Confidence Distribution, the Frequentist Distribution Estimator of a Parameter: A Review

In frequentisi inference, we commonly use a single point (point estimator) or an interval (confidence interval/"interval estimator") to estimate a parameter of interest. A very simple question is: Can we also use a distribution function ("distribution estimator") to estimate a pa...

Full description

Saved in:
Bibliographic Details
Published inInternational statistical review Vol. 81; no. 1; pp. 3 - 39
Main Authors Xie, Min-ge, Singh, Kesar
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.04.2013
Blackwell Publishing
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In frequentisi inference, we commonly use a single point (point estimator) or an interval (confidence interval/"interval estimator") to estimate a parameter of interest. A very simple question is: Can we also use a distribution function ("distribution estimator") to estimate a parameter of interest in frequentisi inference in the style of a Bayesian posterior? The answer is affirmative, and confidence distribution is a natural choice of such a "distribution estimator". The concept of a confidence distribution has a long history, and its interpretation has long been fused with fiducial inference. Historically, it has been misconstrued as a fiducial concept, and has not been fully developed in the frequentist framework. In recent years, confidence distribution has attracted a surge of renewed attention, and several developments have highlighted its promising potential as an effective inferential tool. This article reviews recent developments of confidence distributions, along with a modern definition and interpretation of the concept. It includes distributional inference based on confidence distributions and its extensions, optimality issues and their applications. Based on the new developments, the concept of a confidence distribution subsumes and unifies a wide range of examples, from regular parametric (fiducial distribution) examples to bootstrap distributions, significance (p-value) functions, normalized likelihood functions, and, in some cases, Bayesian priors and posteriors. The discussion is entirely within the school of frequentist inference, with emphasis on applications providing useful statistical inference tools for problems where frequentist methods with good properties were previously unavailable or could not be easily obtained. Although it also draws attention to some of the differences and similarities among frequentist, fiducial and Bayesian approaches, the review is not intended to re-open the philosophical debate that has lasted more than two hundred years. On the contrary, it is hoped that the article will help bridge the gaps between these different statistical procedures. II est courant, en inference fréquentielle, d'utiliser un point unique (une estimation ponctuelle) ou un intervalle (intervalle de confiance) dans le but d'estimer un paramètre d'intérêt. Une question très simple se pose: peut-on également utiliser, dans le même but, et dans la même optique fréquentielle, à la façon dont les Bayésiens utilisent une loi a posteriori, une distribution de probabilité? La réponse est affirmative, et les distributions de confiance apparaissent comme un choix naturel dans ce contexte. Le concept de distribution de confiance a une longue histoire, longtemps associée, à tort, aux théories d'inférence fiducielle, ce qui a compromis son développement dans l'optique fréquentielle. Les distributions de confiance ont récemment attiré un regain d'intérêt, et plusieurs résultats ont mis en évidence leur potentiel considérable en tant qu'outil inférentiel. Cet article présente une définition moderne du concept, et examine les ses évolutions récentes. Il aborde les méthodes d'inférence, les problèmes d'optimalité, et les applications. A la lumière de ces nouveaux développements, le concept de distribution de confiance englobe et unifie un large éventail de cas particuliers, depuis les exemples paramétriques réguliers (distributions fiducielles), les lois de rééchantillonnage, les p-valeurs et les fonctions de vraisemblance normalisées jusqu'aux a priori et posteriori bayésiens. La discussion est entièrement menée d'un point de vue frequentici, et met l'accent sur les applications dans lesquelles les solutions fréquentielles sont inexistantes ou d'une application difficile. Bien que nous attirions également l'attention sur les similitudes et les différences que présentent les approches fréquentielle, fiducielle, et Bayésienne, notre intention n'est pas de rouvrir un débat philosophique qui dure depuis près de deux cents ans. Nous espérons bien au contraire contribuer à combler le fossé qui existe entre les différents points de vue.
AbstractList In frequentist inference, we commonly use a single point (point estimator) or an interval (confidence interval/"interval estimator") to estimate a parameter of interest. A very simple question is: Can we also use a distribution function ("distribution estimator") to estimate a parameter of interest in frequentist inference in the style of a Bayesian posterior? The answer is affirmative, and confidence distribution is a natural choice of such a "distribution estimator". The concept of a confidence distribution has a long history, and its interpretation has long been fused with fiducial inference. Historically, it has been misconstrued as a fiducial concept, and has not been fully developed in the frequentist framework. In recent years, confidence distribution has attracted a surge of renewed attention, and several developments have highlighted its promising potential as an effective inferential tool. This article reviews recent developments of confidence distributions, along with a modern definition and interpretation of the concept. It includes distributional inference based on confidence distributions and its extensions, optimality issues and their applications. Based on the new developments, the concept of a confidence distribution subsumes and unifies a wide range of examples, from regular parametric (fiducial distribution) examples to bootstrap distributions, significance (p-value) functions, normalized likelihood functions, and, in some cases, Bayesian priors and posteriors. The discussion is entirely within the school of frequentist inference, with emphasis on applications providing useful statistical inference tools for problems where frequentist methods with good properties were previously unavailable or could not be easily obtained. Although it also draws attention to some of the differences and similarities among frequentist, fiducial and Bayesian approaches, the review is not intended to re-open the philosophical debate that has lasted more than two hundred years. On the contrary, it is hoped that the article will help bridge the gaps between these different statistical procedures.Original Abstract: Resume Il est courant, en inference frequentielle, d'utiliser un point unique (une estimation ponctuelle) ou un intervalle (intervalle de confiance) dans le but d'estimer un parametre d'inter tau . Une question tres simple se pose: peut-on egalement utiliser, dans le meme but, et dans la meme optique frequentielle, a la facon dont les Bayesiens utilisent une loi a posteriori, une distribution de probabilite? La reponse est affirmative, et les distributions de confiance apparaissent comme un choix naturel dans ce contexte. Le concept de distribution de confiance a une longue histoire, longtemps associee, a tort, aux theories d'inference fiducielle, ce qui a compromis son developpement dans l'optique frequentielle. Les distributions de confiance ont recemment attire un regain d'interet, et plusieurs resultats ont mis en evidence leur potentiel considerable en tant qu'outil inferentiel. Cet article presente une definition moderne du concept, et examine les ses evolutions recentes. Il aborde les methodes d'inference, les problemes d'optimalite, et les applications. A la lumiere de ces nouveaux developpements, le concept de distribution de confiance englobe et unifie un large eventail de cas particuliers, depuis les exemples parametriques reguliers (distributions fiducielles), les lois de reechantillonnage, les p-valeurs et les fonctions de vraisemblance normalisees jusqu'aux a priori et posteriori bayesiens. La discussion est entierement menee d'un point de vue frequentiel, et met l'accent sur les applications dans lesquelles les solutions frequentielles sont inexistantes ou d'une application difficile. Bien que nous attirions egalement l'attention sur les similitudes et les differences que presentent les approches frequentielle, fiducielle, et Bayesienne, notre intention n'est pas de rouvrir un debat philosophique qui dure depuis pres de deux cents ans. Nous esperons bien au contraire contribuer a combler le fosse qui existe entre les differents points de vue.
In frequentisi inference, we commonly use a single point (point estimator) or an interval (confidence interval/"interval estimator") to estimate a parameter of interest. A very simple question is: Can we also use a distribution function ("distribution estimator") to estimate a parameter of interest in frequentisi inference in the style of a Bayesian posterior? The answer is affirmative, and confidence distribution is a natural choice of such a "distribution estimator". The concept of a confidence distribution has a long history, and its interpretation has long been fused with fiducial inference. Historically, it has been misconstrued as a fiducial concept, and has not been fully developed in the frequentist framework. In recent years, confidence distribution has attracted a surge of renewed attention, and several developments have highlighted its promising potential as an effective inferential tool. This article reviews recent developments of confidence distributions, along with a modern definition and interpretation of the concept. It includes distributional inference based on confidence distributions and its extensions, optimality issues and their applications. Based on the new developments, the concept of a confidence distribution subsumes and unifies a wide range of examples, from regular parametric (fiducial distribution) examples to bootstrap distributions, significance (p-value) functions, normalized likelihood functions, and, in some cases, Bayesian priors and posteriors. The discussion is entirely within the school of frequentist inference, with emphasis on applications providing useful statistical inference tools for problems where frequentist methods with good properties were previously unavailable or could not be easily obtained. Although it also draws attention to some of the differences and similarities among frequentist, fiducial and Bayesian approaches, the review is not intended to re-open the philosophical debate that has lasted more than two hundred years. On the contrary, it is hoped that the article will help bridge the gaps between these different statistical procedures. II est courant, en inference fréquentielle, d'utiliser un point unique (une estimation ponctuelle) ou un intervalle (intervalle de confiance) dans le but d'estimer un paramètre d'intérêt. Une question très simple se pose: peut-on également utiliser, dans le même but, et dans la même optique fréquentielle, à la façon dont les Bayésiens utilisent une loi a posteriori, une distribution de probabilité? La réponse est affirmative, et les distributions de confiance apparaissent comme un choix naturel dans ce contexte. Le concept de distribution de confiance a une longue histoire, longtemps associée, à tort, aux théories d'inférence fiducielle, ce qui a compromis son développement dans l'optique fréquentielle. Les distributions de confiance ont récemment attiré un regain d'intérêt, et plusieurs résultats ont mis en évidence leur potentiel considérable en tant qu'outil inférentiel. Cet article présente une définition moderne du concept, et examine les ses évolutions récentes. Il aborde les méthodes d'inférence, les problèmes d'optimalité, et les applications. A la lumière de ces nouveaux développements, le concept de distribution de confiance englobe et unifie un large éventail de cas particuliers, depuis les exemples paramétriques réguliers (distributions fiducielles), les lois de rééchantillonnage, les p-valeurs et les fonctions de vraisemblance normalisées jusqu'aux a priori et posteriori bayésiens. La discussion est entièrement menée d'un point de vue frequentici, et met l'accent sur les applications dans lesquelles les solutions fréquentielles sont inexistantes ou d'une application difficile. Bien que nous attirions également l'attention sur les similitudes et les différences que présentent les approches fréquentielle, fiducielle, et Bayésienne, notre intention n'est pas de rouvrir un débat philosophique qui dure depuis près de deux cents ans. Nous espérons bien au contraire contribuer à combler le fossé qui existe entre les différents points de vue.
