The transmission of human mitochondrial DNA in four‐generation pedigrees

Most of the pathogenic variants in mitochondrial DNA (mtDNA) exist in a heteroplasmic state (coexistence of mutant and wild‐type mtDNA). Understanding how mtDNA is transmitted is crucial for predicting mitochondrial disease risk. Previous studies were based mainly on two‐generation pedigree data, wh...

Full description

Saved in:
Bibliographic Details
Published inHuman mutation Vol. 43; no. 9; pp. 1259 - 1267
Main Authors Liu, Qi, Iqbal, Muhammad Faaras, Yaqub, Tahir, Firyal, Sehrish, Zhao, Yiqiang, Stoneking, Mark, Li, Mingkun
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.09.2022
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most of the pathogenic variants in mitochondrial DNA (mtDNA) exist in a heteroplasmic state (coexistence of mutant and wild‐type mtDNA). Understanding how mtDNA is transmitted is crucial for predicting mitochondrial disease risk. Previous studies were based mainly on two‐generation pedigree data, which are limited by the randomness in a single transmission. In this study, we analyzed the transmission of heteroplasmies in 16 four‐generation families. First, we found that 57.8% of the variants in the great grandmother were transmitted to the fourth generation. The direction and magnitude of the frequency change during transmission appeared to be random. Moreover, no consistent correlation was identified between the frequency changes among the continuous transmissions, suggesting that most variants were functionally neutral or mildly deleterious and thus not subject to strong natural selection. Additionally, we found that the frequency of one nonsynonymous variant (m.15773G>A) showed a consistent increase in one family, suggesting that this variant may confer a fitness advantage to the mitochondrion/cell. We also estimated the effective bottleneck size during transmission to be 21−71. In summary, our study demonstrates the advantages of multigeneration data for studying the transmission of mtDNA for shedding new light on the dynamics of the mutation frequency in successive generations. The frequency change of mitochondrial mutations across four generations.
AbstractList Most of the pathogenic variants in mitochondrial DNA (mtDNA) exist in a heteroplasmic state (coexistence of mutant and wild‐type mtDNA). Understanding how mtDNA is transmitted is crucial for predicting mitochondrial disease risk. Previous studies were based mainly on two‐generation pedigree data, which are limited by the randomness in a single transmission. In this study, we analyzed the transmission of heteroplasmies in 16 four‐generation families. First, we found that 57.8% of the variants in the great grandmother were transmitted to the fourth generation. The direction and magnitude of the frequency change during transmission appeared to be random. Moreover, no consistent correlation was identified between the frequency changes among the continuous transmissions, suggesting that most variants were functionally neutral or mildly deleterious and thus not subject to strong natural selection. Additionally, we found that the frequency of one nonsynonymous variant (m.15773G>A) showed a consistent increase in one family, suggesting that this variant may confer a fitness advantage to the mitochondrion/cell. We also estimated the effective bottleneck size during transmission to be 21−71. In summary, our study demonstrates the advantages of multigeneration data for studying the transmission of mtDNA for shedding new light on the dynamics of the mutation frequency in successive generations. The frequency change of mitochondrial mutations across four generations.
Most of the pathogenic variants in mitochondrial DNA (mtDNA) exist in a heteroplasmic state (coexistence of mutant and wild-type mtDNA). Understanding how mtDNA is transmitted is crucial for predicting mitochondrial disease risk. Previous studies were based mainly on two-generation pedigree data, which are limited by the randomness in a single transmission. In this study, we analyzed the transmission of heteroplasmies in 16 four-generation families. First, we found that 57.8% of the variants in the great grandmother were transmitted to the fourth generation. The direction and magnitude of the frequency change during transmission appeared to be random. Moreover, no consistent correlation was identified between the frequency changes among the continuous transmissions, suggesting that most variants were functionally neutral or mildly deleterious and thus not subject to strong natural selection. Additionally, we found that the frequency of one nonsynonymous variant (m.15773G>A) showed a consistent increase in one family, suggesting that this variant may confer a fitness advantage to the mitochondrion/cell. We also estimated the effective bottleneck size during transmission to be 21-71. In summary, our study demonstrates the advantages of multigeneration data for studying the transmission of mtDNA for shedding new light on the dynamics of the mutation frequency in successive generations.Most of the pathogenic variants in mitochondrial DNA (mtDNA) exist in a heteroplasmic state (coexistence of mutant and wild-type mtDNA). Understanding how mtDNA is transmitted is crucial for predicting mitochondrial disease risk. Previous studies were based mainly on two-generation pedigree data, which are limited by the randomness in a single transmission. In this study, we analyzed the transmission of heteroplasmies in 16 four-generation families. First, we found that 57.8% of the variants in the great grandmother were transmitted to the fourth generation. The direction and magnitude of the frequency change during transmission appeared to be random. Moreover, no consistent correlation was identified between the frequency changes among the continuous transmissions, suggesting that most variants were functionally neutral or mildly deleterious and thus not subject to strong natural selection. Additionally, we found that the frequency of one nonsynonymous variant (m.15773G>A) showed a consistent increase in one family, suggesting that this variant may confer a fitness advantage to the mitochondrion/cell. We also estimated the effective bottleneck size during transmission to be 21-71. In summary, our study demonstrates the advantages of multigeneration data for studying the transmission of mtDNA for shedding new light on the dynamics of the mutation frequency in successive generations.
