Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering
The use of multipotent human mesenchymal stem cells (hMSCs) for tissue engineering has been a subject of extensive research. The donor variation in growth, differentiation and in vivo bone forming ability of hMSCs is a bottleneck for standardization of therapeutic protocols. In this study, we isolat...
Saved in:
Published in | Journal of orthopaedic research Vol. 25; no. 8; pp. 1029 - 1041 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.08.2007
|
Subjects | |
Online Access | Get full text |
ISSN | 0736-0266 1554-527X |
DOI | 10.1002/jor.20402 |
Cover
Loading…
Abstract | The use of multipotent human mesenchymal stem cells (hMSCs) for tissue engineering has been a subject of extensive research. The donor variation in growth, differentiation and in vivo bone forming ability of hMSCs is a bottleneck for standardization of therapeutic protocols. In this study, we isolated and characterized hMSCs from 19 independent donors, aged between 27 and 85 years, and investigated the extent of heterogeneity of the cells and the extent to which hMSCs can be expanded without loosing multipotency. Dexamethasone‐induced ALP expression varied between 1.2‐ and 3.7‐fold, but no correlation was found with age, gender, or source of isolation. The cells from donors with a higher percentage of ALP‐positive cells in control and dexamethasone‐induced groups showed more calcium deposition than cells with lower percentage of ALP positive cells. Despite the variability in osteogenic gene expression among the donors tested, ALP, Collagen type 1, osteocalcin, and S100A4 showed similar trends during the course of osteogenic differentiation. In vitro expansion studies showed that hMSCs can be effectively expanded up to four passages (approximately 10–12 population doublings from a P0 culture) while retaining their multipotency. Our in vivo studies suggest a correlation between in vitro ALP expression and in vivo bone formation. In conclusion, irrespective of age, gender, and source of isolation, cells from all donors showed osteogenic potential. The variability in ALP expression appears to be a result of sampling method and cellular heterogeneity among the donor population. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:1029–1041, 2007 |
---|---|
AbstractList | The use of multipotent human mesenchymal stem cells (hMSCs) for tissue engineering has been a subject of extensive research. The donor variation in growth, differentiation and in vivo bone forming ability of hMSCs is a bottleneck for standardization of therapeutic protocols. In this study, we isolated and characterized hMSCs from 19 independent donors, aged between 27 and 85 years, and investigated the extent of heterogeneity of the cells and the extent to which hMSCs can be expanded without loosing multipotency. Dexamethasone-induced ALP expression varied between 1.2- and 3.7-fold, but no correlation was found with age, gender, or source of isolation. The cells from donors with a higher percentage of ALP-positive cells in control and dexamethasone-induced groups showed more calcium deposition than cells with lower percentage of ALP positive cells. Despite the variability in osteogenic gene expression among the donors tested, ALP, Collagen type 1, osteocalcin, and S100A4 showed similar trends during the course of osteogenic differentiation. In vitro expansion studies showed that hMSCs can be effectively expanded up to four passages (approximately 10-12 population doublings from a P0 culture) while retaining their multipotency. Our in vivo studies suggest a correlation between in vitro ALP expression and in vivo bone formation. In conclusion, irrespective of age, gender, and source of isolation, cells from all donors showed osteogenic potential. The variability in ALP expression appears to be a result of sampling method and cellular heterogeneity among the donor population.The use of multipotent human mesenchymal stem cells (hMSCs) for tissue engineering has been a subject of extensive research. The donor variation in growth, differentiation and in vivo bone forming ability of hMSCs is a bottleneck for standardization of therapeutic protocols. In this study, we isolated and characterized hMSCs from 19 independent donors, aged between 27 and 85 years, and investigated the extent of heterogeneity of the cells and the extent to which hMSCs can be expanded without loosing multipotency. Dexamethasone-induced ALP expression varied between 1.2- and 3.7-fold, but no correlation was found with age, gender, or source of isolation. The cells from donors with a higher percentage of ALP-positive cells in control and dexamethasone-induced groups showed more calcium deposition than cells with lower percentage of ALP positive cells. Despite the variability in osteogenic gene expression among the donors tested, ALP, Collagen type 1, osteocalcin, and S100A4 showed similar trends during the course of osteogenic differentiation. In vitro expansion studies showed that hMSCs can be effectively expanded up to four passages (approximately 10-12 population doublings from a P0 culture) while retaining their multipotency. Our in vivo studies suggest a correlation between in vitro ALP expression and in vivo bone formation. In conclusion, irrespective of age, gender, and source of isolation, cells from all donors showed osteogenic potential. The variability in ALP expression appears to be a result of sampling method and cellular heterogeneity among the donor population. The use of multipotent human mesenchymal stem cells (hMSCs) for tissue engineering has been a subject of extensive research. The donor variation in growth, differentiation and in vivo bone forming ability of hMSCs is a bottleneck for standardization of therapeutic protocols. In this study, we isolated and characterized hMSCs from 19 independent donors, aged between 27 and 85 years, and investigated the extent of heterogeneity of the cells and the extent to which hMSCs can be expanded without loosing multipotency. Dexamethasone‐induced ALP expression varied between 1.2‐ and 3.7‐fold, but no correlation was found with age, gender, or source of isolation. The cells from donors with a higher percentage of ALP‐positive cells in control and dexamethasone‐induced groups showed more calcium deposition than cells with lower percentage of ALP positive cells. Despite the variability in osteogenic gene expression among the donors tested, ALP, Collagen type 1, osteocalcin, and S100A4 showed similar trends during the course of osteogenic differentiation. In vitro expansion studies showed that hMSCs can be effectively expanded up to four passages (approximately 10–12 population doublings from a P0 culture) while retaining their multipotency. Our in vivo studies suggest a correlation between in vitro ALP expression and in vivo bone formation. In conclusion, irrespective of age, gender, and source of isolation, cells from all donors showed osteogenic potential. The variability in ALP expression appears to be a result of sampling method and cellular heterogeneity among the donor population. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:1029–1041, 2007 The use of multipotent human mesenchymal stem cells (hMSCs) for tissue engineering has been a subject of extensive research. The donor variation in growth, differentiation and in vivo bone forming ability of hMSCs is a bottleneck for standardization of therapeutic protocols. In this study, we isolated and characterized hMSCs from 19 independent donors, aged between 27 and 85 years, and investigated the extent of heterogeneity of the cells and the extent to which hMSCs can be expanded without loosing multipotency. Dexamethasone‐induced ALP expression varied between 1.2‐ and 3.7‐fold, but no correlation was found with age, gender, or source of isolation. The cells from donors with a higher percentage of ALP‐positive cells in control and dexamethasone‐induced groups showed more calcium deposition than cells with lower percentage of ALP positive cells. Despite the variability in osteogenic gene expression among the donors tested, ALP , Collagen type 1, osteocalcin , and S100A4 showed similar trends during the course of osteogenic differentiation. In vitro expansion studies showed that hMSCs can be effectively expanded up to four passages (approximately 10–12 population doublings from a P0 culture) while retaining their multipotency. Our in vivo studies suggest a correlation between in vitro ALP expression and in vivo bone formation. In conclusion, irrespective of age, gender, and source of isolation, cells from all donors showed osteogenic potential. The variability in ALP expression appears to be a result of sampling method and cellular heterogeneity among the donor population. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:1029–1041, 2007 The use of multipotent human mesenchymal stem cells (hMSCs) for tissue engineering has been a subject of extensive research. The donor variation in growth, differentiation and in vivo bone forming ability of hMSCs is a bottleneck for standardization of therapeutic protocols. In this study, we isolated and characterized hMSCs from 19 independent donors, aged between 27 and 85 years, and investigated the extent of heterogeneity of the cells and the extent to which hMSCs can be expanded without loosing multipotency. Dexamethasone-induced ALP expression varied between 1.2- and 3.7-fold, but no correlation was found with age, gender, or source of isolation. The cells from donors with a higher percentage of ALP-positive cells in control and dexamethasone-induced groups showed more calcium deposition than cells with lower percentage of ALP positive cells. Despite the variability in osteogenic gene expression among the donors tested, ALP, Collagen type 1, osteocalcin, and S100A4 showed similar trends during the course of osteogenic differentiation. In vitro expansion studies showed that hMSCs can be effectively expanded up to four passages (approximately 10-12 population doublings from a P0 culture) while retaining their multipotency. Our in vivo studies suggest a correlation between in vitro ALP expression and in vivo bone formation. In conclusion, irrespective of age, gender, and source of isolation, cells from all donors showed osteogenic potential. The variability in ALP expression appears to be a result of sampling method and cellular heterogeneity among the donor population. |
Author | Siddappa, Ramakrishnaiah de Boer, Jan Licht, Ruud van Blitterswijk, Clemens |
Author_xml | – sequence: 1 givenname: Ramakrishnaiah surname: Siddappa fullname: Siddappa, Ramakrishnaiah organization: Institute for BioMedical Technology, Department of Tissue Regeneration, University of Twente, Zuidhorst, P.O. Box 217, Enschede 7500 AE, The Netherlands – sequence: 2 givenname: Ruud surname: Licht fullname: Licht, Ruud organization: Institute for BioMedical Technology, Department of Tissue Regeneration, University of Twente, Zuidhorst, P.O. Box 217, Enschede 7500 AE, The Netherlands – sequence: 3 givenname: Clemens surname: van Blitterswijk fullname: van Blitterswijk, Clemens organization: Institute for BioMedical Technology, Department of Tissue Regeneration, University of Twente, Zuidhorst, P.O. Box 217, Enschede 7500 AE, The Netherlands – sequence: 4 givenname: Jan surname: de Boer fullname: de Boer, Jan email: j.deboer@tnw.utwente.nl organization: Institute for BioMedical Technology, Department of Tissue Regeneration, University of Twente, Zuidhorst, P.O. Box 217, Enschede 7500 AE, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17469183$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1PFTEUhhuDkQu48A-YrkxcDPRj2s4sDSofuZFAFAybptN2oDjTXtsOcjf-dnu5FxZGV2fzPO85ec8O2PLBWwDeYLSPESIHdyHuE1Qj8gLMMGN1xYj4vgVmSFBeIcL5NthJ6Q4hJDBpXoFtLGre4obOwO-PwYcI71V0KrvgofIGDiElGHo4TkN2i5Ct10topuj8DXQe3rscA7QPC-XTSink7TQqD0ebCnq7HNUAU7Yj1HYYEuzLgq5cDLNLabLQ-hvnrV3F7YGXvRqSfb2Zu-Db509fD4-r-dnRyeGHeaVrIkiljDa4NdYI2hnOmVC8ZXXLGo4Rp4p1NRNlEEMJ6gmuO6aF7XmPMeNaU0V3wbt17iKGn5NNWY4ura5T3oYpSd5gLNq2KeDbDTh1ozVyEd2o4lI-NVaAgzWgY2kp2l5qlx-ry1G5QWIkVz-R5Sfy8SfFeP-X8Rz6D3aT_ssNdvl_UJ6eXTwZ1dpwpfGHZ0PFH5ILKpi8-nIkT6_n1_X5JZbn9A_55ayu |
CitedBy_id | crossref_primary_10_1002_bit_27453 crossref_primary_10_1002_jbmr_3929 crossref_primary_10_3390_ijms222111395 crossref_primary_10_1002_term_352 crossref_primary_10_1186_1477_5956_10_46 crossref_primary_10_1089_ten_tea_2011_0484 crossref_primary_10_5966_sctm_2015_0022 crossref_primary_10_1089_scd_2014_0509 crossref_primary_10_1093_rb_rbad084 crossref_primary_10_3390_bioengineering4020035 crossref_primary_10_1089_ten_tea_2012_0646 crossref_primary_10_1089_rej_2015_1766 crossref_primary_10_1002_term_242 crossref_primary_10_1186_s13287_016_0373_5 crossref_primary_10_1590_1414_431x20186754 crossref_primary_10_3389_fimmu_2014_00608 crossref_primary_10_1097_BRS_0000000000003687 crossref_primary_10_1002_jcp_26445 crossref_primary_10_1038_s41598_022_25423_8 crossref_primary_10_15616_BSL_2016_22_1_1 crossref_primary_10_1016_j_bej_2015_06_018 crossref_primary_10_1016_j_bonr_2022_101636 crossref_primary_10_1002_term_2051 crossref_primary_10_2217_17460751_3_6_783 crossref_primary_10_1016_j_dental_2015_09_008 crossref_primary_10_1016_j_jcyt_2017_09_012 crossref_primary_10_1186_s13287_019_1445_0 crossref_primary_10_1186_s13287_021_02338_1 crossref_primary_10_5966_sctm_2015_0369 crossref_primary_10_1016_j_bbrc_2011_09_089 crossref_primary_10_1186_s13287_020_02045_3 crossref_primary_10_1016_j_joca_2014_07_022 crossref_primary_10_3389_fcell_2021_720477 crossref_primary_10_1016_j_jmbbm_2021_104806 crossref_primary_10_1039_C5IB00177C crossref_primary_10_1515_BIOMAT_2008_9_3_4_83 crossref_primary_10_1038_s41598_020_76019_z crossref_primary_10_1016_j_scr_2013_09_004 crossref_primary_10_1371_journal_pone_0026136 crossref_primary_10_1002_btm2_10509 crossref_primary_10_1016_j_biomaterials_2018_02_009 crossref_primary_10_1089_ten_tea_2019_0026 crossref_primary_10_1111_jcpe_12501 crossref_primary_10_1002_term_220 crossref_primary_10_3389_fbioe_2015_00169 crossref_primary_10_1089_scd_2014_0534 crossref_primary_10_1089_ten_tea_2008_0345 crossref_primary_10_1002_term_468 crossref_primary_10_1016_j_cytogfr_2018_06_002 crossref_primary_10_1073_pnas_0711190105 crossref_primary_10_1111_j_1582_4934_2009_00931_x crossref_primary_10_1016_S0020_1383_14_70013_0 crossref_primary_10_1016_j_ymeth_2020_04_004 crossref_primary_10_1016_j_actbio_2022_06_045 crossref_primary_10_1111_aor_12892 crossref_primary_10_3390_cells14020132 crossref_primary_10_1186_s13287_021_02450_2 crossref_primary_10_3390_nano9020261 crossref_primary_10_1093_rb_rbaa046 crossref_primary_10_1038_srep18279 crossref_primary_10_1007_s12195_017_0517_4 crossref_primary_10_1016_j_addr_2017_09_003 crossref_primary_10_3389_fcell_2020_593386 crossref_primary_10_1007_s10439_009_9648_7 crossref_primary_10_1016_j_actbio_2021_03_069 crossref_primary_10_1177_0022034515624444 crossref_primary_10_1186_s13075_022_02828_4 crossref_primary_10_1002_stem_1783 crossref_primary_10_1186_s13619_022_00146_3 crossref_primary_10_1089_ten_tea_2012_0563 crossref_primary_10_3390_biology10040285 crossref_primary_10_2460_ajvr_71_10_1228 crossref_primary_10_1089_ten_tea_2012_0425_rev crossref_primary_10_1155_2016_1659275 crossref_primary_10_3390_ijms23020715 crossref_primary_10_1016_j_jff_2015_01_046 crossref_primary_10_1016_j_bone_2016_04_013 crossref_primary_10_1098_rsos_150496 crossref_primary_10_4061_2010_215625 crossref_primary_10_1007_s00441_020_03315_5 crossref_primary_10_1073_pnas_0711662105 crossref_primary_10_1016_j_actbio_2013_03_037 crossref_primary_10_1016_j_bbrc_2009_03_023 crossref_primary_10_3727_096368914X685393 crossref_primary_10_1002_mabi_201600192 crossref_primary_10_1186_s13287_015_0178_y crossref_primary_10_1142_S2339547816500084 crossref_primary_10_1002_term_1681 crossref_primary_10_1089_ten_tea_2009_0500 crossref_primary_10_1007_s10616_019_00365_8 crossref_primary_10_1002_jor_23501 crossref_primary_10_1371_journal_pone_0039500 crossref_primary_10_1111_evj_12142 crossref_primary_10_1089_ten_tea_2009_0190 crossref_primary_10_1016_j_biomaterials_2013_04_001 crossref_primary_10_1016_j_yrtph_2017_11_004 