In frequentist inference, we commonly use a single point (point estimator) or an interval (confidence interval/"interval estimator") to estimate a parameter of interest. A very simple question is: Can we also use a distribution function ("distribution estimator") to estimate a parameter of interest in frequentist inference in the style of a Bayesian posterior? The answer is affirmative, and confidence distribution is a natural choice of such a "distribution estimator". The concept of a confidence distribution has a long history, and its interpretation has long been fused with fiducial inference. Historically, it has been misconstrued as a fiducial concept, and has not been fully developed in the frequentist framework. In recent years, confidence distribution has attracted a surge of renewed attention, and several developments have highlighted its promising potential as an effective inferential tool. This article reviews recent developments of confidence distributions, along with a modern definition and interpretation of the concept. It includes distributional inference based on confidence distributions and its extensions, optimality issues and their applications. Based on the new developments, the concept of a confidence distribution subsumes and unifies a wide range of examples, from regular parametric (fiducial distribution) examples to bootstrap distributions, significance (p-value) functions, normalized likelihood functions, and, in some cases, Bayesian priors and posteriors. The discussion is entirely within the school of frequentist inference, with emphasis on applications providing useful statistical inference tools for problems where frequentist methods with good properties were previously unavailable or could not be easily obtained. Although it also draws attention to some of the differences and similarities among frequentist, fiducial and Bayesian approaches, the review is not intended to re-open the philosophical debate that has lasted more than two hundred years. On the contrary, it is hoped that the article will help bridge the gaps between these different statistical procedures. [PUBLICATION ABSTRACT]
Résumé Il est courant, en inférence fréquentielle, d'utiliser un point unique (une estimation ponctuelle) ou un intervalle (intervalle de confiance) dans le but d'estimer un paramètre d'intér^t. Une question très simple se pose: peut‐on également utiliser, dans le même but, et dans la même optique fréquentielle, à la façon dont les Bayésiens utilisent une loi a posteriori, une distribution de probabilité? La réponse est affirmative, et les distributions de confiance apparaissent comme un choix naturel dans ce contexte. Le concept de distribution de confiance a une longue histoire, longtemps associée, à tort, aux théories d'inférence fiducielle, ce qui a compromis son développement dans l'optique fréquentielle. Les distributions de confiance ont récemment attiré un regain d'intérêt, et plusieurs résultats ont mis en évidence leur potentiel considérable en tant qu'outil inférentiel. Cet article présente une définition moderne du concept, et examine les ses évolutions récentes. Il aborde les méthodes d'inférence, les problèmes d'optimalité, et les applications. A la lumière de ces nouveaux développements, le concept de distribution de confiance englobe et unifie un large éventail de cas particuliers, depuis les exemples paramétriques réguliers (distributions fiducielles), les lois de rééchantillonnage, les p‐valeurs et les fonctions de vraisemblance normalisées jusqu'aux a priori et posteriori bayésiens. La discussion est entièrement menée d'un point de vue fréquentiel, et met l'accent sur les applications dans lesquelles les solutions fréquentielles sont inexistantes ou d'une application difficile. Bien que nous attirions également l'attention sur les similitudes et les différences que présentent les approches fréquentielle, fiducielle, et Bayésienne, notre intention n'est pas de rouvrir un débat philosophique qui dure depuis près de deux cents ans. Nous espérons bien au contraire contribuer à combler le fossé qui existe entre les différents points de vue. Summary In frequentist inference, we commonly use a single point (point estimator) or an interval (confidence interval/“interval estimator”) to estimate a parameter of interest. A very simple question is: Can we also use a distribution function (“distribution estimator”) to estimate a parameter of interest in frequentist inference in the style of a Bayesian posterior? The answer is affirmative, and confidence distribution is a natural choice of such a “distribution estimator”. The concept of a confidence distribution has a long history, and its interpretation has long been fused with fiducial inference. Historically, it has been misconstrued as a fiducial concept, and has not been fully developed in the frequentist framework. In recent years, confidence distribution has attracted a surge of renewed attention, and several developments have highlighted its promising potential as an effective inferential tool. This article reviews recent developments of confidence distributions, along with a modern definition and interpretation of the concept. It includes distributional inference based on confidence distributions and its extensions, optimality issues and their applications. Based on the new developments, the concept of a confidence distribution subsumes and unifies a wide range of examples, from regular parametric (fiducial distribution) examples to bootstrap distributions, significance (p‐value) functions, normalized likelihood functions, and, in some cases, Bayesian priors and posteriors. The discussion is entirely within the school of frequentist inference, with emphasis on applications providing useful statistical inference tools for problems where frequentist methods with good properties were previously unavailable or could not be easily obtained. Although it also draws attention to some of the differences and similarities among frequentist, fiducial and Bayesian approaches, the review is not intended to re‐open the philosophical debate that has lasted more than two hundred years. On the contrary, it is hoped that the article will help bridge the gaps between these different statistical procedures.
Il est courant, en inférence fréquentielle, d'utiliser un point unique (une estimation ponctuelle) ou un intervalle (intervalle de confiance) dans le but d'estimer un paramètre d'intér^t. Une question très simple se pose: peut‐on également utiliser, dans le même but, et dans la même optique fréquentielle, à la façon dont les Bayésiens utilisent une loi a posteriori, une distribution de probabilité? La réponse est affirmative, et les distributions de confiance apparaissent comme un choix naturel dans ce contexte. Le concept de distribution de confiance a une longue histoire, longtemps associée, à tort, aux théories d'inférence fiducielle, ce qui a compromis son développement dans l'optique fréquentielle. Les distributions de confiance ont récemment attiré un regain d'intérêt, et plusieurs résultats ont mis en évidence leur potentiel considérable en tant qu'outil inférentiel. Cet article présente une définition moderne du concept, et examine les ses évolutions récentes. Il aborde les méthodes d'inférence, les problèmes d'optimalité, et les applications. A la lumière de ces nouveaux développements, le concept de distribution de confiance englobe et unifie un large éventail de cas particuliers, depuis les exemples paramétriques réguliers (distributions fiducielles), les lois de rééchantillonnage, les p ‐valeurs et les fonctions de vraisemblance normalisées jusqu'aux a priori et posteriori bayésiens. La discussion est entièrement menée d'un point de vue fréquentiel, et met l'accent sur les applications dans lesquelles les solutions fréquentielles sont inexistantes ou d'une application difficile. Bien que nous attirions également l'attention sur les similitudes et les différences que présentent les approches fréquentielle, fiducielle, et Bayésienne, notre intention n'est pas de rouvrir un débat philosophique qui dure depuis près de deux cents ans. Nous espérons bien au contraire contribuer à combler le fossé qui existe entre les différents points de vue. In frequentist inference, we commonly use a single point (point estimator) or an interval (confidence interval/“interval estimator”) to estimate a parameter of interest. A very simple question is: Can we also use a distribution function (“distribution estimator”) to estimate a parameter of interest in frequentist inference in the style of a Bayesian posterior? The answer is affirmative, and confidence distribution is a natural choice of such a “distribution estimator”. The concept of a confidence distribution has a long history, and its interpretation has long been fused with fiducial inference. Historically, it has been misconstrued as a fiducial concept, and has not been fully developed in the frequentist framework. In recent years, confidence distribution has attracted a surge of renewed attention, and several developments have highlighted its promising potential as an effective inferential tool. This article reviews recent developments of confidence distributions, along with a modern definition and interpretation of the concept. It includes distributional inference based on confidence distributions and its extensions, optimality issues and their applications. Based on the new developments, the concept of a confidence distribution subsumes and unifies a wide range of examples, from regular parametric (fiducial distribution) examples to bootstrap distributions, significance ( p ‐value) functions, normalized likelihood functions, and, in some cases, Bayesian priors and posteriors. The discussion is entirely within the school of frequentist inference, with emphasis on applications providing useful statistical inference tools for problems where frequentist methods with good properties were previously unavailable or could not be easily obtained. Although it also draws attention to some of the differences and similarities among frequentist, fiducial and Bayesian approaches, the review is not intended to re‐open the philosophical debate that has lasted more than two hundred years. On the contrary, it is hoped that the article will help bridge the gaps between these different statistical procedures.
Author Singh, Kesar
Xie, Min-ge
Author_xml – sequence: 1
  givenname: Min-ge
  surname: Xie
  fullname: Xie, Min-ge
  email: Department of Statistics and Biostatistics, Rutgers University, Piscataway, NJ 08854, USA mxie@stat.rutgers.edu
  organization: Department of Statistics and Biostatistics, Rutgers University, Piscataway, NJ 08854, USA E-mail: mxie@stat.rutgers.edu
– sequence: 2
  givenname: Kesar
  surname: Singh
  fullname: Singh, Kesar
  email: Department of Statistics and Biostatistics, Rutgers University, Piscataway, NJ 08854, USA mxie@stat.rutgers.edu
  organization: Department of Statistics and Biostatistics, Rutgers University, Piscataway, NJ 08854, USA E-mail: mxie@stat.rutgers.edu
BookMark eNp9kUFPFDEYhhuCCQt44W7SxIsxDrTzdaYdb7iyC0iAgEZuTXf2m9h1tsW2K_Lv7TpAIjH20ibv8zZfn26TTecdErLH2T7P68C6GPZ5yRjbICMuK15UqoRNMmLA6kJKEFtkO8ZFBqBUYkRuxt51do6uRfrRxhTsbJWsd-9o-oZ0EvDHCl3KwV8pPYrJLk3ygfqOGnppglliwvCeHtIr_Gnxbpe86Ewf8eXDvkO-TI4-j4-Ls4vpyfjwrGhFKVlRdRIaU4oaQFbQznlVK4FdNWMzVatKKQGq4bJpVMsVzDkyqBsGUtQGAUHCDnkz3HsbfJ41Jr20scW-Nw79KmouZcZBKZbR18_QhV8Fl6fTHEpRSVay9YVsoNrgYwzY6dYms351Csb2mjO9Vq3XqvUf1bny9lnlNmQ94f7fMB_gO9vj_X9IfXJ-ffXYeTV0FjE7f-oIKBuV3eS8GPL8R_jrKTfhu65lFqu_nk_z6dPk5nT6IT_2N-ZDp4I
CitedBy_id crossref_primary_10_1016_j_dental_2017_12_005
crossref_primary_10_1007_s10765_015_1917_0
crossref_primary_10_1186_s13293_023_00544_5
crossref_primary_10_1109_TSIPN_2022_3188458
crossref_primary_10_1016_j_ijar_2017_10_013
crossref_primary_10_1016_j_swevo_2019_06_002
crossref_primary_10_1016_j_ecosta_2023_04_006
crossref_primary_10_1002_sim_8738
crossref_primary_10_6339_25_JDS1161E
crossref_primary_10_1007_s00362_024_01549_x
crossref_primary_10_1007_s13253_021_00472_0
crossref_primary_10_3390_brainsci7090114
crossref_primary_10_1080_01621459_2014_957288
crossref_primary_10_1016_j_jmva_2019_104567
crossref_primary_10_1002_sim_9701
crossref_primary_10_1080_10618600_2024_2441165
crossref_primary_10_1002_sim_8293
crossref_primary_10_1080_01621459_2014_899235
