK15GX3hD2Q5Dhc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hONBLH6KP7QOsqqp6CbCJY2elXioo3W63W4GgRUiVFb9UCiTVkkXQQ397Z-zNrqioVFU5JIeJ7Hhm7C_j8TcALwpuHddOJlpkjkI3OtGFMInHpcVp7hEzBLbPkegf8MFhfrgAr9uzMJEfYhZwI88I8zU5OAWkN-asod9r4vPkxCS5RBW9qX7B9t6cPEp2Q2VVtGFKsxWi5RXaTDdmr15bjZZoYC9vgprXkWtYenbuwNe20zHj5GR90uh18_MPPsf__aq7cHuKSdmbaET3YMFVK_Bru67qMbvAf-mgPFZWlp3iR7Das5iGWBPevmLxpCM7rtjFcTOumbvEGYaCcCQZagCyMzrjZL5dnWEzxBzNaL_gnCFgZrquHGuC-pmbkyPeh4Odt_tb_WRarCExPJVpUlpjuz3rrMy0pe2cUtAOYl4gPhNZmWueS7ylNks3fdrlOjfSeeERkQpjsjJ7AIsVtvgIWG7x8giV0FB46nqaSPG4KIXxWkjPO_CqVZoyUyZzKqhxqiIHc6pwEFUYxA48n4n-iPQdNwm9DJqfSZTjE8p3k7n6MnqnBkfDI777uat2O7DWmoZCL6ShKitXT86VKAK1XtGBh9Fi5q1JLno4b2Kng97_3g01-LQXHh7_u-gaLPf3Pw7V8P3owxO4FQPPlJ34FBab8cQ9Q8TU6NXgGL8BKokSMQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KC8UXq_h1Vu0gIr6k7SWb3Rw-ifVsz3LaYrUUYcl-0c-kXHOl9cG_3Zndyx2VCiJ5SB4m7GZnZveX2dnfMPaq4NZx7WSiReYodKMTXQiTeFxanOYeMUNg-xyKzT0-2M_359jb9ixM5IeYBtzIM8J8TQ5-bv3ajDT0uCY6T05EkgtcoLMQItqdcUfJbiisiiZMWbZCtLRC6-na9NUbi9ECjevVbUjzJnANK09_if1o-xwTTk5Wx41eNT__oHP8z4-6x-5OECm8iyZ0n8256gH7tVFX9Qgu8U86qA7KysIpfgPUHmISYk1o-xriOUc4quDyqBnV4K5wfqEQHEmGCoBwRieczOH1GTZDvNFAuwUXgHAZdF05aILywc2oER-yvf6Hr-83k0mphsTwVKZJaY3t9qyzMtOWNnNKQfuHeYHoTGRlrnku8ZbaLF33aZfr3EjnhUc8KozJyuwRm6-wxScMcouXR6CEZsJT19NEicdFKYzXQnreYW9anSkz4TGnchqnKjIwpwoHUYVB7LCXU9HzSN5xm9DroPipRDk6oWw3mavvw49qcLB9wHe-ddVOh620lqHQB2moysrV4wslikCsV3TY42gws9YkFz2cNbHTQe1_74YafN4ND0__XXSFLX7Z6KvtreGnZXYnRp0pNfEZm29GY_cc4VKjXwS3-A0LlRDp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Donor+variation+and+loss+of+multipotency+during+in+vitro+expansion+of+human+mesenchymal+stem+cells+for+bone+tissue+engineering&rft.jtitle=Journal+of+orthopaedic+research&rft.au=Siddappa%2C+Ramakrishnaiah&rft.au=Licht%2C+Ruud&rft.au=van+Blitterswijk%2C+Clemens&rft.au=de+Boer%2C+Jan&rft.date=2007-08-01&rft.issn=0736-0266&rft.volume=25&rft.issue=8&rft.spage=1029&rft_id=info:doi/10.1002%2Fjor.20402&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-0266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-0266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-0266&client=summon