crossref_primary_10_1039_C7NR00352H crossref_primary_10_1111_j_1474_9726_2008_00377_x crossref_primary_10_1186_scrt165 crossref_primary_10_1089_ten_tea_2008_0666 crossref_primary_10_1002_term_303 crossref_primary_10_1186_s13287_018_1009_8 crossref_primary_10_1371_journal_pone_0213452 crossref_primary_10_1089_ten_tea_2011_0312 crossref_primary_10_1016_j_jormas_2025_102224 crossref_primary_10_1371_journal_pone_0133745 crossref_primary_10_1038_s41419_018_0914_1 crossref_primary_10_1186_s13287_017_0531_4 crossref_primary_10_1002_term_197 crossref_primary_10_1038_srep02683 crossref_primary_10_4239_wjd_v13_i12_1066 crossref_primary_10_1016_j_cobme_2024_100535 crossref_primary_10_1089_ten_tea_2010_0471 crossref_primary_10_3109_17453670903278241 crossref_primary_10_1016_j_jcyt_2016_05_013 crossref_primary_10_1002_jcb_27531 crossref_primary_10_1159_000485122 crossref_primary_10_1007_s10856_012_4710_7 crossref_primary_10_1177_1947603518812555 crossref_primary_10_1016_j_yexcr_2013_10_005 crossref_primary_10_1089_ten_tec_2012_0142 crossref_primary_10_1002_jbm_a_37544 crossref_primary_10_1098_rsif_2011_0357 crossref_primary_10_1016_j_drudis_2013_06_007 crossref_primary_10_1016_j_jbiosc_2015_03_011 crossref_primary_10_1186_s13287_015_0105_2 crossref_primary_10_1089_ten_tec_2011_0675 crossref_primary_10_1007_s00264_008_0524_0 crossref_primary_10_1002_stem_2385 crossref_primary_10_1002_term_403 crossref_primary_10_1016_j_jcyt_2013_03_015 crossref_primary_10_1186_s13287_017_0649_4 crossref_primary_10_1002_adhm_201900506 crossref_primary_10_1016_j_biomaterials_2012_01_020 crossref_primary_10_3109_14653240903313941 crossref_primary_10_1186_s13287_020_02054_2 crossref_primary_10_1359_jbmr_091110 crossref_primary_10_1088_1748_605X_ab4243 crossref_primary_10_1155_2021_6659244 crossref_primary_10_1089_ten_tea_2008_0617 crossref_primary_10_1155_2022_4711499 crossref_primary_10_1002_term_2453 crossref_primary_10_1016_j_biomaterials_2010_02_071 crossref_primary_10_3727_096368915X687697 crossref_primary_10_1002_btpr_1886 crossref_primary_10_3390_pharmaceutics14030651 crossref_primary_10_1002_stem_2296 crossref_primary_10_1371_journal_pone_0022980 crossref_primary_10_1016_j_injury_2011_06_014 crossref_primary_10_3389_fbioe_2021_698614 crossref_primary_10_1007_s00441_011_1203_9 crossref_primary_10_1002_jcp_24081 crossref_primary_10_1016_j_scr_2013_07_005 crossref_primary_10_1073_pnas_1522297113 crossref_primary_10_5966_sctm_2015_0404 crossref_primary_10_1016_j_biomaterials_2013_03_001 crossref_primary_10_1007_s00441_018_2894_y crossref_primary_10_1038_s41598_022_12143_2 crossref_primary_10_1002_adma_201001763 crossref_primary_10_1016_j_actbio_2019_03_001 crossref_primary_10_3389_fbioe_2022_1074536 crossref_primary_10_1016_j_jcyt_2014_10_013 crossref_primary_10_1155_2013_387324 crossref_primary_10_3389_fcell_2020_581436 crossref_primary_10_1002_jcb_23058 crossref_primary_10_1016_j_mee_2016_12_020 crossref_primary_10_1038_cddiscovery_2016_64 crossref_primary_10_2217_rme_2016_0038 crossref_primary_10_1016_j_biomaterials_2007_05_032 crossref_primary_10_1038_s41536_018_0048_1 crossref_primary_10_1084_jem_20172139 crossref_primary_10_1302_2046_3758_87_BJR_2017_0248_R1 crossref_primary_10_5966_sctm_2013_0056 crossref_primary_10_1089_ten_tea_2017_0520 crossref_primary_10_1088_1748_605X_aa93c0 crossref_primary_10_1371_journal_pone_0005605 crossref_primary_10_1007_s00198_010_1434_8 crossref_primary_10_1016_j_jcyt_2016_02_004 crossref_primary_10_1186_1471_2121_9_60 crossref_primary_10_1016_j_diff_2015_08_002 crossref_primary_10_1111_jcmm_13137 crossref_primary_10_1186_scrt452 crossref_primary_10_1097_PRS_0b013e3181fad311 crossref_primary_10_1016_j_bbrc_2012_04_088 crossref_primary_10_1007_s13238_012_2107_5 crossref_primary_10_3390_cells9122559 crossref_primary_10_1002_jcp_25825 crossref_primary_10_1089_ten_tea_2007_0388 crossref_primary_10_1016_j_actbio_2010_01_037 crossref_primary_10_1016_j_scr_2013_12_006 crossref_primary_10_3389_fbioe_2023_1136827 crossref_primary_10_1089_ten_tea_2013_0321 crossref_primary_10_3390_ph17030350 crossref_primary_10_1016_j_actbio_2015_04_024 crossref_primary_10_3727_096368912X657990 crossref_primary_10_1016_j_bone_2009_08_005 crossref_primary_10_1016_j_scr_2013_12_001 crossref_primary_10_1038_s41536_018_0060_5 crossref_primary_10_1002_jor_21129 crossref_primary_10_1111_jcmm_12172 crossref_primary_10_1089_scd_2009_0510 crossref_primary_10_1186_s13287_015_0037_x crossref_primary_10_1002_term_1738 crossref_primary_10_1089_ten_teb_2017_0093 crossref_primary_10_1002_term_250 crossref_primary_10_1007_s12195_025_00843_4 crossref_primary_10_1016_j_jcyt_2014_07_005 crossref_primary_10_1002_jcp_31014 crossref_primary_10_1089_ten_TEA_2012_0425 crossref_primary_10_3390_jcm11247328 crossref_primary_10_1038_s41598_021_92270_4 crossref_primary_10_3390_cells12131756 crossref_primary_10_1016_j_colcom_2023_100734 crossref_primary_10_1186_s13287_018_0914_1 crossref_primary_10_1016_j_bone_2010_06_020 crossref_primary_10_1016_j_jbiomech_2008_04_001 crossref_primary_10_1089_ten_tea_2011_0700 crossref_primary_10_3181_0712_RM_356 crossref_primary_10_1177_039463201402700309 crossref_primary_10_1089_ten_teb_2012_0273 crossref_primary_10_1038_bdjopen_2015_7 crossref_primary_10_3390_biomedicines10123071 crossref_primary_10_1038_s41598_024_62544_8 crossref_primary_10_1155_2018_8431053 crossref_primary_10_1007_s00216_008_2528_4 crossref_primary_10_2460_ajvr_73_2_313 crossref_primary_10_4137_BTRI_S30485 crossref_primary_10_3390_antiox9111165 crossref_primary_10_1016_j_heares_2012_11_009 crossref_primary_10_1016_j_scr_2019_101475 crossref_primary_10_1007_s00441_014_1830_z crossref_primary_10_1016_j_coche_2013_01_005 crossref_primary_10_1097_BTO_0000000000000351 crossref_primary_10_1038_s12276_017_0014_9 crossref_primary_10_1186_1423_0127_21_21 crossref_primary_10_1002_term_2807 crossref_primary_10_1007_s00223_016_0184_9 crossref_primary_10_1111_evj_12311 crossref_primary_10_1186_s13287_024_03794_1 crossref_primary_10_1002_stem_2920 crossref_primary_10_1002_term_1957 crossref_primary_10_1016_j_jcyt_2012_10_002 crossref_primary_10_1021_acsbiomaterials_5b00277 crossref_primary_10_1177_1534734612463577 |
Cites_doi | 10.1097/00003086-199810001-00025 10.1073/pnas.0507417102 10.1038/nbt0602-587 10.1002/(SICI)1097-4644(19991201)75:3<424::AID-JCB8>3.0.CO;2-8 10.1016/S8756-3282(97)00127-0 10.1038/79449 10.1016/j.exger.2005.07.006 10.1359/jbmr.2002.17.2.231 10.1097/00003086-200002000-00003 10.1074/jbc.275.13.9645 10.1038/345458a0 10.1073/pnas.202296599 10.1359/jbmr.1999.14.7.1115 10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I 10.1016/S1534-5807(04)00075-9 10.1002/jor.1100090504 10.1016/j.bbrc.2004.01.102 10.1126/science.286.5446.1946 10.1038/79676 10.1016/S1525-0016(02)00062-X 10.1042/cs0940549 10.1038/nbt0602-592 10.1089/ten.2006.12.2927 10.1016/j.yexcr.2003.10.031 10.1097/00003086-199910001-00008 10.1097/01.TP.0000102550.58160.39 10.1016/j.biocel.2003.11.001 10.1007/s002239900678 10.1126/science.1110364 10.1016/j.ymthe.2004.10.019 10.1016/j.bone.2005.02.015 10.1016/8756-3282(92)90363-2 10.1023/A:1021191432366 10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO;2-F 10.1126/science.1110955 10.1089/107632704323061753 10.1126/science.150.3698.893 10.1210/endo.138.10.5425 10.1016/j.bone.2004.01.016 10.1007/BF02652556 10.1002/jcb.10174 10.1126/science.1107627 10.1038/nbt958 10.1089/scd.2005.14.621 10.1016/j.orthres.2004.03.014 10.1089/ten.2005.0513 10.1111/j.1432-0436.1990.tb00619.x 10.1038/sj.gt.3302207 10.1126/science.1067404 10.1073/pnas.0402532101 10.1016/j.steroids.2003.12.005 10.1023/B:ABME.0000007800.89194.95 10.1016/S1465-3249(05)70787-8 10.1242/jcs.00369 10.1023/B:JMSM.0000046394.53153.21 10.1046/j.1440-1622.1999.01674.x 10.1016/S0047-6374(98)00114-6 10.1006/meth.2001.1262 10.1097/00001665-200409000-00007 |
ContentType | Journal Article |
Copyright | Copyright © 2007 Orthopaedic Research Society |
Copyright_xml | – notice: Copyright © 2007 Orthopaedic Research Society |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/jor.20402 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1554-527X |