crossref_primary_10_51387_23_NEJSDS38
crossref_primary_10_1016_j_stamet_2014_07_002
crossref_primary_10_1080_01621459_2023_2252143
crossref_primary_10_1002_wics_1527
crossref_primary_10_1016_j_jece_2024_114585
crossref_primary_10_51387_22_NEJSDS4
crossref_primary_10_1016_j_ijar_2022_09_011
crossref_primary_10_1016_j_ijar_2013_04_010
crossref_primary_10_1007_s40815_021_01074_1
crossref_primary_10_1080_01621459_2014_946318
crossref_primary_10_1111_cobi_13499
crossref_primary_10_2139_ssrn_4507005
crossref_primary_10_1080_24709360_2017_1400714
crossref_primary_10_1016_j_ijar_2013_09_017
crossref_primary_10_1007_s42452_024_05685_9
crossref_primary_10_2139_ssrn_2919933
crossref_primary_10_1080_00401706_2015_1017116
crossref_primary_10_1111_biom_13469
crossref_primary_10_1111_sjos_12530
crossref_primary_10_1007_s10182_021_00390_z
crossref_primary_10_1111_insr_12415
crossref_primary_10_1186_s12859_023_05211_5
crossref_primary_10_51387_22_NEJSDS6
crossref_primary_10_1080_10618600_2025_2459287
crossref_primary_10_3390_foods10112520
crossref_primary_10_1080_01621459_2019_1672557
crossref_primary_10_1002_sim_9557
crossref_primary_10_1007_s13171_021_00267_y
crossref_primary_10_1080_01621459_2020_1762614
crossref_primary_10_1007_s42519_022_00309_0
crossref_primary_10_1080_03610926_2019_1576896
crossref_primary_10_1016_j_csda_2022_107587
crossref_primary_10_1109_ACCESS_2020_3042180
crossref_primary_10_1214_15_EJS984
crossref_primary_10_1111_rssb_12429
crossref_primary_10_1016_j_jspi_2017_09_009
crossref_primary_10_1007_s00362_023_01445_w
crossref_primary_10_1016_j_jspi_2017_09_007
crossref_primary_10_1186_s12859_017_1745_2
crossref_primary_10_1111_biom_12497
crossref_primary_10_1111_insr_12354
crossref_primary_10_3390_sym15040880
crossref_primary_10_1080_01621459_2020_1850461
crossref_primary_10_1109_TBDATA_2018_2810187
crossref_primary_10_1146_annurev_statistics_010814_020310
crossref_primary_10_1214_21_SS131
crossref_primary_10_3390_cancers15194674
crossref_primary_10_1080_00401706_2019_1665591
crossref_primary_10_1080_01621459_2021_1902817
crossref_primary_10_1016_j_jclinepi_2022_02_010
crossref_primary_10_1016_j_spl_2015_06_016
crossref_primary_10_1214_15_EJS993
crossref_primary_10_1111_sjos_12117
crossref_primary_10_1080_03610926_2020_1836218
crossref_primary_10_12677_aam_2025_143105
crossref_primary_10_1080_02331888_2022_2064862
crossref_primary_10_1111_biom_12998
crossref_primary_10_1111_insr_12115
crossref_primary_10_1098_rspa_2020_0579
crossref_primary_10_1016_j_jeconom_2022_01_008
crossref_primary_10_1139_cjfas_2015_0086
crossref_primary_10_1007_s11222_014_9522_9
crossref_primary_10_1016_j_ejor_2020_11_041
crossref_primary_10_1016_j_jspi_2022_06_001
crossref_primary_10_57019_jmv_1306685
crossref_primary_10_1016_j_fmre_2021_08_012
crossref_primary_10_1080_01621459_2014_985827
crossref_primary_10_5926_arepj_62_143
crossref_primary_10_1214_18_AOAS1160SF
crossref_primary_10_1051_epjconf_201819102017
crossref_primary_10_1080_10618600_2020_1714633
crossref_primary_10_1080_00031305_2020_1816214
crossref_primary_10_1111_dom_14384
crossref_primary_10_1214_21_EJS1837
crossref_primary_10_1093_biomet_asad010
crossref_primary_10_1016_j_ijar_2023_108946
crossref_primary_10_1109_TVCG_2023_3327195
crossref_primary_10_3389_fmolb_2022_800856
crossref_primary_10_1007_s42952_021_00157_x
crossref_primary_10_1016_j_fss_2022_05_009
crossref_primary_10_3390_e18060211
crossref_primary_10_1111_sjos_12581
crossref_primary_10_1177_0962280218773520
crossref_primary_10_1214_21_STS833
crossref_primary_10_1016_j_ifacol_2015_12_048
crossref_primary_10_1080_01621459_2021_1946405
crossref_primary_10_1007_s13253_023_00551_4
crossref_primary_10_1007_s11336_021_09747_4
crossref_primary_10_1007_s10260_020_00520_y
crossref_primary_10_1016_j_spl_2017_10_011
crossref_primary_10_1111_biom_12231
crossref_primary_10_1146_annurev_statistics_040522_021241
crossref_primary_10_1016_j_patcog_2022_108536
crossref_primary_10_1115_1_4066380
crossref_primary_10_1007_s42952_023_00237_0
crossref_primary_10_1080_01621459_2020_1736082
crossref_primary_10_2139_ssrn_2639266
crossref_primary_10_1214_21_AOS2132
crossref_primary_10_1080_03610926_2016_1248781
crossref_primary_10_1002_cjs_11569
crossref_primary_10_1016_j_clinph_2016_04_027
crossref_primary_10_1086_698302
crossref_primary_10_4236_apm_2016_68041
crossref_primary_10_1155_2021_5526717
crossref_primary_10_1002_wics_1329
crossref_primary_10_1016_j_jspi_2017_09_012
crossref_primary_10_1016_j_jspi_2017_09_013
crossref_primary_10_1093_biomet_asz016
crossref_primary_10_1016_j_jspi_2017_09_010
crossref_primary_10_1016_j_jspi_2017_09_016
crossref_primary_10_1002_cjs_11726
crossref_primary_10_1016_j_jspi_2017_09_017
crossref_primary_10_1016_j_jspi_2017_09_014
crossref_primary_10_1007_s10651_019_00432_5
crossref_primary_10_1002_sim_8829
crossref_primary_10_1093_jrsssb_qkae082
crossref_primary_10_1111_biom_13786
crossref_primary_10_1214_21_STS842
crossref_primary_10_29220_CSAM_2022_29_3_301
crossref_primary_10_1098_rspa_2018_0565
crossref_primary_10_1111_insr_12064
crossref_primary_10_1007_s11425_021_2086_5
crossref_primary_10_1016_j_stamet_2014_01_003
crossref_primary_10_1111_insr_12067
crossref_primary_10_1523_ENEURO_0484_23_2024
crossref_primary_10_1016_j_jspi_2016_11_006
crossref_primary_10_1080_10618600_2022_2090946
crossref_primary_10_1371_journal_pcbi_1011417
crossref_primary_10_1080_01621459_2016_1165102
crossref_primary_10_1214_19_STS765
crossref_primary_10_1080_24754269_2021_1877950
crossref_primary_10_1007_s11222_024_10471_z
crossref_primary_10_1016_j_ijar_2024_109211
crossref_primary_10_3390_ijerph13060605
crossref_primary_10_1186_s12874_020_01105_9
crossref_primary_10_1016_j_foodcont_2015_01_019
crossref_primary_10_1016_j_ijar_2021_09_001
crossref_primary_10_1080_07474938_2020_1772568
crossref_primary_10_1007_s11336_017_9554_0
crossref_primary_10_1002_sim_9125
crossref_primary_10_1016_j_ins_2018_04_047
crossref_primary_10_1080_01621459_2014_931237
crossref_primary_10_1016_j_ijar_2023_109060
crossref_primary_10_1080_00031305_2023_2226184
crossref_primary_10_3150_15_BEJ750
crossref_primary_10_1080_01621459_2018_1554485
crossref_primary_10_1093_nop_npae001
crossref_primary_10_1177_09622802231221201
crossref_primary_10_1007_s11749_015_0440_8
crossref_primary_10_1016_j_csda_2021_107377
crossref_primary_10_5351_KJAS_2015_28_2_269
crossref_primary_10_1214_12_EJS734
crossref_primary_10_2139_ssrn_3515288
crossref_primary_10_1016_j_ijar_2019_06_005
crossref_primary_10_1080_01621459_2023_2233162
crossref_primary_10_1214_21_AOAS1563
crossref_primary_10_1002_sim_10000
crossref_primary_10_1080_00031305_2016_1208629
crossref_primary_10_1080_03610926_2021_1921805
crossref_primary_10_1017_psa_2023_174
crossref_primary_10_1007_s00362_024_01542_4
crossref_primary_10_1007_s11425_017_9325_9
crossref_primary_10_1111_rssb_12070
crossref_primary_10_1177_2059799119826518
crossref_primary_10_3847_1538_4357_aa63f0
crossref_primary_10_1016_j_jspi_2015_11_003
crossref_primary_10_3150_17_BEJ942
crossref_primary_10_1093_biomtc_ujae152
crossref_primary_10_1214_14_STS474
crossref_primary_10_1002_cjs_11559
crossref_primary_10_1111_rssa_12647
Cites_doi 10.1093/biostatistics/kxn034
10.1214/aos/1176346267
10.1214/11-IMSCOLL814
10.2307/1267823
10.1214/aoms/1177706618
10.1093/biomet/81.2.341
10.1214/11-STS352
10.1002/sim.4780071207
10.1214/aos/1018031259
10.1002/9780470316436
10.1002/sim.4780131304
10.1111/j.0006-341X.2003.00112.x
10.1016/j.ijar.2007.03.004
10.1017/S0305004100016297
10.1111/1467-9469.00285
10.1214/11-STS352B
10.1111/j.1541-0420.2010.01486.x
10.1198/jasa.2009.0142
10.1017/CBO9780511813559
10.1214/ss/1177011233
10.1142/9789812708298_0029
10.1007/978-1-4899-3210-5
10.1111/j.2517-6161.1963.tb00512.x
10.5705/ss.2011.040a
10.1080/01621459.1983.10477938
10.1080/01621459.1961.10482107
10.1201/9780429246593
10.1214/009053604000001084
10.1214/10-STS337
10.1007/BF02926018
10.1002/bimj.200410104
10.1080/01621459.1991.10475029
10.1214/10-STS322
10.1002/sim.2934
10.1007/978-1-4757-3500-0
10.1214/aos/1176348128
10.1007/978-1-4899-2887-0
10.1111/j.2517-6161.1960.tb00374.x
10.1198/jasa.2011.tm09803
10.1080/00031305.2000.10474555
10.1093/biomet/43.3-4.423
10.1080/01621459.1973.10481362
10.1093/biomet/asq001
10.1007/s13253-009-0002-1
10.1098/rsta.1937.0005
10.1093/biomet/79.2.231
10.1080/01621459.1987.10478410
10.1214/074921707000000102
10.1098/rstl.1763.0053
10.2307/3315916
10.1093/biomet/asq045
10.1098/rsta.1922.0009
10.1214/12-AOAS585
10.2139/ssrn.1777272
10.1214/aoms/1177698624
10.1093/biomet/80.1.3
10.2307/3314746
10.1002/(SICI)1097-0258(19990215)18:3<321::AID-SIM28>3.0.CO;2-P
10.1111/j.2397-2335.1934.tb04184.x
10.1111/j.2517-6161.1992.tb01876.x
10.1016/0167-7152(93)90196-P
10.1111/j.2517-6161.1958.tb00278.x
10.2307/2983527
10.2307/3314658
10.1002/(SICI)1097-0258(19970415)16:7<769::AID-SIM495>3.0.CO;2-V
ContentType Journal Article
Copyright 2013 International Statistical Institute
2013 The Authors. International Statistical Review © 2013 International Statistical Institute
Copyright John Wiley & Sons, Inc. Apr 2013
Copyright_xml – notice: 2013 International Statistical Institute
– notice: 2013 The Authors. International Statistical Review © 2013 International Statistical Institute
– notice: Copyright John Wiley & Sons, Inc. Apr 2013
DBID BSCLL
AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1111/insr.12000
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1751-5823
EndPage 39
ExternalDocumentID 2939273561
10_1111_insr_12000
INSR12000
43298799
ark_67375_WNG_67KFXJGB_1
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
29J
31~
33P
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5RE
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AABCJ
AAESR
AAEVG
AAHHS
AAKYL
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABDBF
ABEML
ABFAN
ABIVO
ABJNI
ABLJU
ABPVW
ABQDR
ABXSQ
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACDIW
ACGFO
ACGFS
ACIWK
ACMTB
ACNCT
ACPOU
ACSCC
ACTMH
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADODI
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AELLO
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFVYC
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKBRZ
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BHOJU
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DU5
EBS
ECEWR
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GIFXF
GODZA
H.T
H.X
HF~
HGD
HGLYW
HQ6
HVGLF
HZ~
H~9
IPSME
IX1
J0M
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RBU
RNS
ROL
RPE
RX1
SA0
SUPJJ
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
YYP
ZZTAW
~02
~IA
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAWIL
AAYCA
ABAWQ
ACHJO
ACRPL
ACUHS
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGLNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIHAF
ALRMG
ALVPJ
AMVHM
AAYXX
AGHNM
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c4270-5f739a24633753cd15684ef5b0b868588438917998c183d1e036903746ae3e373
IEDL.DBID DR2
ISSN 0306-7734
IngestDate Thu Jul 10 22:08:38 EDT 2025
Fri Jul 25 18:55:28 EDT 2025
Tue Jul 01 00:48:46 EDT 2025
Thu Apr 24 23:00:26 EDT 2025
Wed Jan 22 16:56:06 EST 2025
Sun Aug 31 12:00:40 EDT 2025
Wed Oct 30 09:53:05 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4270-5f739a24633753cd15684ef5b0b868588438917998c183d1e036903746ae3e373
Notes istex:68DB2176758FF74D8E3B9E2C8AAE29513B6C83E8
ark:/67375/WNG-67KFXJGB-1
ArticleID:INSR12000
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Literature Review-2
ObjectType-Feature-2
content type line 23
PQID 1324570207
PQPubID 105652
PageCount 37
ParticipantIDs proquest_miscellaneous_1770373880
proquest_journals_1324570207
crossref_citationtrail_10_1111_insr_12000
crossref_primary_10_1111_insr_12000
wiley_primary_10_1111_insr_12000_INSR12000
jstor_primary_43298799
istex_primary_ark_67375_WNG_67KFXJGB_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2013
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: April 2013
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Hoboken
PublicationTitle International statistical review
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Blackwell Publishing
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell Publishing
– name: John Wiley & Sons, Inc
References Singh, K., Xie, M. & Strawderman, W.E. (2005). Combining information from independent sources through confidence distributions. Ann. Statist. 33, 159-183.
