Effects of Deuterium Isotopes on Pt(II) Complexes and Their Impact on Organic NIR Emitters

Insight into effect of deuterium isotopes on organic near‐IR (NIR) emitters was explored by the use of self‐assembled Pt(II) complexes H‐3‐f and HPh‐3‐f, and their deuterated analogues D‐3‐f and DPh‐3‐f, respectively (Scheme 2). In vacuum deposited thin film, albeit having nearly identical emission...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 10; pp. e202317571 - n/a
Main Authors Wang, Sheng‐Fu, Zhou, Dong‐Ying, Kuo, Kai‐Hua, Wang, Chih‐Hsing, Hung, Chieh‐Ming, Yan, Jie, Liao, Liang‐Sheng, Hung, Wen‐Yi, Chi, Yun, Chou, Pi‐Tai
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 04.03.2024
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Insight into effect of deuterium isotopes on organic near‐IR (NIR) emitters was explored by the use of self‐assembled Pt(II) complexes H‐3‐f and HPh‐3‐f, and their deuterated analogues D‐3‐f and DPh‐3‐f, respectively (Scheme 2). In vacuum deposited thin film, albeit having nearly identical emission spectral feature maximized at ~810 nm, H‐3‐f and D‐3‐f exhibit remarkable difference in photoluminescence quantum yield (PLQY) of 29 % and 50 %, respectively. Distinction in PLQY is also observed for HPh‐3‐f (800 nm, 50 %) and DPh‐3‐f (798 nm, 67 %). We then elucidated the theoretical differences in the impact on near‐infrared (NIR) luminescence between Pt(II) complexes and organic small molecules upon deuteration. The results establish a general guideline for the deuteration on NIR emission efficiency. From a perspective of practical application, NIR OLEDs based on D‐3‐f and DPh‐3‐f emitters attain EQEmax of 15.5 % (radiance 31,287 mW Sr−1 m−2) and 16.6 % (radiance of 32,279 mW Sr−1 m−2) at 764 nm and 796 nm, respectively, both of which set new records for NIR OLEDs of >750 nm. We have developed general guidelines for the effect of deuterium isotopes on the NIR emission efficiency of Pt(II) complexes and common organic NIR emitters. Also, in this study the NIR OLED based on deuterated Pt(II) complex DPh‐3‐f emitter attains 796 nm electroluminescence with EQEmax of 16.6 % and radiance of 32,279 mW Sr−1 m−2, which sets new records for NIR OLEDs of >750 nm.
AbstractList Insight into effect of deuterium isotopes on organic near-IR (NIR) emitters was explored by the use of self-assembled Pt(II) complexes H-3-f and HPh-3-f, and their deuterated analogues D-3-f and DPh-3-f, respectively (Scheme 2). In vacuum deposited thin film, albeit having nearly identical emission spectral feature maximized at ~810 nm, H-3-f and D-3-f exhibit remarkable difference in photoluminescence quantum yield (PLQY) of 29% and 50%, respectively. Distinction in PLQY is also observed for HPh-3-f (800 nm, 50%) and DPh-3-f (798 nm, 67%). We then elucidated the theoretical differences in the impact on near-infrared (NIR) luminescence between Pt(II) complexes and organic small molecules upon deuteration. The results establish a general guideline for the deuteration on NIR emission efficiency. From a perspective of practical application, NIR OLEDs based on D-3-f and DPh-3-f emitters attain EQEmax of 15.5% (radiance 31,287 mW Sr-1 m-2) and 16.6% (radiance of 32,279 mW Sr-1 m-2) at 764 nm and 796 nm, respectively, both of which set new records for NIR OLEDs of > 750 nm.
Insight into effect of deuterium isotopes on organic near-IR (NIR) emitters was explored by the use of self-assembled Pt(II) complexes H-3-f and HPh-3-f, and their deuterated analogues D-3-f and DPh-3-f, respectively (Scheme 2). In vacuum deposited thin film, albeit having nearly identical emission spectral feature maximized at ~810 nm, H-3-f and D-3-f exhibit remarkable difference in photoluminescence quantum yield (PLQY) of 29 % and 50 %, respectively. Distinction in PLQY is also observed for HPh-3-f (800 nm, 50 %) and DPh-3-f (798 nm, 67 %). We then elucidated the theoretical differences in the impact on near-infrared (NIR) luminescence between Pt(II) complexes and organic small molecules upon deuteration. The results establish a general guideline for the deuteration on NIR emission efficiency. From a perspective of practical application, NIR OLEDs based on D-3-f and DPh-3-f emitters attain EQEmax of 15.5 % (radiance 31,287 mW Sr-1  m-2 ) and 16.6 % (radiance of 32,279 mW Sr-1  m-2 ) at 764 nm and 796 nm, respectively, both of which set new records for NIR OLEDs of >750 nm.Insight into effect of deuterium isotopes on organic near-IR (NIR) emitters was explored by the use of self-assembled Pt(II) complexes H-3-f and HPh-3-f, and their deuterated analogues D-3-f and DPh-3-f, respectively (Scheme 2). In vacuum deposited thin film, albeit having nearly identical emission spectral feature maximized at ~810 nm, H-3-f and D-3-f exhibit remarkable difference in photoluminescence quantum yield (PLQY) of 29 % and 50 %, respectively. Distinction in PLQY is also observed for HPh-3-f (800 nm, 50 %) and DPh-3-f (798 nm, 67 %). We then elucidated the theoretical differences in the impact on near-infrared (NIR) luminescence between Pt(II) complexes and organic small molecules upon deuteration. The results establish a general guideline for the deuteration on NIR emission efficiency. From a perspective of practical application, NIR OLEDs based on D-3-f and DPh-3-f emitters attain EQEmax of 15.5 % (radiance 31,287 mW Sr-1  m-2 ) and 16.6 % (radiance of 32,279 mW Sr-1  m-2 ) at 764 nm and 796 nm, respectively, both of which set new records for NIR OLEDs of >750 nm.
Insight into effect of deuterium isotopes on organic near-IR (NIR) emitters was explored by the use of self-assembled Pt(II) complexes H-3-f and HPh-3-f, and their deuterated analogues D-3-f and DPh-3-f, respectively (Scheme 2). In vacuum deposited thin film, albeit having nearly identical emission spectral feature maximized at similar to 810 nm, H-3-f and D-3-f exhibit remarkable difference in photoluminescence quantum yield (PLQY) of 29 % and 50 %, respectively. Distinction in PLQY is also observed for HPh-3-f (800 nm, 50 %) and DPh-3-f (798 nm, 67 %). We then elucidated the theoretical differences in the impact on near-infrared (NIR) luminescence between Pt(II) complexes and organic small molecules upon deuteration. The results establish a general guideline for the deuteration on NIR emission efficiency. From a perspective of practical application, NIR OLEDs based on D-3-f and DPh-3-f emitters attain EQE(max) of 15.5 % (radiance 31,287 mW Sr-1 m(-2)) and 16.6 % (radiance of 32,279 mW Sr-1 m(-2)) at 764 nm and 796 nm, respectively, both of which set new records for NIR OLEDs of >750 nm.
