Oxidation and nuclear localization of thioredoxin-1 in sparse cell cultures

Reactive oxygen species (ROS) were once viewed only as mediators of toxicity, but it is now recognized that they also contribute to redox signaling through oxidation of specific cysteine thiols on regulatory proteins. Cells in sparse cultures have increased ROS relative to confluent cultures, but it...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular biochemistry Vol. 104; no. 5; pp. 1879 - 1889
Main Authors Spielberger, Jeanine C., Moody, Amie D., Watson, Walter H.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.08.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reactive oxygen species (ROS) were once viewed only as mediators of toxicity, but it is now recognized that they also contribute to redox signaling through oxidation of specific cysteine thiols on regulatory proteins. Cells in sparse cultures have increased ROS relative to confluent cultures, but it is not known whether protein redox states are affected under these conditions. The purpose of the present study was to determine whether culture conditions affect the redox state of thioredoxin‐1 (Trx1), the protein responsible for reducing most oxidized proteins in the cytoplasm and nucleus. The results showed that Trx1 was more oxidized in sparse HeLa cell cultures than in confluent cells. The glutathione pool was also more oxidized, demonstrating that both of the major cellular redox regulating systems were affected by culture density. In addition, the total amount of Trx1 protein was lower and the subcellular distribution of Trx1 was different in sparse cells. Trx1 in sparse cultures was predominantly nuclear whereas it was predominantly cytoplasmic in confluent cultures. This localization pattern was not unique to HeLa cells as it was also observed in A549, Cos‐1 and HEK293 cells. These findings demonstrate that Trx1 is subject to changes in expression, redox state and subcellular localization with changing culture density, indicating that the redox environments of the cytoplasm and the nucleus are distinct and have different requirements under different culture conditions. J. Cell. Biochem. 104: 1879–1889, 2008. © 2008 Wiley‐Liss, Inc.
AbstractList Reactive oxygen species (ROS) were once viewed only as mediators of toxicity, but it is now recognized that they also contribute to redox signaling through oxidation of specific cysteine thiols on regulatory proteins. Cells in sparse cultures have increased ROS relative to confluent cultures, but it is not known whether protein redox states are affected under these conditions. The purpose of the present study was to determine whether culture conditions affect the redox state of thioredoxin‐1 (Trx1), the protein responsible for reducing most oxidized proteins in the cytoplasm and nucleus. The results showed that Trx1 was more oxidized in sparse HeLa cell cultures than in confluent cells. The glutathione pool was also more oxidized, demonstrating that both of the major cellular redox regulating systems were affected by culture density. In addition, the total amount of Trx1 protein was lower and the subcellular distribution of Trx1 was different in sparse cells. Trx1 in sparse cultures was predominantly nuclear whereas it was predominantly cytoplasmic in confluent cultures. This localization pattern was not unique to HeLa cells as it was also observed in A549, Cos‐1 and HEK293 cells. These findings demonstrate that Trx1 is subject to changes in expression, redox state and subcellular localization with changing culture density, indicating that the redox environments of the cytoplasm and the nucleus are distinct and have different requirements under different culture conditions. J. Cell. Biochem. 104: 1879–1889, 2008. © 2008 Wiley‐Liss, Inc.
Reactive oxygen species (ROS) were once viewed only as mediators of toxicity, but it is now recognized that they also contribute to redox signaling through oxidation of specific cysteine thiols on regulatory proteins. Cells in sparse cultures have increased ROS relative to confluent cultures, but it is not known whether protein redox states are affected under these conditions. The purpose of the present study was to determine whether culture conditions affect the redox state of thioredoxin-1 (Trx1), the protein responsible for reducing most oxidized proteins in the cytoplasm and nucleus. The results showed that Trx1 was more oxidized in sparse HeLa cell cultures than in confluent cells. The glutathione pool was also more oxidized, demonstrating that both of the major cellular redox regulating systems were affected by culture density. In addition, the total amount of Trx1 protein was lower and the subcellular distribution of Trx1 was different in sparse cells. Trx1 in sparse cultures was predominantly nuclear whereas it was predominantly cytoplasmic in confluent cultures. This localization pattern was not unique to HeLa cells as it was also observed in A549, Cos-1 and HEK293 cells. These findings demonstrate that Trx1 is subject to changes in expression, redox state and subcellular localization with changing culture density, indicating that the redox environments of the cytoplasm and the nucleus are distinct and have different requirements under different culture conditions.
Reactive oxygen species (ROS) were once viewed only as mediators of toxicity, but it is now recognized that they also contribute to redox signaling through oxidation of specific cysteine thiols on regulatory proteins. Cells in sparse cultures have increased ROS relative to confluent cultures, but it is not known whether protein redox states are affected under these conditions. The purpose of the present study was to determine whether culture conditions affect the redox state of thioredoxin-1 (Trx1), the protein responsible for reducing most oxidized proteins in the cytoplasm and nucleus. The results showed that Trx1 was more oxidized in sparse HeLa cell cultures than in confluent cells. The glutathione pool was also more oxidized, demonstrating that both of the major cellular redox regulating systems were affected by culture density. In addition, the total amount of Trx1 protein was lower and the subcellular distribution of Trx1 was different in sparse cells. Trx1 in sparse cultures was predominantly nuclear whereas it was predominantly cytoplasmic in confluent cultures. This localization pattern was not unique to HeLa cells as it was also observed in A549, Cos-1 and HEK293 cells. These findings demonstrate that Trx1 is subject to changes in expression, redox state and subcellular localization with changing culture density, indicating that the redox environments of the cytoplasm and the nucleus are distinct and have different requirements under different culture conditions.Reactive oxygen species (ROS) were once viewed only as mediators of toxicity, but it is now recognized that they also contribute to redox signaling through oxidation of specific cysteine thiols on regulatory proteins. Cells in sparse cultures have increased ROS relative to confluent cultures, but it is not known whether protein redox states are affected under these conditions. The purpose of the present study was to determine whether culture conditions affect the redox state of thioredoxin-1 (Trx1), the protein responsible for reducing most oxidized proteins in the cytoplasm and nucleus. The results showed that Trx1 was more oxidized in sparse HeLa cell cultures than in confluent cells. The glutathione pool was also more oxidized, demonstrating that both of the major cellular redox regulating systems were affected by culture density. In addition, the total amount of Trx1 protein was lower and the subcellular distribution of Trx1 was different in sparse cells. Trx1 in sparse cultures was predominantly nuclear whereas it was predominantly cytoplasmic in confluent cultures. This localization pattern was not unique to HeLa cells as it was also observed in A549, Cos-1 and HEK293 cells. These findings demonstrate that Trx1 is subject to changes in expression, redox state and subcellular localization with changing culture density, indicating that the redox environments of the cytoplasm and the nucleus are distinct and have different requirements under different culture conditions.
Author Moody, Amie D.
Spielberger, Jeanine C.
Watson, Walter H.