Most of the pathogenic variants in mitochondrial DNA (mtDNA) exist in a heteroplasmic state (coexistence of mutant and wild-type mtDNA). Understanding how mtDNA is transmitted is crucial for predicting mitochondrial disease risk. Previous studies were based mainly on two-generation pedigree data, which are limited by the randomness in a single transmission. In this study, we analyzed the transmission of heteroplasmies in 16 four-generation families. First, we found that 57.8% of the variants in the great grandmother were transmitted to the fourth generation. The direction and magnitude of the frequency change during transmission appeared to be random. Moreover, no consistent correlation was identified between the frequency changes among the continuous transmissions, suggesting that most variants were functionally neutral or mildly deleterious and thus not subject to strong natural selection. Additionally, we found that the frequency of one nonsynonymous variant (m.15773G>A) showed a consistent increase in one family, suggesting that this variant may confer a fitness advantage to the mitochondrion/cell. We also estimated the effective bottleneck size during transmission to be 21-71. In summary, our study demonstrates the advantages of multigeneration data for studying the transmission of mtDNA for shedding new light on the dynamics of the mutation frequency in successive generations. This article is protected by copyright. All rights reserved.
Most of the pathogenic variants in mitochondrial DNA (mtDNA) exist in a heteroplasmic state (coexistence of mutant and wild‐type mtDNA). Understanding how mtDNA is transmitted is crucial for predicting mitochondrial disease risk. Previous studies were based mainly on two‐generation pedigree data, which are limited by the randomness in a single transmission. In this study, we analyzed the transmission of heteroplasmies in 16 four‐generation families. First, we found that 57.8% of the variants in the great grandmother were transmitted to the fourth generation. The direction and magnitude of the frequency change during transmission appeared to be random. Moreover, no consistent correlation was identified between the frequency changes among the continuous transmissions, suggesting that most variants were functionally neutral or mildly deleterious and thus not subject to strong natural selection. Additionally, we found that the frequency of one nonsynonymous variant (m.15773G>A) showed a consistent increase in one family, suggesting that this variant may confer a fitness advantage to the mitochondrion/cell. We also estimated the effective bottleneck size during transmission to be 21−71. In summary, our study demonstrates the advantages of multigeneration data for studying the transmission of mtDNA for shedding new light on the dynamics of the mutation frequency in successive generations.
Author Iqbal, Muhammad Faaras
Yaqub, Tahir
Zhao, Yiqiang
Li, Mingkun
Stoneking, Mark
Firyal, Sehrish
Liu, Qi
Author_xml – sequence: 1
  givenname: Qi
  surname: Liu
  fullname: Liu, Qi
  organization: Chinese Academy of Sciences, and China National Center for Bioinformation
– sequence: 2
  givenname: Muhammad Faaras
  surname: Iqbal
  fullname: Iqbal, Muhammad Faaras
  organization: University of Veterinary and Animal Sciences
– sequence: 3
  givenname: Tahir
  surname: Yaqub
  fullname: Yaqub, Tahir
  organization: University of Veterinary and Animal Sciences
– sequence: 4
  givenname: Sehrish
  surname: Firyal
  fullname: Firyal, Sehrish
  organization: University of Veterinary and Animal Sciences
– sequence: 5
  givenname: Yiqiang
  surname: Zhao
  fullname: Zhao, Yiqiang
  email: yiqiangz@cau.edu.cn
  organization: China Agricultural University
– sequence: 6
  givenname: Mark
  surname: Stoneking
  fullname: Stoneking, Mark
  email: stonekg@eva.mpg.de
  organization: CNRS, Université Lyon 1
– sequence: 7
  givenname: Mingkun
  orcidid: 0000-0003-1041-1172
  surname: Li
  fullname: Li, Mingkun
  email: limk@big.ac.cn
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35460575$$D View this record in MEDLINE/PubMed