Insight into effect of deuterium isotopes on organic near‐IR (NIR) emitters was explored by the use of self‐assembled Pt(II) complexes H‐3‐f and HPh‐3‐f, and their deuterated analogues D‐3‐f and DPh‐3‐f, respectively (Scheme 2). In vacuum deposited thin film, albeit having nearly identical emission spectral feature maximized at ~810 nm, H‐3‐f and D‐3‐f exhibit remarkable difference in photoluminescence quantum yield (PLQY) of 29 % and 50 %, respectively. Distinction in PLQY is also observed for HPh‐3‐f (800 nm, 50 %) and DPh‐3‐f (798 nm, 67 %). We then elucidated the theoretical differences in the impact on near‐infrared (NIR) luminescence between Pt(II) complexes and organic small molecules upon deuteration. The results establish a general guideline for the deuteration on NIR emission efficiency. From a perspective of practical application, NIR OLEDs based on D‐3‐f and DPh‐3‐f emitters attain EQE max of 15.5 % (radiance 31,287 mW Sr −1 m −2 ) and 16.6 % (radiance of 32,279 mW Sr −1 m −2 ) at 764 nm and 796 nm, respectively, both of which set new records for NIR OLEDs of >750 nm.
Insight into effect of deuterium isotopes on organic near‐IR (NIR) emitters was explored by the use of self‐assembled Pt(II) complexes H‐3‐f and HPh‐3‐f, and their deuterated analogues D‐3‐f and DPh‐3‐f, respectively (Scheme 2). In vacuum deposited thin film, albeit having nearly identical emission spectral feature maximized at ~810 nm, H‐3‐f and D‐3‐f exhibit remarkable difference in photoluminescence quantum yield (PLQY) of 29 % and 50 %, respectively. Distinction in PLQY is also observed for HPh‐3‐f (800 nm, 50 %) and DPh‐3‐f (798 nm, 67 %). We then elucidated the theoretical differences in the impact on near‐infrared (NIR) luminescence between Pt(II) complexes and organic small molecules upon deuteration. The results establish a general guideline for the deuteration on NIR emission efficiency. From a perspective of practical application, NIR OLEDs based on D‐3‐f and DPh‐3‐f emitters attain EQEmax of 15.5 % (radiance 31,287 mW Sr−1 m−2) and 16.6 % (radiance of 32,279 mW Sr−1 m−2) at 764 nm and 796 nm, respectively, both of which set new records for NIR OLEDs of >750 nm.
Insight into effect of deuterium isotopes on organic near‐IR (NIR) emitters was explored by the use of self‐assembled Pt(II) complexes H‐3‐f and HPh‐3‐f, and their deuterated analogues D‐3‐f and DPh‐3‐f, respectively (Scheme 2). In vacuum deposited thin film, albeit having nearly identical emission spectral feature maximized at ~810 nm, H‐3‐f and D‐3‐f exhibit remarkable difference in photoluminescence quantum yield (PLQY) of 29 % and 50 %, respectively. Distinction in PLQY is also observed for HPh‐3‐f (800 nm, 50 %) and DPh‐3‐f (798 nm, 67 %). We then elucidated the theoretical differences in the impact on near‐infrared (NIR) luminescence between Pt(II) complexes and organic small molecules upon deuteration. The results establish a general guideline for the deuteration on NIR emission efficiency. From a perspective of practical application, NIR OLEDs based on D‐3‐f and DPh‐3‐f emitters attain EQEmax of 15.5 % (radiance 31,287 mW Sr−1 m−2) and 16.6 % (radiance of 32,279 mW Sr−1 m−2) at 764 nm and 796 nm, respectively, both of which set new records for NIR OLEDs of >750 nm. We have developed general guidelines for the effect of deuterium isotopes on the NIR emission efficiency of Pt(II) complexes and common organic NIR emitters. Also, in this study the NIR OLED based on deuterated Pt(II) complex DPh‐3‐f emitter attains 796 nm electroluminescence with EQEmax of 16.6 % and radiance of 32,279 mW Sr−1 m−2, which sets new records for NIR OLEDs of >750 nm.
ArticleNumber 202317571
Author Chou, Pi‐Tai
Liao, Liang‐Sheng
Chi, Yun
Hung, Wen‐Yi
Kuo, Kai‐Hua
Yan, Jie
Zhou, Dong‐Ying
Wang, Chih‐Hsing
Hung, Chieh‐Ming
Wang, Sheng‐Fu
Author_xml – sequence: 1
  givenname: Sheng‐Fu
  surname: Wang
  fullname: Wang, Sheng‐Fu
  organization: National Taiwan University
– sequence: 2
  givenname: Dong‐Ying
  surname: Zhou
  fullname: Zhou, Dong‐Ying
  organization: Soochow University
– sequence: 3
  givenname: Kai‐Hua
  surname: Kuo
  fullname: Kuo, Kai‐Hua
  organization: National Taiwan University
– sequence: 4
  givenname: Chih‐Hsing
  surname: Wang
  fullname: Wang, Chih‐Hsing
  organization: National Taiwan University
– sequence: 5
  givenname: Chieh‐Ming
  surname: Hung
  fullname: Hung, Chieh‐Ming
  organization: National Taiwan University
– sequence: 6
  givenname: Jie
  orcidid: 0000-0002-8305-5749
  surname: Yan
  fullname: Yan, Jie
  organization: City University of Hong Kong
– sequence: 7
  givenname: Liang‐Sheng
  surname: Liao
  fullname: Liao, Liang‐Sheng
  email: lsliao@suda.edu.cn
  organization: Soochow University
– sequence: 8
  givenname: Wen‐Yi
  orcidid: 0000-0003-1761-2743
  surname: Hung
  fullname: Hung, Wen‐Yi
  email: wenhung@mail.ntou.edu.tw
  organization: National Taiwan Ocean University
– sequence: 9
  givenname: Yun
  orcidid: 0000-0002-8441-3974
  surname: Chi
  fullname: Chi, Yun
  email: yunchi@cityu.edu.hk
  organization: City University of Hong Kong
– sequence: 10
  givenname: Pi‐Tai
  orcidid: 0000-0002-8925-7747
  surname: Chou
  fullname: Chou, Pi‐Tai
  email: chop@ntu.edu.tw
  organization: National Taiwan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38230818$$D View this record in MEDLINE/PubMed
BookMark eNqNkt1rFDEUxYNU7Ie--igDvlTKrPmY2SSPZVzrQGlF6osvIZu50ZSZZJtk0P73ZtlthYJoXnK5-Z17D-EcowMfPCD0muAFwZi-197BgmLKCG85eYaOSEtJzThnB6VuGKu5aMkhOk7ptvBC4OULdMgEZVgQcYS-rawFk1MVbPUB5gzRzVPVp5DDBkrXV5_zad-_q7owbUb4VXraD9XND3Cx6qeNNnkLXcfvxYmprvov1WpyucxJL9Fzq8cEr_b3Cfr6cXXTfaovry_67vyyNg3lpB601AYoFxyYHLBdG9CttZjpUhGrG5B8zQdisZUEhGgNxpYBBiMwBt2wE3S6m7uJ4W6GlNXkkoFx1B7CnBSVpJWCy6Us6Nsn6G2Yoy_uCsVIIxglolBv9tS8nmBQm-gmHe_Vw68V4GwH_IR1sMk48AYeMYwJafmSSrw9pNDi_-nOZZ1d8F2YfS7SZic1MaQUwSqzf89Ru1ERrLYpUNsUqMcUFNniiexh218Fcm_RjXD_D1qdX_WrP9rfPKnBXA
CitedBy_id crossref_primary_10_1002_adom_202400932
crossref_primary_10_1039_D4QI02709D
crossref_primary_10_1016_j_cej_2024_151155
crossref_primary_10_1093_chemle_upaf031