Author_xml – sequence: 1
  givenname: Jeanine C.
  surname: Spielberger
  fullname: Spielberger, Jeanine C.
  organization: Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
– sequence: 2
  givenname: Amie D.
  surname: Moody
  fullname: Moody, Amie D.
  organization: Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
– sequence: 3
  givenname: Walter H.
  surname: Watson
  fullname: Watson, Walter H.
  email: wwatson@jhsph.edu
  organization: Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18384140$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1P3DAQhq0KVJalh_4BlBNSD1nGH2snxxKV5auAEFWPluNMVFNvvNiJWPj1LCwfElJ7msM8z6uZd5tsdKFDQr5SmFAAtn9j6wmjSrJPZEShVLmQQmyQESgOOeOUbZHtlG4AoCw5-0y2aMELQQWMyOnF0jWmd6HLTNdk3WA9mpj5YI13D-tFaLP-jwsRm7B0XU4z12VpYWLCzKL3mR18P0RMO2SzNT7hl5c5Jr8Of1xXR_nZxey4-n6WW8EUy2kxbaBoKGsLUbfCiFoWqpDSMDulDFqUUBtGW6UaZQ3a0giwiLY2tC6hYXxM9ta5ixhuB0y9nrv0dInpMAxJy5JPJXC6AndfwKGeY6MX0c1NvNev76-Ab2vAxpBSxPYdAf1UrV5Vq5-rXbH7H1jr-ueC-mic_59x5zze_ztan1QHr0a-NlzqcflmmPhXS8XVVP8-n2l2dHVZVT9n-po_Av1YmRc
CitedBy_id crossref_primary_10_1371_journal_pone_0147773
crossref_primary_10_1016_j_freeradbiomed_2014_01_034
crossref_primary_10_1016_j_freeradbiomed_2013_07_001
crossref_primary_10_1155_2012_232464
crossref_primary_10_1074_jbc_M109_010363
crossref_primary_10_1016_j_freeradbiomed_2015_06_001
crossref_primary_10_1038_srep42928
crossref_primary_10_1093_jb_mvab092
crossref_primary_10_1371_journal_pone_0018918
crossref_primary_10_1089_ars_2009_3021
crossref_primary_10_3892_mmr_2020_11499
Cites_doi 10.1016/j.freeradbiomed.2003.09.008
10.1126/science.2118682
10.1073/pnas.97.12.6463
10.1091/mbc.01-11-0538
10.1016/j.freeradbiomed.2003.10.019
10.1006/jmcc.2001.1505
10.1016/j.cell.2004.12.041
10.1016/j.biopha.2005.03.002
10.1023/A:1023702321148
10.1074/jbc.M000835200
10.1038/labinvest.3780006
10.1074/jbc.275.12.8991
10.1093/toxsci/kfh231
10.1007/s00280-003-0726-5
10.1016/S0014-5793(03)00430-7
10.1128/MCB.19.2.1486
10.1074/jbc.M107538200
10.1016/S0076-6879(02)52010-3
10.1021/bi00612a031
10.1042/0264-6021:3520019
10.1073/pnas.93.5.1770
10.1016/j.bcp.2005.08.005
10.1016/S0955-0674(03)00002-4
10.1242/jcs.00052
10.1016/S0304-3940(98)00492-3
10.1152/ajpgi.00183.2002
10.1093/toxsci/kfh050
10.1016/0891-5849(95)00012-M
10.1080/713603294
10.1073/pnas.94.8.3633
10.1074/jbc.M107168200
10.1161/01.CIR.0000027817.55925.B4
10.1074/jbc.M211107200
10.1042/BJ20041829
10.1126/science.270.5234.296
10.1074/jbc.M414645200
10.1016/S0891-5849(01)00617-7
10.1074/jbc.273.25.15366
10.1038/sj.onc.1205749
10.1038/sj.onc.1206369
10.1093/emboj/17.9.2596
10.1016/S0891-5849(00)00313-0
10.1016/S0891-5849(01)00480-4
10.1016/j.freeradbiomed.2004.12.022
10.1093/nar/20.15.3821
10.1016/j.ymthe.2005.07.684
10.1016/S0076-6879(02)48630-2
10.1074/jbc.272.1.217
10.1242/jcs.113.17.3117
10.1074/jbc.M310492200
10.1523/JNEUROSCI.23-02-00503.2003
10.1074/jbc.274.39.27891
ContentType Journal Article
Copyright Copyright © 2008 Wiley‐Liss, Inc.
Copyright_xml – notice: Copyright © 2008 Wiley‐Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/jcb.21762
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1097-4644
EndPage 1889
ExternalDocumentID 18384140
10_1002_jcb_21762
JCB21762
ark_67375_WNG_2HRPCCMG_T
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH/NIEHS
  funderid: ES012260; ES003819
– fundername: NIEHS NIH HHS
  grantid: ES003819
– fundername: NIEHS NIH HHS
  grantid: ES012260
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IH2
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
ROL
RWI
RX1
RYL
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
.GJ
AAYXX
ABEML
ACSCC
AEYWJ
AGHNM
AGQPQ
AGYGG
BLYAC
CITATION
EBD
EMOBN
HF~
LH6
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
SV3
ZGI
ZXP
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4272-185d08d12f84bf4a4b687866a2c5120fe60ba21f77d7caec9a40ceecba1b90d23
IEDL.DBID DR2
ISSN 0730-2312
1097-4644
IngestDate Fri Jul 11 03:56:06 EDT 2025
Mon Jul 21 05:42:09 EDT 2025
Thu Apr 24 23:11:35 EDT 2025
Tue Jul 01 03:55:44 EDT 2025
Wed Jan 22 17:05:40 EST 2025
Wed Oct 30 09:51:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4272-185d08d12f84bf4a4b687866a2c5120fe60ba21f77d7caec9a40ceecba1b90d23
Notes istex:573F681C05D42A3A280BBAD673DD78053360A970
ark:/67375/WNG-2HRPCCMG-T
ArticleID:JCB21762
NIH/NIEHS - No. ES012260; No. ES003819
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18384140
PQID 69356031
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_69356031
pubmed_primary_18384140
crossref_primary_10_1002_jcb_21762
crossref_citationtrail_10_1002_jcb_21762
wiley_primary_10_1002_jcb_21762_JCB21762
istex_primary_ark_67375_WNG_2HRPCCMG_T
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 August 2008
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: 1 August 2008
  day: 01
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of cellular biochemistry
PublicationTitleAlternate J. Cell. Biochem
PublicationYear 2008
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Powis G, Mustacich D, Coon A. 2000. The role of the redox protein thioredoxin in cell growth and cancer. Free Radic Biol Med 29: 312-322.
Brown J, Reading SJ, Jones S, Fitchett CJ, Howl J, Martin A, Longland CL, Michelangeli F, Dubrova YE, Brown CA. 2000. Critical evaluation of ECV304 as a human endothelial cell model defined by genetic analysis and functional responses: A comparison with the human bladder cancer derived epithelial cell line T24/83. Lab Invest 80: 37-45.
Schafer FQ, Buettner GR. 2001. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30: 1191-1212.
Ikuta T, Kobayashi Y, Kawajiri K. 2004. Cell density regulates intracellular localization of aryl hydrocarbon receptor. J Biol Chem 279: 19209-19216.
Jones DP. 2002. Redox potential of GSH/GSSG couple: Assay and biological significance. Methods Enzymol 348: 93-112.
Kim YC, Yamaguchi Y, Kondo N, Masutani H, Yodoi J. 2003. Thioredoxin-dependent redox regulation of the antioxidant responsive element (ARE) in electrophile response. Oncogene 22: 1860-1865.
Hirota K, Murata M, Sachi Y, Nakamura H, Takeuchi J, Mori K, Yodoi J. 1999. Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB. J Biol Chem 274: 27891-27897.
Lee S, Neumann M, Stearman R, Stauber R, Pause A, Pavlakis GN, Klausner RD. 1999. Transcription-dependent nuclear-cytoplasmic trafficking is required for the function of the von Hippel-Lindau tumor suppressor protein. Mol Cell Biol 19: 1486-1497.
Groulx I, Bonicalzi ME, Lee S. 2000. Ran-mediated nuclear export of the von Hippel-Lindau tumor suppressor protein occurs independently of its assembly with cullin-2. J Biol Chem 275: 8991-9000.
Oberley TD, Schultz JL, Li N, Oberley LW. 1995. Antioxidant enzyme levels as a function of growth state in cell culture. Free Radic Biol Med 19: 53-65.
Roy S, Khanna S, Nallu K, Hunt TK, Sen CK. 2006. Dermal wound healing is subject to redox control. Mol Ther 13: 211-220.
Bello RI, Gomez-Diaz C, Navarro F, Alcain FJ, Villalba JM. 2001. Expression of NAD(P)H:quinone oxidoreductase 1 in HeLa cells: Role of hydrogen peroxide and growth phase. J Biol Chem 276: 44379-44384.