EndPage | 1041 |
ExternalDocumentID | 17469183 10_1002_jor_20402 JOR20402 ark_67375_WNG_JZLZ4QV1_Q |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1B1 1KJ 1L6 1OB 1OC 1ZS 1~5 24P 29L 31~ 33P 3SF 3V. 3WU 4.4 4G. 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 7-5 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8FI 8FJ 8R4 8R5 8UM 930 A01 A03 AAEDT AAESR AAEVG AAHHS AALRI AANLZ AAONW AAQFI AAQQT AAQXK AASGY AAXRX AAXUO AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABMAC ABPVW ABQWH ABUWG ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACGOF ACIUM ACMXC ACPOU ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADMUD ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFZJQ AHBTC AHEFC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMXJE BPHCQ BQCPF BROTX BRXPI BSCLL BVXVI BY8 C45 CCPQU CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM DU5 DWQXO EBD EBS EJD EMOBN F00 F01 F04 F5P FDB FEDTE FGOYB FUBAC FYUFA G-S G.N GNP GNUQQ GODZA H.X HBH HCIFZ HF~ HGLYW HHY HHZ HMCUK HVGLF HZ~ IHE IX1 J0M JPC KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M41 M56 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB NQ- O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ PROAC PSQYO Q.N Q11 Q2X QB0 QRW R.K R2- RIG RIWAO RJQFR RNS ROL RPZ RWI RWL RWR RX1 RXW RYL SAMSI SEW SSZ SUPJJ SV3 TAE TEORI UB1 UKHRP UPT V2E V8K W8V W99 WBKPD WIB WIH WIJ WIK WIN WJL WNSPC WOHZO WQJ WRC WXI WXSBR WYB WYISQ X7M XG1 XV2 YCJ YQT ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ABWVN ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ACVFH ADCNI AEUPX AEYWJ AFPUW AGHNM AGQPQ AGYGG AIGII CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c4272-adcd19ded73bd6657a695495861063a5b4573a52d320f214b5c7ef6f1156cc3a3 |
IEDL.DBID | DR2 |
ISSN | 0736-0266 |
IngestDate | Fri Jul 11 07:11:36 EDT 2025 Wed Feb 19 01:43:40 EST 2025 Tue Jul 01 03:02:23 EDT 2025 Thu Apr 24 23:05:17 EDT 2025 Wed Jan 22 16:45:33 EST 2025 Wed Oct 30 09:51:05 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4272-adcd19ded73bd6657a695495861063a5b4573a52d320f214b5c7ef6f1156cc3a3 |
Notes | ark:/67375/WNG-JZLZ4QV1-Q istex:8236E99E7D8D29E1997DD95FC24404E4B7D14891 ArticleID:JOR20402 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 17469183 |
PQID | 68117998 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_68117998 pubmed_primary_17469183 crossref_citationtrail_10_1002_jor_20402 crossref_primary_10_1002_jor_20402 wiley_primary_10_1002_jor_20402_JOR20402 istex_primary_ark_67375_WNG_JZLZ4QV1_Q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2007 |
PublicationDateYYYYMMDD | 2007-08-01 |
PublicationDate_xml | – month: 08 year: 2007 text: August 2007 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Journal of orthopaedic research |
PublicationTitleAlternate | J. Orthop. Res |
PublicationYear | 2007 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Pola E, Gao W, Zhou Y, et al. 2004. Efficient bone formation by gene transfer of human LIM mineralization protein-3. Gene Ther 11: 683-693. Bancroft GN, Sikavitsas VI, van den Dolder J, et al. 2002. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci USA 99: 12600-12605. Bruder SP, Jaiswal N, Haynesworth SE. 1997. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64: 278-294. Fehrer C, Lepperdinger G. 2005. Mesenchymal stem cell aging. Exp Gerontol 12: 926-930. Cowan CM, et al. 2004. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 22: 560-567. D'Ippolito G, Schiller PC, Ricordi C, et al. 1999. Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 14: 1115-1122. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. Le Blanc K, Pittenger M. 2005. Mesenchymal stem cells: progress toward promise. Cytotherapy 7: 36-45. Simonsen JL, Rosada C, Serakinci N, et al. 2002. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol 20: 592-596. Haynesworth SE, Baber MA, Caplan AI. 1995. Characterization of the unique mesenchymal stem cell phenotype in vitro. Trans 41st Ann Meet Orthop Res Soc 20: 7. Kratchmarova I, Blagoev B, Haack-Sorensen M, et al. 2005. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308: 1472-1477. Liu L, DiGirolamo CM, Navarro PA, et al. 2004. Telomerase deficiency impairs differentiation of mesenchymal stem cells. Exp Cell Res 294: 1-8. Phinney DG, Kopen G, Righter W, et al. 1999. Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem 75: 424-436. McBeath R, Pirone DM, Nelson CM, et al. 2004. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6: 483-495. Jochum W, David JP, Elliott C, et al. 2000. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med 6: 980-984. de Boer J, Siddappa R, Gaspar C, et al. 2004. Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells. Bone 34: 818-826. Both SK, van der Muijsenberg AM, van Blitterswijk CA, et al. 2007. A rapid and labour efficient method for expansion of human mesenchymal stem cells for clinical applications. Tissue Eng 13: 3-9. Balooch G, Balooch M, Nalla RK, et al. 2005. TGF-beta regulates the mechanical properties and composition of bone matrix. Proc Natl Acad Sci USA 102: 18813-18818. Urist MR. 1965. Bone: formation by autoinduction. Science 150: 893-899. Jaiswal N, Haynesworth SE, Caplan AI, et al. 1997. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64: 295-312. Seiler JG 3rd, Johnson J. 2000. Iliac crest autogenous bone grafting: donor site complications. J South Orthop Assoc 9: 91-97. Sugiyama O, An DS, Kung SP, et al. 2005. Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo. Mol Ther 11: 390-398. Kassem M, Ankersen L, Eriksen EF, et al. 1997. Demonstration of cellular aging and senescence in serially passaged long-term cultures of human trabecular osteoblasts. Osteoporos Int 7: 514-524. Hill NM, Horne JG, Devane PA. 1999. Donor site morbidity in the iliac crest bone graft. Aust N Z J Surg 69: 726-728. Bruder SP, Fox BS. 1999. Tissue engineering of bone. Cell based strategies. Clin Orthop Related Res S68-S83. Barry FP, Murphy JM. 2004. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36: 568-584. Mundy G, Garrett R, Harris S, et al. 1999. Stimulation of bone formation in vitro and in rodents by statins. Science 286: 1946-1949. Boer JD, Licht R, Bongers M, et al. 2006. Inhibition of histone acetylation as a tool in bone tissue engineering. Tissue Eng 12: 2927-2937. Haynesworth SE, Baber MA, Caplan AI. 1992. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13: 69-80. Gronthos S, Zannettino AC, Hay SJ, et al. 2003. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116: 1827-1835. Jorgensen NR, Henriksen Z, Sorensen OH, et al. 2004. Dexamethasone, BMP-2, and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype: validation of an in vitro model for human bone marrow-derived primary osteoblasts. Steroids 69: 219-226. Pittenger MF, et al. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147. Derubeis AR, Cancedda R. 2004. Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances. Ann Biomed Eng 32: 160-165. De Boer J, Wang HJ, Van Blitterswijk C. 2004. Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Eng 10: 393-401. Yuan H, Van Den Doel M, Li S, et al. 2002. A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted intramuscularly in goats. J Mater Sci Mater Med 13: 1271-1275. Bauer TW, Muschler GF. 2000. Bone graft materials. An overview of the basic science. Clin Orthop Related Res 10-27. Pettway GJ, Schneider A, Koh AJ, et al. 2005. Anabolic actions of PTH (1-34): use of a novel tissue engineering model to investigate temporal effects on bone. Bone 36: 959-970. Oreffo RO, Bord S, Triffitt JT. 1998. Skeletal progenitor cells and ageing human populations. Clin Sci (Lond) 94: 549-555. Frank O, Heim M, Jakob M, et al. 2002. Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. J Cell Biochem 85: 737-746. Liu P, Oyajobi BO, Russell RG, et al. 1999. Regulation of osteogenic differentiation of human bone marrow stromal cells: interaction between transforming growth factor-beta and 1,25(OH)(2) vitamin D(3) In vitro. Calcif Tissue Int 65: 173-180. Jaiswal RK, Jaiswal N, Bruder SP, et al. 2000. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 275: 9645-9652. Koch H, Jadlowiec JA, Campbell PG. 2005. Insulin-like growth factor-I induces early osteoblast gene expression in human mesenchymal stem cells. Stem Cells Dev 14: 621-631. Martin I, Muraglia A, Campanile G, et al. 1997. Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology 138: 4456-4462. Kruyt MC, de Bruijn JD, Yuan H, et al. 2004. Optimization of bone tissue engineering in goats: a peroperative seeding method using cryopreserved cells and localized bone formation in calcium phosphate scaffolds. Transplantation 77: 359-365. Abdelaal MM, Tholpady SS, Kessler JD, et al. 2004. BMP-9-transduced prefabricated muscular flaps for the treatment of bony defects. J Craniofac Surg 15: 736-741; discussion 742-744. Bertone AL, Pittman DD, Bouxsein ML, et al. 2004. Adenoviral-mediated transfer of human BMP-6 gene accelerates healing in a rabbit ulnar osteotomy model. J Orthop Res 22: 1261-1270. Zernik J, Twarog K, Upholt WB. 1990. Regulation of alkaline phosphatase and alpha 2(I) procollagen synthesis during early intramembranous bone formation in the rat mandible. Differentiation 44: 207-215. Tezuka K, Yasuda M, Watanabe N, et al. 2002. Stimulation of osteoblastic cell differentiation by Notch. J Bone Miner Res 17: 231-239. Dezawa M, et al. 2005. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 309: 314-317. Hong JH, Hwang ES, McManus MT, et al. 2005. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309: 1074-1078. Xiaoxue Y, Zhongqiang C, Zhaoqing G, et al. 2004. Immortalization of human osteoblasts by transferring human telomerase reverse transcriptase gene. Biochem Biophys Res Commun 315: 643-651. Tsuda H, Wada T, Ito Y, et al. 2003. Efficient BMP2 gene transfer and bone formation of mesenchymal stem cells by a fiber-mutant adenoviral vector. Mol Ther 7: 354-365. Hench LL, Polak JM. 1965. Third-generation biomedical materials. Science 295: 1014-1017. Kveiborg M, Kassem M, Langdahl B, et al. 1999. Telomere shortening during aging of human osteoblasts in vitro and leukocytes in vivo: lack of excessive telomere loss in osteoporotic patients. Mech Ageing Dev 106: 261-271. Shi S, Gronthos S, Chen S, et al. 2002. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat Biotechnol 20: 587-591. Bruder SP, Jaiswal N, Ricalton NS, et al. 1998. Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res S247-S256. Petite H, Viateau V, Bensaid W, et al. 2000. Tissue-engineered bone regeneration. Nat Biotechnol 18: 959-963. Mendes SC, Tibbe JM, Veenhof M, et al. 2004. Relation between in vitro and in vivo osteogenic potential of cultured human bone marrow stromal cells. J Mater Sci Mater Med 15: 1123-1128. Bruder SP, Horowitz MC, Mosca JD, et al. 1997. Monoclonal antibodies reactive with human osteogenic cell surface antigens. Bone 21: 225-235. Yu X, Botchwey EA, Levine EM, et al. 2004. Bioreactor-based bone tissue engineering: the influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization. Proc Natl Acad Sci USA 101: 11203-11208. Harley CB, Futcher AB, Greider CW. 1990. Telomeres shorten during ageing of human fibroblasts. Nature 345: 458-460. 2004; 22 2002; 17 1990; 345 2003; 116 2000; 6 2004; 69 2000; 9 2002; 13 2002; 99 1999; 286 2004; 6 1999; 284 1992; 13 1997; 7 1995; 20 2004; 32 2004; 77 2000; 18 1990; 44 2002; 85 2000 2005; 102 2004; 36 1965; 150 2004; 294 2003; 7 2004; 34 1999; 14 2005; 308 2005; 309 1998; 94 2005; 36 2004; 101 1997; 138 2006; 12 1997; 21 1997; 64 1999; 69 1998 1999; 65 2000; 275 1999; 106 2001; 25 2007; 13 1999 2004; 10 2004; 11 2002; 20 2004; 15 1965; 295 2005; 7 1999; 75 2004; 315 2005; 11 2005; 12 2005; 14 e_1_2_1_41_2 e_1_2_1_22_2 e_1_2_1_45_2 e_1_2_1_60_2 e_1_2_1_20_2 e_1_2_1_43_2 e_1_2_1_62_2 e_1_2_1_26_2 e_1_2_1_49_2 e_1_2_1_24_2 e_1_2_1_47_2 e_1_2_1_28_2 e_1_2_1_6_2 e_1_2_1_54_2 e_1_2_1_56_2 e_1_2_1_2_2 e_1_2_1_12_2 e_1_2_1_33_2 e_1_2_1_50_2 e_1_2_1_10_2 e_1_2_1_31_2 e_1_2_1_16_2 e_1_2_1_37_2 e_1_2_1_14_2 e_1_2_1_35_2 e_1_2_1_58_2 e_1_2_1_8_2 e_1_2_1_18_2 e_1_2_1_39_2 e_1_2_1_40_2 e_1_2_1_23_2 e_1_2_1_44_2 e_1_2_1_61_2 e_1_2_1_21_2 e_1_2_1_42_2 e_1_2_1_27_2 e_1_2_1_48_2 e_1_2_1_25_2 e_1_2_1_46_2 e_1_2_1_29_2 Seiler JG (e_1_2_1_4_2) 2000; 9 e_1_2_1_30_2 e_1_2_1_53_2 e_1_2_1_7_2 e_1_2_1_55_2 e_1_2_1_5_2 e_1_2_1_11_2 e_1_2_1_34_2 e_1_2_1_3_2 e_1_2_1_32_2 e_1_2_1_51_2 e_1_2_1_15_2 e_1_2_1_38_2 e_1_2_1_13_2 e_1_2_1_36_2 Haynesworth SE (e_1_2_1_52_2) 1995; 20 e_1_2_1_19_2 e_1_2_1_57_2 e_1_2_1_17_2 e_1_2_1_59_2 e_1_2_1_9_2 |
References_xml | – reference: Cowan CM, et al. 2004. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 22: 560-567. – reference: Kratchmarova I, Blagoev B, Haack-Sorensen M, et al. 2005. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308: 1472-1477. – reference: Sugiyama O, An DS, Kung SP, et al. 2005. Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo. Mol Ther 11: 390-398. – reference: Pittenger MF, et al. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147. – reference: Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. – reference: Yu X, Botchwey EA, Levine EM, et al. 2004. Bioreactor-based bone tissue engineering: the influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization. Proc Natl Acad Sci USA 101: 11203-11208. – reference: Frank O, Heim M, Jakob M, et al. 2002. Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. J Cell Biochem 85: 737-746. – reference: Shi S, Gronthos S, Chen S, et al. 2002. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat Biotechnol 20: 587-591. – reference: Le Blanc K, Pittenger M. 2005. Mesenchymal stem cells: progress toward promise. Cytotherapy 7: 36-45. – reference: Xiaoxue Y, Zhongqiang C, Zhaoqing G, et al. 2004. Immortalization of human osteoblasts by transferring human telomerase reverse transcriptase gene. Biochem Biophys Res Commun 315: 643-651. – reference: Liu P, Oyajobi BO, Russell RG, et al. 1999. Regulation of osteogenic differentiation of human bone marrow stromal cells: interaction between transforming growth factor-beta and 1,25(OH)(2) vitamin D(3) In vitro. Calcif Tissue Int 65: 173-180. – reference: Petite H, Viateau V, Bensaid W, et al. 2000. Tissue-engineered bone regeneration. Nat Biotechnol 18: 959-963. – reference: Pola E, Gao W, Zhou Y, et al. 2004. Efficient bone formation by gene transfer of human LIM mineralization protein-3. Gene Ther 11: 683-693. – reference: Bauer TW, Muschler GF. 2000. Bone graft materials. An overview of the basic science. Clin Orthop Related Res 10-27. – reference: Mendes SC, Tibbe JM, Veenhof M, et al. 2004. Relation between in vitro and in vivo osteogenic potential of cultured human bone marrow stromal cells. J Mater Sci Mater Med 15: 1123-1128. – reference: Bruder SP, Jaiswal N, Ricalton NS, et al. 1998. Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res S247-S256. – reference: Seiler JG 3rd, Johnson J. 2000. Iliac crest autogenous bone grafting: donor site complications. J South Orthop Assoc 9: 91-97. – reference: Haynesworth SE, Baber MA, Caplan AI. 1995. Characterization of the unique mesenchymal stem cell phenotype in vitro. Trans 41st Ann Meet Orthop Res Soc 20: 7. – reference: Bancroft GN, Sikavitsas VI, van den Dolder J, et al. 2002. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci USA 99: 12600-12605. – reference: Harley CB, Futcher AB, Greider CW. 1990. Telomeres shorten during ageing of human fibroblasts. Nature 345: 458-460. – reference: Urist MR. 1965. Bone: formation by autoinduction. Science 150: 893-899. – reference: Tezuka K, Yasuda M, Watanabe N, et al. 2002. Stimulation of osteoblastic cell differentiation by Notch. J Bone Miner Res 17: 231-239. – reference: Yuan H, Van Den Doel M, Li S, et al. 2002. A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted intramuscularly in goats. J Mater Sci Mater Med 13: 1271-1275. – reference: Martin I, Muraglia A, Campanile G, et al. 1997. Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology 138: 4456-4462. – reference: Hill NM, Horne JG, Devane PA. 1999. Donor site morbidity in the iliac crest bone graft. Aust N Z J Surg 69: 726-728. – reference: Tsuda H, Wada T, Ito Y, et al. 2003. Efficient BMP2 gene transfer and bone formation of mesenchymal stem cells by a fiber-mutant adenoviral vector. Mol Ther 7: 354-365. – reference: Hong JH, Hwang ES, McManus MT, et al. 2005. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309: 1074-1078. – reference: Jochum W, David JP, Elliott C, et al. 2000. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med 6: 980-984. – reference: Derubeis AR, Cancedda R. 2004. Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances. Ann Biomed Eng 32: 160-165. – reference: Koch H, Jadlowiec JA, Campbell PG. 2005. Insulin-like growth factor-I induces early osteoblast gene expression in human mesenchymal stem cells. Stem Cells Dev 14: 621-631. – reference: Kassem M, Ankersen L, Eriksen EF, et al. 1997. Demonstration of cellular aging and senescence in serially passaged long-term cultures of human trabecular osteoblasts. Osteoporos Int 7: 514-524. – reference: Barry FP, Murphy JM. 2004. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36: 568-584. – reference: Kruyt MC, de Bruijn JD, Yuan H, et al. 2004. Optimization of bone tissue engineering in goats: a peroperative seeding method using cryopreserved cells and localized bone formation in calcium phosphate scaffolds. Transplantation 77: 359-365. – reference: D'Ippolito G, Schiller PC, Ricordi C, et al. 1999. Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 14: 1115-1122. – reference: Jaiswal RK, Jaiswal N, Bruder SP, et al. 2000. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 275: 9645-9652. – reference: Pettway GJ, Schneider A, Koh AJ, et al. 2005. Anabolic actions of PTH (1-34): use of a novel tissue engineering model to investigate temporal effects on bone. Bone 36: 959-970. – reference: Zernik J, Twarog K, Upholt WB. 1990. Regulation of alkaline phosphatase and alpha 2(I) procollagen synthesis during early intramembranous bone formation in the rat mandible. Differentiation 44: 207-215. – reference: Kveiborg M, Kassem M, Langdahl B, et al. 1999. Telomere shortening during aging of human osteoblasts in vitro and leukocytes in vivo: lack of excessive telomere loss in osteoporotic patients. Mech Ageing Dev 106: 261-271. – reference: Abdelaal MM, Tholpady SS, Kessler JD, et al. 2004. BMP-9-transduced prefabricated muscular flaps for the treatment of bony defects. J Craniofac Surg 15: 736-741; discussion 742-744. – reference: Fehrer C, Lepperdinger G. 2005. Mesenchymal stem cell aging. Exp Gerontol 12: 926-930. – reference: Liu L, DiGirolamo CM, Navarro PA, et al. 2004. Telomerase deficiency impairs differentiation of mesenchymal stem cells. Exp Cell Res 294: 1-8. – reference: Bruder SP, Jaiswal N, Haynesworth SE. 1997. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64: 278-294. – reference: Hench LL, Polak JM. 1965. Third-generation biomedical materials. Science 295: 1014-1017. – reference: Oreffo RO, Bord S, Triffitt JT. 1998. Skeletal progenitor cells and ageing human populations. Clin Sci (Lond) 94: 549-555. – reference: Dezawa M, et al. 2005. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 309: 314-317. – reference: Jaiswal N, Haynesworth SE, Caplan AI, et al. 1997. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64: 295-312. – reference: Bruder SP, Horowitz MC, Mosca JD, et al. 1997. Monoclonal antibodies reactive with human osteogenic cell surface antigens. Bone 21: 225-235. – reference: Gronthos S, Zannettino AC, Hay SJ, et al. 2003. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116: 1827-1835. – reference: Bruder SP, Fox BS. 1999. Tissue engineering of bone. Cell based strategies. Clin Orthop Related Res S68-S83. – reference: Bertone AL, Pittman DD, Bouxsein ML, et al. 2004. Adenoviral-mediated transfer of human BMP-6 gene accelerates healing in a rabbit ulnar osteotomy model. J Orthop Res 22: 1261-1270. – reference: Simonsen JL, Rosada C, Serakinci N, et al. 2002. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol 20: 592-596. – reference: Haynesworth SE, Baber MA, Caplan AI. 1992. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13: 69-80. – reference: Balooch G, Balooch M, Nalla RK, et al. 2005. TGF-beta regulates the mechanical properties and composition of bone matrix. Proc Natl Acad Sci USA 102: 18813-18818. – reference: De Boer J, Wang HJ, Van Blitterswijk C. 2004. Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Eng 10: 393-401. – reference: Phinney DG, Kopen G, Righter W, et al. 1999. Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem 75: 424-436. – reference: de Boer J, Siddappa R, Gaspar C, et al. 2004. Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells. Bone 34: 818-826. – reference: Boer JD, Licht R, Bongers M, et al. 2006. Inhibition of histone acetylation as a tool in bone tissue engineering. Tissue Eng 12: 2927-2937. – reference: Both SK, van der Muijsenberg AM, van Blitterswijk CA, et al. 2007. A rapid and labour efficient method for expansion of human mesenchymal stem cells for clinical applications. Tissue Eng 13: 3-9. – reference: Jorgensen NR, Henriksen Z, Sorensen OH, et al. 2004. Dexamethasone, BMP-2, and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype: validation of an in vitro model for human bone marrow-derived primary osteoblasts. Steroids 69: 219-226. – reference: McBeath R, Pirone DM, Nelson CM, et al. 2004. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6: 483-495. – reference: Mundy G, Garrett R, Harris S, et al. 1999. Stimulation of bone formation in vitro and in rodents by statins. Science 286: 1946-1949. – volume: 150 start-page: 893 year: 1965 end-page: 899 article-title: Bone: formation by autoinduction publication-title: Science – volume: 13 start-page: 3 year: 2007 end-page: 9 article-title: A rapid and labour efficient method for expansion of human mesenchymal stem cells for clinical applications publication-title: Tissue Eng – volume: 13 start-page: 1271 year: 2002 end-page: 1275 article-title: A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted intramuscularly in goats publication-title: J Mater Sci Mater Med – volume: 116 start-page: 1827 year: 2003 end-page: 1835 article-title: Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow publication-title: J Cell Sci – volume: 77 start-page: 359 year: 2004 end-page: 365 article-title: Optimization of bone tissue engineering in goats: a peroperative seeding method using cryopreserved cells and localized bone formation in calcium phosphate scaffolds publication-title: Transplantation – volume: 295 start-page: 1014 year: 1965 end-page: 1017 article-title: Third‐generation biomedical materials publication-title: Science – volume: 32 start-page: 160 year: 2004 end-page: 165 article-title: Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances publication-title: Ann Biomed Eng – volume: 36 start-page: 959 year: 2005 end-page: 970 article-title: Anabolic actions of PTH (1–34): use of a novel tissue engineering model to investigate temporal effects on bone publication-title: Bone – volume: 22 start-page: 560 year: 2004 end-page: 567 article-title: Adipose‐derived adult stromal cells heal critical‐size mouse calvarial defects publication-title: Nat Biotechnol – volume: 106 start-page: 261 year: 1999 end-page: 271 article-title: Telomere shortening during aging of human osteoblasts in vitro and leukocytes in vivo: lack of excessive telomere loss in osteoporotic patients publication-title: Mech Ageing Dev – volume: 20 start-page: 587 year: 2002 end-page: 591 article-title: Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression publication-title: Nat Biotechnol – volume: 15 start-page: 736 year: 2004 end-page: 741 article-title: BMP‐9‐transduced prefabricated muscular flaps for the treatment of bony defects publication-title: J Craniofac Surg – volume: 69 start-page: 219 year: 2004 end-page: 226 article-title: Dexamethasone, BMP‐2, and 1,25‐dihydroxyvitamin D enhance a more differentiated osteoblast phenotype: validation of an in vitro model for human bone marrow‐derived primary osteoblasts publication-title: Steroids – volume: 7 start-page: 354 year: 2003 