crossref_primary_10_1002_adom_202401391
crossref_primary_10_1002_ejic_202400726
crossref_primary_10_1002_chem_202401635
crossref_primary_10_1002_chem_202402636
crossref_primary_10_1021_jacs_4c18235
crossref_primary_10_1039_D4MH01105H
crossref_primary_10_1039_D4TC02716G
crossref_primary_10_1063_5_0206018
crossref_primary_10_1002_ange_202412483
crossref_primary_10_1039_D4SC04306E
crossref_primary_10_1002_anie_202412483
Cites_doi 10.1007/s41061-021-00357-3
10.1039/D2QM01120D
10.1002/cjoc.202000226
10.1039/D2SC05023D
10.1002/adma.201907539
10.1038/s41467-023-42019-6
10.1016/j.isci.2021.102858
10.1002/adom.201901989
10.1002/adfm.202208082
10.1016/j.cej.2022.139534
10.1016/j.chempr.2021.09.001
10.1002/anie.202300815
10.1002/anie.200800063
10.1038/s41566-017-0087-y
10.1002/adfm.202301312
10.1021/acs.jpca.0c10683
10.1038/s41566-022-01079-8
10.1021/acs.chemmater.8b04894
10.1038/nphoton.2016.230
10.1016/j.cplett.2010.03.084
10.1016/j.isci.2021.102156
10.1002/adfm.201807623
10.1038/s41566-020-0653-6
10.1002/adfm.201900923
10.1038/s41377-019-0221-3
10.1002/adfm.202102787
10.1002/adom.202000154
10.1002/adfm.202002494
10.1063/1.1726531
10.1021/acs.energyfuels.1c01955
10.1002/smsc.202000057
10.1021/jacs.9b09323
10.1039/D2TC01511K
10.1002/ejic.202200222
10.1002/admt.201900150
10.1002/adom.202201291
10.1039/D2SC02201J
10.1002/anie.202006197
10.1080/00268977000100171
10.1002/anie.201506687
10.1038/s41598-023-27487-6
10.1021/acs.accounts.2c00827
10.3390/molecules24071412
10.1002/adma.201504451
10.1002/adfm.201700986
10.1016/j.cej.2021.132822
10.1002/adom.202200111
10.1021/acs.chemmater.2c01067
10.1002/adma.201808242
10.1039/D1DT03077A
10.1073/pnas.1813053115
10.1038/ncomms4180
10.1002/admt.201901122
10.1038/s41566-021-00855-2
10.1039/D0SC06885C
10.1063/1.3691105
10.1002/adom.202300989
10.1039/d2sc02201j
10.1039/d2tc01511k
10.1039/d1dt03077a
10.1039/d0sc06885c
10.1021/acsami.3c12016
10.1039/d2qm01120d
10.1038/NPHOTON.2016.230
10.1002/anie.202214103
10.1039/d2sc05023d
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
DBID AAYXX
CITATION
17B
1KM
BLEPL
DTL
EGQ
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202317571
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Web of Science
CrossRef
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 38230818
001157629000001
10_1002_anie_202317571
ANIE202317571
Genre article
Journal Article
GrantInformation_xml – fundername: Innovation and Technology Commission - Hong Kong
  funderid: ITS/196/20
– fundername: National Science and Technology Council
  funderid: NSTC 112-2639-M-002-007-ASP
– fundername: Research Grants Council, University Grants Committee
  funderid: CityU 11312722
– fundername: National Natural Science Foundation of China
  funderid: 61961160731, 62375193, and 62175171
– fundername: Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: ITS/196/20
– fundername: Mass Spectrometry Facility of National Yang Ming Chiao Tung University
– fundername: Innovation and Technology Fund
  grantid: CityU 11312722
– fundername: Grant Research Council
– fundername: National Science and Technology Council (NSTC)
– fundername: National Science and Technology Council
  grantid: 112-2639-M-002-007-ASP
– fundername: National Taiwan University
  grantid: 61961160731; 62375193; 62175171
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
17B
1KM
BLEPL
DTL
GROUPED_WOS_WEB_OF_SCIENCE
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4271-da9ace2787e39d0fbcea5ff03abce1fa4e97b7d1f0f91e885c00f3e0ec800ea43
IEDL.DBID DR2
ISICitedReferencesCount 29
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=001157629000001
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 02:46:43 EDT 2025
Fri Jul 25 12:02:34 EDT 2025
Thu Apr 03 07:00:32 EDT 2025
Fri Aug 29 15:44:13 EDT 2025
Wed Jul 09 18:35:56 EDT 2025
Tue Jul 01 05:07:36 EDT 2025
Thu Apr 24 22:54:48 EDT 2025
Wed Aug 20 07:26:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Deuterium
LIGHT-EMITTING-DIODES
Organic Light Emitting Diodes
Isotope effect
Near Infrared
OLEDS
Pt(II) Complexes
EMISSION
Near Infrared, Pt(II) Complexes, Deuterium, Isotope effect, Organic Light Emitting Diodes
Language English
License 2024 Wiley-VCH GmbH.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c4271-da9ace2787e39d0fbcea5ff03abce1fa4e97b7d1f0f91e885c00f3e0ec800ea43
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1761-2743
0000-0002-8305-5749
0000-0002-8441-3974
0000-0002-8925-7747
PMID 38230818
PQID 2931483218
PQPubID 946352
PageCount 10
ParticipantIDs wiley_primary_10_1002_anie_202317571_ANIE202317571
pubmed_primary_38230818
crossref_primary_10_1002_anie_202317571
webofscience_primary_001157629000001CitationCount
proquest_miscellaneous_2915987969
webofscience_primary_001157629000001
crossref_citationtrail_10_1002_anie_202317571
proquest_journals_2931483218
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 4, 2024
PublicationDateYYYYMMDD 2024-03-04
PublicationDate_xml – month: 03
  year: 2024
  text: March 4, 2024
  day: 04
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2024
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2021; 24
2023; 33
2023; 7
2021; 125
2020; 59
2020; 14
2020; 8
2021; 35
2023; 62
2020; 5
2014; 5
2021; 31
2019; 24
2023; 452
2022; 34
2019; 29
2022; 33
2012; 136
2019; 8
2022; 430
2021; 7
2019; 4
2023; 13
2023; 14
2023; 56
2019; 31
2023; 15
2022; 51
2017; 27
2015; 54
2021; 380
2020; 38
2020; 32
2021; 1
2019; 141
1970; 18
2016; 11
2021; 15
2021; 12
2023
2022
2020; 30
2018; 115
2008; 47
2022; 13
2010; 491
2022; 10
2018; 12
2016; 28
1966; 44
2022; 16
e_1_2_8_28_2
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_45_2
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_26_2
e_1_2_8_3_2
e_1_2_8_5_2
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_64_1
e_1_2_8_62_2
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_13_2
e_1_2_8_57_1
e_1_2_8_15_2
e_1_2_8_30_2
e_1_2_8_55_2
e_1_2_8_11_2
e_1_2_8_32_2
e_1_2_8_53_2
e_1_2_8_51_1
e_1_2_8_27_2
e_1_2_8_29_1
e_1_2_8_46_2
e_1_2_8_25_1
e_1_2_8_48_1
Xu J. (e_1_2_8_34_2) 2023