Bai J, Nakamura H, Kwon YW, Hattori I, Yamaguchi Y, Kim YC, Kondo N, Oka S, Ueda S, Masutani H, Yodoi J. 2003. Critical roles of thioredoxin in nerve growth factor-mediated signal transduction and neurite outgrowth in PC12 cells. J Neurosci 23: 503-509.
Karimpour S, Lou J, Lin LL, Rene LM, Lagunas L, Ma X, Karra S, Bradbury CM, Markovina S, Goswami PC, Spitz DR, Hirota K, Kalvakolanu DV, Yodoi J, Gius D. 2002. Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation. Oncogene 21: 6317-6327.
Arner ES, Holmgren A. 2005. Measurement of thioredoxin and thioredoxin reductase: "Current protocols in toxicology". New York: John Wiley and Sons. pp 7.4.1-7.4.14.
Banmeyer I, Marchand C, Verhaeghe C, Vucic B, Rees JF, Knoops B. 2004. Overexpression of human peroxiredoxin 5 in subcellular compartments of Chinese hamster ovary cells: Effects on cytotoxicity and DNA damage caused by peroxides. Free Radic Biol Med 36: 65-77.
Lowther WT, Brot N, Weissbach H, Honek JF, Matthews BW. 2000. Thiol-disulfide exchange is involved in the catalytic mechanism of peptide methionine sulfoxide reductase. Proc Natl Acad Sci USA 97: 6463-6468.
Shioji K, Kishimoto C, Nakamura H, Masutani H, Yuan Z, Oka S, Yodoi J. 2002. Overexpression of thioredoxin-1 in transgenic mice attenuates adriamycin-induced cardiotoxicity. Circulation 106: 1403-1409.
Abate C, Patel L, Rauscher FJ III, Curran T. 1990. Redox regulation of fos and jun DNA-binding activity in vitro. Science 249: 1157-1161.
Didier C, Kerblat I, Drouet C, Favier A, Beani JC, Richard MJ. 2001. Induction of thioredoxin by ultraviolet-A radiation prevents oxidative-mediated cell death in human skin fibroblasts. Free Radic Biol Med 31: 585-598.
Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. 1995. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270: 296-299.
Wadham C, Gamble JR, Vadas MA, Khew-Goodall Y. 2000. Translocation of protein tyrosine phosphatase Pez/PTPD2/PTP36 to the nucleus is associated with induction of cell proliferation. J Cell Sci 113 (Pt 17): 3117-3123.
Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG. 1997. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272: 217-221.
Hileman EO, Liu J, Albitar M, Keating MJ, Huang P. 2004. Intrinsic oxidative stress in cancer cells: A biochemical basis for therapeutic selectivity. Cancer Chemother Pharmacol 53: 209-219.
Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J. 1997. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci USA 94: 3633-3638.
Higuchi Y, Otsu K, Nishida K, Hirotani S, Nakayama H, Yamaguchi O, Matsumura Y, Ueno H, Tada M, Hori M. 2002. Involvement of reactive oxygen species-mediated NF-kappa B activation in TNF-alpha-induced cardiomyocyte hypertrophy. J Mol Cell Cardiol 34: 233-240.
Takagi Y, Horikawa F, Nozaki K, Sugino T, Hashimoto N, Yodoi J. 1998. Expression and distribution of redox regulatory protein, thioredoxin during transient focal brain ischemia in the rat. Neurosci Lett 251: 25-28.
Griffis ER, Altan N, Lippincott-Schwartz J, Powers MA. 2002. Nup98 is a mobile nucleoporin with transcription-dependent dynamics. Mol Biol Cell 13: 1282-1297.
Fiaschi T, Chiarugi P, Buricchi F, Giannoni E, Taddei ML, Talini D, Cozzi G, Zecchi-Orlandini S, Raugei G, Ramponi G. 2001. Low molecular weight protein-tyrosine phosphatase is involved in growth inhibition during cell differentiation. J Biol Chem 276: 49156-49163.
Duval C, Cantero AV, Auge N, Mabile L, Thiers JC, Negre-Salvayre A, Salvayre R. 2003. Proliferation and wound healing of vascular cells trigger the generation of extracellular reactive oxygen species and LDL oxidation. Free Radic Biol Med 35: 1589-1598.
Wiesel P, Foster LC, Pellacani A, Layne MD, Hsieh CM, Huggins GS, Strauss P, Yet SF, Perrella MA. 2000. Thioredoxin facilitates the induction of heme oxygenase-1 in response to inflammatory mediators. J Biol Chem 275: 24840-24846.
Lee SR, Kwon KS, Kim SR, Rhee SG. 1998. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 273: 15366-15372.
Lysell J, Stjernholm Vladic Y, Ciarlo N, Holmgren A, Sahlin L. 2003. Immunohistochemical determination of thioredoxin and glutaredoxin distribution in the human cervix, and possible relation to cervical ripening. Gynecol Endocrinol 17: 303-310.
Matthews JR, Wakasugi N, Virelizier JL, Yodoi J, Hay RT. 1992. Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res 20: 3821-3830.
Lee S, Chen DY, Humphrey JS, Gnarra JR, Linehan WM, Klausner RD. 1996. Nuclear/cytoplasmic localization of the von Hippel-Lindau tumor suppressor gene product is determined by cell density. Proc Natl Acad Sci USA 93: 1770-1775.
Janssen YM, Van Houten B, Borm PJ, Mossman BT. 1993. Cell and tissue responses to oxidative damage. Lab Invest 69: 261-274.
Halvey PJ, Watson WH, Hansen JM, Go YM, Samali A, Jones DP. 2005. Compartmental oxidation of thiol-disulphide redox couples during epidermal growth factor signalling. Biochem J 386: 215-219.
Watson WH, Pohl J, Montfort WR, Stuchlik O, Reed MS, Powis G, Jones DP. 2003. Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif. J Biol Chem 278: 33408-33415.
Yen HC, Chang HM, Majima HJ, Chen FY, Li SH. 2005. Levels of reactive oxygen species and primary antioxidant enzymes in WI38 versus transformed WI38 cells following bleomcyin treatment. Free Radic Biol Med 38: 950-959.
Finkel T. 2003. Oxidant signals and oxidative stress. Curr Opin Cell Biol 15: 247-254.
Pani G, Colavitti R, Bedogni B, Anzevino R, Borrello S, Galeotti T. 2002. Determination of intracellular reactive oxygen species as function of cell density. Methods Enzymol 352: 91-100.
Wei SJ, Botero A, Hirota K, Bradbury CM, Markovina S, Laszlo A, Spitz DR, Goswami PC, Yodoi J, Gius D. 2000. Thioredoxin nuclear translocation and interaction with redox factor-1 activates the activator protein-1 transcription factor in response to ionizing radiation. Cancer Res 60: 6688-6695.
Galeotti T, Pani G, Capone C, Bedogni B, Borrello S, Mancuso C, Eboli ML. 2005. Protective role of MnSOD and redox regulation of neuronal cell survival. Biomed Pharmacother 59: 197-203.
Leach C, Eto M, Brautigan DL. 2002. Domains of type 1 protein phosphatase inhibitor-2 required for nuclear and cytoplasmic localization in response to cell-cell contact. J Cell Sci 115: 3739-3745.
Liu X, Zhou B, Xue L, Shih J, Tye K, Qi C, Yen Y. 2005. The ribonucleotide reductase subunit M2B subcellular localization and functional importance for DNA replication in physiological growth of KB cells. Biochem Pharmacol 70: 1288-1297.
Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H. 1998. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17: 2596-2606.
Bello RI, Alcain FJ, Gomez-Diaz C, Lopez-Lluch G, Navas P, Villalba JM. 2003. Hydrogen peroxide- and cell-density-regulated expression of NADH-cytochrome b5 reductase in HeLa cells. J Bioenerg Biomembr 35: 169-179.
Nkabyo YS, Ziegler TR, Gu LH, Watson WH, Jones DP. 2002. Glutathione and thioredoxin redox during differentiation in human colon epithelial (Caco-2) cells. Am J Physiol Gastrointest Liver Physiol 283: G1352-G1359.