https://cnrs.hal.science/hal-04604735$$DView record in HAL
BookMark eNp9kc1u1DAUhS1URH9gwwOgSGwKUsp17MTxclQoAxpg01lbjnPTcZXYg52AuuMReEaepE5TuqgQK1tX3zn2ueeYHDjvkJCXFM4oQPFuNw3TWcGZhCfkiIKs8zTmB_O9lLkQkh-S4xivAaAuS_aMHLKSV1CK8oh8vtxhNgbt4mBjtN5lvsuSoXbZYEdvdt61weo-e_91lVmXdX4Kf379vkKHQY8zv8fWXgXE-Jw87XQf8cX9eUK2Fx8uz9f55tvHT-erTW54ISBvDIBshBSVpnVTVxUXyGnHoUOk1DBBDa9Nx2THtakbLUsJragMFLKWLUd2Qt4svjvdq32wgw43ymur1quNmmeQwnHByh80sacLuw_--4RxVCmmwb7XDv0UVVGVnKX_iCKhrx-h1ymrS0kSlQApazYbvrqnpmbA9uH9vxtNwNsFMMHHGLB7QCiouS4116Xu6kowPIKNHe_Wmiqx_b8ldJH8tD3e_MdcrbdftovmFimcpj0
CitedBy_id crossref_primary_10_3390_genes14040912
crossref_primary_10_1038_s41467_023_41785_7
crossref_primary_10_1038_s41467_024_54443_3
Cites_doi 10.1542/peds.114.2.443
10.1016/j.ajhg.2007.10.007
10.1073/pnas.1419651112
10.1093/nar/gks499
10.1111/dgd.12420
10.1186/gb-2012-13-5-r34
10.1073/pnas.1906331116
10.3390/antiox8090392
10.1093/hmg/ddr043
10.1073/pnas.1409328111
10.1038/s41576-020-00284-x
10.1073/pnas.76.4.1967
10.1126/science.aau6520
10.1086/318801
10.1093/hmg/ddl457
10.1016/j.ajhg.2016.09.016
10.1093/nar/gkq603
10.1371/journal.pone.0058993
10.1016/j.ajhg.2011.03.006
10.1023/A:1025960300710
10.1038/s41556-017-0017-8
10.1038/s41467-018-04797-2
10.1016/j.jgg.2020.03.001
10.1101/gr.203216.115
10.1371/journal.pbio.3000745
10.1126/sciadv.abe7520
10.1093/hmg/ddv626
10.1002/humu.22849
10.1038/nrg3966
10.1073/pnas.2014610118
10.1016/j.scr.2013.01.006
10.1371/journal.pone.0014004
10.1002/humu.22720
10.1534/genetics.118.300711
10.1016/j.tig.2013.05.005
10.1042/ebc20170096
10.1634/stemcells.2007-0269
10.1126/science.1088434
10.1073/pnas.1403521111
10.1093/gbe/evz214
10.1093/nar/gkw233
10.1007/s12035-016-9996-x
10.1002/humu.20921
10.1136/jmg.2008.059782
10.1016/j.mrfmmm.2015.06.009
10.1016/S0378-1119(99)00295-4
10.1002/0471250953.bi0123s44
10.18632/aging.100661
10.7554/eLife.07464
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC.
This article is protected by copyright. All rights reserved.
2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 The Authors. Human Mutation published by Wiley Periodicals LLC.
Attribution
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC.
– notice: This article is protected by copyright. All rights reserved.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 The Authors. Human Mutation published by Wiley Periodicals LLC.
– notice: Attribution
DBID 24P
AAYXX
CITATION
NPM
7QP
7TK
8FD
FR3
K9.
P64
RC3
7X8
1XC
VOOES
DOI 10.1002/humu.24390
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Genetics Abstracts

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1098-1004
EndPage 1267
ExternalDocumentID oai_HAL_hal_04604735v1
35460575
10_1002_humu_24390
HUMU24390
Genre article
Journal Article
GrantInformation_xml – fundername: Max Planck Society
– fundername: National Natural Science Foundation of China
  funderid: 31871263
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
29I
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88A
88E
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DVXWH
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GNP
GODZA
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0L
M1P
M66
M7P
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q2X
QB0
QRW
R.K
RHX
RIWAO
RJQFR
ROL
RWI
RWV
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UDS
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WTM
WXSBR
WYISQ
X7M
XG1
XSW
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
RPM
NPM
7QP
7TK
8FD
FR3
K9.
P64
RC3
7X8
1XC
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
PJZUB
PPXIY
PQGLB
VOOES
ID FETCH-LOGICAL-c4270-bc009b7976a18b86647e41f40fee11c371c48cf39f4ac8ba9590d76c02989d4e3
IEDL.DBID DR2
ISSN 1059-7794
1098-1004
IngestDate Sat Jul 26 06:31:03 EDT 2025
Fri Jul 11 08:06:41 EDT 2025
Sun Jul 13 04:25:14 EDT 2025
Thu Jan 02 22:55:24 EST 2025
Tue Jul 01 04:33:52 EDT 2025
Thu Apr 24 23:06:03 EDT 2025
Wed Jan 22 16:24:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords heteroplasmy
inheritance
multigeneration pedigrees
transmission
mtDNA
Language English
License Attribution-NonCommercial
This article is protected by copyright. All rights reserved.