Cho E. H. (e_1_2_8_9_2) 2023; 15
e_1_2_8_2_1
e_1_2_8_4_2
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_44_2
e_1_2_8_63_2
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_61_2
e_1_2_8_40_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_2
e_1_2_8_52_1
e_1_2_8_50_1
Jung, SY (WOS:001095513800002) 2023; 14
Cheng, JF (WOS:000729677500002) 2022; 430
Dunitz, JD (WOS:000256261900034) 2008; 47
Wang, SF (WOS:000865683300001) 2022; 16
Shao, M (WOS:000331105400003) 2014; 5
Xu, JY (WOS:001044056200001) 2024; 12
Salthouse, RJ (WOS:000884970800001) 2022; 13
Hung, WY (WOS:000750883400023) 2021; 35
Kim, H. U. (001157629000001.15) 2022; 33
Xu, YZ (WOS:000919893600001) 2023; 7
Jeon, Y (WOS:000502861200001) 2019; 8
You, CF (WOS:000541501600001) 2020; 8
Khan, Y (WOS:000450642800006) 2018; 115
LIN, SH (WOS:A19667901700022) 1966; 44
Xue, J. (001157629000001.24) 2023; 33
Jackson, CT (WOS:000631646000029) 2021; 24
Vasilopoulou, M (WOS:000690917000009) 2021; 15
Yuan, Y (WOS:000405105500009) 2017; 27
Peng, XM (WOS:000826194800001) 2022; 10
Tai, JW (WOS:000871102700004) 2023; 452
Ly, KT (WOS:000391518000018) 2017; 11
Zhang, HY (WOS:000811135200001) 2022; 10
Xue, J (WOS:000477972300006) 2019; 31
Wang, SP (WOS:000363423900042) 2015; 54
Xiao, YX (WOS:000828294700001) 2022; 13
Yu, YJ (WOS:000589505700042) 2020; 59
Ibrahim-Ouali, M (WOS:000464944500014) 2019; 24
Kim, DH (WOS:000423445500017) 2018; 12
Simone, G (WOS:000536081600014) 2020; 8
Liu, XL (WOS:000914252300003) 2021; 1
Chen, WC (WOS:000529818100001) 2020; 30
Abe, T (WOS:000277264500017) 2010; 491
Song, J (WOS:000561626200001) 2020; 32
Friedman, HC (WOS:000731166900014) 2021; 7
Pander, P (WOS:000857172300001) 2022; 10
Zhang, J (WOS:000728895800001) 2022; 380
Han, D (WOS:000534004400021) 2020; 5
Jiang, JX (WOS:000485830300017) 2019; 31
Huang, FF (WOS:000823333300001) 2022; 34
Zhou, F (WOS:000814385800001) 2022; 2022
ENGLMAN, R (WOS:A1970F357300001) 1970; 18
Wei, YC (WOS:000545257000001) 2020; 14
Kim, KH (WOS:000373292700005) 2016; 28
Park, Y (WOS:000987346600023) 2023; 13
Chelushkin, PS (WOS:000728793600001) 2022; 51
Cho, EH (WOS:001124861000001) 2023; 15
Zhu, ZL (WOS:000661050400001) 2021; 31
Tan, CP (WOS:000621586800003) 2021; 12
Zampetti, A (WOS:000473101200006) 2019; 29
Shibasaki, Y (WOS:000621416800006) 2021; 125
Wei, Y (WOS:000928266400037) 2023; 62
Shuai, ZG (WOS:000578040000001) 2020; 38
Zhang, LJ (WOS:000479301700010) 2019; 4
Zhang, YX (WOS:000686897200045) 2021; 24
Köhler, A (WOS:000301664200050) 2012; 136
Wei, YC (WOS:000947276200001) 2023; 56
Ganesan, P (WOS:000478617900001) 2019; 29
Congrave, DG (WOS:000499738700006) 2019; 141
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 145
  year: 1970
  end-page: 164
  publication-title: Mol. Phys.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 136
  year: 2012
  publication-title: J. Chem. Phys.
– volume: 15
  start-page: 57415
  year: 2023
  end-page: 57426
  publication-title: ACS Appl. Mater. Interfaces
– volume: 47
  start-page: 4208
  year: 2008
  end-page: 4210
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 13
  start-page: 1369
  year: 2023
  publication-title: Sci. Rep.
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 491
  start-page: 199
  year: 2010
  end-page: 202
  publication-title: Chem. Phys. Lett.
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 7
  start-page: 3359
  year: 2021
  end-page: 3376
  publication-title: Chem
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 98
  year: 2018
  end-page: 104
  publication-title: Nat. Photonics
– volume: 16
  start-page: 843
  year: 2022
  end-page: 850
  publication-title: Nat. Photonics
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 35
  start-page: 19112
  year: 2021
  end-page: 19122
  publication-title: Energy Fuels
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 8906
  year: 2022
  end-page: 8923
  publication-title: Chem. Sci.
– volume: 14
  start-page: 6481
  year: 2023
  publication-title: Nat. Commun.
– volume: 24
  year: 2021
  publication-title: iScience
– volume: 15
  start-page: 656
  year: 2021
  end-page: 669
  publication-title: Nat. Photonics
– volume: 12
  start-page: 2357
  year: 2021
  end-page: 2367
  publication-title: Chem. Sci.
– volume: 452
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 34
  start-page: 6009
  year: 2022
  end-page: 6025
  publication-title: Chem. Mater.
– volume: 13
  start-page: 13600
  year: 2022
  end-page: 13610
  publication-title: Chem. Sci.
– volume: 38
  start-page: 1223
  year: 2020
  end-page: 1232
  publication-title: Chin. J. Chem.
– volume: 54
  start-page: 13068
  year: 2015
  end-page: 13072
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 1
  year: 2021
  publication-title: Small Science
– volume: 31
  start-page: 6499
  year: 2019
  end-page: 6505
  publication-title: Chem. Mater.
– volume: 59
  start-page: 21578
  year: 2020
  end-page: 21584
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 11
  start-page: 63
  year: 2016
  end-page: 68
  publication-title: Nat. Photonics
– volume: 7
  start-page: 828
  year: 2023
  end-page: 845
  publication-title: Mater. Chem. Front.
– year: 2023
  publication-title: Adv. Opt. Mater.
– volume: 51
  start-page: 1257
  year: 2022
  end-page: 1280
  publication-title: Dalton Trans.
– volume: 4
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 141
  start-page: 18390
  year: 2019
  end-page: 18394
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 689
  year: 2023
  end-page: 699
  publication-title: Acc. Chem. Res.
– volume: 5
  year: 2020
  publication-title: Adv. Mater. Technol.
– volume: 115
  start-page: E11015
  year: 2018
  end-page: e11024
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 8
  start-page: 114
  year: 2019
  publication-title: Light-Sci. Appl.
– volume: 125
  start-page: 1359
  year: 2021
  end-page: 1366
  publication-title: J. Phys. Chem. A
– volume: 10
  start-page: 15084
  year: 2022
  end-page: 15095
  publication-title: J. Mater. Chem. C
– volume: 5
  start-page: 3180
  year: 2014
  publication-title: Nat. Commun.