Hansen JM, Watson WH, Jones DP. 2004. Compartmentation of Nrf-2 redox control: Regulation of cytoplasmic activation by glutathione and DNA binding by thioredoxin-1.
1993; 69
2002; 352
1997; 272
2002; 13
1991; 51
2003; 15
2002; 115
2003; 17
2003; 278
1998; 273
1998; 17
1997; 94
2005; 386
1999; 19
2004; 36
1997; 57
2004; 78
2000; 97
2002; 348
2002; 106
2000; 60
2005; 70
2005; 38
2000; 29
1990; 249
2004; 82
2000; 113
2006; 13
2002; 34
2003; 35
1996; 93
1978; 17
2005
2000; 352
2000; 275
1995; 19
1995; 270
1998; 251
2001; 276
2005; 280
2004; 53
2004; 279
2005; 120
1997; 77
2002; 283
2002; 21
1999; 274
2000; 80
2005; 59
1992; 20
2003; 543
2001; 30
2001; 31
2003; 22
2003; 23
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
Szatrowski TP (e_1_2_6_50_1) 1991; 51
Wei SJ (e_1_2_6_57_1) 2000; 60
e_1_2_6_19_1
Janssen YM (e_1_2_6_28_1) 1993; 69
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
Arner ES (e_1_2_6_3_1) 2005
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
Tanaka T (e_1_2_6_52_1) 1997; 77
Garrido C (e_1_2_6_17_1) 1997; 57
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Arner ES, Holmgren A. 2005. Measurement of thioredoxin and thioredoxin reductase: "Current protocols in toxicology". New York: John Wiley and Sons. pp 7.4.1-7.4.14.
– reference: Duval C, Cantero AV, Auge N, Mabile L, Thiers JC, Negre-Salvayre A, Salvayre R. 2003. Proliferation and wound healing of vascular cells trigger the generation of extracellular reactive oxygen species and LDL oxidation. Free Radic Biol Med 35: 1589-1598.
– reference: Hansen JM, Watson WH, Jones DP. 2004. Compartmentation of Nrf-2 redox control: Regulation of cytoplasmic activation by glutathione and DNA binding by thioredoxin-1. Toxicol Sci 82: 308-317.
– reference: Leach C, Eto M, Brautigan DL. 2002. Domains of type 1 protein phosphatase inhibitor-2 required for nuclear and cytoplasmic localization in response to cell-cell contact. J Cell Sci 115: 3739-3745.
– reference: Griffis ER, Altan N, Lippincott-Schwartz J, Powers MA. 2002. Nup98 is a mobile nucleoporin with transcription-dependent dynamics. Mol Biol Cell 13: 1282-1297.
– reference: Schafer FQ, Buettner GR. 2001. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30: 1191-1212.
– reference: Didier C, Kerblat I, Drouet C, Favier A, Beani JC, Richard MJ. 2001. Induction of thioredoxin by ultraviolet-A radiation prevents oxidative-mediated cell death in human skin fibroblasts. Free Radic Biol Med 31: 585-598.
– reference: Janssen YM, Van Houten B, Borm PJ, Mossman BT. 1993. Cell and tissue responses to oxidative damage. Lab Invest 69: 261-274.
– reference: Wadham C, Gamble JR, Vadas MA, Khew-Goodall Y. 2000. Translocation of protein tyrosine phosphatase Pez/PTPD2/PTP36 to the nucleus is associated with induction of cell proliferation. J Cell Sci 113 (Pt 17): 3117-3123.
– reference: Pani G, Colavitti R, Bedogni B, Anzevino R, Borrello S, Galeotti T. 2002. Determination of intracellular reactive oxygen species as function of cell density. Methods Enzymol 352: 91-100.
– reference: Yen HC, Chang HM, Majima HJ, Chen FY, Li SH. 2005. Levels of reactive oxygen species and primary antioxidant enzymes in WI38 versus transformed WI38 cells following bleomcyin treatment. Free Radic Biol Med 38: 950-959.
– reference: Karimpour S, Lou J, Lin LL, Rene LM, Lagunas L, Ma X, Karra S, Bradbury CM, Markovina S, Goswami PC, Spitz DR, Hirota K, Kalvakolanu DV, Yodoi J, Gius D. 2002. Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation. Oncogene 21: 6317-6327.
– reference: Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. 1995. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270: 296-299.
– reference: Shioji K, Kishimoto C, Nakamura H, Masutani H, Yuan Z, Oka S, Yodoi J. 2002. Overexpression of thioredoxin-1 in transgenic mice attenuates adriamycin-induced cardiotoxicity. Circulation 106: 1403-1409.
– reference: Wei SJ, Botero A, Hirota K, Bradbury CM, Markovina S, Laszlo A, Spitz DR, Goswami PC, Yodoi J, Gius D. 2000. Thioredoxin nuclear translocation and interaction with redox factor-1 activates the activator protein-1 transcription factor in response to ionizing radiation. Cancer Res 60: 6688-6695.
– reference: Liu X, Zhou B, Xue L, Shih J, Tye K, Qi C, Yen Y. 2005. The ribonucleotide reductase subunit M2B subcellular localization and functional importance for DNA replication in physiological growth of KB cells. Biochem Pharmacol 70: 1288-1297.
– reference: Holmgren A, Luthman M. 1978. Tissue distribution and subcellular localization of bovine thioredoxin determined by radioimmunoassay. Biochemistry 17: 4071-4077.
– reference: Hirota K, Murata M, Sachi Y, Nakamura H, Takeuchi J, Mori K, Yodoi J. 1999. Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB. J Biol Chem 274: 27891-27897.
– reference: Garrido C, Ottavi P, Fromentin A, Hammann A, Arrigo AP, Chauffert B, Mehlen P. 1997. HSP27 as a mediator of confluence-dependent resistance to cell death induced by anticancer drugs. Cancer Res 57: 2661-2667.
– reference: Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J. 1997. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci USA 94: 3633-3638.
– reference: Matthews JR, Wakasugi N, Virelizier JL, Yodoi J, Hay RT. 1992. Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res 20: 3821-3830.
– reference: Watson WH, Pohl J, Montfort WR, Stuchlik O, Reed MS, Powis G, Jones DP. 2003. Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif. J Biol Chem 278: 33408-33415.
– reference: Watson WH, Yang X, Choi YE, Jones DP, Kehrer JP. 2004. Thioredoxin and its role in toxicology. Toxicol Sci 78: 3-14.
– reference: Banmeyer I, Marchand C, Verhaeghe C, Vucic B, Rees JF, Knoops B. 2004. Overexpression of human peroxiredoxin 5 in subcellular compartments of Chinese hamster ovary cells: Effects on cytotoxicity and DNA damage caused by peroxides. Free Radic Biol Med 36: 65-77.
– reference: Hileman EO, Liu J, Albitar M, Keating MJ, Huang P. 2004. Intrinsic oxidative stress in cancer cells: A biochemical basis for therapeutic selectivity. Cancer Chemother Pharmacol 53: 209-219.
– reference: Galeotti T, Pani G, Capone C, Bedogni B, Borrello S, Mancuso C, Eboli ML. 2005. Protective role of MnSOD and redox regulation of neuronal cell survival. Biomed Pharmacother 59: 197-203.
– reference: Watson WH, Jones DP. 2003. Oxidation of nuclear thioredoxin during oxidative stress. FEBS Lett 543: 144-147.
– reference: Tanaka T, Nishiyama Y, Okada K, Hirota K, Matsui M, Yodoi J, Hiai H, Toyokuni S. 1997. Induction and nuclear translocation of thioredoxin by oxidative damage in the mouse kidney: Independence of tubular necrosis and sulfhydryl depletion. Lab Invest 77: 145-155.
– reference: Abate C, Patel L, Rauscher FJ III, Curran T. 1990. Redox regulation of fos and jun DNA-binding activity in vitro. Science 249: 1157-1161.
– reference: Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG. 1997. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272: 217-221.
