Confidence Distribution, the Frequentist Distribution Estimator of a Parameter: A Review
In frequentisi inference, we commonly use a single point (point estimator) or an interval (confidence interval/"interval estimator") to estimate a parameter of interest. A very simple question is: Can we also use a distribution function ("distribution estimator") to estimate a pa...
Saved in:
Published in | International statistical review Vol. 81; no. 1; pp. 3 - 39 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.04.2013
Blackwell Publishing John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In frequentisi inference, we commonly use a single point (point estimator) or an interval (confidence interval/"interval estimator") to estimate a parameter of interest. A very simple question is: Can we also use a distribution function ("distribution estimator") to estimate a parameter of interest in frequentisi inference in the style of a Bayesian posterior? The answer is affirmative, and confidence distribution is a natural choice of such a "distribution estimator". The concept of a confidence distribution has a long history, and its interpretation has long been fused with fiducial inference. Historically, it has been misconstrued as a fiducial concept, and has not been fully developed in the frequentist framework. In recent years, confidence distribution has attracted a surge of renewed attention, and several developments have highlighted its promising potential as an effective inferential tool. This article reviews recent developments of confidence distributions, along with a modern definition and interpretation of the concept. It includes distributional inference based on confidence distributions and its extensions, optimality issues and their applications. Based on the new developments, the concept of a confidence distribution subsumes and unifies a wide range of examples, from regular parametric (fiducial distribution) examples to bootstrap distributions, significance (p-value) functions, normalized likelihood functions, and, in some cases, Bayesian priors and posteriors. The discussion is entirely within the school of frequentist inference, with emphasis on applications providing useful statistical inference tools for problems where frequentist methods with good properties were previously unavailable or could not be easily obtained. Although it also draws attention to some of the differences and similarities among frequentist, fiducial and Bayesian approaches, the review is not intended to re-open the philosophical debate that has lasted more than two hundred years. On the contrary, it is hoped that the article will help bridge the gaps between these different statistical procedures. II est courant, en inference fréquentielle, d'utiliser un point unique (une estimation ponctuelle) ou un intervalle (intervalle de confiance) dans le but d'estimer un paramètre d'intérêt. Une question très simple se pose: peut-on également utiliser, dans le même but, et dans la même optique fréquentielle, à la façon dont les Bayésiens utilisent une loi a posteriori, une distribution de probabilité? La réponse est affirmative, et les distributions de confiance apparaissent comme un choix naturel dans ce contexte. Le concept de distribution de confiance a une longue histoire, longtemps associée, à tort, aux théories d'inférence fiducielle, ce qui a compromis son développement dans l'optique fréquentielle. Les distributions de confiance ont récemment attiré un regain d'intérêt, et plusieurs résultats ont mis en évidence leur potentiel considérable en tant qu'outil inférentiel. Cet article présente une définition moderne du concept, et examine les ses évolutions récentes. Il aborde les méthodes d'inférence, les problèmes d'optimalité, et les applications. A la lumière de ces nouveaux développements, le concept de distribution de confiance englobe et unifie un large éventail de cas particuliers, depuis les exemples paramétriques réguliers (distributions fiducielles), les lois de rééchantillonnage, les p-valeurs et les fonctions de vraisemblance normalisées jusqu'aux a priori et posteriori bayésiens. La discussion est entièrement menée d'un point de vue frequentici, et met l'accent sur les applications dans lesquelles les solutions fréquentielles sont inexistantes ou d'une application difficile. Bien que nous attirions également l'attention sur les similitudes et les différences que présentent les approches fréquentielle, fiducielle, et Bayésienne, notre intention n'est pas de rouvrir un débat philosophique qui dure depuis près de deux cents ans. Nous espérons bien au contraire contribuer à combler le fossé qui existe entre les différents points de vue. |
---|---|
AbstractList | In frequentist inference, we commonly use a single point (point estimator) or an interval (confidence interval/"interval estimator") to estimate a parameter of interest. A very simple question is: Can we also use a distribution function ("distribution estimator") to estimate a parameter of interest in frequentist inference in the style of a Bayesian posterior? The answer is affirmative, and confidence distribution is a natural choice of such a "distribution estimator". The concept of a confidence distribution has a long history, and its interpretation has long been fused with fiducial inference. Historically, it has been misconstrued as a fiducial concept, and has not been fully developed in the frequentist framework. In recent years, confidence distribution has attracted a surge of renewed attention, and several developments have highlighted its promising potential as an effective inferential tool. This article reviews recent developments of confidence distributions, along with a modern definition and interpretation of the concept. It includes distributional inference based on confidence distributions and its extensions, optimality issues and their applications. Based on the new developments, the concept of a confidence distribution subsumes and unifies a wide range of examples, from regular parametric (fiducial distribution) examples to bootstrap distributions, significance (p-value) functions, normalized likelihood functions, and, in some cases, Bayesian priors and posteriors. The discussion is entirely within the school of frequentist inference, with emphasis on applications providing useful statistical inference tools for problems where frequentist methods with good properties were previously unavailable or could not be easily obtained. Although it also draws attention to some of the differences and similarities among frequentist, fiducial and Bayesian approaches, the review is not intended to re-open the philosophical debate that has lasted more than two hundred years. On the contrary, it is hoped that the article will help bridge the gaps between these different statistical procedures.Original Abstract: Resume Il est courant, en inference frequentielle, d'utiliser un point unique (une estimation ponctuelle) ou un intervalle (intervalle de confiance) dans le but d'estimer un parametre d'inter tau . Une question tres simple se pose: peut-on egalement utiliser, dans le meme but, et dans la meme optique frequentielle, a la facon dont les Bayesiens utilisent une loi a posteriori, une distribution de probabilite? La reponse est affirmative, et les distributions de confiance apparaissent comme un choix naturel dans ce contexte. Le concept de distribution de confiance a une longue histoire, longtemps associee, a tort, aux theories d'inference fiducielle, ce qui a compromis son developpement dans l'optique frequentielle. Les distributions de confiance ont recemment attire un regain d'interet, et plusieurs resultats ont mis en evidence leur potentiel considerable en tant qu'outil inferentiel. Cet article presente une definition moderne du concept, et examine les ses evolutions recentes. Il aborde les methodes d'inference, les problemes d'optimalite, et les applications. A la lumiere de ces nouveaux developpements, le concept de distribution de confiance englobe et unifie un large eventail de cas particuliers, depuis les exemples parametriques reguliers (distributions fiducielles), les lois de reechantillonnage, les p-valeurs et les fonctions de vraisemblance normalisees jusqu'aux a priori et posteriori bayesiens. La discussion est entierement menee d'un point de vue frequentiel, et met l'accent sur les applications dans lesquelles les solutions frequentielles sont inexistantes ou d'une application difficile. Bien que nous attirions egalement l'attention sur les similitudes et les differences que presentent les approches frequentielle, fiducielle, et Bayesienne, notre intention n'est pas de rouvrir un debat philosophique qui dure depuis pres de deux cents ans. Nous esperons bien au contraire contribuer a combler le fosse qui existe entre les differents points de vue. In frequentisi inference, we commonly use a single point (point estimator) or an interval (confidence interval/"interval estimator") to estimate a parameter of interest. A very simple question is: Can we also use a distribution function ("distribution estimator") to estimate a parameter of interest in frequentisi inference in the style of a Bayesian posterior? The answer is affirmative, and confidence distribution is a natural choice of such a "distribution estimator". The concept of a confidence distribution has a long history, and its interpretation has long been fused with fiducial inference. Historically, it has been misconstrued as a fiducial concept, and has not been fully developed in the frequentist framework. In recent years, confidence distribution has attracted a surge of renewed attention, and several developments have highlighted its promising potential as an effective inferential tool. This article reviews recent developments of confidence distributions, along with a modern definition and interpretation of the concept. It includes distributional inference based on confidence distributions and its extensions, optimality issues and their applications. Based on the new developments, the concept of a confidence distribution subsumes and unifies a wide range of examples, from regular parametric (fiducial distribution) examples to bootstrap distributions, significance (p-value) functions, normalized likelihood functions, and, in some cases, Bayesian priors and posteriors. The discussion is entirely within the school of frequentist inference, with emphasis on applications providing useful statistical inference tools for problems where frequentist methods with good properties were previously unavailable or could not be easily obtained. Although it also draws attention to some of the differences and similarities among frequentist, fiducial and Bayesian approaches, the review is not intended to re-open the philosophical debate that has lasted more than two hundred years. On the contrary, it is hoped that the article will help bridge the gaps between these different statistical procedures. II est courant, en inference fréquentielle, d'utiliser un point unique (une estimation ponctuelle) ou un intervalle (intervalle de confiance) dans le but d'estimer un paramètre d'intérêt. Une question très simple se pose: peut-on également utiliser, dans le même but, et dans la même optique fréquentielle, à la façon dont les Bayésiens utilisent une loi a posteriori, une distribution de probabilité? La réponse est affirmative, et les distributions de confiance apparaissent comme un choix naturel dans ce contexte. Le concept de distribution de confiance a une longue histoire, longtemps associée, à tort, aux théories d'inférence fiducielle, ce qui a compromis son développement dans l'optique fréquentielle. Les distributions de confiance ont récemment attiré un regain d'intérêt, et plusieurs résultats ont mis en évidence leur potentiel considérable en tant qu'outil inférentiel. Cet article présente une définition moderne du concept, et examine les ses évolutions récentes. Il aborde les méthodes d'inférence, les problèmes d'optimalité, et les applications. A la lumière de ces nouveaux développements, le concept de distribution de confiance englobe et unifie un large éventail de cas particuliers, depuis les exemples paramétriques réguliers (distributions fiducielles), les lois de rééchantillonnage, les p-valeurs et les fonctions de vraisemblance normalisées jusqu'aux a priori et posteriori bayésiens. La discussion est entièrement menée d'un point de vue frequentici, et met l'accent sur les applications dans lesquelles les solutions fréquentielles sont inexistantes ou d'une application difficile. Bien que nous attirions également l'attention sur les similitudes et les différences que présentent les approches fréquentielle, fiducielle, et Bayésienne, notre intention n'est pas de rouvrir un débat philosophique qui dure depuis près de deux cents ans. Nous espérons bien au contraire contribuer à combler le fossé qui existe entre les différents points de vue. In frequentist inference, we commonly use a single point (point estimator) or an interval (confidence interval/"interval estimator") to estimate a parameter of interest. A very simple question is: Can we also use a distribution function ("distribution estimator") to estimate a parameter of interest in frequentist inference in the style of a Bayesian posterior? The answer is affirmative, and confidence distribution is a natural choice of such a "distribution estimator". The concept of a confidence distribution has a long history, and its interpretation has long been fused with fiducial inference. Historically, it has been misconstrued as a fiducial concept, and has not been fully developed in the frequentist framework. In recent years, confidence distribution has attracted a surge of renewed attention, and several developments have highlighted its promising potential as an effective inferential tool. This article reviews recent developments of confidence distributions, along with a modern definition and interpretation of the concept. It includes distributional inference based on confidence distributions and its extensions, optimality issues and their applications. Based on the new developments, the concept of a confidence distribution subsumes and unifies a wide range of examples, from regular parametric (fiducial distribution) examples to bootstrap distributions, significance (p-value) functions, normalized likelihood functions, and, in some cases, Bayesian priors and posteriors. The discussion is entirely within the school of frequentist inference, with emphasis on applications providing useful statistical inference tools for problems where frequentist methods with good properties were previously unavailable or could not be easily obtained. Although it also draws attention to some of the differences and similarities among frequentist, fiducial and Bayesian approaches, the review is not intended to re-open the philosophical debate that has lasted more than two hundred years. On the contrary, it is hoped that the article will help bridge the gaps between these different statistical procedures. [PUBLICATION ABSTRACT] Résumé Il est courant, en inférence fréquentielle, d'utiliser un point unique (une estimation ponctuelle) ou un intervalle (intervalle de confiance) dans le but d'estimer un paramètre d'intér^t. Une question très simple se pose: peut‐on également utiliser, dans le même but, et dans la même optique fréquentielle, à la façon dont les Bayésiens utilisent une loi a posteriori, une distribution de probabilité? La réponse est affirmative, et les distributions de confiance apparaissent comme un choix naturel dans ce contexte. Le concept de distribution de confiance a une longue histoire, longtemps associée, à tort, aux théories d'inférence fiducielle, ce qui a compromis son développement dans l'optique fréquentielle. Les distributions de confiance ont récemment attiré un regain d'intérêt, et plusieurs résultats ont mis en évidence leur potentiel considérable en tant qu'outil inférentiel. Cet article présente une définition moderne du concept, et examine les ses évolutions récentes. Il aborde les méthodes d'inférence, les problèmes d'optimalité, et les applications. A la lumière de ces nouveaux développements, le concept de distribution de confiance englobe et unifie un large éventail de cas particuliers, depuis les exemples paramétriques réguliers (distributions fiducielles), les lois de rééchantillonnage, les p‐valeurs et les fonctions de vraisemblance normalisées jusqu'aux a priori et posteriori bayésiens. La discussion est entièrement menée d'un point de vue fréquentiel, et met l'accent sur les applications dans lesquelles les solutions fréquentielles sont inexistantes ou d'une application difficile. Bien que nous attirions également l'attention sur les similitudes et les différences que présentent les approches fréquentielle, fiducielle, et Bayésienne, notre intention n'est pas de rouvrir un débat philosophique qui dure depuis près de deux cents ans. Nous espérons bien au contraire contribuer à combler le fossé qui existe entre les différents points de vue. Summary In frequentist inference, we commonly use a single point (point estimator) or an interval (confidence interval/“interval estimator”) to estimate a parameter of interest. A very simple question is: Can we also use a distribution function (“distribution estimator”) to estimate a parameter of interest in frequentist inference in the style of a Bayesian posterior? The answer is affirmative, and confidence distribution is a natural choice of such a “distribution estimator”. The concept of a confidence distribution has a long history, and its interpretation has long been fused with fiducial inference. Historically, it has been misconstrued as a fiducial concept, and has not been fully developed in the frequentist framework. In recent years, confidence distribution has attracted a surge of renewed attention, and several developments have highlighted its promising potential as an effective inferential tool. This article reviews recent developments of confidence distributions, along with a modern definition and interpretation of the concept. It includes distributional inference based on confidence distributions and its extensions, optimality issues and their applications. Based on the new developments, the concept of a confidence distribution subsumes and unifies a wide range of examples, from regular parametric (fiducial distribution) examples to bootstrap distributions, significance (p‐value) functions, normalized likelihood functions, and, in some cases, Bayesian priors and posteriors. The discussion is entirely within the school of frequentist inference, with emphasis on applications providing useful statistical inference tools for problems where frequentist methods with good properties were previously unavailable or could not be easily obtained. Although it also draws attention to some of the differences and similarities among frequentist, fiducial and Bayesian approaches, the review is not intended to re‐open the philosophical debate that has lasted more than two hundred years. On the contrary, it is hoped that the article will help bridge the gaps between these different statistical procedures. Il est courant, en inférence fréquentielle, d'utiliser un point unique (une estimation ponctuelle) ou un intervalle (intervalle de confiance) dans le but d'estimer un paramètre d'intér^t. Une question très simple se pose: peut‐on également utiliser, dans le même but, et dans la même optique fréquentielle, à la façon dont les Bayésiens utilisent une loi a posteriori, une distribution de probabilité? La réponse est affirmative, et les distributions de confiance apparaissent comme un choix naturel dans ce contexte. Le concept de distribution de confiance a une longue histoire, longtemps associée, à tort, aux théories d'inférence fiducielle, ce qui a compromis son développement dans l'optique fréquentielle. Les distributions de confiance ont récemment attiré un regain d'intérêt, et plusieurs résultats ont mis en évidence leur potentiel considérable en tant qu'outil inférentiel. Cet article présente une définition moderne du concept, et examine les ses évolutions récentes. Il aborde les méthodes d'inférence, les problèmes d'optimalité, et les applications. A la lumière de ces nouveaux développements, le concept de distribution de confiance englobe et unifie un large éventail de cas particuliers, depuis les exemples paramétriques réguliers (distributions fiducielles), les lois