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4270-bc009b7976a18b86647e41f40fee11c371c48cf39f4ac8ba9590d76c02989d4e3
Notes Qi Liu and Muhammad Faaras Iqbal contributed equally to this study.
Yiqiang Zhao, Mark Stoneking, and Mingkun Li shared senior authorship.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1041-1172
0000-0001-9044-6679
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhumu.24390
PMID 35460575
PQID 2697299831
PQPubID 30498
PageCount 9
ParticipantIDs hal_primary_oai_HAL_hal_04604735v1
proquest_miscellaneous_2654300972
proquest_journals_2697299831
pubmed_primary_35460575
crossref_primary_10_1002_humu_24390
crossref_citationtrail_10_1002_humu_24390
wiley_primary_10_1002_humu_24390_HUMU24390
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Human mutation
PublicationTitleAlternate Hum Mutat
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2019; 8
2013; 29
2021; 7
2015; 36
2004; 303
2010; 38
2015; 16
2015; 4
2021; 22
2013; 44
2019; 11
2018; 208
2018; 62
2018; 60
2012; 13
2014; 111
2013; 8
2001; 68
1979; 76
2018; 20
2019; 364
1992; 50
2020; 18
2016; 99
2007; 16
2018; 9
2009; 30
2004; 114
2013; 10
2017; 54
2015; 112
2021; 118
2011; 20
2019; 116
2003; 26
2011; 88
2008; 45
2020; 47
2015; 779
1999; 238
2010; 5
2014; 6
2016; 26
2008; 82
2016; 25
2007; 25
2012; 40
2016; 44
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
Tatuch Y. (e_1_2_8_35_1) 1992; 50
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 44
  start-page: 1.23.21
  issue: 1
  year: 2013
  end-page: 21.23.26
  article-title: mtDNA variation and analysis using mitomap and mitomaster
  publication-title: Current Protocols in Bioinformatics
– volume: 11
  start-page: 2909
  issue: 10
  year: 2019
  end-page: 2916
  article-title: Evidence of neutral evolution of mitochondrial DNA in human hepatocellular carcinoma
  publication-title: Genome Biology and Evolution
– volume: 36
  start-page: 1100
  issue: 11
  year: 2015
  end-page: 1111
  article-title: Fine time scaling of purifying selection on human nonsynonymous mtDNA mutations based on the worldwide population tree and mother–child pairs
  publication-title: Human Mutation
– volume: 25
  start-page: 1031
  issue: 5
  year: 2016
  end-page: 1041
  article-title: Mitochondrial DNA sequence characteristics modulate the size of the genetic bottleneck
  publication-title: Human Molecular Genetics
– volume: 26
  start-page: 417
  issue: 4
  year: 2016
  end-page: 426
  article-title: Transmission of human mtDNA heteroplasmy in the genome of the Netherlands families: Support for a variable‐size bottleneck
  publication-title: Genome Research
– volume: 40
  issue: 18
  year: 2012
  article-title: Fidelity of capture‐enrichment for mtDNA genome sequencing: Influence of NUMTs
  publication-title: Nucleic Acids Research
– volume: 20
  start-page: 144
  issue: 2
  year: 2018
  end-page: 151
  article-title: Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos
  publication-title: Nature Cell Biology
– volume: 45
  start-page: 769
  issue: 12
  year: 2008
  article-title: Pseudomitochondrial genome haunts disease studies
  publication-title: Journal of Medical Genetics
– volume: 50
  start-page: 852
  issue: 4
  year: 1992
  end-page: 858
  article-title: Heteroplasmic mtDNA mutation (T−G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high
  publication-title: American Journal of Human Genetics
– volume: 62
  start-page: 225
  issue: 3
  year: 2018
  end-page: 234
  article-title: The mitochondrial DNA genetic bottleneck: Inheritance and beyond
  publication-title: Essays in Biochemistry
– volume: 6
  start-page: 454
  issue: 6
  year: 2014
  end-page: 467
  article-title: Transmission from centenarians to their offspring of mtDNA heteroplasmy revealed by ultra‐deep sequencing
  publication-title: Aging
– volume: 8
  start-page: 392
  issue: 9