– volume: 380
  start-page: 6
  year: 2021
  publication-title: Top Curr Chem (Cham)
– volume: 44
  start-page: 3759
  year: 1966
  end-page: 3767
  publication-title: J. Chem. Phys.
– volume: 28
  start-page: 2526
  year: 2016
  end-page: 2532
  publication-title: Adv. Mater.
– volume: 430
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 570
  year: 2020
  end-page: 577
  publication-title: Nat. Photonics
– year: 2022
  publication-title: Eur. J. Inorg. Chem.
– volume: 24
  start-page: 1412
  year: 2019
  publication-title: Molecules
– ident: e_1_2_8_54_2
  doi: 10.1007/s41061-021-00357-3
– ident: e_1_2_8_13_2
  doi: 10.1039/D2QM01120D
– ident: e_1_2_8_37_1
– ident: e_1_2_8_66_1
  doi: 10.1002/cjoc.202000226
– ident: e_1_2_8_31_2
  doi: 10.1039/D2SC05023D
– ident: e_1_2_8_14_1
– ident: e_1_2_8_1_1
  doi: 10.1002/adma.201907539
– ident: e_1_2_8_49_1
  doi: 10.1038/s41467-023-42019-6
– ident: e_1_2_8_55_2
  doi: 10.1016/j.isci.2021.102858
– ident: e_1_2_8_4_2
  doi: 10.1002/adom.201901989
– ident: e_1_2_8_59_1
– ident: e_1_2_8_19_2
  doi: 10.1002/adfm.202208082
– ident: e_1_2_8_32_2
  doi: 10.1016/j.cej.2022.139534
– ident: e_1_2_8_58_1
  doi: 10.1016/j.chempr.2021.09.001
– ident: e_1_2_8_67_1
  doi: 10.1002/anie.202300815
– ident: e_1_2_8_56_1
  doi: 10.1002/anie.200800063
– volume: 15
  start-page: 57415
  year: 2023
  ident: e_1_2_8_9_2
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_8_22_1
  doi: 10.1038/s41566-017-0087-y
– ident: e_1_2_8_10_1
– ident: e_1_2_8_30_2
  doi: 10.1002/adfm.202301312
– ident: e_1_2_8_62_2
  doi: 10.1021/acs.jpca.0c10683
– ident: e_1_2_8_51_1
  doi: 10.1038/s41566-022-01079-8
– ident: e_1_2_8_23_1
  doi: 10.1021/acs.chemmater.8b04894
– ident: e_1_2_8_47_1
  doi: 10.1038/nphoton.2016.230
– ident: e_1_2_8_60_2
  doi: 10.1016/j.cplett.2010.03.084
– ident: e_1_2_8_53_2
  doi: 10.1016/j.isci.2021.102156
– ident: e_1_2_8_15_2
  doi: 10.1002/adfm.201807623
– ident: e_1_2_8_48_1
  doi: 10.1038/s41566-020-0653-6
– year: 2023
  ident: e_1_2_8_34_2
  publication-title: Adv. Opt. Mater.
– ident: e_1_2_8_44_2
  doi: 10.1002/adfm.201900923
– ident: e_1_2_8_7_2
  doi: 10.1038/s41377-019-0221-3
– ident: e_1_2_8_38_2
  doi: 10.1002/adfm.202102787
– ident: e_1_2_8_29_1
– ident: e_1_2_8_35_1
  doi: 10.1002/adom.202000154
– ident: e_1_2_8_45_2
  doi: 10.1002/adfm.202002494
– ident: e_1_2_8_65_1
  doi: 10.1063/1.1726531
– ident: e_1_2_8_46_2
  doi: 10.1021/acs.energyfuels.1c01955
– ident: e_1_2_8_50_1
  doi: 10.1002/smsc.202000057
– ident: e_1_2_8_6_1
– ident: e_1_2_8_27_2
  doi: 10.1021/jacs.9b09323
– ident: e_1_2_8_68_1
  doi: 10.1039/D2TC01511K
– ident: e_1_2_8_40_2
  doi: 10.1002/ejic.202200222
– ident: e_1_2_8_8_2
  doi: 10.1002/admt.201900150
– ident: e_1_2_8_43_1
– ident: e_1_2_8_25_1
– ident: e_1_2_8_39_2
  doi: 10.1002/adom.202201291
– ident: e_1_2_8_12_2
  doi: 10.1039/D2SC02201J
– ident: e_1_2_8_28_2
  doi: 10.1002/anie.202006197
– ident: e_1_2_8_20_1
  doi: 10.1080/00268977000100171
– ident: e_1_2_8_21_1
  doi: 10.1002/anie.201506687
– ident: e_1_2_8_33_2
  doi: 10.1038/s41598-023-27487-6
– ident: e_1_2_8_2_1
– ident: e_1_2_8_41_1
  doi: 10.1021/acs.accounts.2c00827
– ident: e_1_2_8_52_1
– ident: e_1_2_8_11_2
  doi: 10.3390/molecules24071412
– ident: e_1_2_8_42_1
  doi: 10.1002/adma.201504451
– ident: e_1_2_8_24_1
  doi: 10.1002/adfm.201700986
– ident: e_1_2_8_63_2
  doi: 10.1016/j.cej.2021.132822
– ident: e_1_2_8_36_1
  doi: 10.1002/adom.202200111
– ident: e_1_2_8_57_1
  doi: 10.1021/acs.chemmater.2c01067
– ident: e_1_2_8_26_2
  doi: 10.1002/adma.201808242
– ident: e_1_2_8_18_2
  doi: 10.1039/D1DT03077A
– ident: e_1_2_8_3_2
  doi: 10.1073/pnas.1813053115
– ident: e_1_2_8_61_2
  doi: 10.1038/ncomms4180
– ident: e_1_2_8_5_2
  doi: 10.1002/admt.201901122
– ident: e_1_2_8_16_2
  doi: 10.1038/s41566-021-00855-2
– ident: e_1_2_8_17_2
  doi: 10.1039/D0SC06885C
– ident: e_1_2_8_64_1
  doi: 10.1063/1.3691105
– volume: 115
  start-page: E11015
  year: 2018
  ident: WOS:000450642800006
  article-title: A flexible organic reflectance oximeter array
  publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
  doi: 10.1073/pnas.1813053115
– volume: 31
  start-page: 6499
  year: 2019
  ident: WOS:000485830300017
  article-title: Enhanced Pi Conjugation and Donor/Acceptor Interactions in D-A-D Type Emitter for Highly Efficient Near-Infrared Organic Light-Emitting Diodes with an Emission Peak at 840 nm
  publication-title: CHEMISTRY OF MATERIALS
  doi: 10.1021/acs.chemmater.8b04894
– volume: 8
  start-page: ARTN 2000154
  year: 2020
  ident: WOS:000541501600001
  article-title: Boosting Efficiency of Near-Infrared Emitting Iridium(III) Phosphors by Administrating Their π-π Conjugation Effect of Core-Shell Structure in Solution-Processed OLEDs
  publication-title: ADVANCED OPTICAL MATERIALS
  doi: 10.1002/adom.202000154
– volume: 34
  start-page: 6009
  year: 2022
  ident: WOS:000823333300001
  article-title: Can Isotope Effects Enable Organic Solar Cells to Achieve Smaller Non-Radiative Energy Losses and Why?