de rééchantillonnage, les p ‐valeurs et les fonctions de vraisemblance normalisées jusqu'aux a priori et posteriori bayésiens. La discussion est entièrement menée d'un point de vue fréquentiel, et met l'accent sur les applications dans lesquelles les solutions fréquentielles sont inexistantes ou d'une application difficile. Bien que nous attirions également l'attention sur les similitudes et les différences que présentent les approches fréquentielle, fiducielle, et Bayésienne, notre intention n'est pas de rouvrir un débat philosophique qui dure depuis près de deux cents ans. Nous espérons bien au contraire contribuer à combler le fossé qui existe entre les différents points de vue. In frequentist inference, we commonly use a single point (point estimator) or an interval (confidence interval/“interval estimator”) to estimate a parameter of interest. A very simple question is: Can we also use a distribution function (“distribution estimator”) to estimate a parameter of interest in frequentist inference in the style of a Bayesian posterior? The answer is affirmative, and confidence distribution is a natural choice of such a “distribution estimator”. The concept of a confidence distribution has a long history, and its interpretation has long been fused with fiducial inference. Historically, it has been misconstrued as a fiducial concept, and has not been fully developed in the frequentist framework. In recent years, confidence distribution has attracted a surge of renewed attention, and several developments have highlighted its promising potential as an effective inferential tool. This article reviews recent developments of confidence distributions, along with a modern definition and interpretation of the concept. It includes distributional inference based on confidence distributions and its extensions, optimality issues and their applications. Based on the new developments, the concept of a confidence distribution subsumes and unifies a wide range of examples, from regular parametric (fiducial distribution) examples to bootstrap distributions, significance ( p ‐value) functions, normalized likelihood functions, and, in some cases, Bayesian priors and posteriors. The discussion is entirely within the school of frequentist inference, with emphasis on applications providing useful statistical inference tools for problems where frequentist methods with good properties were previously unavailable or could not be easily obtained. Although it also draws attention to some of the differences and similarities among frequentist, fiducial and Bayesian approaches, the review is not intended to re‐open the philosophical debate that has lasted more than two hundred years. On the contrary, it is hoped that the article will help bridge the gaps between these different statistical procedures. |
Author | Singh, Kesar Xie, Min-ge |
Author_xml | – sequence: 1 givenname: Min-ge surname: Xie fullname: Xie, Min-ge email: Department of Statistics and Biostatistics, Rutgers University, Piscataway, NJ 08854, USA mxie@stat.rutgers.edu organization: Department of Statistics and Biostatistics, Rutgers University, Piscataway, NJ 08854, USA E-mail: mxie@stat.rutgers.edu – sequence: 2 givenname: Kesar surname: Singh fullname: Singh, Kesar email: Department of Statistics and Biostatistics, Rutgers University, Piscataway, NJ 08854, USA mxie@stat.rutgers.edu organization: Department of Statistics and Biostatistics, Rutgers University, Piscataway, NJ 08854, USA E-mail: mxie@stat.rutgers.edu |
BookMark | eNp9kUFPFDEYhhuCCQt44W7SxIsxDrTzdaYdb7iyC0iAgEZuTXf2m9h1tsW2K_Lv7TpAIjH20ibv8zZfn26TTecdErLH2T7P68C6GPZ5yRjbICMuK15UqoRNMmLA6kJKEFtkO8ZFBqBUYkRuxt51do6uRfrRxhTsbJWsd-9o-oZ0EvDHCl3KwV8pPYrJLk3ygfqOGnppglliwvCeHtIr_Gnxbpe86Ewf8eXDvkO-TI4-j4-Ls4vpyfjwrGhFKVlRdRIaU4oaQFbQznlVK4FdNWMzVatKKQGq4bJpVMsVzDkyqBsGUtQGAUHCDnkz3HsbfJ41Jr20scW-Nw79KmouZcZBKZbR18_QhV8Fl6fTHEpRSVay9YVsoNrgYwzY6dYms351Csb2mjO9Vq3XqvUf1bny9lnlNmQ94f7fMB_gO9vj_X9IfXJ-ffXYeTV0FjE7f-oIKBuV3eS8GPL8R_jrKTfhu65lFqu_nk_z6dPk5nT6IT_2N-ZDp4I |
CitedBy_id | crossref_primary_10_1016_j_dental_2017_12_005 crossref_primary_10_1007_s10765_015_1917_0 crossref_primary_10_1186_s13293_023_00544_5 crossref_primary_10_1109_TSIPN_2022_3188458 crossref_primary_10_1016_j_ijar_2017_10_013 crossref_primary_10_1016_j_swevo_2019_06_002 crossref_primary_10_1016_j_ecosta_2023_04_006 crossref_primary_10_1002_sim_8738 crossref_primary_10_6339_25_JDS1161E crossref_primary_10_1007_s00362_024_01549_x crossref_primary_10_1007_s13253_021_00472_0 crossref_primary_10_3390_brainsci7090114 crossref_primary_10_1080_01621459_2014_957288 crossref_primary_10_1016_j_jmva_2019_104567 crossref_primary_10_1002_sim_9701 crossref_primary_10_1080_10618600_2024_2441165 crossref_primary_10_1002_sim_8293 crossref_primary_10_1080_01621459_2014_899235 crossref_primary_10_51387_23_NEJSDS38 crossref_primary_10_1016_j_stamet_2014_07_002 crossref_primary_10_1080_01621459_2023_2252143 crossref_primary_10_1002_wics_1527 crossref_primary_10_1016_j_jece_2024_114585 crossref_primary_10_51387_22_NEJSDS4 crossref_primary_10_1016_j_ijar_2022_09_011 crossref_primary_10_1016_j_ijar_2013_04_010 crossref_primary_10_1007_s40815_021_01074_1 crossref_primary_10_1080_01621459_2014_946318 crossref_primary_10_1111_cobi_13499 crossref_primary_10_2139_ssrn_4507005 crossref_primary_10_1080_24709360_2017_1400714 crossref_primary_10_1016_j_ijar_2013_09_017 crossref_primary_10_1007_s42452_024_05685_9 crossref_primary_10_2139_ssrn_2919933 crossref_primary_10_1080_00401706_2015_1017116 crossref_primary_10_1111_biom_13469 crossref_primary_10_1111_sjos_12530 crossref_primary_10_1007_s10182_021_00390_z crossref_primary_10_1111_insr_12415 crossref_primary_10_1186_s12859_023_05211_5 crossref_primary_10_51387_22_NEJSDS6 crossref_primary_10_1080_10618600_2025_2459287 crossref_primary_10_3390_foods10112520 crossref_primary_10_1080_01621459_2019_1672557 crossref_primary_10_1002_sim_9557 crossref_primary_10_1007_s13171_021_00267_y crossref_primary_10_1080_01621459_2020_1762614 crossref_primary_10_1007_s42519_022_00309_0 crossref_primary_10_1080_03610926_2019_1576896 crossref_primary_10_1016_j_csda_2022_107587 crossref_primary_10_1109_ACCESS_2020_3042180 crossref_primary_10_1214_15_EJS984 crossref_primary_10_1111_rssb_12429 crossref_primary_10_1016_j_jspi_2017_09_009 crossref_primary_10_1007_s00362_023_01445_w crossref_primary_10_1016_j_jspi_2017_09_007 crossref_primary_10_1186_s12859_017_1745_2 crossref_primary_10_1111_biom_12497 crossref_primary_10_1111_insr_12354 crossref_primary_10_3390_sym15040880 crossref_primary_10_1080_01621459_2020_1850461 crossref_primary_10_1109_TBDATA_2018_2810187 crossref_primary_10_1146_annurev_statistics_010814_020310 crossref_primary_10_1214_21_SS131 crossref_primary_10_3390_cancers15194674 crossref_primary_10_1080_00401706_2019_1665591 crossref_primary_10_1080_01621459_2021_1902817 crossref_primary_10_1016_j_jclinepi_2022_02_010 crossref_primary_10_1016_j_spl_2015_06_016 crossref_primary_10_1214_15_EJS993 crossref_primary_10_1111_sjos_12117 crossref_primary_10_1080_03610926_2020_1836218 crossref_primary_10_12677_aam_2025_143105 crossref_primary_10_1080_02331888_2022_2064862 crossref_primary_10_1111_biom_12998 crossref_primary_10_1111_insr_12115 crossref_primary_10_1098_rspa_2020_0579 crossref_primary_10_1016_j_jeconom_2022_01_008 crossref_primary_10_1139_cjfas_2015_0086 crossref_primary_10_1007_s11222_014_9522_9 crossref_primary_10_1016_j_ejor_2020_11_041 crossref_primary_10_1016_j_jspi_2022_06_001 crossref_primary_10_57019_jmv_1306685 crossref_primary_10_1016_j_fmre_2021_08_012 crossref_primary_10_1080_01621459_2014_985827 crossref_primary_10_5926_arepj_62_143 crossref_primary_10_1214_18_AOAS1160SF crossref_primary_10_1051_epjconf_201819102017 crossref_primary_10_1080_10618600_2020_1714633 crossref_primary_10_1080_00031305_2020_1816214 crossref_primary_10_1111_dom_14384 crossref_primary_10_1214_21_EJS1837 crossref_primary_10_1093_biomet_asad010 crossref_primary_10_1016_j_ijar_2023_108946 crossref_primary_10_1109_TVCG_2023_3327195 crossref_primary_10_3389_fmolb_2022_800856 crossref_primary_10_1007_s42952_021_00157_x crossref_primary_10_1016_j_fss_2022_05_009 crossref_primary_10_3390_e18060211 crossref_primary_10_1111_sjos_12581 crossref_primary_10_1177_0962280218773520 crossref_primary_10_1214_21_STS833 crossref_primary_10_1016_j_ifacol_2015_12_048 crossref_primary_10_1080_01621459_2021_1946405 crossref_primary_10_1007_s13253_023_00551_4 crossref_primary_10_1007_s11336_021_09747_4 crossref_primary_10_1007_s10260_020_00520_y crossref_primary_10_1016_j_spl_2017_10_011 crossref_primary_10_1111_biom_12231 crossref_primary_10_1146_annurev_statistics_040522_021241 crossref_primary_10_1016_j_patcog_2022_108536 crossref_primary_10_1115_1_4066380 crossref_primary_10_1007_s42952_023_00237_0 crossref_primary_10_1080_01621459_2020_1736082 crossref_primary_10_2139_ssrn_2639266 crossref_primary_10_1214_21_AOS2132 crossref_primary_10_1080_03610926_2016_1248781 crossref_primary_10_1002_cjs_11569 crossref_primary_10_1016_j_clinph_2016_04_027 crossref_primary_10_1086_698302 crossref_primary_10_4236_apm_2016_68041 crossref_primary_10_1155_2021_5526717 crossref_primary_10_1002_wics_1329 crossref_primary_10_1016_j_jspi_2017_09_012 crossref_primary_10_1016_j_jspi_2017_09_013 crossref_primary_10_1093_biomet_asz016 crossref_primary_10_1016_j_jspi_2017_09_010 crossref_primary_10_1016_j_jspi_2017_09_016 crossref_primary_10_1002_cjs_11726 crossref_primary_10_1016_j_jspi_2017_09_017 crossref_primary_10_1016_j_jspi_2017_09_014 crossref_primary_10_1007_s10651_019_00432_5 crossref_primary_10_1002_sim_8829 crossref_primary_10_1093_jrsssb_qkae082 crossref_primary_10_1111_biom_13786 crossref_primary_10_1214_21_STS842 crossref_primary_10_29220_CSAM_2022_29_3_301 crossref_primary_10_1098_rspa_2018_0565 crossref_primary_10_1111_insr_12064 crossref_primary_10_1007_s11425_021_2086_5 crossref_primary_10_1016_j_stamet_2014_01_003 crossref_primary_10_1111_insr_12067 crossref_primary_10_1523_ENEURO_0484_23_2024 crossref_primary_10_1016_j_jspi_2016_11_006 crossref_primary_10_1080_10618600_2022_2090946 crossref_primary_10_1371_journal_pcbi_1011417 crossref_primary_10_1080_01621459_2016_1165102 crossref_primary_10_1214_19_STS765 crossref_primary_10_1080_24754269_2021_1877950 