  year: 2019
  article-title: Mitochondrial genome (mtDNA) mutations that generate reactive oxygen species
  publication-title: Antioxidants
– volume: 364
  issue: 6442
  year: 2019
  article-title: Germline selection shapes human mitochondrial DNA diversity
  publication-title: Science
– volume: 25
  start-page: 2670
  issue: 10
  year: 2007
  end-page: 2676
  article-title: Mitochondrial DNA sequence heterogeneity of single CD34+ cells after nonmyeloablative allogeneic stem cell transplantation
  publication-title: Stem Cells
– volume: 208
  start-page: 1261
  issue: 3
  year: 2018
  article-title: A population phylogenetic view of mitochondrial heteroplasmy
  publication-title: Genetics
– volume: 9
  start-page: 2488
  issue: 1
  year: 2018
  article-title: Large‐scale genetic analysis reveals mammalian mtDNA heteroplasmy dynamics and variance increase through lifetimes and generations
  publication-title: Nature Communications
– volume: 36
  start-page: E2413
  issue: 2
  year: 2015
  end-page: E2422
  article-title: MitImpact: An exhaustive collection of pre‐computed pathogenicity predictions of human mitochondrial non‐synonymous variants
  publication-title: Human Mutation
– volume: 60
  start-page: 21
  issue: 1
  year: 2018
  end-page: 32
  article-title: Mitochondrial DNA heteroplasmy and purifying selection in the mammalian female germ line
  publication-title: Development, Growth & Differentiation
– volume: 29
  start-page: 488
  issue: 8
  year: 2013
  end-page: 497
  article-title: Mitochondrial disorders: Aetiologies, models systems, and candidate therapies
  publication-title: Trends in Genetics
– volume: 44
  start-page: W58
  issue: W1
  year: 2016
  end-page: W63
  article-title: HaploGrep 2: Mitochondrial haplogroup classification in the era of high‐throughput sequencing
  publication-title: Nucleic Acids Research
– volume: 13
  start-page: R34
  issue: 5
  year: 2012
  article-title: A new approach for detecting low‐level mutations in next‐generation sequence data
  publication-title: Genome Biology
– volume: 54
  start-page: 4343
  issue: 6
  year: 2017
  end-page: 4352
  article-title: mtDNA heteroplasmy in monozygotic twins discordant for schizophrenia
  publication-title: Molecular Neurobiology
– volume: 238
  start-page: 211
  issue: 1
  year: 1999
  end-page: 230
  article-title: Mitochondrial DNA variation in human evolution and disease
  publication-title: Gene
– volume: 10
  start-page: 361
  issue: 3
  year: 2013
  end-page: 370
  article-title: Accumulation of mtDNA variations in human single CD34+ cells from maternally related individuals: Effects of aging and family genetic background
  publication-title: Stem Cell Research
– volume: 114
  start-page: 443
  issue: 2
  year: 2004
  end-page: 450
  article-title: Molecular epidemiology of childhood mitochondrial encephalomyopathies in a finnish population: Sequence analysis of entire mtDNA of 17 children reveals heteroplasmic mutations in tRNAArg, tRNAGlu, and tRNALeu(UUR) genes
  publication-title: Pediatrics
– volume: 38
  issue: 16
  year: 2010
  article-title: ANNOVAR: Functional annotation of genetic variants from high‐throughput sequencing data
  publication-title: Nucleic Acids Research
– volume: 82
  start-page: 333
  issue: 2
  year: 2008
  end-page: 343
  article-title: Selection against pathogenic mtDNA mutations in a stem cell population leads to the loss of the 3243A>G mutation in blood
  publication-title: American Journal of Human Genetics
– volume: 22
  start-page: 106
  issue: 2
  year: 2021
  end-page: 118
  article-title: Extreme heterogeneity of human mitochondrial DNA from organelles to populations
  publication-title: Nature Reviews Genetics
– volume: 47
  start-page: 167
  issue: 3
  year: 2020
  end-page: 169
  article-title: Clinical utility of whole genome sequencing for the detection of mitochondrial genome mutations