end-page: 365 article-title: Efficient BMP2 gene transfer and bone formation of mesenchymal stem cells by a fiber‐mutant adenoviral vector publication-title: Mol Ther – volume: 85 start-page: 737 year: 2002 end-page: 746 article-title: Real‐time quantitative RT‐PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro publication-title: J Cell Biochem – volume: 20 start-page: 592 year: 2002 end-page: 596 article-title: Telomerase expression extends the proliferative life‐span and maintains the osteogenic potential of human bone marrow stromal cells publication-title: Nat Biotechnol – volume: 21 start-page: 225 year: 1997 end-page: 235 article-title: Monoclonal antibodies reactive with human osteogenic cell surface antigens publication-title: Bone – volume: 17 start-page: 231 year: 2002 end-page: 239 article-title: Stimulation of osteoblastic cell differentiation by Notch publication-title: J Bone Miner Res – volume: 10 start-page: 393 year: 2004 end-page: 401 article-title: Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells publication-title: Tissue Eng – volume: 13 start-page: 69 year: 1992 end-page: 80 article-title: Cell surface antigens on human marrow‐derived mesenchymal cells are detected by monoclonal antibodies publication-title: Bone – volume: 294 start-page: 1 year: 2004 end-page: 8 article-title: Telomerase deficiency impairs differentiation of mesenchymal stem cells publication-title: Exp Cell Res – volume: 7 start-page: 514 year: 1997 end-page: 524 article-title: Demonstration of cellular aging and senescence in serially passaged long‐term cultures of human trabecular osteoblasts publication-title: Osteoporos Int – volume: 138 start-page: 4456 year: 1997 end-page: 4462 article-title: Fibroblast growth factor‐2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow publication-title: Endocrinology – volume: 12 start-page: 926 year: 2005 end-page: 930 article-title: Mesenchymal stem cell aging publication-title: Exp Gerontol – volume: 64 start-page: 295 year: 1997 end-page: 312 article-title: Osteogenic differentiation of purified, culture‐expanded human mesenchymal stem cells in vitro publication-title: J Cell Biochem – volume: 284 start-page: 143 year: 1999 end-page: 147 article-title: Multilineage potential of adult human mesenchymal stem cells publication-title: Science – volume: 309 start-page: 1074 year: 2005 end-page: 1078 article-title: TAZ, a transcriptional modulator of mesenchymal stem cell differentiation publication-title: Science – volume: 75 start-page: 424 year: 1999 end-page: 436 article-title: Donor variation in the growth properties and osteogenic potential of human marrow stromal cells publication-title: J Cell Biochem – volume: 101 start-page: 11203 year: 2004 end-page: 11208 article-title: Bioreactor‐based bone tissue engineering: the influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization publication-title: Proc Natl Acad Sci USA – volume: 25 start-page: 402 year: 2001 end-page: 408 article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta Delta C(T)) Method publication-title: Methods – volume: 309 start-page: 314 year: 2005 end-page: 317 article-title: Bone marrow stromal cells generate muscle cells and repair muscle degeneration publication-title: Science – volume: 14 start-page: 1115 year: 1999 end-page: 1122 article-title: Age‐related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow publication-title: J Bone Miner Res – volume: 6 start-page: 483 year: 2004 end-page: 495 article-title: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment publication-title: Dev Cell – start-page: 10 year: 2000 end-page: 27 article-title: Bone graft materials. An overview of the basic science publication-title: Clin Orthop Related Res – volume: 315 start-page: 643 year: 2004 end-page: 651 article-title: Immortalization of human osteoblasts by transferring human telomerase reverse transcriptase gene publication-title: Biochem Biophys Res Commun – volume: 286 start-page: 1946 year: 1999 end-page: 1949 article-title: Stimulation of bone formation in vitro and in rodents by statins publication-title: Science – volume: 7 start-page: 36 year: 2005 end-page: 45 article-title: Mesenchymal stem cells: progress toward promise publication-title: Cytotherapy – volume: 345 start-page: 458 year: 1990 end-page: 460 article-title: Telomeres shorten during ageing of human fibroblasts publication-title: Nature – volume: 6 start-page: 980 year: 2000 end-page: 984 article-title: Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra‐1 publication-title: Nat Med – volume: 11 start-page: 683 year: 2004 end-page: 693 article-title: Efficient bone formation by gene transfer of human LIM mineralization protein‐3 publication-title: Gene Ther – volume: 14 start-page: 621 year: 2005 end-page: 631 article-title: Insulin‐like growth factor‐I induces early osteoblast gene expression in human mesenchymal stem cells publication-title: Stem Cells Dev – volume: 275 start-page: 9645 year: 2000 end-page: 9652 article-title: Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen‐activated protein kinase publication-title: J Biol Chem – volume: 69 start-page: 726 year: 1999 end-page: 728 article-title: Donor site morbidity in the iliac crest bone graft publication-title: Aust N Z J Surg – volume: 99 start-page: 12600 year: 2002 end-page: 12605 article-title: Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose‐dependent manner publication-title: Proc Natl Acad Sci USA – volume: 308 start-page: 1472 year: 2005 end-page: 1477 article-title: Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation publication-title: Science – start-page: S68 year: 1999 end-page: S83 article-title: Tissue engineering of bone. Cell based strategies publication-title: Clin Orthop Related Res – volume: 64 start-page: 278 year: 1997 end-page: 294 article-title: Growth kinetics, self‐renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation publication-title: J Cell Biochem – volume: 44 start-page: 207 year: 1990 end-page: 215 article-title: Regulation of alkaline phosphatase and alpha 2(I) procollagen synthesis during early intramembranous bone formation in the rat mandible publication-title: Differentiation – volume: 15 start-page: 1123 year: 2004 end-page: 1128 article-title: Relation between in vitro and in vivo osteogenic potential of cultured human bone marrow stromal cells publication-title: J Mater Sci Mater Med – volume: 34 start-page: 818 year: 2004 end-page: 826 article-title: Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells publication-title: Bone – volume: 36 start-page: 568 year: 2004 end-page: 584 article-title: Mesenchymal stem cells: clinical applications and biological characterization publication-title: Int J Biochem Cell Biol – volume: 65 start-page: 173 year: 1999 end-page: 180 article-title: Regulation of osteogenic differentiation of human bone marrow stromal cells: interaction between transforming growth factor‐beta and 1,25(OH)(2) vitamin D(3) In vitro publication-title: Calcif Tissue Int – volume: 20 start-page: 7 year: 1995 article-title: Characterization of the unique mesenchymal stem cell phenotype in vitro publication-title: Trans 41st Ann Meet Orthop Res Soc – start-page: S247 year: 1998 end-page: S256 article-title: Mesenchymal stem cells in osteobiology and applied bone regeneration publication-title: Clin Orthop Relat Res – volume: 11 start-page: 390 year: 2005 end-page: 398 article-title: Lentivirus‐mediated gene transfer induces long‐term transgene expression of BMP‐2 in vitro and new bone formation in vivo publication-title: Mol Ther – volume: 94 start-page: 549 year: 1998 end-page: 555 article-title: Skeletal progenitor cells and ageing human populations publication-title: Clin Sci (Lond) – volume: 22 start-page: 1261 year: 2004 end-page: 1270 article-title: Adenoviral‐mediated transfer of human BMP‐6 gene accelerates healing in a rabbit ulnar osteotomy model publication-title: J Orthop Res – volume: 12 start-page: 2927 year: 2006 end-page: 2937 article-title: Inhibition of histone acetylation as a tool in bone tissue