crossref_primary_10_1007_s11222_024_10471_z crossref_primary_10_1016_j_ijar_2024_109211 crossref_primary_10_3390_ijerph13060605 crossref_primary_10_1186_s12874_020_01105_9 crossref_primary_10_1016_j_foodcont_2015_01_019 crossref_primary_10_1016_j_ijar_2021_09_001 crossref_primary_10_1080_07474938_2020_1772568 crossref_primary_10_1007_s11336_017_9554_0 crossref_primary_10_1002_sim_9125 crossref_primary_10_1016_j_ins_2018_04_047 crossref_primary_10_1080_01621459_2014_931237 crossref_primary_10_1016_j_ijar_2023_109060 crossref_primary_10_1080_00031305_2023_2226184 crossref_primary_10_3150_15_BEJ750 crossref_primary_10_1080_01621459_2018_1554485 crossref_primary_10_1093_nop_npae001 crossref_primary_10_1177_09622802231221201 crossref_primary_10_1007_s11749_015_0440_8 crossref_primary_10_1016_j_csda_2021_107377 crossref_primary_10_5351_KJAS_2015_28_2_269 crossref_primary_10_1214_12_EJS734 crossref_primary_10_2139_ssrn_3515288 crossref_primary_10_1016_j_ijar_2019_06_005 crossref_primary_10_1080_01621459_2023_2233162 crossref_primary_10_1214_21_AOAS1563 crossref_primary_10_1002_sim_10000 crossref_primary_10_1080_00031305_2016_1208629 crossref_primary_10_1080_03610926_2021_1921805 crossref_primary_10_1017_psa_2023_174 crossref_primary_10_1007_s00362_024_01542_4 crossref_primary_10_1007_s11425_017_9325_9 crossref_primary_10_1111_rssb_12070 crossref_primary_10_1177_2059799119826518 crossref_primary_10_3847_1538_4357_aa63f0 crossref_primary_10_1016_j_jspi_2015_11_003 crossref_primary_10_3150_17_BEJ942 crossref_primary_10_1093_biomtc_ujae152 crossref_primary_10_1214_14_STS474 crossref_primary_10_1002_cjs_11559 crossref_primary_10_1111_rssa_12647 |
Cites_doi | 10.1093/biostatistics/kxn034 10.1214/aos/1176346267 10.1214/11-IMSCOLL814 10.2307/1267823 10.1214/aoms/1177706618 10.1093/biomet/81.2.341 10.1214/11-STS352 10.1002/sim.4780071207 10.1214/aos/1018031259 10.1002/9780470316436 10.1002/sim.4780131304 10.1111/j.0006-341X.2003.00112.x 10.1016/j.ijar.2007.03.004 10.1017/S0305004100016297 10.1111/1467-9469.00285 10.1214/11-STS352B 10.1111/j.1541-0420.2010.01486.x 10.1198/jasa.2009.0142 10.1017/CBO9780511813559 10.1214/ss/1177011233 10.1142/9789812708298_0029 10.1007/978-1-4899-3210-5 10.1111/j.2517-6161.1963.tb00512.x 10.5705/ss.2011.040a 10.1080/01621459.1983.10477938 10.1080/01621459.1961.10482107 10.1201/9780429246593 10.1214/009053604000001084 10.1214/10-STS337 10.1007/BF02926018 10.1002/bimj.200410104 10.1080/01621459.1991.10475029 10.1214/10-STS322 10.1002/sim.2934 10.1007/978-1-4757-3500-0 10.1214/aos/1176348128 10.1007/978-1-4899-2887-0 10.1111/j.2517-6161.1960.tb00374.x 10.1198/jasa.2011.tm09803 10.1080/00031305.2000.10474555 10.1093/biomet/43.3-4.423 10.1080/01621459.1973.10481362 10.1093/biomet/asq001 10.1007/s13253-009-0002-1 10.1098/rsta.1937.0005 10.1093/biomet/79.2.231 10.1080/01621459.1987.10478410 10.1214/074921707000000102 10.1098/rstl.1763.0053 10.2307/3315916 10.1093/biomet/asq045 10.1098/rsta.1922.0009 10.1214/12-AOAS585 10.2139/ssrn.1777272 10.1214/aoms/1177698624 10.1093/biomet/80.1.3 10.2307/3314746 10.1002/(SICI)1097-0258(19990215)18:3<321::AID-SIM28>3.0.CO;2-P 10.1111/j.2397-2335.1934.tb04184.x 10.1111/j.2517-6161.1992.tb01876.x 10.1016/0167-7152(93)90196-P 10.1111/j.2517-6161.1958.tb00278.x 10.2307/2983527 10.2307/3314658 10.1002/(SICI)1097-0258(19970415)16:7<769::AID-SIM495>3.0.CO;2-V |
ContentType | Journal Article |
Copyright | 2013 International Statistical Institute 2013 The Authors. International Statistical Review © 2013 International Statistical Institute Copyright John Wiley & Sons, Inc. Apr 2013 |
Copyright_xml | – notice: 2013 International Statistical Institute – notice: 2013 The Authors. International Statistical Review © 2013 International Statistical Institute – notice: Copyright John Wiley & Sons, Inc. Apr 2013 |
DBID | BSCLL AAYXX CITATION 7SC 8FD H8D JQ2 L7M L~C L~D |
DOI | 10.1111/insr.12000 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 1751-5823 |
EndPage | 39 |
ExternalDocumentID | 2939273561 10_1111_insr_12000 INSR12000 43298799 ark_67375_WNG_67KFXJGB_1 |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OC 29J 31~ 33P 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5RE 5VS 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AABCJ AAESR AAEVG AAHHS AAKYL AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABDBF ABEML ABFAN ABIVO ABJNI ABLJU ABPVW ABQDR ABXSQ ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACDIW ACGFO ACGFS ACIWK ACMTB ACNCT ACPOU ACSCC ACTMH ACXBN ACXQS ADACV ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADODI ADOZA ADULT ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AELLO AELPN AENEX AEQDE AEUPB AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFVYC AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR AKBRZ ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BHOJU BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DU5 EBS ECEWR EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GIFXF GODZA H.T H.X HF~ HGD HGLYW HQ6 HVGLF HZ~ H~9 IPSME IX1 J0M JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K48 L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K RBU RNS ROL RPE RX1 SA0 SUPJJ TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 YYP ZZTAW ~02 ~IA ~WT AAHQN AAMMB AAMNL AANHP AAWIL AAYCA ABAWQ ACHJO ACRPL ACUHS ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGLNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIHAF ALRMG ALVPJ AMVHM AAYXX AGHNM CITATION 7SC 8FD H8D JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c4270-5f739a24633753cd15684ef5b0b868588438917998c183d1e036903746ae3e373 |
IEDL.DBID | DR2 |
ISSN | 0306-7734 |
IngestDate | Thu Jul 10 22:08:38 EDT 2025 Fri Jul 25 18:55:28 EDT 2025 Tue Jul 01 00:48:46 EDT 2025 Thu Apr 24 23:00:26 EDT 2025 Wed Jan 22 16:56:06 EST 2025 Sun Aug 31 12:00:40 EDT 2025 Wed Oct 30 09:53:05 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4270-5f739a24633753cd15684ef5b0b868588438917998c183d1e036903746ae3e373 |
Notes | istex:68DB2176758FF74D8E3B9E2C8AAE29513B6C83E8 ark:/67375/WNG-67KFXJGB-1 ArticleID:INSR12000 ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Literature Review-2 ObjectType-Feature-2 content type line 23 |
PQID | 1324570207 |
PQPubID | 105652 |
PageCount | 37 |
ParticipantIDs | proquest_miscellaneous_1770373880 proquest_journals_1324570207 crossref_citationtrail_10_1111_insr_12000 crossref_primary_10_1111_insr_12000 wiley_primary_10_1111_insr_12000_INSR12000 jstor_primary_43298799 istex_primary_ark_67375_WNG_67KFXJGB_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2013 |
PublicationDateYYYYMMDD | 2013-04-01 |
PublicationDate_xml | – month: 04 year: 2013 text: April 2013 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Hoboken |
PublicationTitle | International statistical review |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Blackwell Publishing John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell Publishing – name: John Wiley & Sons, Inc |
References | Singh, K., Xie, M. & Strawderman, W.E. (2005). Combining information from independent sources through confidence distributions. Ann. Statist. 33, 159-183. Hannig, J. (2009). On generalized fiducial inference. Statist. Sinica , 19, 491-544. Wong, A.C.M. (1993). A note on inference for the mean parameter of the gamma distribution. Stat. Probab. Lett. , 17, 61-66. Martin, R., Zhang, J. & Liu, C. (2010). Dempster-Shafer theory and statistical inference with weak beliefs. Statist. Sci. , 25, 72-87. Sterne, T.H. (1954). Some remarks on confidence or fiducial limits. Biometrika , 41, 275-278. Sutton, A.J. & Higgins, J.P.T. (2008). Recent developments in meta-analysis. Stat. Med. , 27, 625-650. Fraser, D.A.S. & Mcdunnough, P. (1984). Further remarks on asymptotic normality of likelihood and conditional analyses. Canad. J. Statist. , 12, 183-190. LeCam, L. (1958). Les propriétés asymptotiques des solutions de Bayes. Plubl. Inst. Statist. Univ. Paris , 7, 17-35. Schweder, T. (2003). Abundance estimation from multiple photo surveys: Confidence distributions and reduced likelihoods for bowhead whales off Alaska. Biometrics , 59, 974-983. Singh, K. & Xie, M. (2011). Discussions on professor Fraserâs article on "Is Bayes posterior just quick and dirty confidence? Stat. Sci ., 26, 319-321. Fisher, R.A. (1973). Statistical Methods and Scientific Inference , 3rd ed. New York : Hafner Press. Rao, C.R. (1973). Linear Statistical Inference and Its Applications , 2nd ed. New York : Wiley & Sons. Barndorff-Nielsen, O.E. & Cox, D.R. (1994). Inference and Asymptotics . London : Chapman & Hall. Blyth, C.R. & Still, H. (1983). Binomial confidence intervals. J. Amer. Statist. Assoc. , 78, 108-116. Cox, D.R. (2006). Principles of Statistical Inference. London : Cambridge University Press. DiCiccio, T. & Efron, B. (1992). More accurate confidence intervals in exponential families. Biometrika , 79, 231-45. Bityukov, S.I., Krasnikov, N.V., Smirnova, V.V. & Taperechkina, V.A. (2007). The transform between the space of observed values and the space of possible values of the parameter. Proc. Sci. (ACAT) , 62, 1-9. LeCam, L. (1953). On some asymptotic properties of maximum likelihood estimates and related Bayes estimates. University of California Publications in Statistics , 1, 277-330. David, H.A. & Edwards, A.W.F. (2001). Annotated Readings in the History of Statistics . New York : Springer-Verlag. Marden, J.I. (1991). Sensitive and sturdy p-values. Ann. Statist . 