  publication-title: Journal of Genetics and Genomics
– volume: 5
  issue: 11
  year: 2010
  article-title: Multiplexed DNA sequence capture of mitochondrial genomes using PCR products
  publication-title: PLoS One
– volume: 18
  issue: 7
  year: 2020
  article-title: Age‐related accumulation of de novo mitochondrial mutations in mammalian oocytes and somatic tissues
  publication-title: PLoS Biology
– volume: 7
  issue: 12
  year: 2021
  article-title: Nuclear genome‐wide associations with mitochondrial heteroplasmy
  publication-title: Science Advances
– volume: 16
  start-page: 530
  issue: 9
  year: 2015
  end-page: 542
  article-title: The dynamics of mitochondrial DNA heteroplasmy: Implications for human health and disease
  publication-title: Nature Reviews Genetics
– volume: 68
  start-page: 802
  issue: 3
  year: 2001
  end-page: 806
  article-title: Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age
  publication-title: American Journal of Human Genetics
– volume: 779
  start-page: 68
  year: 2015
  end-page: 77
  article-title: Mitochondrial DNA mutations in single human blood cells
  publication-title: Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis
– volume: 111
  start-page: 10654
  issue: 29
  year: 2014
  end-page: 10659
  article-title: Extensive pathogenicity of mitochondrial heteroplasmy in healthy human individuals
  publication-title: Proceedings of the National Academy of Sciences
– volume: 4
  year: 2015
  article-title: Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism
  publication-title: eLife
– volume: 26
  start-page: 593
  issue: 6
  year: 2003
  end-page: 600
  article-title: Exercise intolerance, muscle pain and lactic acidaemia associated with a 7497G>A mutation in the tRNASer(UCN) gene
  publication-title: Journal of Inherited Metabolic Disease
– volume: 20
  start-page: 1653
  issue: 8
  year: 2011
  end-page: 1659
  article-title: Neutral mitochondrial heteroplasmy and the influence of aging
  publication-title: Human Molecular Genetics
– volume: 118
  issue: 30
  year: 2021
  article-title: Accelerated expansion of pathogenic mitochondrial DNA heteroplasmies in Huntington's disease
  publication-title: Proceedings of the National Academy of Sciences
– volume: 99
  start-page: 1150
  issue: 5
  year: 2016
  end-page: 1162
  article-title: Evolution of cell‐to‐cell variability in stochastic, controlled, heteroplasmic mtDNA populations
  publication-title: The American Journal of Human Genetics
– volume: 8
  issue: 3
  year: 2013
  article-title: Evaluating purifying selection in the mitochondrial DNA of various mammalian species
  publication-title: PLoS One
– volume: 76
  issue: 4
  year: 1979
  article-title: Rapid evolution of animal mitochondrial DNA
  publication-title: Proceedings of the National Academy of Sciences
– volume: 303
  start-page: 223
  issue: 5655
  year: 2004
  end-page: 226
  article-title: Effects of purifying and adaptive selection on regional variation in human mtDNA
  publication-title: Science
– volume: 111
  issue: 43
  year: 2014
  article-title: Maternal age effect and severe germ‐line bottleneck in the inheritance of human mitochondrial DNA
  publication-title: Proceedings of the National Academy of Sciences
– volume: 116
  start-page: 25172
  issue: 50
  year: 2019
  end-page: 25178
  article-title: Bottleneck and selection in the germline and maternal age influence transmission of mitochondrial DNA in human pedigrees
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 16
  start-page: 286
  issue: 3
  year: 2007
  end-page: 294
  article-title: Age‐dependent accumulation of mtDNA mutations in murine hematopoietic stem cells is modulated by the nuclear genetic background
  publication-title: Human Molecular Genetics
– volume: 30
  start-page: E386
  issue: 2
  year: 2009
  end-page: E394