  publication-title: CHEMISTRY OF MATERIALS
  doi: 10.1021/acs.chemmater.2c01067
– volume: 491
  start-page: 199
  year: 2010
  ident: WOS:000277264500017
  article-title: Deuteration isotope effect on nonradiative transition of fac-tris (2-phenylpyridinato) iridium (III) complexes
  publication-title: CHEMICAL PHYSICS LETTERS
  doi: 10.1016/j.cplett.2010.03.084
– volume: 452
  start-page: ARTN 139534
  year: 2023
  ident: WOS:000871102700004
  article-title: 13.2% EQE near-infrared TADF OLED with emission peak at 761 nm
  publication-title: CHEMICAL ENGINEERING JOURNAL
  doi: 10.1016/j.cej.2022.139534
– volume: 7
  start-page: 3359
  year: 2021
  ident: WOS:000731166900014
  article-title: Establishing design principles for emissive organic SWIR chromophores from energy gap laws
  publication-title: CHEM
  doi: 10.1016/j.chempr.2021.09.001
– volume: 136
  start-page: ARTN 094905
  year: 2012
  ident: WOS:000301664200050
  article-title: The role of C-H and C-C stretching modes in the intrinsic non-radiative decay of triplet states in a Pt-containing conjugated phenylene ethynylene
  publication-title: JOURNAL OF CHEMICAL PHYSICS
  doi: 10.1063/1.3691105
– volume: 13
  start-page: ARTN 1369
  year: 2023
  ident: WOS:000987346600023
  article-title: Heteroleptic Ir(III)-based near-infrared organic light-emitting diodes with high radiance capacity
  publication-title: SCIENTIFIC REPORTS
  doi: 10.1038/s41598-023-27487-6
– volume: 56
  start-page: 689
  year: 2023
  ident: WOS:000947276200001
  article-title: Efficient Near-Infrared Luminescence of Self-Assembled Platinum(II) Complexes: From Fundamentals to Applications
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.2c00827
– volume: 29
  start-page: ARTN 1900923
  year: 2019
  ident: WOS:000478617900001
  article-title: Functional Pyrimidinyl Pyrazolate Pt(II) Complexes: Role of Nitrogen Atom in Tuning the Solid-State Stacking and Photophysics
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.201900923
– volume: 125
  start-page: 1359
  year: 2021
  ident: WOS:000621416800006
  article-title: Effect of Deuteration on Relaxation Dynamics of the Perylene Excimer Studied by Subnanosecond Transient Absorption Spectroscopy
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY A
  doi: 10.1021/acs.jpca.0c10683
– volume: 12
  year: 2024
  ident: WOS:001044056200001
  article-title: Concerted Intramolecular and Intermolecular Charge Transfer for High-Efficiency Near-Infrared Thermally Activated Delayed Fluorescent Materials Approaching 900 nm
  publication-title: ADVANCED OPTICAL MATERIALS
  doi: 10.1002/adom.202300989
– volume: 28
  start-page: 2526
  year: 2016
  ident: WOS:000373292700005
  article-title: Crystal Organic Light-Emitting Diodes with Perfectly Oriented Non-Doped Pt-Based Emitting Layer
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201504451
– volume: 35
  start-page: 19112
  year: 2021
  ident: WOS:000750883400023
  article-title: Luminescence of Pyrazinyl Pyrazolate Pt(II) Complexes Fine-Tuned by the Solid-State Stacking Interaction
  publication-title: ENERGY & FUELS
  doi: 10.1021/acs.energyfuels.1c01955
– volume: 380
  start-page: ARTN 6
  year: 2022
  ident: WOS:000728895800001
  article-title: Recent Progress in Near-Infrared Organic Electroluminescent Materials
  publication-title: TOPICS IN CURRENT CHEMISTRY
  doi: 10.1007/s41061-021-00357-3
– volume: 5
  start-page: ARTN 1901122
  year: 2020
  ident: WOS:000534004400021
  article-title: Pulse Oximetry Using Organic Optoelectronics under Ambient Light
  publication-title: ADVANCED MATERIALS TECHNOLOGIES
  doi: 10.1002/admt.201901122
– volume: 13
  start-page: 8906
  year: 2022
  ident: WOS:000828294700001
  article-title: NIR TADF emitters and OLEDs: challenges, progress, and perspectives
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/d2sc02201j
– volume: 24
  start-page: ARTN 102156
  year: 2021
  ident: WOS:000631646000029
  article-title: Advances in engineering near-infrared luminescent materials
  publication-title: ISCIENCE
  doi: 10.1016/j.isci.2021.102156
– volume: 31
  start-page: ARTN 1808242
  year: 2019
  ident: WOS:000477972300006
  article-title: Highly Efficient Thermally Activated Delayed Fluorescence via J-Aggregates with Strong Intermolecular Charge Transfer
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201808242
– volume: 27
  start-page: ARTN 1700986
  year: 2017
  ident: WOS:000405105500009
  article-title: Over 10% EQE Near-Infrared Electroluminescence Based on a Thermally Activated Delayed Fluorescence Emitter
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.201700986
– volume: 16
  start-page: 843
  year: 2022
  ident: WOS:000865683300001
  article-title: Polyatomic molecules with emission quantum yields >20% enable efficient organic light-emitting diodes in the NIR(II) window
  publication-title: NATURE PHOTONICS
  doi: 10.1038/s41566-022-01079-8
– volume: 38
  start-page: 1223
  year: 2020
  ident: WOS:000578040000001
  article-title: Thermal Vibration Correlation Function Formalism for Molecular Excited State Decay Rates
  publication-title: CHINESE JOURNAL OF CHEMISTRY
  doi: 10.1002/cjoc.202000226
– volume: 24
  start-page: ARTN 102858
  year: 2021
  ident: WOS:000686897200045
  article-title: Near-infrared emitting iridium complexes: Molecular design, photophysical properties, and related applications
  publication-title: ISCIENCE
  doi: 10.1016/j.isci.2021.102858
– volume: 10
  start-page: 15084
  year: 2022
  ident: WOS:000857172300001
  article-title: Excimer or aggregate? Near infrared electro- and photoluminescence from multimolecular excited states of N∧C∧N-coordinated platinum(ii) complexes
  publication-title: JOURNAL OF MATERIALS CHEMISTRY C
  doi: 10.1039/d2tc01511k
– volume: 30
  start-page: ARTN 2002494
  year: 2020
  ident: WOS:000529818100001
  article-title: Modulation of Solid-State Aggregation of Square-Planar Pt(II) Based Emitters: Enabling Highly Efficient Deep-Red/Near Infrared Electroluminescence
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.202002494
– volume: 51
  start-page: 1257
  year: 2022
  ident: WOS:000728793600001
  article-title: Phosphorescent NIR emitters for biomedicine: applications, advances and challenges
  publication-title: DALTON TRANSACTIONS
  doi: 10.1039/d1dt03077a
– volume: 12
  start-page: 2357
  year: 2021
  ident: WOS:000621586800003
  article-title: Phosphorescent metal complexes as theranostic anticancer agents: combining imaging and therapy in a single molecule
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/d0sc06885c
– volume: 47
  start-page: 4208
  year: 2008
  ident: WOS:000256261900034
  article-title: Is deuterium always smaller than protium?