19, 918-934. Blaker, H. (2000). Confidence curves and improved exact confidence intervals for discrete distributions. Canad. J. Statist. , 28, 783-798. Kim, D. & Lindsay, B.G. (2011). Using confidence distribution sampling to visualize confidence sets. Statist. Sinica , 21, 923-948. Cox, D.R. & Hinkley, D.V. (1974). Theoretical Statistics . London : Chapman & Hall. Efron, B. (1986). Why isn't everyone a Bayesian? Amer. Statist. , 40, 262-266. Johnson, R.A. (1967). An asymptotic expansion for posterior distributions. Ann. Math. Stat. , 38, 1899-1906. Blaker, H. & Spjøtvoll, E. (2000). Paradoxes and improvements in interval estimation. Amer. Statist. , 54, 242-247. Kendall, M. & Stuart, A. (1974). The Advanced Theory of Statistics , 2, 3rd ed. London : Griffin. Crow, E.L. (1956). Confidence intervals for a proportion. Biometrika , 43, 423-435. Dempster, A.P. (2008). The Dempster-Shafer calculus for statisticians. Internat. J. Approx. Reason. , 48, 365-377. Fisher, R.A. (1960). On some extensions of Bayesian inference proposed by Mr. Lindley. J. R. Stat. Soc. B, 22, 299-301. Singh, K., Xie, M. & Strawderman, W.E. (2007). Confidence distribution (CD)-distribution estimator of a parameter. In Complex Datasets and Inverse Problems. IMS Lecture Notes-Monograph Series, 54, 132-150. Parmar, M.K.B., Spiegelhalter, D.J, Freedman, L.S. & Chart Steering Committee (1994). The chart trials: Bayesian design and monitoring in practice. Stat. Med. , 13, 1297-1312. Tian, L., Wang, R., Cai, T. & Wei, L.J. (2011). The highest confidence density region and its usage for joint inferences about constrained parameters. Biometrics , 67, 604-610. Fisher, R.A. (1956). Statistical Methods and Scientific Inference. Edinburgh : Oliver and Boyd. Efron, B. & Tibshirani, R.J. (1994). An Introduction to the Bootstrap. London : Chapman & Hall. Yang, G., Shi, P. & Xie, M. (2012). gmeta : Meta-Analysis via a Unified Framework under Confidence Distribution (R package). Version 2. Available at http://stat.rutgers.edu/home/mxie/packages/gmetaRpackage/. Fisher, R.A. (1930). Inverse probability. Proc. Cambridge Philos. Soc. , 26, 528-535. Schweder, T., Sadykova, D., Rugh, D. & Koski, W. (2010). Population estimates from aerial photographic surveys of naturally and variably marked bowhead whales. J. Agric. Biol. Environ. Stat. , 15, 1-19. Zabell, S.L. (1992). R.A. Fisher and fiducial argument. Stat. Sci. , 7, 369-387. Efron, B. (1998). R.A.Fisher in the 21st century. Stat. Sci. , 13, 95-122. Reid, N. & Fraser, D.A.S. (2010). Mean likelihood and higher order approximations. Biometrika , 97, 159-170. Tian, L., Cai, T., Pfeffer, M., Piankov, N., Cremieux, P. & Wei, L. (2009). Exact and efficient inference procedure for meta-analysis and its application to the analysis of independent 2Ã 2 tables with all available data but without artificial continuity correction. Biostatistics , 10, 275-281. Cox, D.R. (1958). Some problems with statistical inference. Ann. Math. Stat ., 29, 357-372. Littell, R.C. and Folks, J.L. (1973). Asymptotic optimality of Fisher's method of combining independent tests. II. J. Amer. Statist. Assoc. , 68, 193-194. Neyman, J. (1937). Outline of a theory of statistical estimation based on the classical theory of probability. Philos.Trans. R. Soc. A., 237, 333-380. Berger, R.L. (1982). Multiparameter hypothesis testing and acceptance sampling. Technometrics , 24, 295-300. Joseph, L., du Berger, R. & Belisle, P. (1997). Bayesian and mixed Bayesian/likelihood criteria for sample size determination. Stat. Med. , 16, 769-781. Schweder, T. (2007). Confidence nets for curves. Advances in Statistical Modeling and Inference. Essays in honor of Kjell A. Doksum. World Scientific. 593-609. Birnbaum, A. (1961). Confidence curves: An omnibus technique for estimation and testing statistical hypotheses. J. Amer. Statist. Assoc. , 56, 246-249. Parzen, M., Wei, L.J. & Ying, Z. (1994). A resampling method based on pivotal estimating functions. Biometrika , 81, 341-350. Babu, G.J. & Singh, K. (1983). Inference on means using the bootstrap. Ann. Statist. , 11, 999-1003. Normand, S.-L. (1999). Meta-analysis: Formulating, evaluating, combining, and reporting. Stat. Med. , 18, 321-359. Efron, B. (1987). Better bootstrap confidence intervals and bootstrap approximations. J. Amer. Statist. Assoc. , 82, 171-185. Welch, B.L. & Peers, H.W. (1963). On formulae for confidence points based on integrals of weighted likelihoods. J. R. Stat. Soc. Ser. B , 25, 318-29. Lehmann, E.L. (1991). Testing Statistical Hypotheses. New York : Springer-Verlag. Kass, R. (2011). Statistical inference: The big picture. Statist. Sci. , 26, 1-9. Fraser, D.A.S. (2011). Is Bayes posterior just quick and dirty confidence? Stat. Sci. , 26, 299-316. Efron, B. (1993). Bayes and likelihood calculations from confidence intervals. Biometrika , 80, 3-26. Wong, A.C.M. (1995). On approximate inference for the two-parameter gamma model. Stat. Papers , 36, 49-59. Fisher, R.A. (1922). On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. A , 222, 309-368. Schweder, T. & Hjort, N.L. (2002). Confidence and likelihood. Scand. J. Stat. , 29, 309-332. Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Phil. Trans. Roy. Soc. , 53, 370-418; 54, 296-325. Reprinted in Biometrika, 45 (1958), 293-315. Casella, G. (1986). Refining binomial confidence intervals. Canad. J. Statist. , 14, 113-129. Mau, J. (1988). A statistical assessment of clinical equivalence. Stat. Med. , 7, 1267-1277. Spiegelhalter, D.J., Freedman, L.S. & Parmar, M.K.B. (1994). Bayesian approaches to randomized trials. J. Roy. Statist. Soc. Ser. A , 157, 357-416. Bender, R., Berg, G. & Zeeb, H. (2005). Tutorial: Using confidence curves in medical research. Biom. J. , 47, 237-247. Lindley, D.V. (1958). Fiducial distribution and Bayes theorem. J. R. Stat. Soc. Ser. B, 20, 102-107. Liu, R.Y., Parelius, J. & Singh, K. (1999). Multivariate analysis by data depth: Descriptive statistics, graphics and inference. Ann. Statist. , 27, 783-858. Fraser, D.A.S. (1991). Statistical inference: Likelihood to significance. J. Amer. Statist. Assoc. , 86, 258-265. Xie, M., Singh, K. & Strawderman, W.E. (2011). Confidence distributions and a unifying framework for meta-analysis. J. Amer. Statist. Assoc. , 106, 320-333. Hall, P. (1992). On the removal of skewness by transformation. J. R. Stat. Soc. Ser. B, 54, 221-228. Xie, M., Singh, K. & Zhang, C.-H. (2009). Confidence intervals for population ranks in the presence of ties or near ties. J. Amer. Statist. Assoc. , 104, 775-788. Hampel, F. (2006). The proper fiducial argument. Inf. Transf. Combin. , LNCS 4123, pp. 512 -526. Neyman, J. (1934). On the two different aspects of representative method: The method of stratified sampling and the method of purpose selection. J. Roy. Statist. Soc. Ser. A , 97, 558-625. Hall, P. & Miller, H. (2010). Bootstrap confidence intervals and hypothesis tests for extrema of parameters. Biometrika , 97, 881-892. 2010; 97 1991; 19 2010; 15 1995; 36 1954; 41 1974 2003; 59 1973 1992; 54 1983; 11 1982; 24 1992; 7 1763; 53 2010; 25 2009; 10 1986; 40 2001 1987; 82 1999; 18 2000; 54 1956; 43 1991; 86 1984; 12 2008; 27 1997; 16 2011; 21 1993; 80 2011; 67 2007; 62 2011; 26 2009; 19 2005; 33 1958; 7 1998; 13 1994; 157 1963; 25 2000; 28 2012 2010 1999; 27 1986; 14 2007 2006 1994 1992; 79 2004 2003 1991 1994; 81 1961; 56 2007; 54 1956 1953; 1 2005; 47 1983; 78 1960; 22 1937; 237 2002; 29 1993; 17 2011; 106 1958; 29 1973; 68 1930; 26 1988; 7 1958; 20 1934; 97 2008; 48 1922; 222 1994; 13 1967; 38 2013 2009; 104 2012; 8 e_1_2_10_23_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_42_1 Fisher R.A. (e_1_2_10_30_1) 1930; 26 Yang G. (e_1_2_10_84_1) 2012 Schweder T (e_1_2_10_65_1) 2003 Bityukov S.I. (e_1_2_10_10_1) 2007; 62 LeCam L. (e_1_2_10_47_1) 1958; 7 e_1_2_10_70_1 Littell R.C. (e_1_2_10_49_1) 1973; 68 e_1_2_10_2_1 LeCam L. (e_1_2_10_46_1) 1953; 1 e_1_2_10_72_1 Blyth C.R. (e_1_2_10_13_1) 1983; 78 Fisher R.A. (e_1_2_10_33_1) 1973 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_76_1 Efron B. (e_1_2_10_27_1) 1998; 13 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 Welch B.L. (e_1_2_10_78_1) 1963; 25 e_1_2_10_11_1 e_1_2_10_51_1 Efron B. (e_1_2_10_28_1) 1994 e_1_2_10_80_1 Wasserman L. (e_1_2_10_77_1) 2007 e_1_2_10_82_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 Hannig J. (e_1_2_10_40_1) 2009; 19 e_1_2_10_25_1 Hall P. (e_1_2_10_37_1) 1992; 54 e_1_2_10_67_1 e_1_2_10_45_1 e_1_2_10_22_1 Fisher R.A. (e_1_2_10_31_1) 1956 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Bityukov S. (e_1_2_10_9_1) 2010 Fisher R.A. (e_1_2_10_32_1) 1960; 22 e_1_2_10_71_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 Marden J.I. (e_1_2_10_53_1) 1991; 19 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_35_1 e_1_2_10_59_1 Lindley D.V. (e_1_2_10_50_1) 1958; 20 Hampel F. (e_1_2_10_39_1) 2006 Kendall M. (e_1_2_10_44_1) 1974 Sterne T.H. (e_1_2_10_73_1) 1954; 41 e_1_2_10_60_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_85_1 Efron B. (e_1_2_10_24_1) 1986; 40 e_1_2_10_66_1 Lehmann E.L. (e_1_2_10_48_1) 1991 Blaker H. (e_1_2_10_12_1) 2000; 54 e_1_2_10_26_1 e_1_2_10_68_1 |
References_xml | – reference: Lehmann, E.L. (1991). Testing Statistical Hypotheses. New York : Springer-Verlag. – reference: Fisher, R.A. (1922). On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. A , 222, 309-368. – reference: Martin, R., Zhang, J. & Liu, C. (2010). Dempster-Shafer theory and statistical inference with weak beliefs. Statist. Sci. , 25, 72-87. – reference: Wong, A.C.M. (1995). On approximate inference for the two-parameter gamma model. Stat. Papers , 36, 49-59. – reference: Dempster, A.P. (2008). The Dempster-Shafer calculus for statisticians. Internat. J. Approx. Reason. , 48, 365-377. – reference: Xie, M., Singh, K. & Zhang, C.