  article-title: Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation
  publication-title: Human Mutation
– volume: 88
  start-page: 433
  issue: 4
  year: 2011
  end-page: 439
  article-title: Comparing phylogeny and the predicted pathogenicity of protein variations reveals equal purifying selection across the global human mtDNA diversity
  publication-title: The American Journal of Human Genetics
– volume: 112
  start-page: 2491
  issue: 8
  year: 2015
  end-page: 2496
  article-title: Extensive tissue‐related and allele‐related mtDNA heteroplasmy suggests positive selection for somatic mutations
  publication-title: Proceedings of the National Academy of Sciences
– ident: e_1_2_8_36_1
  doi: 10.1542/peds.114.2.443
– ident: e_1_2_8_28_1
  doi: 10.1016/j.ajhg.2007.10.007
– ident: e_1_2_8_19_1
  doi: 10.1073/pnas.1419651112
– ident: e_1_2_8_20_1
  doi: 10.1093/nar/gks499
– ident: e_1_2_8_5_1
  doi: 10.1111/dgd.12420
– ident: e_1_2_8_21_1
  doi: 10.1186/gb-2012-13-5-r34
– ident: e_1_2_8_50_1
  doi: 10.1073/pnas.1906331116
– ident: e_1_2_8_13_1
  doi: 10.3390/antiox8090392
– ident: e_1_2_8_32_1
  doi: 10.1093/hmg/ddr043
– ident: e_1_2_8_29_1
  doi: 10.1073/pnas.1409328111
– ident: e_1_2_8_34_1
  doi: 10.1038/s41576-020-00284-x
– ident: e_1_2_8_3_1
  doi: 10.1073/pnas.76.4.1967
– ident: e_1_2_8_40_1
  doi: 10.1126/science.aau6520
– ident: e_1_2_8_8_1
  doi: 10.1086/318801
– ident: e_1_2_8_45_1
  doi: 10.1093/hmg/ddl457
– ident: e_1_2_8_16_1
  doi: 10.1016/j.ajhg.2016.09.016
– ident: e_1_2_8_38_1
  doi: 10.1093/nar/gkq603
– ident: e_1_2_8_31_1
  doi: 10.1371/journal.pone.0058993
– ident: e_1_2_8_27_1
  doi: 10.1016/j.ajhg.2011.03.006
– ident: e_1_2_8_12_1
  doi: 10.1023/A:1025960300710
– ident: e_1_2_8_10_1
  doi: 10.1038/s41556-017-0017-8
– ident: e_1_2_8_4_1
  doi: 10.1038/s41467-018-04797-2
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jgg.2020.03.001
– ident: e_1_2_8_18_1
  doi: 10.1101/gr.203216.115
– ident: e_1_2_8_2_1
  doi: 10.1371/journal.pbio.3000745
– ident: e_1_2_8_25_1
  doi: 10.1126/sciadv.abe7520
– ident: e_1_2_8_42_1
  doi: 10.1093/hmg/ddv626
– ident: e_1_2_8_7_1
  doi: 10.1002/humu.22849
– ident: e_1_2_8_33_1
  doi: 10.1038/nrg3966
– ident: e_1_2_8_39_1
  doi: 10.1073/pnas.2014610118
– ident: e_1_2_8_46_1
  doi: 10.1016/j.scr.2013.01.006
– ident: e_1_2_8_24_1
  doi: 10.1371/journal.pone.0014004
– ident: e_1_2_8_6_1
  doi: 10.1002/humu.22720
– ident: e_1_2_8_43_1
  doi: 10.1534/genetics.118.300711
– ident: e_1_2_8_9_1
  doi: 10.1016/j.tig.2013.05.005
– ident: e_1_2_8_51_1
  doi: 10.1042/ebc20170096
– ident: e_1_2_8_44_1
  doi: 10.1634/stemcells.2007-0269
– ident: e_1_2_8_30_1
  doi: 10.1126/science.1088434
– ident: e_1_2_8_49_1
  doi: 10.1073/pnas.1403521111
– ident: e_1_2_8_22_1
  doi: 10.1093/gbe/evz214
– ident: e_1_2_8_41_1
  doi: 10.1093/nar/gkw233
– ident: e_1_2_8_17_1
  doi: 10.1007/s12035-016-9996-x
– ident: e_1_2_8_26_1
  doi: 10.1002/humu.20921
– ident: e_1_2_8_48_1
  doi: 10.1136/jmg.2008.059782
– ident: e_1_2_8_47_1
  doi: 10.1016/j.mrfmmm.2015.06.009
– ident: e_1_2_8_37_1
  doi: 10.1016/S0378-1119(99)00295-4
– volume: 50
  start-page: 852
  issue: 4
  year: 1992
  ident: e_1_2_8_35_1
  article-title: Heteroplasmic mtDNA mutation (T−G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high
  publication-title: American Journal of Human Genetics
– ident: e_1_2_8_23_1
  doi: 10.1002/0471250953.bi0123s44
– ident: e_1_2_8_11_1
  doi: 10.18632/aging.100661
– ident: e_1_2_8_15_1
  doi: 10.7554/eLife.07464
SSID ssj0008553
Score 2.3998327
Snippet Most of the pathogenic variants in mitochondrial DNA (mtDNA) exist in a heteroplasmic state (coexistence of mutant and wild‐type mtDNA). Understanding how...
Most of the pathogenic variants in mitochondrial DNA (mtDNA) exist in a heteroplasmic state (coexistence of mutant and wild-type mtDNA). Understanding how...