– reference: Lee SR, Kwon KS, Kim SR, Rhee SG. 1998. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 273: 15366-15372.
– reference: Higuchi Y, Otsu K, Nishida K, Hirotani S, Nakayama H, Yamaguchi O, Matsumura Y, Ueno H, Tada M, Hori M. 2002. Involvement of reactive oxygen species-mediated NF-kappa B activation in TNF-alpha-induced cardiomyocyte hypertrophy. J Mol Cell Cardiol 34: 233-240.
– reference: Wiesel P, Foster LC, Pellacani A, Layne MD, Hsieh CM, Huggins GS, Strauss P, Yet SF, Perrella MA. 2000. Thioredoxin facilitates the induction of heme oxygenase-1 in response to inflammatory mediators. J Biol Chem 275: 24840-24846.
– reference: Roy S, Khanna S, Nallu K, Hunt TK, Sen CK. 2006. Dermal wound healing is subject to redox control. Mol Ther 13: 211-220.
– reference: Fiaschi T, Chiarugi P, Buricchi F, Giannoni E, Taddei ML, Talini D, Cozzi G, Zecchi-Orlandini S, Raugei G, Ramponi G. 2001. Low molecular weight protein-tyrosine phosphatase is involved in growth inhibition during cell differentiation. J Biol Chem 276: 49156-49163.
– reference: England K, Rumsby MG. 2000. Changes in protein kinase C epsilon phosphorylation status and intracellular localization as 3T3 and 3T6 fibroblasts grow to confluency and quiescence: A role for phosphorylation at ser-729? Biochem J 352 (Pt 1): 19-26.
– reference: Jones DP. 2002. Redox potential of GSH/GSSG couple: Assay and biological significance. Methods Enzymol 348: 93-112.
– reference: Nkabyo YS, Ziegler TR, Gu LH, Watson WH, Jones DP. 2002. Glutathione and thioredoxin redox during differentiation in human colon epithelial (Caco-2) cells. Am J Physiol Gastrointest Liver Physiol 283: G1352-G1359.
– reference: Powis G, Mustacich D, Coon A. 2000. The role of the redox protein thioredoxin in cell growth and cancer. Free Radic Biol Med 29: 312-322.
– reference: Finkel T. 2003. Oxidant signals and oxidative stress. Curr Opin Cell Biol 15: 247-254.
– reference: Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. 2005. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120: 649-661.
– reference: Oberley TD, Schultz JL, Li N, Oberley LW. 1995. Antioxidant enzyme levels as a function of growth state in cell culture. Free Radic Biol Med 19: 53-65.
– reference: Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H. 1998. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17: 2596-2606.
– reference: Brown J, Reading SJ, Jones S, Fitchett CJ, Howl J, Martin A, Longland CL, Michelangeli F, Dubrova YE, Brown CA. 2000. Critical evaluation of ECV304 as a human endothelial cell model defined by genetic analysis and functional responses: A comparison with the human bladder cancer derived epithelial cell line T24/83. Lab Invest 80: 37-45.
– reference: Szatrowski TP, Nathan CF. 1991. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51: 794-798.
– reference: Lysell J, Stjernholm Vladic Y, Ciarlo N, Holmgren A, Sahlin L. 2003. Immunohistochemical determination of thioredoxin and glutaredoxin distribution in the human cervix, and possible relation to cervical ripening. Gynecol Endocrinol 17: 303-310.
– reference: Groulx I, Bonicalzi ME, Lee S. 2000. Ran-mediated nuclear export of the von Hippel-Lindau tumor suppressor protein occurs independently of its assembly with cullin-2. J Biol Chem 275: 8991-9000.
– reference: Lowther WT, Brot N, Weissbach H, Honek JF, Matthews BW. 2000. Thiol-disulfide exchange is involved in the catalytic mechanism of peptide methionine sulfoxide reductase. Proc Natl Acad Sci USA 97: 6463-6468.
– reference: Bai J, Nakamura H, Kwon YW, Hattori I, Yamaguchi Y, Kim YC, Kondo N, Oka S, Ueda S, Masutani H, Yodoi J. 2003. Critical roles of thioredoxin in nerve growth factor-mediated signal transduction and neurite outgrowth in PC12 cells. J Neurosci 23: 503-509.
– reference: Bello RI, Gomez-Diaz C, Navarro F, Alcain FJ, Villalba JM. 2001. Expression of NAD(P)H:quinone oxidoreductase 1 in HeLa cells: Role of hydrogen peroxide and growth phase. J Biol Chem 276: 44379-44384.
– reference: Lee S, Chen DY, Humphrey JS, Gnarra JR, Linehan WM, Klausner RD. 1996. Nuclear/cytoplasmic localization of the von Hippel-Lindau tumor suppressor gene product is determined by cell density. Proc Natl Acad Sci USA 93: 1770-1775.
– reference: Lee S, Neumann M, Stearman R, Stauber R, Pause A, Pavlakis GN, Klausner RD. 1999. Transcription-dependent nuclear-cytoplasmic trafficking is required for the function of the von Hippel-Lindau tumor suppressor protein. Mol Cell Biol 19: 1486-1497.
– reference: Fang J, Lu J, Holmgren A. 2005. Thioredoxin reductase is irreversibly modified by curcumin: A novel molecular mechanism for its anticancer activity. J Biol Chem 280: 25284-25290.
– reference: Takagi Y, Horikawa F, Nozaki K, Sugino T, Hashimoto N, Yodoi J. 1998. Expression and distribution of redox regulatory protein, thioredoxin during transient focal brain ischemia in the rat. Neurosci Lett 251: 25-28.
– reference: Kim YC, Yamaguchi Y, Kondo N, Masutani H, Yodoi J. 2003. Thioredoxin-dependent redox regulation of the antioxidant responsive element (ARE) in electrophile response. Oncogene 22: 1860-1865.
– reference: Ikuta T, Kobayashi Y, Kawajiri K. 2004. Cell density regulates intracellular localization of aryl hydrocarbon receptor. J Biol Chem 279: 19209-19216.
– reference: Halvey PJ, Watson WH, Hansen JM, Go YM, Samali A, Jones DP. 2005. Compartmental oxidation of thiol-disulphide redox couples during epidermal growth factor signalling. Biochem J 386: 215-219.
– reference: Bello RI, Alcain FJ, Gomez-Diaz C, Lopez-Lluch G, Navas P, Villalba JM. 2003. Hydrogen peroxide- and cell-density-regulated expression of NADH-cytochrome b5 reductase in HeLa cells. J Bioenerg Biomembr 35: 169-179.
– volume: 35
  start-page: 169
  year: 2003
  end-page: 179
  article-title: Hydrogen peroxide‐ and cell‐density‐regulated expression of NADH‐cytochrome b5 reductase in HeLa cells
  publication-title: J Bioenerg Biomembr
– volume: 386
  start-page: 215
  year: 2005
  end-page: 219
  article-title: Compartmental oxidation of thiol‐disulphide redox couples during epidermal growth factor signalling
  publication-title: Biochem J
– volume: 93
  start-page: 1770
  year: 1996
  end-page: 1775
  article-title: Nuclear/cytoplasmic localization of the von Hippel‐Lindau tumor suppressor gene product is determined by cell density
  publication-title: Proc Natl Acad Sci USA
– volume: 276
  start-page: 44379
  year: 2001
  end-page: 44384
  article-title: Expression of NAD(P)H:quinone oxidoreductase 1 in HeLa cells: Role of hydrogen peroxide and growth phase
  publication-title: J Biol Chem
– volume: 51
  start-page: 794
  year: 1991
  end-page: 798
  article-title: Production of large amounts of hydrogen peroxide by human tumor cells
  publication-title: Cancer Res
– volume: 53
  start-page: 209
  year: 2004
  end-page: 219
  article-title: Intrinsic oxidative stress in cancer cells: A biochemical basis for therapeutic selectivity
  publication-title: Cancer Chemother Pharmacol
– volume: 352
  start-page: 19
  issue: Pt 1
  year: 2000
  end-page: 26
  article-title: Changes in protein kinase C epsilon phosphorylation status and intracellular localization as 3T3 and 3T6 fibroblasts grow to confluency and quiescence: A role for phosphorylation at ser‐729?