-H. (2009). Confidence intervals for population ranks in the presence of ties or near ties. J. Amer. Statist. Assoc. , 104, 775-788. – reference: Babu, G.J. & Singh, K. (1983). Inference on means using the bootstrap. Ann. Statist. , 11, 999-1003. – reference: Sterne, T.H. (1954). Some remarks on confidence or fiducial limits. Biometrika , 41, 275-278. – reference: Birnbaum, A. (1961). Confidence curves: An omnibus technique for estimation and testing statistical hypotheses. J. Amer. Statist. Assoc. , 56, 246-249. – reference: Efron, B. (1987). Better bootstrap confidence intervals and bootstrap approximations. J. Amer. Statist. Assoc. , 82, 171-185. – reference: Kim, D. & Lindsay, B.G. (2011). Using confidence distribution sampling to visualize confidence sets. Statist. Sinica , 21, 923-948. – reference: Schweder, T., Sadykova, D., Rugh, D. & Koski, W. (2010). Population estimates from aerial photographic surveys of naturally and variably marked bowhead whales. J. Agric. Biol. Environ. Stat. , 15, 1-19. – reference: Efron, B. (1993). Bayes and likelihood calculations from confidence intervals. Biometrika , 80, 3-26. – reference: Spiegelhalter, D.J., Freedman, L.S. & Parmar, M.K.B. (1994). Bayesian approaches to randomized trials. J. Roy. Statist. Soc. Ser. A , 157, 357-416. – reference: Fisher, R.A. (1956). Statistical Methods and Scientific Inference. Edinburgh : Oliver and Boyd. – reference: Kass, R. (2011). Statistical inference: The big picture. Statist. Sci. , 26, 1-9. – reference: Cox, D.R. (1958). Some problems with statistical inference. Ann. Math. Stat ., 29, 357-372. – reference: Hall, P. & Miller, H. (2010). Bootstrap confidence intervals and hypothesis tests for extrema of parameters. Biometrika , 97, 881-892. – reference: Tian, L., Cai, T., Pfeffer, M., Piankov, N., Cremieux, P. & Wei, L. (2009). Exact and efficient inference procedure for meta-analysis and its application to the analysis of independent 2Ã 2 tables with all available data but without artificial continuity correction. Biostatistics , 10, 275-281. – reference: Yang, G., Shi, P. & Xie, M. (2012). gmeta : Meta-Analysis via a Unified Framework under Confidence Distribution (R package). Version 2. Available at http://stat.rutgers.edu/home/mxie/packages/gmetaRpackage/. – reference: Singh, K. & Xie, M. (2011). Discussions on professor Fraserâs article on "Is Bayes posterior just quick and dirty confidence? Stat. Sci ., 26, 319-321. – reference: Xie, M., Singh, K. & Strawderman, W.E. (2011). Confidence distributions and a unifying framework for meta-analysis. J. Amer. Statist. Assoc. , 106, 320-333. – reference: Cox, D.R. & Hinkley, D.V. (1974). Theoretical Statistics . London : Chapman & Hall. – reference: Joseph, L., du Berger, R. & Belisle, P. (1997). Bayesian and mixed Bayesian/likelihood criteria for sample size determination. Stat. Med. , 16, 769-781. – reference: Lindley, D.V. (1958). Fiducial distribution and Bayes theorem. J. R. Stat. Soc. Ser. B, 20, 102-107. – reference: Kendall, M. & Stuart, A. (1974). The Advanced Theory of Statistics , 2, 3rd ed. London : Griffin. – reference: Schweder, T. & Hjort, N.L. (2002). Confidence and likelihood. Scand. J. Stat. , 29, 309-332. – reference: Berger, R.L. (1982). Multiparameter hypothesis testing and acceptance sampling. Technometrics , 24, 295-300. – reference: Littell, R.C. and Folks, J.L. (1973). Asymptotic optimality of Fisher's method of combining independent tests. II. J. Amer. Statist. Assoc. , 68, 193-194. – reference: Neyman, J. (1937). Outline of a theory of statistical estimation based on the classical theory of probability. Philos.Trans. R. Soc. A., 237, 333-380. – reference: Hampel, F. (2006). The proper fiducial argument. Inf. Transf. Combin. , LNCS 4123, pp. 512 -526. – reference: Liu, R.Y., Parelius, J. & Singh, K. (1999). Multivariate analysis by data depth: Descriptive statistics, graphics and inference. Ann. Statist. , 27, 783-858. – reference: Tian, L., Wang, R., Cai, T. & Wei, L.J. (2011). The highest confidence density region and its usage for joint inferences about constrained parameters. Biometrics , 67, 604-610. – reference: Fisher, R.A. (1960). On some extensions of Bayesian inference proposed by Mr. Lindley. J. R. Stat. Soc. B, 22, 299-301. – reference: Rao, C.R. (1973). Linear Statistical Inference and Its Applications , 2nd ed. New York : Wiley & Sons. – reference: Fraser, D.A.S. & Mcdunnough, P. (1984). Further remarks on asymptotic normality of likelihood and conditional analyses. Canad. J. Statist. , 12, 183-190. – reference: Schweder, T. (2007). Confidence nets for curves. Advances in Statistical Modeling and Inference. Essays in honor of Kjell A. Doksum. World Scientific. 593-609. – reference: Mau, J. (1988). A statistical assessment of clinical equivalence. Stat. Med. , 7, 1267-1277. – reference: Fisher, R.A. (1973). Statistical Methods and Scientific Inference , 3rd ed. New York : Hafner Press. – reference: David, H.A. & Edwards, A.W.F. (2001). Annotated Readings in the History of Statistics . New York : Springer-Verlag. – reference: Parmar, M.K.B., Spiegelhalter, D.J, Freedman, L.S. & Chart Steering Committee (1994). The chart trials: Bayesian design and monitoring in practice. Stat. Med. , 13, 1297-1312. – reference: Bityukov, S.I., Krasnikov, N.V., Smirnova, V.V. & Taperechkina, V.A. (2007). The transform between the space of observed values and the space of possible values of the parameter. Proc. Sci. (ACAT) , 62, 1-9. – reference: Reid, N. & Fraser, D.A.S. (2010). Mean likelihood and higher order approximations. Biometrika , 97, 159-170. – reference: Fraser, D.A.S. (1991). Statistical inference: Likelihood to significance. J. Amer. Statist. Assoc. , 86, 258-265. – reference: Marden, J.I. (1991). Sensitive and sturdy p-values. Ann. Statist . 19, 918-934. – reference: Efron, B. (1986). Why isn't everyone a Bayesian? Amer. Statist. , 40, 262-266. – reference: LeCam, L. (1958). Les propriétés asymptotiques des solutions de Bayes. Plubl. Inst. Statist. Univ. Paris , 7, 17-35. – reference: DiCiccio, T. & Efron, B. (1992). More accurate confidence intervals in exponential families. Biometrika , 79, 231-45. – reference: Wong, A.C.M. (1993). A note on inference for the mean parameter of the gamma distribution. Stat. Probab. Lett. , 17, 61-66. – reference: Efron, B. & Tibshirani, R.J. (1994). An Introduction to the Bootstrap. London : Chapman & Hall. – reference: Blaker, H. & Spjøtvoll, E. (2000). Paradoxes and improvements in interval estimation. Amer. Statist. , 54, 242-247. – reference: Hannig, J. (2009). On generalized fiducial inference. Statist. Sinica , 19, 491-544. – reference: Singh, K., Xie, M. & Strawderman, W.E. (2007). Confidence distribution (CD)-distribution estimator of a parameter. In Complex Datasets and Inverse Problems. IMS Lecture Notes-Monograph Series, 54, 132-150. – reference: Blyth, C.R. & Still, H. (1983). Binomial confidence intervals. J. Amer. Statist. Assoc. , 78, 108-116. – reference: Schweder, T. (2003). Abundance estimation from multiple photo surveys: Confidence distributions and reduced likelihoods for bowhead whales off Alaska. Biometrics , 59, 974-983. – reference: Crow, E.L. (1956). Confidence intervals for a proportion. Biometrika , 43, 423-435. – reference: Parzen, M., Wei, L.J. & Ying, Z. (1994). A resampling method based on pivotal estimating functions. Biometrika , 81, 341-350. – reference: Casella, G. (1986). Refining binomial confidence intervals. Canad. J. Statist. , 14, 113-129. – reference: Fraser, D.A.S. (2011). Is Bayes posterior just quick and dirty confidence? Stat. Sci. , 26, 299-316. – reference: Normand, S.-L. (1999). Meta-analysis: Formulating, evaluating, combining, and reporting. Stat. Med. , 18, 321-359. – reference: Zabell, S.L. (1992). R.A. Fisher and fiducial argument. Stat. Sci. , 7, 369-387. – reference: Efron, B. (1998). R.A.Fisher in the 21st century. Stat. Sci. , 13, 95-122. – reference: Singh, K., Xie, M. & Strawderman, W.E. (2005). Combining information from independent sources through confidence distributions. Ann. Statist. 33, 159-183. – reference: Blaker, H. (2000). Confidence curves and improved exact confidence intervals for discrete distributions. Canad. J. Statist. , 28, 783-798. – reference: Bender, R., Berg, G. & Zeeb, H. (2005). Tutorial: Using confidence curves in medical research. Biom. J. , 47, 237-247. – reference: Johnson, R.A. (1967). An asymptotic expansion for posterior distributions. Ann. Math. Stat. , 38, 1899-1906. – reference: LeCam, L. (1953). On some asymptotic properties of maximum likelihood estimates and related Bayes estimates. University of California Publications in Statistics , 1, 277-330. – reference: Hall, P. (1992). On the removal of skewness by transformation. J. R. Stat. Soc. Ser. B, 54, 221-228. – reference: Barndorff-Nielsen, O.E. & Cox, D.R. (1994). Inference and Asymptotics . London : Chapman & Hall. – reference: Fisher, R.A. (1930). Inverse probability. Proc. Cambridge Philos. Soc. , 26, 528-535. – reference: Cox, D.R. (2006). Principles of Statistical Inference. London : Cambridge University Press. – reference: Welch, B.L. & Peers, H.W. (1963). On formulae for confidence points based on integrals of weighted likelihoods. J. R. Stat. Soc. Ser. B , 25, 318-29. – reference: Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Phil. Trans. Roy. Soc. , 53, 370-418; 54, 296-325. Reprinted in Biometrika, 45 (1958), 293-315. – reference: Sutton, A.J. & Higgins, J.P.T. (2008). Recent developments in meta-analysis. Stat. Med. , 27, 625-650. – reference: Neyman, J. (1934). On the two different aspects of representative method: The method of stratified sampling and the method of purpose selection. J. Roy. Statist. Soc. Ser. A , 97, 558-625. – volume: 7 start-page: 369 year: 1992 end-page: 387 article-title: R.A. Fisher and fiducial argument publication-title: Stat. Sci. – start-page: 446 year: 2010 end-page: 456 – volume: 97 start-page: 881 year: 2010 end-page: 892 article-title: Bootstrap confidence intervals and hypothesis tests for extrema of parameters publication-title: Biometrika – year: 1956 – volume: 19 start-page: 491 year: 2009 end-page: 544 article-title: On generalized fiducial inference publication-title: Statist. Sinica – volume: 29 start-page: 357 year: 1958 end-page: 372 article-title: Some problems with statistical inference publication-title: Ann. Math. Stat – volume: 43 start-page: 423 year: 1956 end-page: 435 article-title: Confidence intervals for a proportion publication-title: Biometrika – volume: 25 start-page: 72 year: 2010 end-page: 87 article-title: Dempster‐Shafer theory and statistical inference with weak beliefs publication-title: Statist. Sci. – volume: 15 start-page: 1 year: 2010 end-page: 19 article-title: Population estimates from aerial photographic surveys of naturally and variably marked bowhead whales publication-title: J. Agric. Biol. Environ. Stat. – volume: 67 start-page: 604 year: 2011 end-page: 610 article-title: The highest confidence density region and its usage for joint inferences about constrained parameters publication-title: Biometrics – volume: 48 start-page: 365 year: 2008 end-page: 377 article-title: The Dempster‐Shafer calculus for statisticians publication-title: Internat. J. Approx. Reason. – year: 2001 – volume: 29 start-page: 309 year: 2002 end-page: 332 article-title: Confidence and likelihood publication-title: Scand. J. Stat. – volume: 17 start-page: 61 year: 1993 end-page: 66 article-title: A note on inference for