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200800063
– volume: 15
  start-page: 57415
  year: 2023
  ident: WOS:001124861000001
  article-title: Wearable and Wavelength-Tunable Near-Infrared Organic Light-Emitting Diodes for Biomedical Applications
  publication-title: ACS APPLIED MATERIALS & INTERFACES
  doi: 10.1021/acsami.3c12016
– volume: 54
  start-page: 13068
  year: 2015
  ident: WOS:000363423900042
  article-title: Highly Efficient Near-Infrared Delayed Fluorescence Organic Light Emitting Diodes Using a Phenanthrene-Based Charge-Transfer Compound
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201506687
– volume: 1
  start-page: ARTN 2000057
  year: 2021
  ident: WOS:000914252300003
  article-title: Isotope Effect of Host Material on Device Stability of Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes
  publication-title: SMALL SCIENCE
  doi: 10.1002/smsc.202000057
– volume: 7
  start-page: 828
  year: 2023
  ident: WOS:000919893600001
  article-title: Recent advances in activatable NIR-II organic fluorophores for biomedical applications
  publication-title: MATERIALS CHEMISTRY FRONTIERS
  doi: 10.1039/d2qm01120d
– volume: 59
  start-page: 21578
  year: 2020
  ident: WOS:000589505700042
  article-title: Near-Infrared Electroluminescence beyond 800 nm with High Efficiency and Radiance from Anthracene Cored Emitters
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202006197
– volume: 4
  start-page: ARTN 1900150
  year: 2019
  ident: WOS:000479301700010
  article-title: Infrared Skin-Like Active Stretchable Electronics Based on Organic-Inorganic Composite Structures for Promotion of Cutaneous Wound Healing
  publication-title: ADVANCED MATERIALS TECHNOLOGIES
  doi: 10.1002/admt.201900150
– volume: 44
  start-page: 3759
  year: 1966
  ident: WOS:A19667901700022
  article-title: RATE OF INTERCONVERSION OF ELECTRONIC AND VIBRATIONAL ENERGY
  publication-title: JOURNAL OF CHEMICAL PHYSICS
– volume: 11
  start-page: 63
  year: 2017
  ident: WOS:000391518000018
  article-title: Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance
  publication-title: NATURE PHOTONICS
  doi: 10.1038/NPHOTON.2016.230
– volume: 430
  start-page: ARTN 132822
  year: 2022
  ident: WOS:000729677500002
  article-title: Positive isotope effect in thermally activated delayed fluorescence emitters based on deuterium-substituted donor units
  publication-title: CHEMICAL ENGINEERING JOURNAL
  doi: 10.1016/j.cej.2021.132822
– volume: 18
  start-page: 145
  year: 1970
  ident: WOS:A1970F357300001
  article-title: ENERGY GAP LAW FOR RADIATIONLESS TRANSITIONS IN LARGE MOLECULES
  publication-title: MOLECULAR PHYSICS
– volume: 8
  start-page: ARTN 1901989
  year: 2020
  ident: WOS:000536081600014
  article-title: High-Accuracy Photoplethysmography Array Using Near-Infrared Organic Photodiodes with Ultralow Dark Current
  publication-title: ADVANCED OPTICAL MATERIALS
  doi: 10.1002/adom.201901989
– volume: 2022
  start-page: ARTN e202200222
  year: 2022
  ident: WOS:000814385800001
  article-title: Azolate-Based Osmium(II) Complexes with Luminescence Spanning Visible and Near Infrared Region
  publication-title: EUROPEAN JOURNAL OF INORGANIC CHEMISTRY
  doi: 10.1002/ejic.202200222
– volume: 62
  start-page: ARTN e202214103
  year: 2023
  ident: WOS:000928266400037
  article-title: Plasmon-Enhanced Electrochemiluminescence at the Single-Nanoparticle Level
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202214103
– volume: 8
  start-page: ARTN 114
  year: 2019
  ident: WOS:000502861200001
  article-title: Sandwich-structure transferable free-form OLEDs for wearable and disposable skin wound photomedicine
  publication-title: LIGHT-SCIENCE & APPLICATIONS
  doi: 10.1038/s41377-019-0221-3
– volume: 15
  start-page: 656
  year: 2021
  ident: WOS:000690917000009
  article-title: Advances in solution-processed near-infrared light-emitting diodes
  publication-title: NATURE PHOTONICS
  doi: 10.1038/s41566-021-00855-2
– volume: 12
  start-page: 98
  year: 2018
  ident: WOS:000423445500017
  article-title: High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter
  publication-title: NATURE PHOTONICS
  doi: 10.1038/s41566-017-0087-y
– volume: 33
  year: 2023
  ident: 001157629000001.24
  publication-title: Adv. Funct. Mater
– volume: 13
  start-page: 13600
  year: 2022
  ident: WOS:000884970800001
  article-title: Near-infrared electroluminescence beyond 940 nm in Pt(N∧C∧N)X complexes: influencing aggregation with the ancillary ligand X
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/d2sc05023d
– volume: 31
  start-page: ARTN 2102787
  year: 2021
  ident: WOS:000661050400001
  article-title: High Performance NIR OLEDs with Low Efficiency Roll-Off by Leveraging Os(II) Phosphors and Exciplex Co-Host
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.202102787
– volume: 32
  start-page: ARTN 1907539
  year: 2020
  ident: WOS:000561626200001
  article-title: Organic Light-Emitting Diodes: Pushing toward the Limits and Beyond
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201907539
– volume: 14
  start-page: 570
  year: 2020
  ident: WOS:000545257000001
  article-title: Overcoming the energy gap law in near-infrared OLEDs by exciton-vibration decoupling
  publication-title: NATURE PHOTONICS
  doi: 10.1038/s41566-020-0653-6
– volume: 33
  year: 2022
  ident: 001157629000001.15
  publication-title: Adv. Funct. Mater
– volume: 29
  start-page: ARTN 1807623
  year: 2019
  ident: WOS:000473101200006
  article-title: Near-Infrared (NIR) Organic Light-Emitting Diodes (OLEDs): Challenges and Opportunities
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.201807623
– volume: 10
  start-page: ARTN 2201291
  year: 2022
  ident: WOS:000826194800001
  article-title: Near-Infrared OLEDs Based on Functional Pyrazinyl Azolate Os(II) Phosphors and Deuteration
  publication-title: ADVANCED OPTICAL MATERIALS
  doi: 10.1002/adom.202201291
– volume: 5
  start-page: ARTN 4180
  year: 2014
  ident: WOS:000331105400003
  article-title: The isotopic effects of deuteration on optoelectronic properties of conducting polymers
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/ncomms4180
– volume: 141
  start-page: 18390
  year: 2019
  ident: WOS:000499738700006
  article-title: A Simple Molecular Design Strategy for Delayed Fluorescence toward 1000 nm
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b09323
– volume: 14
  start-page: ARTN 6481
  year: 2023
  ident: WOS:001095513800002
  article-title: Enhancing operational stability of OLEDs based on subatomic modified thermally activated delayed fluorescence compounds
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-023-42019-6
– volume: 10
  start-page: ARTN 2200111
  year: 2022
  ident: WOS:000811135200001
  article-title: High Performance NIR OLEDs with Emission Peak Beyond 760 nm and Maximum EQE of 6.39%
  publication-title: ADVANCED OPTICAL MATERIALS
  doi: 10.1002/adom.202200111
– volume: 24
  start-page: ARTN 1412
  year: 2019
  ident: WOS:000464944500014
  article-title: Recent Advances on Metal-Based Near-Infrared and Infrared Emitting OLEDs
  publication-title: MOLECULES
  doi: 10.3390/molecules24071412
SSID ssj0028806
Score 2.5616624
Snippet Insight into effect of deuterium isotopes on organic near‐IR (NIR) emitters was explored by the use of self‐assembled Pt(II) complexes H‐3‐f and HPh‐3‐f, and...