engineering publication-title: Tissue Eng – volume: 9 start-page: 91 year: 2000 end-page: 97 article-title: Iliac crest autogenous bone grafting: donor site complications publication-title: J South Orthop Assoc – volume: 18 start-page: 959 year: 2000 end-page: 963 article-title: Tissue‐engineered bone regeneration publication-title: Nat Biotechnol – volume: 102 start-page: 18813 year: 2005 end-page: 18818 article-title: TGF‐beta regulates the mechanical properties and composition of bone matrix publication-title: Proc Natl Acad Sci USA – ident: e_1_2_1_7_2 doi: 10.1097/00003086-199810001-00025 – ident: e_1_2_1_14_2 doi: 10.1073/pnas.0507417102 – ident: e_1_2_1_29_2 doi: 10.1038/nbt0602-587 – ident: e_1_2_1_42_2 doi: 10.1002/(SICI)1097-4644(19991201)75:3<424::AID-JCB8>3.0.CO;2-8 – ident: e_1_2_1_51_2 doi: 10.1016/S8756-3282(97)00127-0 – ident: e_1_2_1_46_2 doi: 10.1038/79449 – ident: e_1_2_1_22_2 doi: 10.1016/j.exger.2005.07.006 – ident: e_1_2_1_62_2 doi: 10.1359/jbmr.2002.17.2.231 – ident: e_1_2_1_2_2 doi: 10.1097/00003086-200002000-00003 – ident: e_1_2_1_60_2 doi: 10.1074/jbc.275.13.9645 – ident: e_1_2_1_25_2 doi: 10.1038/345458a0 – ident: e_1_2_1_37_2 doi: 10.1073/pnas.202296599 – ident: e_1_2_1_21_2 doi: 10.1359/jbmr.1999.14.7.1115 – ident: e_1_2_1_48_2 doi: 10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I – ident: e_1_2_1_61_2 doi: 10.1016/S1534-5807(04)00075-9 – ident: e_1_2_1_17_2 doi: 10.1002/jor.1100090504 – ident: e_1_2_1_27_2 doi: 10.1016/j.bbrc.2004.01.102 – ident: e_1_2_1_36_2 doi: 10.1126/science.286.5446.1946 – ident: e_1_2_1_34_2 doi: 10.1038/79676 – ident: e_1_2_1_31_2 doi: 10.1016/S1525-0016(02)00062-X – ident: e_1_2_1_20_2 doi: 10.1042/cs0940549 – ident: e_1_2_1_28_2 doi: 10.1038/nbt0602-592 – ident: e_1_2_1_41_2 doi: 10.1089/ten.2006.12.2927 – ident: e_1_2_1_26_2 doi: 10.1016/j.yexcr.2003.10.031 – ident: e_1_2_1_5_2 doi: 10.1097/00003086-199910001-00008 – ident: e_1_2_1_56_2 doi: 10.1097/01.TP.0000102550.58160.39 – ident: e_1_2_1_8_2 doi: 10.1016/j.biocel.2003.11.001 – ident: e_1_2_1_11_2 doi: 10.1007/s002239900678 – volume: 9 start-page: 91 year: 2000 ident: e_1_2_1_4_2 article-title: Iliac crest autogenous bone grafting: donor site complications publication-title: J South Orthop Assoc – ident: e_1_2_1_18_2 doi: 10.1126/science.1110364 – ident: e_1_2_1_30_2 doi: 10.1016/j.ymthe.2004.10.019 – ident: e_1_2_1_15_2 doi: 10.1016/j.bone.2005.02.015 – ident: e_1_2_1_50_2 doi: 10.1016/8756-3282(92)90363-2 – ident: e_1_2_1_45_2 doi: 10.1023/A:1021191432366 – ident: e_1_2_1_55_2 doi: 10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO;2-F – ident: e_1_2_1_59_2 doi: 10.1126/science.1110955 – ident: e_1_2_1_39_2 doi: 10.1089/107632704323061753 – ident: e_1_2_1_10_2 doi: 10.1126/science.150.3698.893 – ident: e_1_2_1_58_2 doi: 10.1210/endo.138.10.5425 – ident: e_1_2_1_40_2 doi: 10.1016/j.bone.2004.01.016 – ident: e_1_2_1_23_2 doi: 10.1007/BF02652556 – ident: e_1_2_1_49_2 doi: 10.1002/jcb.10174 – ident: e_1_2_1_13_2 doi: 10.1126/science.1107627 – ident: e_1_2_1_19_2 doi: 10.1038/nbt958 – volume: 20 start-page: 7 year: 1995 ident: e_1_2_1_52_2 article-title: Characterization of the unique mesenchymal stem cell phenotype in vitro publication-title: Trans 41st Ann Meet Orthop Res Soc – ident: e_1_2_1_12_2 doi: 10.1089/scd.2005.14.621 – ident: e_1_2_1_32_2 doi: 10.1016/j.orthres.2004.03.014 – ident: e_1_2_1_43_2 doi: 10.1089/ten.2005.0513 – ident: e_1_2_1_47_2 doi: 10.1111/j.1432-0436.1990.tb00619.x – ident: e_1_2_1_35_2 doi: 10.1038/sj.gt.3302207 – ident: e_1_2_1_9_2 doi: 10.1126/science.1067404 – ident: e_1_2_1_38_2 doi: 10.1073/pnas.0402532101 – ident: e_1_2_1_16_2 doi: 10.1016/j.steroids.2003.12.005 – ident: e_1_2_1_57_2 doi: 10.1023/B:ABME.0000007800.89194.95 – ident: e_1_2_1_6_2 doi: 10.1016/S1465-3249(05)70787-8 – ident: e_1_2_1_53_2 doi: 10.1242/jcs.00369 – ident: e_1_2_1_54_2 doi: 10.1023/B:JMSM.0000046394.53153.21 – ident: e_1_2_1_3_2 doi: 10.1046/j.1440-1622.1999.01674.x – ident: e_1_2_1_24_2 doi: 10.1016/S0047-6374(98)00114-6 – ident: e_1_2_1_44_2 doi: 10.1006/meth.2001.1262 – ident: e_1_2_1_33_2 doi: 10.1097/00001665-200409000-00007 |
SSID | ssj0007128 |
Score | 2.3684497 |
Snippet | The use of multipotent human mesenchymal stem cells (hMSCs) for tissue engineering has been a subject of extensive research. The donor variation in growth,... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1029 |
SubjectTerms | Acetabulum - cytology Adult Aged Aged, 80 and over Alkaline Phosphatase - analysis Alkaline Phosphatase - genetics Animals Bone Substitutes bone tissue engineering Cell Differentiation - drug effects Dexamethasone - pharmacology Female Gene Expression Profiling Genetic Variation human mesenchymal stem cells Humans Ilium - cytology Male Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - physiology Mice Middle Aged Multipotent Stem Cells - cytology Multipotent Stem Cells - physiology Osteogenesis Tissue Donors - classification Tissue Engineering - methods |
Title | Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering |
URI | https://api.istex.fr/ark:/67375/WNG-JZLZ4QV1-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjor.20402 https://www.ncbi.nlm.nih.gov/pubmed/17469183 https://www.proquest.com/docview/68117998 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhveTSB0nbTV9DKKUXJ1lblrz0VNo8WEJKQtOGUBB60jSJXXa9Iemhv70z0nqXhBRK8cE-jJGsmZE-j0bfMPa64s5z42VmROEpdGMyUwmbBVxavOEBMUNk-9wXu0d8eFweL7B33VmYxA8xC7iRZ8T5mhxcm_HGnDT0R0N0njwSSVKuFgGiwzl1lOzHuqpowZRkK0THKrSZb8zevLEW3aNhvboLaN7ErXHh2X7AvnVdTvkmZ-uT1qzbX7fYHP_zmx6y-1NACu-TBT1iC75eZr8_NnUzgkv8kY6aA107OMdvgCZAykFsCGxfQzrmCKc1XJ62owb8FU4vFIEjyVgAEC7ogJP9fn2BzRBtNNBmwRgQLYNpag9t1D34OTPiCjva3vr8YTebVmrILM9lnmlnXX_gvJOFcbSXowVtH5YVgjNR6NLwUuItd0W-GfI-N6WVPoiAcFRYW-jiMVusscWnDEqHV0CchFbCcz8wxIjHhRY2GCED77G3nc6UndKYUzWNc5UImHOFg6jiIPbY2kz0Z-LuuEvoTVT8TEKPzijZTZbq6_6OGp7snfCDL3110GOvOstQ6II0VLr2zWSsRBV59aoee5IMZt6a5GKAkyZ2Oqr9791Qw0-H8WH130WfsaUUaaZ0xOdssR1N_AuESK15GX3hD2Q5Dhc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hONBLH6KP7QOsqqp6CbCJY2elXioo3W63W4GgRUiVFb9UCiTVkkXQQ397Z-zNrqioVFU5JIeJ7Hhm7C_j8TcALwpuHddOJlpkjkI3OtGFMInHpcVp7hEzBLbPkegf8MFhfrgAr9uzMJEfYhZwI88I8zU5OAWkN-asod9r4vPkxCS5RBW9qX7B9t6cPEp2Q2VVtGFKsxWi5RXaTDdmr15bjZZoYC9vgprXkWtYenbuwNe20zHj5GR90uh18_MPPsf__aq7cHuKSdmbaET3YMFVK_Bru67qMbvAf-mgPFZWlp3iR7Das5iGWBPevmLxpCM7rtjFcTOumbvEGYaCcCQZagCyMzrjZL5dnWEzxBzNaL_gnCFgZrquHGuC-pmbkyPeh4Odt_tb_WRarCExPJVpUlpjuz3rrMy0pe2cUtAOYl4gPhNZmWueS7ylNks3fdrlOjfSeeERkQpjsjJ7AIsVtvgIWG7x8giV0FB46nqaSPG4KIXxWkjPO_CqVZoyUyZzKqhxqiIHc6pwEFUYxA48n4n-iPQdNwm9DJqfSZTjE8p3k7n6MnqnBkfDI777uat2O7DWmoZCL6ShKitXT86VKAK1XtGBh9Fi5q1JLno4b2Kng97_3g01-LQXHh7_u-gaLPf3Pw7V8P3owxO4FQPPlJ34FBab8cQ9Q8TU6NXgGL8BKokSMQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KC8UXq_h1Vu0gIr6k7SWb3Rw-ifVsz3LaYrUUYcl-0c-kXHOl9cG_3Zndyx2VCiJ5SB4m7GZnZveX2dnfMPaq4NZx7WSiReYodKMTXQiTeFxanOYeMUNg-xyKzT0-2M_359jb9ixM5IeYBtzIM8J8TQ5-bv3ajDT0uCY6T05EkgtcoLMQItqdcUfJbiisiiZMWbZCtLRC6-na9NUbi9ECjevVbUjzJnANK09_if1o-xwTTk5Wx41eNT__oHP8z4-6x-5OECm8iyZ0n8256gH7tVFX9Qgu8U86qA7KysIpfgPUHmISYk1o-xriOUc4quDyqBnV4K5wfqEQHEmGCoBwRieczOH1GTZDvNFAuwUXgHAZdF05aILywc2oER-yvf6Hr-83k0mphsTwVKZJaY3t9qyzMtOWNnNKQfuHeYHoTGRlrnku8ZbaLF33aZfr3EjnhUc8KozJyuwRm6-wxScMcouXR6CEZsJT19NEicdFKYzXQnreYW9anSkz4TGnchqnKjIwpwoHUYVB7LCXU9HzSN5xm9DroPipRDk6oWw3mavvw49qcLB9wHe-ddVOh620lqHQB2moysrV4wslikCsV3TY42gws9YkFz2cNbHTQe1_74YafN4ND0__XXSFLX7Z6KvtreGnZXYnRp0pNfEZm29GY_cc4VKjXwS3-A0LlRDp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Donor+variation+and+loss+of+multipotency+during+in+vitro+expansion+of+human+mesenchymal+stem+cells+for+bone+tissue+engineering&rft.jtitle=Journal+of+orthopaedic+research&rft.au=Siddappa%2C+Ramakrishnaiah&rft.au=Licht%2C+Ruud&rft.au=van+Blitterswijk%2C+Clemens&rft.au=de+Boer%2C+Jan&rft.date=2007-08-01&rft.issn=0736-0266&rft.volume=25&rft.issue=8&rft.spage=1029&rft_id=info:doi/10.1002%2Fjor.20402&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-0266&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-0266&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-0266&client=summon |