  publication-title: Biochem J
– volume: 13
  start-page: 211
  year: 2006
  end-page: 220
  article-title: Dermal wound healing is subject to redox control
  publication-title: Mol Ther
– volume: 38
  start-page: 950
  year: 2005
  end-page: 959
  article-title: Levels of reactive oxygen species and primary antioxidant enzymes in WI38 versus transformed WI38 cells following bleomcyin treatment
  publication-title: Free Radic Biol Med
– volume: 15
  start-page: 247
  year: 2003
  end-page: 254
  article-title: Oxidant signals and oxidative stress
  publication-title: Curr Opin Cell Biol
– volume: 279
  start-page: 19209
  year: 2004
  end-page: 19216
  article-title: Cell density regulates intracellular localization of aryl hydrocarbon receptor
  publication-title: J Biol Chem
– volume: 543
  start-page: 144
  year: 2003
  end-page: 147
  article-title: Oxidation of nuclear thioredoxin during oxidative stress
  publication-title: FEBS Lett
– volume: 17
  start-page: 4071
  year: 1978
  end-page: 4077
  article-title: Tissue distribution and subcellular localization of bovine thioredoxin determined by radioimmunoassay
  publication-title: Biochemistry
– volume: 36
  start-page: 65
  year: 2004
  end-page: 77
  article-title: Overexpression of human peroxiredoxin 5 in subcellular compartments of Chinese hamster ovary cells: Effects on cytotoxicity and DNA damage caused by peroxides
  publication-title: Free Radic Biol Med
– volume: 82
  start-page: 308
  year: 2004
  end-page: 317
  article-title: Compartmentation of Nrf‐2 redox control: Regulation of cytoplasmic activation by glutathione and DNA binding by thioredoxin‐1
  publication-title: Toxicol Sci
– volume: 20
  start-page: 3821
  year: 1992
  end-page: 3830
  article-title: Thioredoxin regulates the DNA binding activity of NF‐kappa B by reduction of a disulphide bond involving cysteine 62
  publication-title: Nucleic Acids Res
– volume: 115
  start-page: 3739
  year: 2002
  end-page: 3745
  article-title: Domains of type 1 protein phosphatase inhibitor‐2 required for nuclear and cytoplasmic localization in response to cell‐cell contact
  publication-title: J Cell Sci
– volume: 272
  start-page: 217
  year: 1997
  end-page: 221
  article-title: Epidermal growth factor (EGF)‐induced generation of hydrogen peroxide. Role in EGF receptor‐mediated tyrosine phosphorylation
  publication-title: J Biol Chem
– volume: 78
  start-page: 3
  year: 2004
  end-page: 14
  article-title: Thioredoxin and its role in toxicology
  publication-title: Toxicol Sci
– volume: 19
  start-page: 53
  year: 1995
  end-page: 65
  article-title: Antioxidant enzyme levels as a function of growth state in cell culture
  publication-title: Free Radic Biol Med
– volume: 59
  start-page: 197
  year: 2005
  end-page: 203
  article-title: Protective role of MnSOD and redox regulation of neuronal cell survival
  publication-title: Biomed Pharmacother
– start-page: 7.4.1
  year: 2005
  end-page: 7.4.14
– volume: 97
  start-page: 6463
  year: 2000
  end-page: 6468
  article-title: Thiol‐disulfide exchange is involved in the catalytic mechanism of peptide methionine sulfoxide reductase
  publication-title: Proc Natl Acad Sci USA
– volume: 30
  start-page: 1191
  year: 2001
  end-page: 1212
  article-title: Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple
  publication-title: Free Radic Biol Med
– volume: 352
  start-page: 91
  year: 2002
  end-page: 100
  article-title: Determination of intracellular reactive oxygen species as function of cell density
  publication-title: Methods Enzymol
– volume: 22
  start-page: 1860
  year: 2003
  end-page: 1865
  article-title: Thioredoxin‐dependent redox regulation of the antioxidant responsive element (ARE) in electrophile response
  publication-title: Oncogene
– volume: 35
  start-page: 1589
  year: 2003
  end-page: 1598
  article-title: Proliferation and wound healing of vascular cells trigger the generation of extracellular reactive oxygen species and LDL oxidation
  publication-title: Free Radic Biol Med
– volume: 70
  start-page: 1288
  year: 2005
  end-page: 1297
  article-title: The ribonucleotide reductase subunit M2B subcellular localization and functional importance for DNA replication in physiological growth of KB cells
  publication-title: Biochem Pharmacol
– volume: 77
  start-page: 145
  year: 1997
  end-page: 155
  article-title: Induction and nuclear translocation of thioredoxin by oxidative damage in the mouse kidney: Independence of tubular necrosis and sulfhydryl depletion
  publication-title: Lab Invest
– volume: 274
  start-page: 27891
  year: 1999
  end-page: 27897
  article-title: Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two‐step mechanism of redox regulation of transcription factor NF‐kappaB
  publication-title: J Biol Chem
– volume: 249
  start-page: 1157
  year: 1990
  end-page: 1161
  article-title: Redox regulation of fos and jun DNA‐binding activity in vitro
  publication-title: Science
– volume: 57
  start-page: 2661
  year: 1997
  end-page: 2667
  article-title: HSP27 as a mediator of confluence‐dependent resistance to cell death induced by anticancer drugs
  publication-title: Cancer Res
– volume: 120
  start-page: 649
  year: 2005
  end-page: 661
  article-title: Reactive oxygen species promote TNFalpha‐induced death and sustained JNK activation by inhibiting MAP kinase phosphatases
  publication-title: Cell
– volume: 270
  start-page: 296
  year: 1995
  end-page: 299
  article-title: Requirement for generation of H2O2 for platelet‐derived growth factor signal transduction
  publication-title: Science
– volume: 348
  start-page: 93
  year: 2002
  end-page: 112
  article-title: Redox potential of GSH/GSSG couple: Assay and biological significance
  publication-title: Methods Enzymol
– volume: 19
  start-page: 1486
  year: 1999
  end-page: 1497
  article-title: Transcription‐dependent nuclear‐cytoplasmic trafficking is required for the function of the von Hippel‐Lindau tumor suppressor protein
  publication-title: Mol Cell Biol
– volume: 29
  start-page: 312
  year: 2000
  end-page: 322
  article-title: The role of the redox protein thioredoxin in cell growth and cancer
  publication-title: Free Radic Biol Med