the mean parameter of the gamma distribution publication-title: Stat. Probab. Lett. – volume: 97 start-page: 558 year: 1934 end-page: 625 article-title: On the two different aspects of representative method: The method of stratified sampling and the method of purpose selection publication-title: J. Roy. Statist. Soc. Ser. A – volume: 86 start-page: 258 year: 1991 end-page: 265 article-title: Statistical inference: Likelihood to significance publication-title: J. Amer. Statist. Assoc. – volume: 157 start-page: 357 year: 1994 end-page: 416 article-title: Bayesian approaches to randomized trials publication-title: J. Roy. Statist. Soc. Ser. A – volume: 33 start-page: 159 year: 2005 end-page: 183 article-title: Combining information from independent sources through confidence distributions publication-title: Ann. Statist. – volume: 104 start-page: 775 year: 2009 end-page: 788 article-title: Confidence intervals for population ranks in the presence of ties or near ties publication-title: J. Amer. Statist. Assoc. – year: 1994 – volume: 97 start-page: 159 year: 2010 end-page: 170 article-title: Mean likelihood and higher order approximations publication-title: Biometrika – volume: 21 start-page: 923 year: 2011 end-page: 948 article-title: Using confidence distribution sampling to visualize confidence sets publication-title: Statist. Sinica – year: 2006 end-page: 526 article-title: The proper fiducial argument publication-title: Inf. Transf. Combin. – volume: 7 start-page: 17 year: 1958 end-page: 35 article-title: Les propriétés asymptotiques des solutions de Bayes publication-title: Plubl. Inst. Statist. Univ. Paris – volume: 38 start-page: 1899 year: 1967 end-page: 1906 article-title: An asymptotic expansion for posterior distributions publication-title: Ann. Math. Stat. – volume: 24 start-page: 295 year: 1982 end-page: 300 article-title: Multiparameter hypothesis testing and acceptance sampling publication-title: Technometrics – volume: 78 start-page: 108‐116 year: 1983 article-title: Binomial confidence intervals publication-title: J. Amer. Statist. Assoc. – year: 2004 – volume: 13 start-page: 1297 year: 1994 end-page: 1312 article-title: The chart trials: Bayesian design and monitoring in practice publication-title: Stat. Med. – volume: 28 start-page: 783 year: 2000 end-page: 798 article-title: Confidence curves and improved exact confidence intervals for discrete distributions publication-title: Canad. J. Statist. – volume: 82 start-page: 171 year: 1987 end-page: 185 article-title: Better bootstrap confidence intervals and bootstrap approximations publication-title: J. Amer. Statist. Assoc. – volume: 54 start-page: 132 year: 2007 end-page: 150 article-title: Confidence distribution (CD)‐distribution estimator of a parameter publication-title: In Complex Datasets and Inverse Problems – volume: 40 start-page: 262 year: 1986 end-page: 266 article-title: Why isn’t everyone a Bayesian? publication-title: Amer. Statist. – volume: 222 start-page: 309 year: 1922 end-page: 368 article-title: On the mathematical foundations of theoretical statistics publication-title: Philos. Trans. R. Soc. Lond. A – volume: 19 start-page: 918 year: 1991 end-page: 934 article-title: Sensitive and sturdy p‐values publication-title: Ann. Statist – volume: 26 start-page: 319 year: 2011 end-page: 321 article-title: Discussions on professor Fraserâs article on “Is Bayes posterior just quick and dirty confidence? publication-title: Stat. Sci – volume: 56 start-page: 246 year: 1961 end-page: 249 article-title: Confidence curves: An omnibus technique for estimation and testing statistical hypotheses publication-title: J. Amer. Statist. Assoc. – volume: 10 start-page: 275 year: 2009 end-page: 281 article-title: Exact and efficient inference procedure for meta‐analysis and its application to the analysis of independent 2Ã 2 tables with all available data but without artificial continuity correction publication-title: Biostatistics – volume: 20 start-page: 102 year: 1958 end-page: 107 article-title: Fiducial distribution and Bayes theorem publication-title: J. R. Stat. Soc. Ser. B – volume: 18 start-page: 321 year: 1999 end-page: 359 article-title: Meta‐analysis: Formulating, evaluating, combining, and reporting publication-title: Stat. Med. – volume: 237 start-page: 333 year: 1937 end-page: 380 article-title: Outline of a theory of statistical estimation based on the classical theory of probability publication-title: Philos.Trans. R. Soc. A. – volume: 62 start-page: 1 year: 2007 end-page: 9 article-title: The transform between the space of observed values and the space of possible values of the parameter publication-title: Proc. Sci. (ACAT) – volume: 106 start-page: 320 year: 2011 end-page: 333 article-title: Confidence distributions and a unifying framework for meta‐analysis publication-title: J. Amer. Statist. Assoc. – volume: 13 start-page: 95 year: 1998 end-page: 122 article-title: R.A.Fisher in the 21st century publication-title: Stat. Sci. – volume: 16 start-page: 769 year: 1997 end-page: 781 article-title: Bayesian and mixed Bayesian/likelihood criteria for sample size determination publication-title: Stat. Med. – volume: 27 start-page: 625 year: 2008 end-page: 650 article-title: Recent developments in meta‐analysis publication-title: Stat. Med. – volume: 26 start-page: 1 year: 2011 end-page: 9 article-title: Statistical inference: The big picture publication-title: Statist. Sci. – volume: 7 start-page: 1267 year: 1988 end-page: 1277 article-title: A statistical assessment of clinical equivalence publication-title: Stat. Med. – year: 1973 – volume: 22 start-page: 299 year: 1960 end-page: 301 article-title: On some extensions of Bayesian inference proposed by Mr. Lindley publication-title: J. R. Stat. Soc. B – volume: 36 start-page: 49 year: 1995 end-page: 59 article-title: On approximate inference for the two‐parameter gamma model publication-title: Stat. Papers – volume: 41 start-page: 275 year: 1954 end-page: 278 article-title: Some remarks on confidence or fiducial limits publication-title: Biometrika – volume: 81 start-page: 341 year: 1994 end-page: 350 article-title: A resampling method based on pivotal estimating functions publication-title: Biometrika – volume: 11 start-page: 999 year: 1983 end-page: 1003 article-title: Inference on means using the bootstrap publication-title: Ann. Statist. – volume: 68 start-page: 193 year: 1973 end-page: 194 article-title: Asymptotic optimality of Fisher’s method of combining independent tests. II publication-title: J. Amer. Statist. Assoc. – volume: 26 start-page: 299 year: 2011 end-page: 316 article-title: Is Bayes posterior just quick and dirty confidence? publication-title: Stat. Sci. – year: 2012 – volume: 1 start-page: 277 year: 1953 end-page: 330 article-title: On some asymptotic properties of maximum likelihood estimates and related Bayes estimates publication-title: University of California Publications in Statistics – volume: 25 start-page: 318 year: 1963 end-page: 29 article-title: On formulae for confidence points based on integrals of weighted likelihoods publication-title: J. R. Stat. Soc. Ser. B – volume: 47 start-page: 237 year: 2005 end-page: 247 article-title: Tutorial: Using confidence curves in medical research publication-title: Biom. J. – volume: 14 start-page: 113 year: 1986 end-page: 129 article-title: Refining binomial confidence intervals publication-title: Canad. J. Statist. – volume: 80 start-page: 3 year: 1993 end-page: 26 article-title: Bayes and likelihood calculations from confidence intervals publication-title: Biometrika – start-page: 260 year: 2007 end-page: 261 – year: 2006 – volume: 27 start-page: 783 year: 1999 end-page: 858 article-title: Multivariate analysis by data depth: Descriptive statistics, graphics and inference publication-title: Ann. Statist. – volume: 8 start-page: 200 year: 2012 end-page: 214 – year: 1974 – start-page: 593 year: 2007 end-page: 609 article-title: Confidence nets for curves publication-title: Advances in Statistical Modeling and Inference. Essays in honor of Kjell A. Doksum. – volume: 53 start-page: 370 year: 1763 end-page: 418 article-title: An essay towards solving a problem in the doctrine of chances publication-title: Phil. Trans. Roy. Soc. – volume: 79 start-page: 231 year: 1992 end-page: 45 article-title: More accurate confidence intervals in exponential families publication-title: Biometrika – year: 1991 – volume: 26 start-page: 528 year: 1930 end-page: 535 article-title: Inverse probability publication-title: Proc. Cambridge Philos. Soc. – volume: 54 start-page: 221 year: 1992 end-page: 228 article-title: On the removal of skewness by transformation publication-title: J. R. Stat. Soc. Ser. B – volume: 12 start-page: 183 year: 1984 end-page: 190 article-title: Further remarks on asymptotic normality of likelihood and conditional analyses publication-title: Canad. J. Statist. – start-page: 285 year: 2003 end-page: 317 – volume: 59 start-page: 974 year: 2003 end-page: 983 article-title: Abundance estimation from multiple photo surveys: Confidence distributions and reduced likelihoods for bowhead whales off Alaska publication-title: Biometrics – volume: 54 start-page: 242 year: 2000 end-page: 247 article-title: Paradoxes and improvements in interval estimation publication-title: Amer. Statist. – year: 2013 – ident: e_1_2_10_75_1 doi: 10.1093/biostatistics/kxn034 – ident: e_1_2_10_2_1 doi: 10.1214/aos/1176346267 – volume-title: gmeta year: 2012 ident: e_1_2_10_84_1 – ident: e_1_2_10_68_1 doi: 10.1214/11-IMSCOLL814 – ident: e_1_2_10_6_1 doi: 10.2307/1267823 – year: 2006 ident: e_1_2_10_39_1 article-title: The proper fiducial argument publication-title: Inf. Transf. Combin. – ident: e_1_2_10_17_1 doi: 10.1214/aoms/1177706618 – ident: e_1_2_10_59_1 doi: 10.1093/biomet/81.2.341 – ident: e_1_2_10_35_1 doi: 10.1214/11-STS352 – ident: e_1_2_10_52_1 doi: 10.1002/sim.4780071207 – ident: e_1_2_10_51_1 doi: 10.1214/aos/1018031259 – ident: e_1_2_10_60_1 doi: 10.1002/9780470316436 – ident: e_1_2_10_58_1 doi: 10.1002/sim.4780131304 – ident: e_1_2_10_62_1 doi: 10.1111/j.0006-341X.2003.00112.x – volume: 62 start-page: 1 year: 2007 ident: e_1_2_10_10_1 article-title: The transform between the space of observed values and