SourceID hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1259
SubjectTerms Biodiversity
Genetics
heteroplasmy
Human genetics
inheritance
Life Sciences
Mitochondrial DNA
mtDNA
multigeneration pedigrees
Natural selection
Pedigree
Populations and Evolution
transmission
Title The transmission of human mitochondrial DNA in four‐generation pedigrees
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhumu.24390
https://www.ncbi.nlm.nih.gov/pubmed/35460575
https://www.proquest.com/docview/2697299831
https://www.proquest.com/docview/2654300972
https://cnrs.hal.science/hal-04604735
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61lUBcgJZX6EPmcQEp28SPJJa4rFqqVUUrhFipFxTFjkOr0mzFbpDoqT-hv7G_pDNONqsCQoJTonjiOPbY89kefwPw2hktjbU6LGXlQrR4KjSJKkPruLDCRTY23kH2MBmN5f6ROlqCd_OzMC0_RL_gRj3Dj9fUwQsz3V6Qhh43Z82AY-40YSdnLUJEnxbcUZlSrXe90gghtey5Sfn24tVb1mj5mHwhfweat3GrNzx7D-DLvMitv8npoJmZgb34hc3xf__pIdzvECkbtiq0CkuuXoM7bYzKn2tw96DbfX8E-6hTbEbGDZWDVtnYpGI-yB87w4EBB9K6JH1mu4dDdlKzCrO-vrz66pmtSQHYOeaFE3w3fQzjvfefd0ZhF4shtJKnUWgsgjGTIngp4sxkSSJTJ-NKRpVzcWxFGluZ2UroShY2M4VWOirTxHqG91I68QRW6kntngETAiFYofFSFjIqjYl1aiyvBObqlOIBvJm3SW47onKKl_EtbymWeU7VlPtqCuBVL3ve0nP8UeolNm0vQIzao-GHnJ7RvjBFX_4RB7Axb_m868fTnCcaZx86E5j8ok_GSqZtlaJ2k4ZklBSeBimAp63G9J8SivadUxXAW9_ufylkPhofjP3d838RXod7nE5keLe3DViZfW_cJuKkmdmCZS4_bvlecQOxAg5X
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEZQLj_IKFDCPS5GyTfxI4uMKqELZ3QPqSr1FsePQCpqt2A0SnPgJ_EZ-CTNOmlUBIcEpUTyZJJ4Ze-yZfAPw3BktjbU6rGTtQpzxVGgSVYXWcWGFi2xsfILsLMnncv9QHfa5OfQvTIcPMWy4kWX48ZoMnDakd9eooUftSTviyB5X7JeopLdfUb1bo0dlSnX59UqjE6nlgE7Kd9f3npuPLh5RNuTvruZ5z9VPPXvXu_qqS49YSBknH0btyozs11_wHP_7q27Atd4pZeNOi27CBddsweWuTOWXLbgy7QPwt2Af1YqtaH5D_aCNNraoma_zx05wbMCxtKlIpdmr2ZgdN6xG1j--fX_vwa1JB9gp8sI1vlvehvne64OXediXYwit5GkUGov-mEnRfynjzGRJIlMn41pGtXNxbEUaW5nZWuhaljYzpVY6qtLEepD3SjpxBzaaRePuARMCvbBS46EqZVQZE-vUWF4L5OqU4gHsnAmlsD1WOZXM-Fh0KMu8oG4qfDcF8GygPe0QOv5I9RRlOxAQqHY-nhR0jULDVID5cxzA9pnoi96UlwVPNC5AdCaw-cnQjJ1MkZWycYuWaJQUHgkpgLudygyPEopCz6kK4IUX_F9essjn07k_u_8vxI9hMz-YTorJm9nbB3CV0w8aPgtuGzZWn1r3EN2mlXnkjeMnKJ8Rmw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouPMorUMA8LiBlm_iRxBKXFctqKe0KIVbqpbJix6YIml3RDRKc-An8Rn4JYyebVQEhwSlRPHEcz9gz9oy_AXhsteTaGBlX3NkYNZ6IdSaq2FjKDLOJSXUIkJ1mkxnfOxSHG_BsdRamxYfoN9z8yAjztR_gi8rtrkFDj5uTZkCxdlywn-dZUniZHr1Zg0cVQrTh9UKiDSl5D05Kd9fvnlFH5459MOTvluZZwzVonvFlOFq1uQ04-TBolnpgvv4C5_i_P3UFLnUmKRm2MnQVNmy9DRfaJJVftmHroHO_X4M9FCqy9NoNpcNvs5G5IyHLHznBmQFn0rryAk1G0yF5XxOHVf_49v1dgLb2EkAWWBeu8O3pdZiNX7x9Pom7ZAyx4TRPYm3QGtM5Wi9lWugiy3hueep44qxNU8Py1PDCOCYdL02hSylkUuWZCRDvFbfsBmzW89reAsIY2mClxEtV8qTSOpW5NtQxrNUKQSN4suKJMh1SuU-Y8VG1GMtU-W5SoZsieNTTLlp8jj9SPUTW9gQeUnsy3Ff-mXcM-_TLn9MIdlacV91APlU0k7j8kAXD4gd9MXay96uUtZ03nkZwFnCQIrjZSkz_KSa84zkXETwNfP9LI9VkdjALd7f_hfg-bL0ejdX-y-mrO3CR-tMZIQRuBzaXnxp7F22mpb4XhsZPBIsQUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+transmission+of+human+mitochondrial+DNA+in+four-generation+pedigrees&rft.jtitle=Human+mutation&rft.au=Liu%2C+Qi&rft.au=Iqbal%2C+Muhammad+Faaras&rft.au=Yaqub%2C+Tahir&rft.au=Firyal%2C+Sehrish&rft.date=2022-09-01&rft.issn=1098-1004&rft.eissn=1098-1004&rft.volume=43&rft.issue=9&rft.spage=1259&rft_id=info:doi/10.1002%2Fhumu.24390&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-7794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-7794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-7794&client=summon