– volume: 17
  start-page: 2596
  year: 1998
  end-page: 2606
  article-title: Mammalian thioredoxin is a direct inhibitor of apoptosis signal‐regulating kinase (ASK) 1
  publication-title: EMBO J
– volume: 251
  start-page: 25
  year: 1998
  end-page: 28
  article-title: Expression and distribution of redox regulatory protein, thioredoxin during transient focal brain ischemia in the rat
  publication-title: Neurosci Lett
– volume: 34
  start-page: 233
  year: 2002
  end-page: 240
  article-title: Involvement of reactive oxygen species‐mediated NF‐kappa B activation in TNF‐alpha‐induced cardiomyocyte hypertrophy
  publication-title: J Mol Cell Cardiol
– volume: 113
  start-page: 3117
  issue: Pt 17
  year: 2000
  end-page: 3123
  article-title: Translocation of protein tyrosine phosphatase Pez/PTPD2/PTP36 to the nucleus is associated with induction of cell proliferation
  publication-title: J Cell Sci
– volume: 80
  start-page: 37
  year: 2000
  end-page: 45
  article-title: Critical evaluation of ECV304 as a human endothelial cell model defined by genetic analysis and functional responses: A comparison with the human bladder cancer derived epithelial cell line T24/83
  publication-title: Lab Invest
– volume: 94
  start-page: 3633
  year: 1997
  end-page: 3638
  article-title: AP‐1 transcriptional activity is regulated by a direct association between thioredoxin and Ref‐1
  publication-title: Proc Natl Acad Sci USA
– volume: 17
  start-page: 303
  year: 2003
  end-page: 310
  article-title: Immunohistochemical determination of thioredoxin and glutaredoxin distribution in the human cervix, and possible relation to cervical ripening
  publication-title: Gynecol Endocrinol
– volume: 283
  start-page: G1352
  year: 2002
  end-page: G1359
  article-title: Glutathione and thioredoxin redox during differentiation in human colon epithelial (Caco‐2) cells
  publication-title: Am J Physiol Gastrointest Liver Physiol
– volume: 21
  start-page: 6317
  year: 2002
  end-page: 6327
  article-title: Thioredoxin reductase regulates AP‐1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation
  publication-title: Oncogene
– volume: 23
  start-page: 503
  year: 2003
  end-page: 509
  article-title: Critical roles of thioredoxin in nerve growth factor‐mediated signal transduction and neurite outgrowth in PC12 cells
  publication-title: J Neurosci
– volume: 278
  start-page: 33408
  year: 2003
  end-page: 33415
  article-title: Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif
  publication-title: J Biol Chem
– volume: 106
  start-page: 1403
  year: 2002
  end-page: 1409
  article-title: Overexpression of thioredoxin‐1 in transgenic mice attenuates adriamycin‐induced cardiotoxicity
  publication-title: Circulation
– volume: 276
  start-page: 49156
  year: 2001
  end-page: 49163
  article-title: Low molecular weight protein‐tyrosine phosphatase is involved in growth inhibition during cell differentiation
  publication-title: J Biol Chem
– volume: 273
  start-page: 15366
  year: 1998
  end-page: 15372
  article-title: Reversible inactivation of protein‐tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor
  publication-title: J Biol Chem
– volume: 69
  start-page: 261
  year: 1993
  end-page: 274
  article-title: Cell and tissue responses to oxidative damage
  publication-title: Lab Invest
– volume: 275
  start-page: 24840
  year: 2000
  end-page: 24846
  article-title: Thioredoxin facilitates the induction of heme oxygenase‐1 in response to inflammatory mediators
  publication-title: J Biol Chem
– volume: 280
  start-page: 25284
  year: 2005
  end-page: 25290
  article-title: Thioredoxin reductase is irreversibly modified by curcumin: A novel molecular mechanism for its anticancer activity
  publication-title: J Biol Chem
– volume: 31
  start-page: 585
  year: 2001
  end-page: 598
  article-title: Induction of thioredoxin by ultraviolet‐A radiation prevents oxidative‐mediated cell death in human skin fibroblasts
  publication-title: Free Radic Biol Med
– volume: 13
  start-page: 1282
  year: 2002
  end-page: 1297
  article-title: Nup98 is a mobile nucleoporin with transcription‐dependent dynamics
  publication-title: Mol Biol Cell
– volume: 275
  start-page: 8991
  year: 2000
  end-page: 9000
  article-title: Ran‐mediated nuclear export of the von Hippel‐Lindau tumor suppressor protein occurs independently of its assembly with cullin‐2
  publication-title: J Biol Chem
– volume: 60
  start-page: 6688
  year: 2000
  end-page: 6695
  article-title: Thioredoxin nuclear translocation and interaction with redox factor‐1 activates the activator protein‐1 transcription factor in response to ionizing radiation
  publication-title: Cancer Res
– ident: e_1_2_6_11_1
  doi: 10.1016/j.freeradbiomed.2003.09.008
– ident: e_1_2_6_2_1
  doi: 10.1126/science.2118682
– ident: e_1_2_6_38_1
  doi: 10.1073/pnas.97.12.6463
– ident: e_1_2_6_18_1
  doi: 10.1091/mbc.01-11-0538
– ident: e_1_2_6_6_1
  doi: 10.1016/j.freeradbiomed.2003.10.019
– ident: e_1_2_6_22_1
  doi: 10.1006/jmcc.2001.1505
– ident: e_1_2_6_30_1
  doi: 10.1016/j.cell.2004.12.041
– start-page: 7.4.1
  volume-title: Measurement of thioredoxin and thioredoxin reductase: “Current protocols in toxicology”
  year: 2005
  ident: e_1_2_6_3_1
– ident: e_1_2_6_16_1
  doi: 10.1016/j.biopha.2005.03.002
– ident: e_1_2_6_8_1
  doi: 10.1023/A:1023702321148
– ident: e_1_2_6_58_1
  doi: 10.1074/jbc.M000835200
– ident: e_1_2_6_9_1
  doi: 10.1038/labinvest.3780006
– ident: e_1_2_6_19_1
  doi: 10.1074/jbc.275.12.8991
– ident: e_1_2_6_21_1
  doi: 10.1093/toxsci/kfh231
– volume: 57
  start-page: 2661
  year: 1997
  ident: e_1_2_6_17_1
  article-title: HSP27 as a mediator of confluence‐dependent resistance to cell death induced by anticancer drugs
  publication-title: Cancer Res
– ident: e_1_2_6_23_1
  doi: 10.1007/s00280-003-0726-5
– ident: e_1_2_6_54_1
  doi: 10.1016/S0014-5793(03)00430-7
– ident: e_1_2_6_36_1
  doi: 10.1128/MCB.19.2.1486
– ident: e_1_2_6_14_1
  doi: 10.1074/jbc.M107538200
– ident: e_1_2_6_43_1
  doi: 10.1016/S0076-6879(02)52010-3
– ident: e_1_2_6_26_1
  doi: 10.1021/bi00612a031
– ident: e_1_2_6_12_1
  doi: 10.1042/0264-6021:3520019
– ident: e_1_2_6_34_1