the space of possible values of the parameter publication-title: Proc. Sci. (ACAT) – volume: 40 start-page: 262 year: 1986 ident: e_1_2_10_24_1 article-title: Why isn’t everyone a Bayesian? publication-title: Amer. Statist. – ident: e_1_2_10_22_1 doi: 10.1016/j.ijar.2007.03.004 – volume: 26 start-page: 528 year: 1930 ident: e_1_2_10_30_1 article-title: Inverse probability publication-title: Proc. Cambridge Philos. Soc. doi: 10.1017/S0305004100016297 – ident: e_1_2_10_64_1 doi: 10.1111/1467-9469.00285 – ident: e_1_2_10_67_1 doi: 10.1214/11-STS352B – ident: e_1_2_10_76_1 doi: 10.1111/j.1541-0420.2010.01486.x – ident: e_1_2_10_83_1 doi: 10.1198/jasa.2009.0142 – ident: e_1_2_10_18_1 doi: 10.1017/CBO9780511813559 – ident: e_1_2_10_85_1 doi: 10.1214/ss/1177011233 – ident: e_1_2_10_63_1 doi: 10.1142/9789812708298_0029 – ident: e_1_2_10_3_1 doi: 10.1007/978-1-4899-3210-5 – volume: 25 start-page: 318 year: 1963 ident: e_1_2_10_78_1 article-title: On formulae for confidence points based on integrals of weighted likelihoods publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1963.tb00512.x – ident: e_1_2_10_45_1 doi: 10.5705/ss.2011.040a – volume: 78 start-page: 108‐116 year: 1983 ident: e_1_2_10_13_1 article-title: Binomial confidence intervals publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1983.10477938 – ident: e_1_2_10_15_1 – ident: e_1_2_10_8_1 doi: 10.1080/01621459.1961.10482107 – volume-title: An Introduction to the Bootstrap. year: 1994 ident: e_1_2_10_28_1 doi: 10.1201/9780429246593 – ident: e_1_2_10_7_1 – volume-title: Testing Statistical Hypotheses. year: 1991 ident: e_1_2_10_48_1 – ident: e_1_2_10_70_1 doi: 10.1214/009053604000001084 – ident: e_1_2_10_43_1 doi: 10.1214/10-STS337 – start-page: 446 volume-title: Proceedings of the 30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering year: 2010 ident: e_1_2_10_9_1 – ident: e_1_2_10_80_1 doi: 10.1007/BF02926018 – ident: e_1_2_10_5_1 doi: 10.1002/bimj.200410104 – ident: e_1_2_10_34_1 doi: 10.1080/01621459.1991.10475029 – volume-title: The Advanced Theory of Statistics year: 1974 ident: e_1_2_10_44_1 – ident: e_1_2_10_54_1 doi: 10.1214/10-STS322 – ident: e_1_2_10_74_1 doi: 10.1002/sim.2934 – ident: e_1_2_10_21_1 doi: 10.1007/978-1-4757-3500-0 – volume-title: Statistical Methods and Scientific Inference year: 1973 ident: e_1_2_10_33_1 – start-page: 260 volume-title: The Science of Bradley Efron year: 2007 ident: e_1_2_10_77_1 – volume: 19 start-page: 918 year: 1991 ident: e_1_2_10_53_1 article-title: Sensitive and sturdy p‐values publication-title: Ann. Statist doi: 10.1214/aos/1176348128 – ident: e_1_2_10_19_1 doi: 10.1007/978-1-4899-2887-0 – volume: 19 start-page: 491 year: 2009 ident: e_1_2_10_40_1 article-title: On generalized fiducial inference publication-title: Statist. Sinica – volume: 22 start-page: 299 year: 1960 ident: e_1_2_10_32_1 article-title: On some extensions of Bayesian inference proposed by Mr. Lindley publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1960.tb00374.x – ident: e_1_2_10_82_1 doi: 10.1198/jasa.2011.tm09803 – volume: 54 start-page: 242 year: 2000 ident: e_1_2_10_12_1 article-title: Paradoxes and improvements in interval estimation publication-title: Amer. Statist. doi: 10.1080/00031305.2000.10474555 – ident: e_1_2_10_20_1 doi: 10.1093/biomet/43.3-4.423 – volume: 68 start-page: 193 year: 1973 ident: e_1_2_10_49_1 article-title: Asymptotic optimality of Fisher’s method of combining independent tests. II publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1973.10481362 – ident: e_1_2_10_69_1 – ident: e_1_2_10_61_1 doi: 10.1093/biomet/asq001 – ident: e_1_2_10_66_1 doi: 10.1007/s13253-009-0002-1 – ident: e_1_2_10_56_1 doi: 10.1098/rsta.1937.0005 – ident: e_1_2_10_23_1 doi: 10.1093/biomet/79.2.231 – volume-title: Statistical Methods and Scientific Inference. year: 1956 ident: e_1_2_10_31_1 – ident: e_1_2_10_25_1 doi: 10.1080/01621459.1987.10478410 – ident: e_1_2_10_71_1 doi: 10.1214/074921707000000102 – volume: 7 start-page: 17 year: 1958 ident: e_1_2_10_47_1 article-title: Les propriétés asymptotiques des solutions de Bayes publication-title: Plubl. Inst. Statist. Univ. Paris – volume: 13 start-page: 95 year: 1998 ident: e_1_2_10_27_1 article-title: R.A.Fisher in the 21st century publication-title: Stat. Sci. – ident: e_1_2_10_4_1 doi: 10.1098/rstl.1763.0053 – ident: e_1_2_10_11_1 doi: 10.2307/3315916 – start-page: 285 volume-title: In Econometrics and the Philosophy of Economics year: 2003 ident: e_1_2_10_65_1 – ident: e_1_2_10_38_1 doi: 10.1093/biomet/asq045 – ident: e_1_2_10_29_1 doi: 10.1098/rsta.1922.0009 – ident: e_1_2_10_81_1 doi: 10.1214/12-AOAS585 – ident: e_1_2_10_16_1 doi: 10.2139/ssrn.1777272 – ident: e_1_2_10_41_1 doi: 10.1214/aoms/1177698624 – ident: e_1_2_10_26_1 doi: 10.1093/biomet/80.1.3 – ident: e_1_2_10_36_1 doi: 10.2307/3314746 – ident: e_1_2_10_57_1 doi: 10.1002/(SICI)1097-0258(19990215)18:3<321::AID-SIM28>3.0.CO;2-P – ident: e_1_2_10_55_1 doi: 10.1111/j.2397-2335.1934.tb04184.x – volume: 54 start-page: 221 year: 1992 ident: e_1_2_10_37_1 article-title: On the removal of skewness by transformation publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1992.tb01876.x – volume: 1 start-page: 277 year: 1953 ident: e_1_2_10_46_1 article-title: On some asymptotic properties of maximum likelihood estimates and related Bayes estimates publication-title: University of California Publications in Statistics – ident: e_1_2_10_79_1 doi: 10.1016/0167-7152(93)90196-P – volume: 20 start-page: 102 year: 1958 ident: e_1_2_10_50_1 article-title: Fiducial distribution and Bayes theorem publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1958.tb00278.x – ident: e_1_2_10_72_1 doi: 10.2307/2983527 – ident: e_1_2_10_14_1 doi: 10.2307/3314658 – ident: e_1_2_10_42_1 doi: 10.1002/(SICI)1097-0258(19970415)16:7<769::AID-SIM495>3.0.CO;2-V – volume: 41 start-page: 275 year: 1954 ident: e_1_2_10_73_1 article-title: Some remarks on confidence or fiducial limits publication-title: Biometrika |
SSID | ssj0003284 |
Score | 2.4675632 |
Snippet | In frequentisi inference, we commonly use a single point (point estimator) or an interval (confidence interval/"interval estimator") to estimate a parameter of... Résumé Il est courant, en inférence fréquentielle, d'utiliser un point unique (une estimation ponctuelle) ou un intervalle (intervalle de confiance) dans le... Il est courant, en inférence fréquentielle, d'utiliser un point unique (une estimation ponctuelle) ou un intervalle (intervalle de confiance) dans le but... In frequentist inference, we commonly use a single point (point estimator) or an interval (confidence interval/"interval estimator") to estimate a parameter of... |
SourceID | proquest crossref wiley jstor istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3 |
SubjectTerms | Bayesian analysis Bayesian method Confidence Confidence distribution Confidence intervals Estimates estimation theory Estimators fiducial distribution Inference Intervals likelihood function Normal distribution Parameter estimation Statistical inference Statistical methods |
Title | Confidence Distribution, the Frequentist Distribution Estimator of a Parameter: A Review |
URI | https://api.istex.fr/ark:/67375/WNG-67KFXJGB-1/fulltext.pdf https://www.jstor.org/stable/43298799 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Finsr.12000 https://www.proquest.com/docview/1324570207 https://www.proquest.com/docview/1770373880 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9KfemL9evo1ioRi6C4x22SvWSLL229az3xkGuL91KW7G4CUt2T-wDpX-9M9qM9KYJ9C2QC-ZhJfpNMfgOwn-S5NsrwUMrCoYNidJhxF4VW5knfuajoFXSh_2XcP72Qo2k83YAPzV-Yih-ivXAjy_D7NRm4yRa3jPx7uZh3I_ppghswBWsRIprccEcJrivuKHSZlRKy5ialMJ6bpmun0QOa2N9NYOIa5LwNXP3JM9yGy6bPVcDJVXe1zLr59V90jvcd1CN4WENSdljp0GPYsOUT2CIUWpE4P4Up_Qusso-yj8S0WyfJes8QPrLh3Idjk_RaLRtg85_k1LOZY4Z9NRQIhut4wA5Z9SbxDC6Gg_Pj07BOyRDmkqteGDslEsNlXwj0c_ICvT8trYuzXqaJyV5TMnUimdM57hVFZPGATIjipm-ssEKJDmyWs9LuADOFSHrcCVQGIw166QaRFJfaFQjCeFIE8LZZmjSv-copbcaPtPFbaLJSP1kBvG5lf1UsHXdKvfEr3IqY-RXFtak4_TY-wdLn4XR0cpRGAXS8CrSCUvBE46gC2Gt0Iq1tfZGiPy9jhbBbBfCqrUYrpacXU9rZCmUU7qyKiHcCeOcV4B_9TD-Nzya-tPs_ws9hi_tcHRRWtAeby_nKvkDEtMxeesv4A4RqDrs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5Be6AX3hVpCxiBkEBktbGdtcOt0G63rxUqrbo3y0lsCZVmq31IqL--M0427SKEBDdLnkiJPWN_44y_D-BdVhTaKstjKUuPCYrVcc59EjtZZD3vk7Jb0oH-8bA3OJMHo3TU1ObQXZiaH6I9cKPICOs1BTgdSN-J8h_VdNJJ6KrJfVglSW-izt85uWWPElzX7FGYNCslZMNOSoU8t88u7UerNLS_FqWJS6DzLnQNe0__US2wOg2UhVRyctGZz_JOcf0boeN_f9ZjeNigUrZdu9ETuOeqp7BGQLTmcX4GI7oaWAuQsh0i2210sj4xRJCsPwkV2WS91Mt28fFLyuvZ2DPLvlmqBcOp_My2Wf1b4jmc9XdPvw7iRpUhLiRX3Tj1SmSWy54QmOoUJSaAWjqf5t1cE5m9Jj114pnTBS4XZeJwj8yI5aZnnXBCiXVYqcaVewHMliLrci_QH6y0mKhbBFNcal8iDuNZGcGHxdyYoqEsJ-WMn2aRutBgmTBYEbxtba9qoo4_Wr0PU9ya2MkFlbap1JwP97B12B8d7H0xSQTrwQdaQyl4pvGrIthaOIVpwn1qMKWXqULkrSJ403ZjoNLfF1u58RxtFC6uirh3IvgYPOAv72n2h99PQmvjX4xfw4PB6fGROdofHm7CGg_SHVRltAUrs8ncvUQANctfhTC5AWwJEtc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9qC9Ivvovbh0YUQXGP3SS72RW_VK_blx6lWnpfJGQfAWm7V653IP3rnck-2hMR9FsgE8hjJvlNMvkNwKu0KBKjDPelLC06KCbxc25Dv5JFGlsblkFJF_pfRvHeiTwYR-Ml-ND9hWn4IfoLN7IMt1-TgV-W9paR_6ivpoOQfprcgRUZByklbhge35BHCZ405FHoMyslZEtOSnE8N20XjqMVmtmfXWTiAua8jVzd0ZPdh-9dp5uIk7PBfJYPiuvf-Bz_d1QP4F6LSdl2o0QPYamqH8EqwdCGxfkxjOljYJN-lA2JarfNkvWOIX5k2dTFY5P0Qi3bweYX5NWziWWGHRmKBMOFfM-2WfMo8QROsp1vn_b8NieDX0iuAj-ySqSGy1gIdHSKEt2_RFY2yoM8ISr7hLKpE8tcUuBmUYYVnpApcdzEphKVUGINlutJXT0FZkqRBtwK1AYjDbrpBqEUl4ktEYXxtPTgTbc0umgJyylvxrnuHBeaLO0my4OXvexlQ9PxR6nXboV7ETM9o8A2FenT0S6WDrPxwe5HHXqw5lSgF5SCpwmOyoPNTid0a-xXGh16GSnE3cqDF301mim9vZi6msxRRuHWqoh5x4O3TgH-0k-9P_p67Err_yL8HO4eDTP9eX90uAGr3OXtoBCjTVieTefVFqKnWf7MGckvIVwRhg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Confidence+Distribution%2C+the+Frequentist+Distribution+Estimator+of+a+Parameter%3A+A+Review&rft.jtitle=International+statistical+review&rft.au=Xie%2C+Min-ge&rft.au=Singh%2C+Kesar&rft.date=2013-04-01&rft.pub=Blackwell+Publishing&rft.issn=0306-7734&rft.eissn=1751-5823&rft.volume=81&rft.issue=1&rft.spage=3&rft.epage=39&rft_id=info:doi/10.1111%2Finsr.12000&rft.externalDocID=43298799 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-7734&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-7734&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-7734&client=summon |