Hannig, J. (2009). On generalized fiducial inference. Statist. Sinica , 19, 491-544.
Wong, A.C.M. (1993). A note on inference for the mean parameter of the gamma distribution. Stat. Probab. Lett. , 17, 61-66.
Martin, R., Zhang, J. & Liu, C. (2010). Dempster-Shafer theory and statistical inference with weak beliefs. Statist. Sci. , 25, 72-87.
Sterne, T.H. (1954). Some remarks on confidence or fiducial limits. Biometrika , 41, 275-278.
Sutton, A.J. & Higgins, J.P.T. (2008). Recent developments in meta-analysis. Stat. Med. , 27, 625-650.
Fraser, D.A.S. & Mcdunnough, P. (1984). Further remarks on asymptotic normality of likelihood and conditional analyses. Canad. J. Statist. , 12, 183-190.
LeCam, L. (1958). Les propriétés asymptotiques des solutions de Bayes. Plubl. Inst. Statist. Univ. Paris , 7, 17-35.
Schweder, T. (2003). Abundance estimation from multiple photo surveys: Confidence distributions and reduced likelihoods for bowhead whales off Alaska. Biometrics , 59, 974-983.
Singh, K. & Xie, M. (2011). Discussions on professor Fraserâs article on "Is Bayes posterior just quick and dirty confidence? Stat. Sci ., 26, 319-321.
Fisher, R.A. (1973). Statistical Methods and Scientific Inference , 3rd ed. New York : Hafner Press.
Rao, C.R. (1973). Linear Statistical Inference and Its Applications , 2nd ed. New York : Wiley & Sons.
Barndorff-Nielsen, O.E. & Cox, D.R. (1994). Inference and Asymptotics . London : Chapman & Hall.
Blyth, C.R. & Still, H. (1983). Binomial confidence intervals. J. Amer. Statist. Assoc. , 78, 108-116.
Cox, D.R. (2006). Principles of Statistical Inference. London : Cambridge University Press.
DiCiccio, T. & Efron, B. (1992). More accurate confidence intervals in exponential families. Biometrika , 79, 231-45.
Bityukov, S.I., Krasnikov, N.V., Smirnova, V.V. & Taperechkina, V.A. (2007). The transform between the space of observed values and the space of possible values of the parameter. Proc. Sci. (ACAT) , 62, 1-9.
LeCam, L. (1953). On some asymptotic properties of maximum likelihood estimates and related Bayes estimates. University of California Publications in Statistics , 1, 277-330.
David, H.A. & Edwards, A.W.F. (2001). Annotated Readings in the History of Statistics . New York : Springer-Verlag.
Marden, J.I. (1991). Sensitive and sturdy p-values. Ann. Statist . 19, 918-934.
Blaker, H. (2000). Confidence curves and improved exact confidence intervals for discrete distributions. Canad. J. Statist. , 28, 783-798.
Kim, D. & Lindsay, B.G. (2011). Using confidence distribution sampling to visualize confidence sets. Statist. Sinica , 21, 923-948.
Cox, D.R. & Hinkley, D.V. (1974). Theoretical Statistics . London : Chapman & Hall.
Efron, B. (1986). Why isn't everyone a Bayesian? Amer. Statist. , 40, 262-266.
Johnson, R.A. (1967). An asymptotic expansion for posterior distributions. Ann. Math. Stat. , 38, 1899-1906.
Blaker, H. & Spjøtvoll, E. (2000). Paradoxes and improvements in interval estimation. Amer. Statist. , 54, 242-247.
Kendall, M. & Stuart, A. (1974). The Advanced Theory of Statistics , 2, 3rd ed. London : Griffin.
Crow, E.L. (1956). Confidence intervals for a proportion. Biometrika , 43, 423-435.
Dempster, A.P. (2008). The Dempster-Shafer calculus for statisticians. Internat. J. Approx. Reason. , 48, 365-377.
Fisher, R.A. (1960). On some extensions of Bayesian inference proposed by Mr. Lindley. J. R. Stat. Soc. B, 22, 299-301.
Singh, K., Xie, M. & Strawderman, W.E. (2007). Confidence distribution (CD)-distribution estimator of a parameter. In Complex Datasets and Inverse Problems. IMS Lecture Notes-Monograph Series, 54, 132-150.
Parmar, M.K.B., Spiegelhalter, D.J, Freedman, L.S. & Chart Steering Committee (1994). The chart trials: Bayesian design and monitoring in practice. Stat. Med. , 13, 1297-1312.
Tian, L., Wang, R., Cai, T. & Wei, L.J. (2011). The highest confidence density region and its usage for joint inferences about constrained parameters. Biometrics , 67, 604-610.
Fisher, R.A. (1956). Statistical Methods and Scientific Inference. Edinburgh : Oliver and Boyd.
Efron, B. & Tibshirani, R.J. (1994). An Introduction to the Bootstrap. London : Chapman & Hall.
Yang, G., Shi, P. & Xie, M. (2012). gmeta : Meta-Analysis via a Unified Framework under Confidence Distribution (R package). Version 2. Available at http://stat.rutgers.edu/home/mxie/packages/gmetaRpackage/.
Fisher, R.A. (1930). Inverse probability. Proc. Cambridge Philos. Soc. , 26, 528-535.
Schweder, T., Sadykova, D., Rugh, D. & Koski, W. (2010). Population estimates from aerial photographic surveys of naturally and variably marked bowhead whales. J. Agric. Biol. Environ. Stat. , 15, 1-19.
Zabell, S.L. (1992). R.A. Fisher and fiducial argument. Stat. Sci. , 7, 369-387.
Efron, B. (1998). R.A.Fisher in the 21st century. Stat. Sci. , 13, 95-122.
Reid, N. & Fraser, D.A.S. (2010). Mean likelihood and higher order approximations. Biometrika , 97, 159-170.
Tian, L., Cai, T., Pfeffer, M., Piankov, N., Cremieux, P. & Wei, L. (2009). Exact and efficient inference procedure for meta-analysis and its application to the analysis of independent 2Ã 2 tables with all available data but without artificial continuity correction. Biostatistics , 10, 275-281.
Cox, D.R. (1958). Some problems with statistical inference. Ann. Math. Stat ., 29, 357-372.
Littell, R.C. and Folks, J.L. (1973). Asymptotic optimality of Fisher's method of combining independent tests. II. J. Amer. Statist. Assoc. , 68, 193-194.
Neyman, J. (1937). Outline of a theory of statistical estimation based on the classical theory of probability. Philos.Trans. R. Soc. A., 237, 333-380.
Berger, R.L. (1982). Multiparameter hypothesis testing and acceptance sampling. Technometrics , 24, 295-300.
Joseph, L., du Berger, R. & Belisle, P. (1997). Bayesian and mixed Bayesian/likelihood criteria for sample size determination. Stat. Med. , 16, 769-781.
Schweder, T. (2007). Confidence nets for curves. Advances in Statistical Modeling and Inference. Essays in honor of Kjell A. Doksum. World Scientific. 593-609.
Birnbaum, A. (1961). Confidence curves: An omnibus technique for estimation and testing statistical hypotheses. J. Amer. Statist. Assoc. , 56, 246-249.
Parzen, M., Wei, L.J. & Ying, Z. (1994). A resampling method based on pivotal estimating functions. Biometrika , 81, 341-350.
Babu, G.J. & Singh, K. (1983). Inference on means using the bootstrap. Ann. Statist. , 11, 999-1003.
Normand, S.-L. (1999). Meta-analysis: Formulating, evaluating, combining, and reporting. Stat. Med. , 18, 321-359.
Efron, B. (1987). Better bootstrap confidence intervals and bootstrap approximations. J. Amer. Statist. Assoc. , 82, 171-185.
Welch, B.L. & Peers, H.W. (1963). On formulae for confidence points based on integrals of weighted likelihoods. J. R. Stat. Soc. Ser. B , 25, 318-29.
Lehmann, E.L. (1991). Testing Statistical Hypotheses. New York : Springer-Verlag.
Kass, R. (2011). Statistical inference: The big picture. Statist. Sci. , 26, 1-9.
Fraser, D.A.S. (2011). Is Bayes posterior just quick and dirty confidence? Stat. Sci. , 26, 299-316.
Efron, B. (1993). Bayes and likelihood calculations from confidence intervals. Biometrika , 80, 3-26.
Wong, A.C.M. (1995). On approximate inference for the two-parameter gamma model. Stat. Papers , 36, 49-59.
Fisher, R.A. (1922). On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. A , 222, 309-368.
Schweder, T. & Hjort, N.L. (2002). Confidence and likelihood. Scand. J. Stat. , 29, 309-332.
Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Phil. Trans. Roy. Soc. , 53, 370-418; 54, 296-325. Reprinted in Biometrika, 45 (1958), 293-315.
Casella, G. (1986). Refining binomial confidence intervals. Canad. J. Statist. , 14, 113-129.
Mau, J. (1988). A statistical assessment of clinical equivalence. Stat. Med. , 7, 1267-1277.
Spiegelhalter, D.J., Freedman, L.S. & Parmar, M.K.B. (1994). Bayesian approaches to randomized trials. J. Roy. Statist. Soc. Ser. A , 157, 357-416.
Bender, R., Berg, G. & Zeeb, H. (2005). Tutorial: Using confidence curves in medical research. Biom. J. , 47, 237-247.
Lindley, D.V. (1958). Fiducial distribution and Bayes theorem. J. R. Stat. Soc. Ser. B, 20, 102-107.
Liu, R.Y., Parelius, J. & Singh, K. (1999). Multivariate analysis by data depth: Descriptive statistics, graphics and inference. Ann. Statist. , 27, 783-858.
Fraser, D.A.S. (1991). Statistical inference: Likelihood to significance. J. Amer. Statist. Assoc. , 86, 258-265.
Xie, M., Singh, K. & Strawderman, W.E. (2011). Confidence distributions and a unifying framework for meta-analysis. J. Amer. Statist. Assoc. , 106, 320-333.
Hall, P. (1992). On the removal of skewness by transformation. J. R. Stat. Soc. Ser. B, 54, 221-228.
Xie, M., Singh, K. & Zhang, C.-H. (2009). Confidence intervals for population ranks in the presence of ties or near ties. J. Amer. Statist. Assoc. , 104, 775-788.
Hampel, F. (2006). The proper fiducial argument. Inf. Transf. Combin. , LNCS 4123, pp. 512 -526.
Neyman, J. (1934). On the two different aspects of representative method: The method of stratified sampling and the method of purpose selection. J. Roy. Statist. Soc. Ser. A , 97, 558-625.
Hall, P. & Miller, H. (2010). Bootstrap confidence intervals and hypothesis tests for extrema of parameters. Biometrika , 97, 881-892.
2010; 97
1991; 19
2010; 15
1995; 36
1954; 41
1974
2003; 59
1973
1992; 54
1983; 11
1982; 24
1992; 7
1763; 53
2010; 25
2009; 10
1986; 40
2001
1987; 82
1999; 18
2000; 54
1956; 43
1991; 86
1984; 12
2008; 27
1997; 16
2011; 21
1993; 80
2011; 67
2007; 62
2011; 26
2009; 19
2005; 33
1958; 7
1998; 13
1994; 157
1963; 25
2000; 28
2012
2010
1999; 27
1986; 14
2007
2006
1994
1992; 79
2004
2003
1991
1994; 81
1961; 56
2007; 54
1956
1953; 1
2005; 47
1983; 78
1960; 22
1937; 237
2002; 29
1993; 17
2011; 106
1958; 29
1973; 68
1930; 26
1988; 7
1958; 20
1934; 97
2008; 48
1922; 222
1994; 13
1967; 38
2013
2009; 104
2012; 8
e_1_2_10_23_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_42_1
Fisher R.A. (e_1_2_10_30_1) 1930; 26
Yang G. (e_1_2_10_84_1) 2012
Schweder T (e_1_2_10_65_1) 2003
Bityukov S.I. (e_1_2_10_10_1) 2007; 62
LeCam L. (e_1_2_10_47_1) 1958; 7
e_1_2_10_70_1
Littell R.C. (e_1_2_10_49_1) 1973; 68
e_1_2_10_2_1
LeCam L. (e_1_2_10_46_1) 1953; 1
e_1_2_10_72_1
Blyth C.R. (e_1_2_10_13_1) 1983; 78
Fisher R.A. (e_1_2_10_33_1) 1973
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_76_1
Efron B. (e_1_2_10_27_1) 1998; 13
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
Welch B.L. (e_1_2_10_78_1) 1963; 25
e_1_2_10_11_1
e_1_2_10_51_1
Efron B. (e_1_2_10_28_1) 1994
e_1_2_10_80_1
Wasserman L. (e_1_2_10_77_1) 2007
e_1_2_10_82_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
Hannig J. (e_1_2_10_40_1) 2009; 19
e_1_2_10_25_1
Hall P. (e_1_2_10_37_1) 1992; 54
e_1_2_10_67_1
e_1_2_10_45_1
e_1_2_10_22_1
Fisher R.A. (e_1_2_10_31_1) 1956
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Bityukov S. (e_1_2_10_9_1) 2010
Fisher R.A. (e_1_2_10_32_1) 1960; 22
e_1_2_10_71_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
Marden J.I. (e_1_2_10_53_1) 1991; 19
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_35_1
e_1_2_10_59_1
Lindley D.V. (e_1_2_10_50_1) 1958; 20
Hampel F. (e_1_2_10_39_1) 2006
Kendall M. (e_1_2_10_44_1) 1974
Sterne T.H. (e_1_2_10_73_1) 1954; 41
e_1_2_10_60_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_85_1
Efron B. (e_1_2_10_24_1) 1986; 40
e_1_2_10_66_1
Lehmann E.L. (e_1_2_10_48_1) 1991
Blaker H. (e_1_2_10_12_1) 2000; 54
e_1_2_10_26_1
e_1_2_10_68_1
References_xml – reference: Lehmann, E.L. (1991). Testing Statistical Hypotheses. New York : Springer-Verlag.
– reference: Fisher, R.A. (1922). On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. A , 222, 309-368.
– reference: Martin, R., Zhang, J. & Liu, C. (2010). Dempster-Shafer theory and statistical inference with weak beliefs. Statist. Sci. , 25, 72-87.
– reference: Wong, A.C.M. (1995). On approximate inference for the two-parameter gamma model. Stat. Papers , 36, 49-59.
– reference: Dempster, A.P. (2008). The Dempster-Shafer calculus for statisticians. Internat. J. Approx. Reason. , 48, 365-377.
– reference: Xie, M., Singh, K. & Zhang, C.-H. (2009). Confidence intervals for population ranks in the presence of ties or near ties. J. Amer. Statist. Assoc. , 104, 775-788.
– reference: Babu, G.J. & Singh, K. (1983). Inference on means using the bootstrap. Ann. Statist. , 11, 999-1003.
– reference: Sterne, T.H. (1954). Some remarks on confidence or fiducial limits. Biometrika , 41, 275-278.
– reference: Birnbaum, A. (1961). Confidence curves: An omnibus technique for estimation and testing statistical hypotheses. J. Amer. Statist. Assoc. , 56, 246-249.
– reference: Efron, B. (1987). Better bootstrap confidence intervals and bootstrap approximations. J. Amer. Statist. Assoc. , 82, 171-185.
– reference: Kim, D. & Lindsay, B.G. (2011). Using confidence distribution sampling to visualize confidence sets. Statist. Sinica , 21, 923-948.
– reference: Schweder, T., Sadykova, D., Rugh, D. & Koski, W. (2010). Population estimates from aerial photographic surveys of naturally and variably marked bowhead whales. J. Agric. Biol. Environ. Stat. , 15, 1-19.
– reference: Efron, B. (1993). Bayes and likelihood calculations from confidence intervals. Biometrika , 80, 3-26.
– reference: Spiegelhalter, D.J., Freedman, L.S. & Parmar, M.K.B. (1994). Bayesian approaches to randomized trials. J. Roy. Statist. Soc. Ser. A , 157, 357-416.
– reference: Fisher, R.A. (1956). Statistical Methods and Scientific Inference. Edinburgh : Oliver and Boyd.
– reference: Kass, R. (2011). Statistical inference: The big picture. Statist. Sci. , 26, 1-9.
– reference: Cox, D.R. (1958). Some problems with statistical inference. Ann. Math. Stat ., 29, 357-372.
– reference: Hall, P. & Miller, H. (2010). Bootstrap confidence intervals and hypothesis tests for extrema of parameters. Biometrika , 97, 881-892.
– reference: Tian, L., Cai, T., Pfeffer, M., Piankov, N., Cremieux, P. & Wei, L. (2009). Exact and efficient inference procedure for meta-analysis and its application to the analysis of independent 2Ã 2 tables with all available data but without artificial continuity correction. Biostatistics , 10, 275-281.
– reference: Yang, G., Shi, P. & Xie, M. (2012). gmeta : Meta-Analysis via a Unified Framework under Confidence Distribution (R package). Version 2. Available at http://stat.rutgers.edu/home/mxie/packages/gmetaRpackage/.
– reference: Singh, K. & Xie, M. (2011). Discussions on professor Fraserâs article on "Is Bayes posterior just quick and dirty confidence? Stat. Sci ., 26, 319-321.
– reference: Xie, M., Singh, K. & Strawderman, W.E. (2011). Confidence distributions and a unifying framework for meta-analysis. J. Amer. Statist. Assoc. , 106, 320-333.
– reference: Cox, D.R. & Hinkley, D.V. (1974). Theoretical Statistics . London : Chapman & Hall.
– reference: Joseph, L., du Berger, R. & Belisle, P. (1997). Bayesian and mixed Bayesian/likelihood criteria for sample size determination. Stat. Med. , 16, 769-781.
– reference: Lindley, D.V. (1958). Fiducial distribution and Bayes theorem. J. R. Stat. Soc. Ser. B, 20, 102-107.
– reference: Kendall, M. & Stuart, A. (1974). The Advanced Theory of Statistics , 2, 3rd ed. London : Griffin.
– reference: Schweder, T. & Hjort, N.L. (2002). Confidence and likelihood. Scand. J. Stat. , 29, 309-332.
– reference: Berger, R.L. (1982). Multiparameter hypothesis testing and acceptance sampling. Technometrics , 24, 295-300.
– reference: Littell, R.C. and Folks, J.L. (1973). Asymptotic optimality of Fisher's method of combining independent tests. II. J. Amer. Statist. Assoc. , 68, 193-194.
– reference: Neyman, J. (1937). Outline of a theory of statistical estimation based on the classical theory of probability. Philos.Trans. R. Soc. A., 237, 333-380.
– reference: Hampel, F. (2006). The proper fiducial argument. Inf. Transf. Combin. , LNCS 4123, pp. 512 -526.
– reference: Liu, R.Y., Parelius, J. & Singh, K. (1999). Multivariate analysis by data depth: Descriptive statistics, graphics and inference. Ann. Statist. , 27, 783-858.
– reference: Tian, L., Wang, R., Cai, T. & Wei, L.J. (2011). The highest confidence density region and its usage for joint inferences about constrained parameters. Biometrics , 67, 604-610.
– reference: Fisher, R.A. (1960). On some extensions of Bayesian inference proposed by Mr. Lindley. J. R. Stat. Soc. B, 22, 299-301.
– reference: Rao, C.R. (1973). Linear Statistical Inference and Its Applications , 2nd ed. New York : Wiley & Sons.
– reference: Fraser, D.A.S. & Mcdunnough, P. (1984). Further remarks on asymptotic normality of likelihood and conditional analyses. Canad. J. Statist. , 12, 183-190.
– reference: Schweder, T. (2007). Confidence nets for curves. Advances in Statistical Modeling and Inference. Essays in honor of Kjell A. Doksum. World Scientific. 593-609.
– reference: Mau, J. (1988). A statistical assessment of clinical equivalence. Stat. Med. , 7, 1267-1277.
– reference: Fisher, R.A. (1973). Statistical Methods and Scientific Inference , 3rd ed. New York : Hafner Press.
– reference: David, H.A. & Edwards, A.W.F. (2001). Annotated Readings in the History of Statistics . New York : Springer-Verlag.
– reference: Parmar, M.K.B., Spiegelhalter, D.J, Freedman, L.S. & Chart Steering Committee (1994). The chart trials: Bayesian design and monitoring in practice. Stat. Med. , 13, 1297-1312.
– reference: Bityukov, S.I., Krasnikov, N.V., Smirnova, V.V. & Taperechkina, V.A. (2007). The transform between the space of observed values and the space of possible values of the parameter. Proc. Sci. (ACAT) , 62, 1-9.
– reference: Reid, N. & Fraser, D.A.S. (2010). Mean likelihood and higher order approximations. Biometrika , 97, 159-170.
– reference: Fraser, D.A.S. (1991). Statistical inference: Likelihood to significance. J. Amer. Statist. Assoc. , 86, 258-265.
– reference: Marden, J.I. (1991). Sensitive and sturdy p-values. Ann. Statist . 19, 918-934.
– reference: Efron, B. (1986). Why isn't everyone a Bayesian? Amer. Statist. , 40, 262-266.
– reference: LeCam, L. (1958). Les propriétés asymptotiques des solutions de Bayes. Plubl. Inst. Statist. Univ. Paris , 7, 17-35.
– reference: DiCiccio, T. & Efron, B. (1992). More accurate confidence intervals in exponential families. Biometrika , 79, 231-45.
– reference: Wong, A.C.M. (1993). A note on inference for the mean parameter of the gamma distribution. Stat. Probab. Lett. , 17, 61-66.
– reference: Efron, B. & Tibshirani, R.J. (1994). An Introduction to the Bootstrap. London : Chapman & Hall.
– reference: Blaker, H. & Spjøtvoll, E. (2000). Paradoxes and improvements in interval estimation. Amer. Statist. , 54, 242-247.
– reference: Hannig, J. (2009). On generalized fiducial inference. Statist. Sinica , 19, 491-544.
– reference: Singh, K., Xie, M. & Strawderman, W.E. (2007). Confidence distribution (CD)-distribution estimator of a parameter. In Complex Datasets and Inverse Problems. IMS Lecture Notes-Monograph Series, 54, 132-150.
– reference: Blyth, C.R. & Still, H. (1983). Binomial confidence intervals. J. Amer. Statist. Assoc. , 78, 108-116.
– reference: Schweder, T. (2003). Abundance estimation from multiple photo surveys: Confidence distributions and reduced likelihoods for bowhead whales off Alaska. Biometrics , 59, 974-983.
– reference: Crow, E.L. (1956). Confidence intervals for a proportion. Biometrika , 43, 423-435.
– reference: Parzen, M., Wei, L.J. & Ying, Z. (1994). A resampling method based on pivotal estimating functions. Biometrika , 81, 341-350.
– reference: Casella, G. (1986). Refining binomial confidence intervals. Canad. J. Statist. , 14, 113-129.
– reference: Fraser, D.A.S. (2011). Is Bayes posterior just quick and dirty confidence? Stat. Sci. , 26, 299-316.
– reference: Normand, S.-L. (1999). Meta-analysis: Formulating, evaluating, combining, and reporting. Stat. Med. , 18, 321-359.
– reference: Zabell, S.L. (1992). R.A. Fisher and fiducial argument. Stat. Sci. , 7, 369-387.
– reference: Efron, B. (1998). R.A.Fisher in the 21st century. Stat. Sci. , 13, 95-122.
– reference: Singh, K., Xie, M. & Strawderman, W.E. (2005). Combining information from independent sources through confidence distributions. Ann. Statist. 33, 159-183.
– reference: Blaker, H. (2000). Confidence curves and improved exact confidence intervals for discrete distributions. Canad. J. Statist. , 28, 783-798.
– reference: Bender, R., Berg, G. & Zeeb, H. (2005). Tutorial: Using confidence curves in medical research. Biom. J. , 47, 237-247.
– reference: Johnson, R.A. (1967). An asymptotic expansion for posterior distributions. Ann. Math. Stat. , 38, 1899-1906.
– reference: LeCam, L. (1953). On some asymptotic properties of maximum likelihood estimates and related Bayes estimates. University of California Publications in Statistics , 1, 277-330.
– reference: Hall, P. (1992). On the removal of skewness by transformation. J. R. Stat. Soc. Ser. B, 54, 221-228.
– reference: Barndorff-Nielsen, O.E. & Cox, D.R. (1994). Inference and Asymptotics . London : Chapman & Hall.
– reference: Fisher, R.A. (1930). Inverse probability. Proc. Cambridge Philos. Soc. , 26, 528-535.
– reference: Cox, D.R. (2006). Principles of Statistical Inference. London : Cambridge University Press.
– reference: Welch, B.L. & Peers, H.W. (1963). On formulae for confidence points based on integrals of weighted likelihoods. J. R. Stat. Soc. Ser. B , 25, 318-29.
– reference: Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Phil. Trans. Roy. Soc. , 53, 370-418; 54, 296-325. Reprinted in Biometrika, 45 (1958), 293-315.
– reference: Sutton, A.J. & Higgins, J.P.T. (2008). Recent developments in meta-analysis. Stat. Med. , 27, 625-650.
– reference: Neyman, J. (1934). On the two different aspects of representative method: The method of stratified sampling and the method of purpose selection. J. Roy. Statist. Soc. Ser. A , 97, 558-625.
– volume: 7
  start-page: 369
  year: 1992
  end-page: 387
  article-title: R.A. Fisher and fiducial argument
  publication-title: Stat. Sci.
– start-page: 446
  year: 2010
  end-page: 456
– volume: 97
  start-page: 881
  year: 2010
  end-page: 892
  article-title: Bootstrap confidence intervals and hypothesis tests for extrema of parameters
  publication-title: Biometrika
– year: 1956
– volume: 19
  start-page: 491
  year: 2009
  end-page: 544
  article-title: On generalized fiducial inference
  publication-title: Statist. Sinica
– volume: 29
  start-page: 357
  year: 1958
  end-page: 372
  article-title: Some problems with statistical inference
  publication-title: Ann. Math. Stat
– volume: 43
  start-page: 423
  year: 1956
  end-page: 435
  article-title: Confidence intervals for a proportion
  publication-title: Biometrika
– volume: 25
  start-page: 72
  year: 2010
  end-page: 87
  article-title: Dempster‐Shafer theory and statistical inference with weak beliefs
  publication-title: Statist. Sci.
– volume: 15
  start-page: 1
  year: 2010
  end-page: 19
  article-title: Population estimates from aerial photographic surveys of naturally and variably marked bowhead whales
  publication-title: J. Agric. Biol. Environ. Stat.
– volume: 67
  start-page: 604
  year: 2011
  end-page: 610
  article-title: The highest confidence density region and its usage for joint inferences about constrained parameters
  publication-title: Biometrics
– volume: 48
  start-page: 365
  year: 2008
  end-page: 377
  article-title: The Dempster‐Shafer calculus for statisticians
  publication-title: Internat. J. Approx. Reason.
– year: 2001
– volume: 29
  start-page: 309
  year: 2002
  end-page: 332
  article-title: Confidence and likelihood
  publication-title: Scand. J. Stat.
– volume: 17
  start-page: 61
  year: 1993
  end-page: 66
  article-title: A note on inference for the mean parameter of the gamma distribution
  publication-title: Stat. Probab. Lett.
– volume: 97
  start-page: 558
  year: 1934
  end-page: 625
  article-title: On the two different aspects of representative method: The method of stratified sampling and the method of purpose selection
  publication-title: J. Roy. Statist. Soc. Ser. A
– volume: 86
  start-page: 258
  year: 1991
  end-page: 265
  article-title: Statistical inference: Likelihood to significance
  publication-title: J. Amer. Statist. Assoc.
– volume: 157
  start-page: 357
  year: 1994
  end-page: 416
  article-title: Bayesian approaches to randomized trials
  publication-title: J. Roy. Statist. Soc. Ser. A
– volume: 33
  start-page: 159
  year: 2005
  end-page: 183
  article-title: Combining information from independent sources through confidence distributions
  publication-title: Ann. Statist.
– volume: 104
  start-page: 775
  year: 2009
  end-page: 788
  article-title: Confidence intervals for population ranks in the presence of ties or near ties
  publication-title: J. Amer. Statist. Assoc.
– year: 1994
– volume: 97
  start-page: 159
  year: 2010
  end-page: 170
  article-title: Mean likelihood and higher order approximations
  publication-title: Biometrika
– volume: 21
  start-page: 923
  year: 2011
  end-page: 948
  article-title: Using confidence distribution sampling to visualize confidence sets
  publication-title: Statist. Sinica
– year: 2006
  end-page: 526
  article-title: The proper fiducial argument
  publication-title: Inf. Transf. Combin.
– volume: 7
  start-page: 17
  year: 1958
  end-page: 35
  article-title: Les propriétés asymptotiques des solutions de Bayes
  publication-title: Plubl. Inst. Statist. Univ. Paris
– volume: 38
  start-page: 1899
  year: 1967
  end-page: 1906
  article-title: An asymptotic expansion for posterior distributions
  publication-title: Ann. Math. Stat.
– volume: 24
  start-page: 295
  year: 1982
  end-page: 300
  article-title: Multiparameter hypothesis testing and acceptance sampling
  publication-title: Technometrics
– volume: 78
  start-page: 108‐116
  year: 1983
  article-title: Binomial confidence intervals
  publication-title: J. Amer. Statist. Assoc.
– year: 2004
– volume: 13
  start-page: 1297
  year: 1994
  end-page: 1312
  article-title: The chart trials: Bayesian design and monitoring in practice
  publication-title: Stat. Med.
– volume: 28
  start-page: 783
  year: 2000
  end-page: 798
  article-title: Confidence curves and improved exact confidence intervals for discrete distributions
  publication-title: Canad. J. Statist.
– volume: 82
  start-page: 171
  year: 1987
  end-page: 185
  article-title: Better bootstrap confidence intervals and bootstrap approximations
  publication-title: J. Amer. Statist. Assoc.
– volume: 54
  start-page: 132
  year: 2007
  end-page: 150
  article-title: Confidence distribution (CD)‐distribution estimator of a parameter
  publication-title: In Complex Datasets and Inverse Problems
– volume: 40
  start-page: 262
  year: 1986
  end-page: 266
  article-title: Why isn’t everyone a Bayesian?
  publication-title: Amer. Statist.
– volume: 222
  start-page: 309
  year: 1922
  end-page: 368
  article-title: On the mathematical foundations of theoretical statistics
  publication-title: Philos. Trans. R. Soc. Lond. A
– volume: 19
  start-page: 918
  year: 1991
  end-page: 934
  article-title: Sensitive and sturdy p‐values
  publication-title: Ann. Statist
– volume: 26
  start-page: 319
  year: 2011
  end-page: 321
  article-title: Discussions on professor Fraserâs article on “Is Bayes posterior just quick and dirty confidence?
  publication-title: Stat. Sci
– volume: 56
  start-page: 246
  year: 1961
  end-page: 249
  article-title: Confidence curves: An omnibus technique for estimation and testing statistical hypotheses
  publication-title: J. Amer. Statist. Assoc.
– volume: 10
  start-page: 275
  year: 2009
  end-page: 281
  article-title: Exact and efficient inference procedure for meta‐analysis and its application to the analysis of independent 2Ã 2 tables with all available data but without artificial continuity correction
  publication-title: Biostatistics
– volume: 20
  start-page: 102
  year: 1958
  end-page: 107
  article-title: Fiducial distribution and Bayes theorem
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 18
  start-page: 321
  year: 1999
  end-page: 359
  article-title: Meta‐analysis: Formulating, evaluating, combining, and reporting
  publication-title: Stat. Med.
– volume: 237
  start-page: 333
  year: 1937
  end-page: 380
  article-title: Outline of a theory of statistical estimation based on the classical theory of probability
  publication-title: Philos.Trans. R. Soc. A.
– volume: 62
  start-page: 1
  year: 2007
  end-page: 9
  article-title: The transform between the space of observed values and the space of possible values of the parameter
  publication-title: Proc. Sci. (ACAT)
– volume: 106
  start-page: 320
  year: 2011
  end-page: 333
  article-title: Confidence distributions and a unifying framework for meta‐analysis
  publication-title: J. Amer. Statist. Assoc.
– volume: 13
  start-page: 95
  year: 1998
  end-page: 122
  article-title: R.A.Fisher in the 21st century
  publication-title: Stat. Sci.
– volume: 16
  start-page: 769
  year: 1997
  end-page: 781
  article-title: Bayesian and mixed Bayesian/likelihood criteria for sample size determination
  publication-title: Stat. Med.
– volume: 27
  start-page: 625
  year: 2008
  end-page: 650
  article-title: Recent developments in meta‐analysis
  publication-title: Stat. Med.
– volume: 26
  start-page: 1
  year: 2011
  end-page: 9
  article-title: Statistical inference: The big picture
  publication-title: Statist. Sci.
– volume: 7
  start-page: 1267
  year: 1988
  end-page: 1277
  article-title: A statistical assessment of clinical equivalence
  publication-title: Stat. Med.
– year: 1973
– volume: 22
  start-page: 299
  year: 1960
  end-page: 301
  article-title: On some extensions of Bayesian inference proposed by Mr. Lindley
  publication-title: J. R. Stat. Soc. B
– volume: 36
  start-page: 49
  year: 1995
  end-page: 59
  article-title: On approximate inference for the two‐parameter gamma model
  publication-title: Stat. Papers
– volume: 41
  start-page: 275
  year: 1954
  end-page: 278
  article-title: Some remarks on confidence or fiducial limits
  publication-title: Biometrika
– volume: 81
  start-page: 341
  year: 1994
  end-page: 350
  article-title: A resampling method based on pivotal estimating functions
  publication-title: Biometrika
– volume: 11
  start-page: 999
  year: 1983
  end-page: 1003
  article-title: Inference on means using the bootstrap
  publication-title: Ann. Statist.
– volume: 68
  start-page: 193
  year: 1973
  end-page: 194
  article-title: Asymptotic optimality of Fisher’s method of combining independent tests. II
  publication-title: J. Amer. Statist. Assoc.
– volume: 26
  start-page: 299
  year: 2011
  end-page: 316
  article-title: Is Bayes posterior just quick and dirty confidence?
  publication-title: Stat. Sci.
– year: 2012
– volume: 1
  start-page: 277
  year: 1953
  end-page: 330
  article-title: On some asymptotic properties of maximum likelihood estimates and related Bayes estimates
  publication-title: University of California Publications in Statistics
– volume: 25
  start-page: 318
  year: 1963
  end-page: 29
  article-title: On formulae for confidence points based on integrals of weighted likelihoods
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 47
  start-page: 237
  year: 2005
  end-page: 247
  article-title: Tutorial: Using confidence curves in medical research
  publication-title: Biom. J.
– volume: 14
  start-page: 113
  year: 1986
  end-page: 129
  article-title: Refining binomial confidence intervals
  publication-title: Canad. J. Statist.
– volume: 80
  start-page: 3
  year: 1993
  end-page: 26
  article-title: Bayes and likelihood calculations from confidence intervals
  publication-title: Biometrika
– start-page: 260
  year: 2007
  end-page: 261
– year: 2006
– volume: 27
  start-page: 783
  year: 1999
  end-page: 858
  article-title: Multivariate analysis by data depth: Descriptive statistics, graphics and inference
  publication-title: Ann. Statist.
– volume: 8
  start-page: 200
  year: 2012
  end-page: 214
– year: 1974
– start-page: 593
  year: 2007
  end-page: 609
  article-title: Confidence nets for curves
  publication-title: Advances in Statistical Modeling and Inference. Essays in honor of Kjell A. Doksum.
– volume: 53
  start-page: 370
  year: 1763
  end-page: 418
  article-title: An essay towards solving a problem in the doctrine of chances
  publication-title: Phil. Trans. Roy. Soc.
– volume: 79
  start-page: 231
  year: 1992
  end-page: 45
  article-title: More accurate confidence intervals in exponential families
  publication-title: Biometrika
– year: 1991
– volume: 26
  start-page: 528
  year: 1930
  end-page: 535
  article-title: Inverse probability
  publication-title: Proc. Cambridge Philos. Soc.
– volume: 54
  start-page: 221
  year: 1992
  end-page: 228
  article-title: On the removal of skewness by transformation
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 12
  start-page: 183
  year: 1984
  end-page: 190
  article-title: Further remarks on asymptotic normality of likelihood and conditional analyses
  publication-title: Canad. J. Statist.
– start-page: 285
  year: 2003
  end-page: 317
– volume: 59
  start-page: 974
  year: 2003
  end-page: 983
  article-title: Abundance estimation from multiple photo surveys: Confidence distributions and reduced likelihoods for bowhead whales off Alaska
  publication-title: Biometrics
– volume: 54
  start-page: 242
  year: 2000
  end-page: 247
  article-title: Paradoxes and improvements in interval estimation
  publication-title: Amer. Statist.
– year: 2013
– ident: e_1_2_10_75_1
  doi: 10.1093/biostatistics/kxn034
– ident: e_1_2_10_2_1
  doi: 10.1214/aos/1176346267
– volume-title: gmeta
  year: 2012
  ident: e_1_2_10_84_1
– ident: e_1_2_10_68_1
  doi: 10.1214/11-IMSCOLL814
– ident: e_1_2_10_6_1
  doi: 10.2307/1267823
– year: 2006
  ident: e_1_2_10_39_1
  article-title: The proper fiducial argument
  publication-title: Inf. Transf. Combin.
– ident: e_1_2_10_17_1
  doi: 10.1214/aoms/1177706618
– ident: e_1_2_10_59_1
  doi: 10.1093/biomet/81.2.341
– ident: e_1_2_10_35_1
  doi: 10.1214/11-STS352
– ident: e_1_2_10_52_1
  doi: 10.1002/sim.4780071207
– ident: e_1_2_10_51_1
  doi: 10.1214/aos/1018031259
– ident: e_1_2_10_60_1
  doi: 10.1002/9780470316436
– ident: e_1_2_10_58_1
  doi: 10.1002/sim.4780131304
– ident: e_1_2_10_62_1
  doi: 10.1111/j.0006-341X.2003.00112.x
– volume: 62
  start-page: 1
  year: 2007
  ident: e_1_2_10_10_1
  article-title: The transform between the space of observed values and the space of possible values of the parameter
  publication-title: Proc. Sci. (ACAT)
– volume: 40
  start-page: 262
  year: 1986
  ident: e_1_2_10_24_1
  article-title: Why isn’t everyone a Bayesian?
  publication-title: Amer. Statist.
– ident: e_1_2_10_22_1
  doi: 10.1016/j.ijar.2007.03.004
– volume: 26
  start-page: 528
  year: 1930
  ident: e_1_2_10_30_1
  article-title: Inverse probability
  publication-title: Proc. Cambridge Philos. Soc.
  doi: 10.1017/S0305004100016297
– ident: e_1_2_10_64_1
  doi: 10.1111/1467-9469.00285
– ident: e_1_2_10_67_1
  doi: 10.1214/11-STS352B
– ident: e_1_2_10_76_1
  doi: 10.1111/j.1541-0420.2010.01486.x
– ident: e_1_2_10_83_1
  doi: 10.1198/jasa.2009.0142
– ident: e_1_2_10_18_1
  doi: 10.1017/CBO9780511813559
– ident: e_1_2_10_85_1
  doi: 10.1214/ss/1177011233
– ident: e_1_2_10_63_1
  doi: 10.1142/9789812708298_0029
– ident: e_1_2_10_3_1
  doi: 10.1007/978-1-4899-3210-5
– volume: 25
  start-page: 318
  year: 1963
  ident: e_1_2_10_78_1
  article-title: On formulae for confidence points based on integrals of weighted likelihoods
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1963.tb00512.x
– ident: e_1_2_10_45_1
  doi: 10.5705/ss.2011.040a
– volume: 78
  start-page: 108‐116
  year: 1983
  ident: e_1_2_10_13_1
  article-title: Binomial confidence intervals
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1983.10477938
– ident: e_1_2_10_15_1
– ident: e_1_2_10_8_1
  doi: 10.1080/01621459.1961.10482107
– volume-title: An Introduction to the Bootstrap.
  year: 1994
  ident: e_1_2_10_28_1
  doi: 10.1201/9780429246593
– ident: e_1_2_10_7_1
– volume-title: Testing Statistical Hypotheses.
  year: 1991
  ident: e_1_2_10_48_1
– ident: e_1_2_10_70_1
  doi: 10.1214/009053604000001084
– ident: e_1_2_10_43_1
  doi: 10.1214/10-STS337
– start-page: 446
  volume-title: Proceedings of the 30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering
  year: 2010
  ident: e_1_2_10_9_1
– ident: e_1_2_10_80_1
  doi: 10.1007/BF02926018
– ident: e_1_2_10_5_1
  doi: 10.1002/bimj.200410104
– ident: e_1_2_10_34_1
  doi: 10.1080/01621459.1991.10475029
– volume-title: The Advanced Theory of Statistics
  year: 1974
  ident: e_1_2_10_44_1
– ident: e_1_2_10_54_1
  doi: 10.1214/10-STS322
– ident: e_1_2_10_74_1
  doi: 10.1002/sim.2934
– ident: e_1_2_10_21_1
  doi: 10.1007/978-1-4757-3500-0
– volume-title: Statistical Methods and Scientific Inference
  year: 1973
  ident: e_1_2_10_33_1
– start-page: 260
  volume-title: The Science of Bradley Efron
  year: 2007
  ident: e_1_2_10_77_1
– volume: 19
  start-page: 918
  year: 1991
  ident: e_1_2_10_53_1
  article-title: Sensitive and sturdy p‐values
  publication-title: Ann. Statist
  doi: 10.1214/aos/1176348128
– ident: e_1_2_10_19_1
  doi: 10.1007/978-1-4899-2887-0
– volume: 19
  start-page: 491
  year: 2009
  ident: e_1_2_10_40_1
  article-title: On generalized fiducial inference
  publication-title: Statist. Sinica
– volume: 22
  start-page: 299
  year: 1960
  ident: e_1_2_10_32_1
  article-title: On some extensions of Bayesian inference proposed by Mr. Lindley
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1960.tb00374.x
– ident: e_1_2_10_82_1
  doi: 10.1198/jasa.2011.tm09803
– volume: 54
  start-page: 242
  year: 2000
  ident: e_1_2_10_12_1
  article-title: Paradoxes and improvements in interval estimation
  publication-title: Amer. Statist.
  doi: 10.1080/00031305.2000.10474555
– ident: e_1_2_10_20_1
  doi: 10.1093/biomet/43.3-4.423
– volume: 68
  start-page: 193
  year: 1973
  ident: e_1_2_10_49_1
  article-title: Asymptotic optimality of Fisher’s method of combining independent tests. II
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1973.10481362
– ident: e_1_2_10_69_1
– ident: e_1_2_10_61_1
  doi: 10.1093/biomet/asq001
– ident: e_1_2_10_66_1
  doi: 10.1007/s13253-009-0002-1
– ident: e_1_2_10_56_1
  doi: 10.1098/rsta.1937.0005
– ident: e_1_2_10_23_1
  doi: 10.1093/biomet/79.2.231
– volume-title: Statistical Methods and Scientific Inference.
  year: 1956
  ident: e_1_2_10_31_1
– ident: e_1_2_10_25_1
  doi: 10.1080/01621459.1987.10478410
– ident: e_1_2_10_71_1
  doi: 10.1214/074921707000000102
– volume: 7
  start-page: 17
  year: 1958
  ident: e_1_2_10_47_1
  article-title: Les propriétés asymptotiques des solutions de Bayes
  publication-title: Plubl. Inst. Statist. Univ. Paris
– volume: 13
  start-page: 95
  year: 1998
  ident: e_1_2_10_27_1
  article-title: R.A.Fisher in the 21st century
  publication-title: Stat. Sci.
– ident: e_1_2_10_4_1
  doi: 10.1098/rstl.1763.0053
– ident: e_1_2_10_11_1
  doi: 10.2307/3315916
– start-page: 285
  volume-title: In Econometrics and the Philosophy of Economics
  year: 2003
  ident: e_1_2_10_65_1
– ident: e_1_2_10_38_1
  doi: 10.1093/biomet/asq045
– ident: e_1_2_10_29_1
  doi: 10.1098/rsta.1922.0009
– ident: e_1_2_10_81_1
  doi: 10.1214/12-AOAS585
– ident: e_1_2_10_16_1
  doi: 10.2139/ssrn.1777272
– ident: e_1_2_10_41_1
  doi: 10.1214/aoms/1177698624
– ident: e_1_2_10_26_1
  doi: 10.1093/biomet/80.1.3
– ident: e_1_2_10_36_1
  doi: 10.2307/3314746
– ident: e_1_2_10_57_1
  doi: 10.1002/(SICI)1097-0258(19990215)18:3<321::AID-SIM28>3.0.CO;2-P
– ident: e_1_2_10_55_1
  doi: 10.1111/j.2397-2335.1934.tb04184.x
– volume: 54
  start-page: 221
  year: 1992
  ident: e_1_2_10_37_1
  article-title: On the removal of skewness by transformation
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1992.tb01876.x
– volume: 1
  start-page: 277
  year: 1953
  ident: e_1_2_10_46_1
  article-title: On some asymptotic properties of maximum likelihood estimates and related Bayes estimates
  publication-title: University of California Publications in Statistics
– ident: e_1_2_10_79_1
  doi: 10.1016/0167-7152(93)90196-P
– volume: 20
  start-page: 102
  year: 1958
  ident: e_1_2_10_50_1
  article-title: Fiducial distribution and Bayes theorem
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1958.tb00278.x
– ident: e_1_2_10_72_1
  doi: 10.2307/2983527
– ident: e_1_2_10_14_1
  doi: 10.2307/3314658
– ident: e_1_2_10_42_1
  doi: 10.1002/(SICI)1097-0258(19970415)16:7<769::AID-SIM495>3.0.CO;2-V
– volume: 41
  start-page: 275
  year: 1954
  ident: e_1_2_10_73_1
  article-title: Some remarks on confidence or fiducial limits
  publication-title: Biometrika
SSID ssj0003284
Score 2.4675632
Snippet In frequentisi inference, we commonly use a single point (point estimator) or an interval (confidence interval/"interval estimator") to estimate a parameter of...
Résumé Il est courant, en inférence fréquentielle, d'utiliser un point unique (une estimation ponctuelle) ou un intervalle (intervalle de confiance) dans le...
Il est courant, en inférence fréquentielle, d'utiliser un point unique (une estimation ponctuelle) ou un intervalle (intervalle de confiance) dans le but...
In frequentist inference, we commonly use a single point (point estimator) or an interval (confidence interval/"interval estimator") to estimate a parameter of...
SourceID proquest
crossref
wiley
jstor
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3
SubjectTerms Bayesian analysis
Bayesian method
Confidence
Confidence distribution
Confidence intervals
Estimates
estimation theory
Estimators
fiducial distribution
Inference
Intervals
likelihood function
Normal distribution
Parameter estimation
Statistical inference
Statistical methods
Title Confidence Distribution, the Frequentist Distribution Estimator of a Parameter: A Review
URI https://api.istex.fr/ark:/67375/WNG-67KFXJGB-1/fulltext.pdf
https://www.jstor.org/stable/43298799
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Finsr.12000
https://www.proquest.com/docview/1324570207
https://www.proquest.com/docview/1770373880
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9KfemL9evo1ioRi6C4x22SvWSLL229az3xkGuL91KW7G4CUt2T-wDpX-9M9qM9KYJ9C2QC-ZhJfpNMfgOwn-S5NsrwUMrCoYNidJhxF4VW5knfuajoFXSh_2XcP72Qo2k83YAPzV-Yih-ivXAjy_D7NRm4yRa3jPx7uZh3I_ppghswBWsRIprccEcJrivuKHSZlRKy5ialMJ6bpmun0QOa2N9NYOIa5LwNXP3JM9yGy6bPVcDJVXe1zLr59V90jvcd1CN4WENSdljp0GPYsOUT2CIUWpE4P4Up_Qusso-yj8S0WyfJes8QPrLh3Idjk_RaLRtg85_k1LOZY4Z9NRQIhut4wA5Z9SbxDC6Gg_Pj07BOyRDmkqteGDslEsNlXwj0c_ICvT8trYuzXqaJyV5TMnUimdM57hVFZPGATIjipm-ssEKJDmyWs9LuADOFSHrcCVQGIw166QaRFJfaFQjCeFIE8LZZmjSv-copbcaPtPFbaLJSP1kBvG5lf1UsHXdKvfEr3IqY-RXFtak4_TY-wdLn4XR0cpRGAXS8CrSCUvBE46gC2Gt0Iq1tfZGiPy9jhbBbBfCqrUYrpacXU9rZCmUU7qyKiHcCeOcV4B_9TD-Nzya-tPs_ws9hi_tcHRRWtAeby_nKvkDEtMxeesv4A4RqDrs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5Be6AX3hVpCxiBkEBktbGdtcOt0G63rxUqrbo3y0lsCZVmq31IqL--M0427SKEBDdLnkiJPWN_44y_D-BdVhTaKstjKUuPCYrVcc59EjtZZD3vk7Jb0oH-8bA3OJMHo3TU1ObQXZiaH6I9cKPICOs1BTgdSN-J8h_VdNJJ6KrJfVglSW-izt85uWWPElzX7FGYNCslZMNOSoU8t88u7UerNLS_FqWJS6DzLnQNe0__US2wOg2UhVRyctGZz_JOcf0boeN_f9ZjeNigUrZdu9ETuOeqp7BGQLTmcX4GI7oaWAuQsh0i2210sj4xRJCsPwkV2WS91Mt28fFLyuvZ2DPLvlmqBcOp_My2Wf1b4jmc9XdPvw7iRpUhLiRX3Tj1SmSWy54QmOoUJSaAWjqf5t1cE5m9Jj114pnTBS4XZeJwj8yI5aZnnXBCiXVYqcaVewHMliLrci_QH6y0mKhbBFNcal8iDuNZGcGHxdyYoqEsJ-WMn2aRutBgmTBYEbxtba9qoo4_Wr0PU9ya2MkFlbap1JwP97B12B8d7H0xSQTrwQdaQyl4pvGrIthaOIVpwn1qMKWXqULkrSJ403ZjoNLfF1u58RxtFC6uirh3IvgYPOAv72n2h99PQmvjX4xfw4PB6fGROdofHm7CGg_SHVRltAUrs8ncvUQANctfhTC5AWwJEtc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9qC9Ivvovbh0YUQXGP3SS72RW_VK_blx6lWnpfJGQfAWm7V653IP3rnck-2hMR9FsgE8hjJvlNMvkNwKu0KBKjDPelLC06KCbxc25Dv5JFGlsblkFJF_pfRvHeiTwYR-Ml-ND9hWn4IfoLN7IMt1-TgV-W9paR_6ivpoOQfprcgRUZByklbhge35BHCZ405FHoMyslZEtOSnE8N20XjqMVmtmfXWTiAua8jVzd0ZPdh-9dp5uIk7PBfJYPiuvf-Bz_d1QP4F6LSdl2o0QPYamqH8EqwdCGxfkxjOljYJN-lA2JarfNkvWOIX5k2dTFY5P0Qi3bweYX5NWziWWGHRmKBMOFfM-2WfMo8QROsp1vn_b8NieDX0iuAj-ySqSGy1gIdHSKEt2_RFY2yoM8ISr7hLKpE8tcUuBmUYYVnpApcdzEphKVUGINlutJXT0FZkqRBtwK1AYjDbrpBqEUl4ktEYXxtPTgTbc0umgJyylvxrnuHBeaLO0my4OXvexlQ9PxR6nXboV7ETM9o8A2FenT0S6WDrPxwe5HHXqw5lSgF5SCpwmOyoPNTid0a-xXGh16GSnE3cqDF301mim9vZi6msxRRuHWqoh5x4O3TgH-0k-9P_p67Err_yL8HO4eDTP9eX90uAGr3OXtoBCjTVieTefVFqKnWf7MGckvIVwRhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Confidence+Distribution%2C+the+Frequentist+Distribution+Estimator+of+a+Parameter%3A+A+Review&rft.jtitle=International+statistical+review&rft.au=Xie%2C+Min-ge&rft.au=Singh%2C+Kesar&rft.date=2013-04-01&rft.pub=Blackwell+Publishing&rft.issn=0306-7734&rft.eissn=1751-5823&rft.volume=81&rft.issue=1&rft.spage=3&rft.epage=39&rft_id=info:doi/10.1111%2Finsr.12000&rft.externalDocID=43298799
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-7734&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-7734&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-7734&client=summon