  doi: 10.1073/pnas.93.5.1770
– ident: e_1_2_6_37_1
  doi: 10.1016/j.bcp.2005.08.005
– ident: e_1_2_6_15_1
  doi: 10.1016/S0955-0674(03)00002-4
– ident: e_1_2_6_33_1
  doi: 10.1242/jcs.00052
– volume: 69
  start-page: 261
  year: 1993
  ident: e_1_2_6_28_1
  article-title: Cell and tissue responses to oxidative damage
  publication-title: Lab Invest
– ident: e_1_2_6_51_1
  doi: 10.1016/S0304-3940(98)00492-3
– ident: e_1_2_6_41_1
  doi: 10.1152/ajpgi.00183.2002
– ident: e_1_2_6_56_1
  doi: 10.1093/toxsci/kfh050
– ident: e_1_2_6_42_1
  doi: 10.1016/0891-5849(95)00012-M
– ident: e_1_2_6_39_1
  doi: 10.1080/713603294
– ident: e_1_2_6_24_1
  doi: 10.1073/pnas.94.8.3633
– ident: e_1_2_6_7_1
  doi: 10.1074/jbc.M107168200
– ident: e_1_2_6_48_1
  doi: 10.1161/01.CIR.0000027817.55925.B4
– ident: e_1_2_6_55_1
  doi: 10.1074/jbc.M211107200
– ident: e_1_2_6_20_1
  doi: 10.1042/BJ20041829
– ident: e_1_2_6_49_1
  doi: 10.1126/science.270.5234.296
– ident: e_1_2_6_13_1
  doi: 10.1074/jbc.M414645200
– ident: e_1_2_6_10_1
  doi: 10.1016/S0891-5849(01)00617-7
– ident: e_1_2_6_35_1
  doi: 10.1074/jbc.273.25.15366
– ident: e_1_2_6_31_1
  doi: 10.1038/sj.onc.1205749
– ident: e_1_2_6_32_1
  doi: 10.1038/sj.onc.1206369
– ident: e_1_2_6_46_1
  doi: 10.1093/emboj/17.9.2596
– ident: e_1_2_6_44_1
  doi: 10.1016/S0891-5849(00)00313-0
– ident: e_1_2_6_47_1
  doi: 10.1016/S0891-5849(01)00480-4
– volume: 60
  start-page: 6688
  year: 2000
  ident: e_1_2_6_57_1
  article-title: Thioredoxin nuclear translocation and interaction with redox factor‐1 activates the activator protein‐1 transcription factor in response to ionizing radiation
  publication-title: Cancer Res
– ident: e_1_2_6_59_1
  doi: 10.1016/j.freeradbiomed.2004.12.022
– ident: e_1_2_6_40_1
  doi: 10.1093/nar/20.15.3821
– ident: e_1_2_6_45_1
  doi: 10.1016/j.ymthe.2005.07.684
– volume: 51
  start-page: 794
  year: 1991
  ident: e_1_2_6_50_1
  article-title: Production of large amounts of hydrogen peroxide by human tumor cells
  publication-title: Cancer Res
– ident: e_1_2_6_29_1
  doi: 10.1016/S0076-6879(02)48630-2
– ident: e_1_2_6_4_1
  doi: 10.1074/jbc.272.1.217
– ident: e_1_2_6_53_1
  doi: 10.1242/jcs.113.17.3117
– ident: e_1_2_6_27_1
  doi: 10.1074/jbc.M310492200
– volume: 77
  start-page: 145
  year: 1997
  ident: e_1_2_6_52_1
  article-title: Induction and nuclear translocation of thioredoxin by oxidative damage in the mouse kidney: Independence of tubular necrosis and sulfhydryl depletion
  publication-title: Lab Invest
– ident: e_1_2_6_5_1
  doi: 10.1523/JNEUROSCI.23-02-00503.2003
– ident: e_1_2_6_25_1
  doi: 10.1074/jbc.274.39.27891
SSID ssj0009932
Score 1.9617523
Snippet Reactive oxygen species (ROS) were once viewed only as mediators of toxicity, but it is now recognized that they also contribute to redox signaling through...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1879
SubjectTerms Animals
Cell Count
cell culture
Cell Nucleus - metabolism
Cells, Cultured
glutathione
Glutathione Disulfide - metabolism
Humans
Oxidation-Reduction
oxidative stress
Protein Transport
Reactive Oxygen Species - metabolism
redox
Subcellular Fractions - metabolism
thiol
thioredoxin
Thioredoxins - metabolism
Title Oxidation and nuclear localization of thioredoxin-1 in sparse cell cultures
URI https://api.istex.fr/ark:/67375/WNG-2HRPCCMG-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcb.21762
https://www.ncbi.nlm.nih.gov/pubmed/18384140
https://www.proquest.com/docview/69356031
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQguPAqUpTwshBCXbB3Hm2TFCSLaVaUtqGpFD0jW-BGxFGXRPqSlJ34Cv7G_pGN7s6uiIiFuOUwUZ2bs70s8_gbgldNEUwn5klzYLJGixqQU_V6SW8ILaTi6cMJ7eJgPTuTBae90A962Z2GiPsTqh5ufGWG99hMc9XR3LRr6zegu8emw_vpaLU-IjtbSUYS7YQeBMjghDiNaVSEudld3XsGiG96ti-uI5lXeGoBn7y58aYcc603OuvOZ7przP9Qc__Od7sGdJSFl72IG3YcN12zBzdii8ucW3KrajnAPYPhxMYotmBg2ljVeChknLMDh8jgnG9ds9nU09jKki1Fz8et3ykYNo2VrMnXM7xKwqPXhpg_hZO_DcTVIlu0YEiNFIRJCdstLm4q6lLqWKHVeFmWeozDEGnjtcq5RpHVR2MKgM32UnCDYaEx1n1uRPYLNZty4x8Bqy01GVEiTjURnMc0kcu0yIgsuTbEDb9rAKLPUKvctM76rqLIsFHlKBU914OXK9EcU6LjO6HWI7soCJ2e-oq3oqc-H-0oMjj5V1XBfHXfgRRt-Rc71bsHGjedTlfeznu_I3YHtmBXrp5VZKek7lQYdYvv3YaiD6n24ePLvpjtwO5ao-JrDp7A5m8zdM-JBM_08JPwllB8CsQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5VrapyAVpeAdpaCCEum3q9zu5G4lJWbUNpAqpS0Quy_Fo1LdqgPKTAiZ_Ab-wvYWxnE7UqEuK2h1mtdzz299kefwPw2iqkqYh8UcpMEnFWyihn7VaUGsQLrqm0_oZ3t5d2zvjxeet8Bd7Vd2GCPsRiw82NDD9fuwHuNqT3lqqhl1o1kVC7CXjNVfT2C6rTpXgUIq8_Q8AYjpDFsFpXiLK9xas30GjNOXZ2F9W8yVw99Bw-gK91o0PGyVVzOlFN_fOWnuP__tVDuD_npGQ_BNEmrNhqC9ZDlcofW7BR1EXhHkH302wQqjARWRlSOTVkOSIeEec3OsmwJJOLwdApkc4G1fWv3zEZVARnrtHYEndQQILchx0_hrPDg37RieYVGSLNWcYiBHdDcxOzMueq5JKrNM_yNJVMI3GgpU2pkiwus8xkWlrdlpwiCmslY9WmhiVPYLUaVvYZkNJQnSAbUmjDpTUyTrikyibIF2wcywa8rXtG6Llcuaua8U0EoWUm0FPCe6oBrxam34NGx11Gb3z3Lizk6MoltWUt8aV3JFjn9HNRdI9EvwG7df8LdK5zi6zscDoWaTtpuaLcDXgawmL5tTzJOS5VsdG-c__eDHFcvPcPz__ddBc2Ov3uiTj50Pv4Au6FjBWXgvgSViejqd1GWjRROz76_wCx1wbM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VrXhcKJRHQ4GuEEJcnK7XG9sRJ3BJQyGhqlq1B6TVvqyGIqfKQ0p74ifwG_klzO7GiYqKhLj5MJbXM7P7ffbOfgPwyiqkqYh8UcpMEnFWyihn7VaUGsQLrqm0_oR3r592j_n-aet0Bd7WZ2GCPsTih5ubGX69dhP8wpQ7S9HQb1o1kU-79XeNpzR3Kb17uNSOQuD1WwiYwhGSGFbLClG2s7j1GhitOb_ObmKa14mrR57OOnytxxwKTs6b04lq6qs_5Bz_86Xuw705IyXvQgo9gBVbbcCt0KPycgPuFHVLuIfQ-zIbhB5MRFaGVE4LWY6Ix8P5eU4yLMnkbDB0OqSzQfXrx8-YDCqC69ZobInbJiBB7MOOH8Fx58NR0Y3m_RgizVnGIoR2Q3MTszLnquSSqzTP8jSVTCNtoKVNqZIsLrPMZFpa3ZacIgZrJWPVpoYlj2G1GlZ2E0hpqE6QCym04dIaGSdcUmUTZAs2jmUD3tSBEXouVu56ZnwXQWaZCfSU8J5qwMuF6UVQ6LjJ6LWP7sJCjs5dSVvWEif9PcG6hwdF0dsTRw3YrsMv0LnOLbKyw-lYpO2k5VpyN-BJyIrl0_Ik5_ihioP2sf37MMR-8d5fPP130224fbDbEZ8_9j9twd1QruLqD5_B6mQ0tc-RE03UC5_7vwG49QWE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxidation+and+nuclear+localization+of+thioredoxin%E2%80%901+in+sparse+cell+cultures&rft.jtitle=Journal+of+cellular+biochemistry&rft.au=Spielberger%2C+Jeanine+C.&rft.au=Moody%2C+Amie+D.&rft.au=Watson%2C+Walter+H.&rft.date=2008-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0730-2312&rft.eissn=1097-4644&rft.volume=104&rft.issue=5&rft.spage=1879&rft.epage=1889&rft_id=info:doi/10.1002%2Fjcb.21762&rft.externalDBID=10.1002%252Fjcb.21762&rft.externalDocID=JCB21762
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-2312&client=summon