Insight into effect of deuterium isotopes on organic near-IR (NIR) emitters was explored by the use of self-assembled Pt(II) complexes H-3-f and HPh-3-f, and...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202317571
SubjectTerms Chemistry
Chemistry, Multidisciplinary
Deuteration
Deuterium
Emission
Emissions
Emitters
Isotope effect
Isotopes
Near Infrared
Near infrared radiation
Organic Light Emitting Diodes
Photoluminescence
Photons
Physical Sciences
Pt(II) Complexes
Radiance
Science & Technology
Self-assembly
Thin films
Title Effects of Deuterium Isotopes on Pt(II) Complexes and Their Impact on Organic NIR Emitters
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202317571
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=001157629000001
https://www.ncbi.nlm.nih.gov/pubmed/38230818
https://www.proquest.com/docview/2931483218
https://www.proquest.com/docview/2915987969
Volume 63
WOS 001157629000001
WOSCitedRecordID wos001157629000001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9UwFA-yF33ROb86p0QYqA-5a5v0I4_jescqeJGxwfClJGkCw60d3l4Q_3rPSdq6uyGKvqXpCW3Sc3J-aXJ-h5B9mUldJrlk4D8cE1rlTJcmZU0hcdvOxXGDscOflvnxmfh4np3fiOIP_BDTDze0DD9fo4ErvTr4RRqKEdgzTP4NDtAHkeOBLURFJxN_VArKGcKLOGeYhX5kbYzTg83mm17pDtS85ZU2gaz3REePiBr7EA6gfJ2tez0zP27RO_5PJ7fJwwGm0sOgV4_JPdvukPvzMTvcE_Il0B6vaOfoB4t5IS7WV7RadX13baG2pZ_7d1X1nuKEc2m_Q51qG3qK-xK08qGZKBRCQQ1dVid0cXXhuT6fkrOjxen8mA15GpgRaZGwRkllbAqmb7lsYqeNVZlzMVdQSpwSVha6aBIXO5nYssxMHDtuY2sArVol-DOy1XatfUGoscJpbowUAup5rnOVQRPeFLnlLtURYeN3qs1AYo65NC7rQL-c1jhi9TRiEXk7yV8H-o7fSu6Nn70ezHhVAxaC5SIHGBSRN9NtGGncVVGt7dYoA4iwLGQuI_I8qMv0KNxkRc7AiOzf1J_pvgfk4I6kX6vBOyR_IzYfOo6sBX1EUq9Af-hefbisFtPV7r80ekkeQFn4A3hij2z139b2FSCyXr_2VvcTdBYqng
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3o-UAkYqAg7ZJnFePnCodrfa0HaFqq1UcUkdx5Yq2qTqZsXjX_FX-EXM5AVbhEBIPXBL7HHix4xn_JhvADZFILLYDYWN-sPYfiZDO4uVZ-eRoGM74zg5-Q7vT8PJof_2KDhaga-dL0yDD9FvuJFk1PM1CThtSG_9QA0lF-wBRf9GDRi57b3KXf35I67a5m-SEQ7xC8_bGc-GE7sNLGAr34tcO5dCKu0hr2oucsdkSsvAGIdLfHKN9LWIsih3jWOEq-M4UI5juHa0QvNKS5_jd6_BdQojTnD9o4MescpDcWgcmji3Ke59hxPpeFvL9V3Wg78Yt5f04LLpXOu-nVvwreu15srLh8GiygbqyyVAyf-qW2_DzdYSZ9uN6NyBFV3chbVhFwDvHrxvkJ3nrDRspCn0xcnijCXzsirPNaYW7F31KkleM5pTT_UnTJNFzmZ09MKS2vuUiBpvV8WmyQEbn53UcKb34fBKmvYAVouy0I-AKe2bjCslfB_TeZiFMsAiPI9CzY2XWWB3jJGqFqedwoWcpg3CtJfSCKX9CFnwsqc_bxBKfku50fFZ2s5U8xTNPVwRc7T0LHjeZ2NP08GRLHS5IBo0euNIhMKChw1_9r-ic2SCRbRg82eG7fPrNQdqXFEvR7EO7t-QDduGEzBDZYFXc-wfmpduT5Nx_7b-L4Wewdpktr-X7iXT3cdwA9P9-r6hvwGr1cVCP0EDtMqe1iLP4PiqheE75xaM0A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9QwEB6VIgEv3EeggJGKgIdsE9s5_MBDtYcaCquqaqWKl2A7tlTRZldsVhy_ir_CP2KcC7YIgZD6wFtiTxIfM56Z2PMNwKaIhErDWPioP6zPlYx9lWrqF4lw23Y2CAoXO_xmGu8c8ldH0dEafO1iYRp8iP6Hm5OMer12Aj4v7NYP0FAXgT1wyb9RASZhe6xy13z-iE7b4mU2whl-SulkfDDc8du8Ar7mNAn9QgqpDUVWNUwUgVXayMjagEm8Cq3kRiQqKUIbWBGaNI10EFhmAqPRujKSM3zvBbjI40C4ZBGj_R6wiqI0NPFMjPku7X0HExnQrdX2rqrBX2zbM2pw1XKuVd_kGnzrBq058fJ-sKzUQH85gyf5P43qdbja2uFkuxGcG7Bmyptwedilv7sFbxtc5wWZWTIyLvHF8fKUZItZNZsbLC3JXvU8y14Qt6KemE9YJsuCHLiNF5LVsaeOqIl11WSa7ZPx6XENZnobDs-la3dgvZyV5h4QbbhVTGvBOZazWMUywkdYkcSGWao88Du-yHWL0u6ShZzkDb40zd0M5f0MefCsp583-CS_pdzo2Cxv16lFjsYe-sMM7TwPnvTVONJu20iWZrZ0NGjypomIhQd3G_bsP-V2kR0oogebP_NrX197HKhvRe2MYhvCvyEbth13sAyVB7Rm2D90L9-eZuP-7v6_PPQYLu2NJvnrbLr7AK5gMa8PG_INWK8-LM1DtD4r9agWeALvzlsWvgOhS4t_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Deuterium+Isotopes+on+Pt%28II%29+Complexes+and+Their+Impact+on+Organic+NIR+Emitters&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Sheng%E2%80%90Fu&rft.au=Zhou%2C+Dong%E2%80%90Ying&rft.au=Kuo%2C+Kai%E2%80%90Hua&rft.au=Wang%2C+Chih%E2%80%90Hsing&rft.date=2024-03-04&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202317571&rft.externalDBID=10.1002%252Fanie.202317571&rft.externalDocID=ANIE202317571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon