Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra
More than two-thirds of terrestrial plants acquire nutrients by forming a symbiosis with arbuscular mycorrhizal (AM) fungi. AM fungal hyphae recruit distinct microbes into their hyphosphere, the narrow region of soil influenced by hyphal exudates. They thereby shape this so-called second genome of A...
Saved in:
Published in | Trends in plant science Vol. 27; no. 4; pp. 402 - 411 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.04.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | More than two-thirds of terrestrial plants acquire nutrients by forming a symbiosis with arbuscular mycorrhizal (AM) fungi. AM fungal hyphae recruit distinct microbes into their hyphosphere, the narrow region of soil influenced by hyphal exudates. They thereby shape this so-called second genome of AM fungi, which significantly contributes to nutrient mobilization and turnover. We summarize current insights into characteristics of the hyphosphere microbiome and the role of hyphal exudates on orchestrating its composition. The hyphal exudates not only contain carbon-rich compounds but also promote bacterial growth and activity and influence the microbial community structure. These effects lead to shifts in function and cause changes in organic nutrient cycling, making the hyphosphere a unique and largely overlooked functional zone in ecosystems.
Arbuscular mycorrhizal (AM) fungi release hyphal compounds into the soil to orchestrate the hyphosphere colonized by a diversity of microbes.The composition of the hyphosphere microbiome is different to bulk soil and rhizosphere.Nutrient cycling in the hyphosphere is affected by the change in microbiome.Shifts in microbial function cause changes in organic nutrient cycling, making the hyphosphere a unique and important functional zone in ecosystems. |
---|---|
AbstractList | More than two-thirds of terrestrial plants acquire nutrients by forming a symbiosis with arbuscular mycorrhizal (AM) fungi. AM fungal hyphae recruit distinct microbes into their hyphosphere, the narrow region of soil influenced by hyphal exudates. They thereby shape this so-called second genome of AM fungi, which significantly contributes to nutrient mobilization and turnover. We summarize current insights into characteristics of the hyphosphere microbiome and the role of hyphal exudates on orchestrating its composition. The hyphal exudates not only contain carbon-rich compounds but also promote bacterial growth and activity and influence the microbial community structure. These effects lead to shifts in function and cause changes in organic nutrient cycling, making the hyphosphere a unique and largely overlooked functional zone in ecosystems.More than two-thirds of terrestrial plants acquire nutrients by forming a symbiosis with arbuscular mycorrhizal (AM) fungi. AM fungal hyphae recruit distinct microbes into their hyphosphere, the narrow region of soil influenced by hyphal exudates. They thereby shape this so-called second genome of AM fungi, which significantly contributes to nutrient mobilization and turnover. We summarize current insights into characteristics of the hyphosphere microbiome and the role of hyphal exudates on orchestrating its composition. The hyphal exudates not only contain carbon-rich compounds but also promote bacterial growth and activity and influence the microbial community structure. These effects lead to shifts in function and cause changes in organic nutrient cycling, making the hyphosphere a unique and largely overlooked functional zone in ecosystems. More than two-thirds of terrestrial plants acquire nutrients by forming a symbiosis with arbuscular mycorrhizal (AM) fungi. AM fungal hyphae recruit distinct microbes into their hyphosphere, the narrow region of soil influenced by hyphal exudates. They thereby shape this so-called second genome of AM fungi, which significantly contributes to nutrient mobilization and turnover. We summarize current insights into characteristics of the hyphosphere microbiome and the role of hyphal exudates on orchestrating its composition. The hyphal exudates not only contain carbon-rich compounds but also promote bacterial growth and activity and influence the microbial community structure. These effects lead to shifts in function and cause changes in organic nutrient cycling, making the hyphosphere a unique and largely overlooked functional zone in ecosystems. More than two-thirds of terrestrial plants acquire nutrients by forming a symbiosis with arbuscular mycorrhizal (AM) fungi. AM fungal hyphae recruit distinct microbes into their hyphosphere, the narrow region of soil influenced by hyphal exudates. They thereby shape this so-called second genome of AM fungi, which significantly contributes to nutrient mobilization and turnover. We summarize current insights into characteristics of the hyphosphere microbiome and the role of hyphal exudates on orchestrating its composition. The hyphal exudates not only contain carbon-rich compounds but also promote bacterial growth and activity and influence the microbial community structure. These effects lead to shifts in function and cause changes in organic nutrient cycling, making the hyphosphere a unique and largely overlooked functional zone in ecosystems. Arbuscular mycorrhizal (AM) fungi release hyphal compounds into the soil to orchestrate the hyphosphere colonized by a diversity of microbes.The composition of the hyphosphere microbiome is different to bulk soil and rhizosphere.Nutrient cycling in the hyphosphere is affected by the change in microbiome.Shifts in microbial function cause changes in organic nutrient cycling, making the hyphosphere a unique and important functional zone in ecosystems. |
Author | Zhou, Jiachao Zhang, Lin George, Timothy S. Limpens, Erik Feng, Gu |
Author_xml | – sequence: 1 givenname: Lin orcidid: 0000-0002-1663-5620 surname: Zhang fullname: Zhang, Lin organization: College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China – sequence: 2 givenname: Jiachao orcidid: 0000-0001-5435-0442 surname: Zhou fullname: Zhou, Jiachao organization: College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China – sequence: 3 givenname: Timothy S. orcidid: 0000-0003-3231-2159 surname: George fullname: George, Timothy S. organization: The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK – sequence: 4 givenname: Erik orcidid: 0000-0002-9668-4085 surname: Limpens fullname: Limpens, Erik organization: Laboratory of Molecular Biology, Wageningen University & Research, Wageningen 6708, PB, The Netherlands – sequence: 5 givenname: Gu orcidid: 0000-0002-1052-5009 surname: Feng fullname: Feng, Gu email: fenggu@cau.edu.cn organization: College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34782247$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUuLFDEUhYOMOA_9CUqBGzfV5lVJChcyDDMqDrjRdUglt6bSVCdlkhLaX2-a7tnMZlyEhMt3ziXnXKKzEAMg9JbgDcFEfNxuyjKbUPKGYkrqbIOxeoEuiJKq5UzSs_pmAreEqe4cXea8xRhLosQrdM64VJRyeYG-X6dhzXadTWp2extTmvxfMzfjGh58Y2Nwqy0-PDRlgmbaL1PMywQJmsHYAslXNCY7QS7JvEYvRzNneHO6r9Cvu9ufN1_b-x9fvt1c37eWU1Ha0XZ8cGAc5UxYIG4wprdGcOC8p6NkHRvl4BwfWKcsU8Jw4sxIBkXrkYRdoQ9H3yXF32tdrXc-W5hrHBDXrKlgQhDG_gfteoVlL7Co6Psn6DauKdSPVMOOM9VzySv17kStww6cXpLfmbTXj4lW4NMRsCnmnGDU1hdTfAw1IT9rgvWhP73Vp_70ob_DuPZX1d0T9eOC53Sfjzqouf_xkHS2HoIF5xPYol30zzj8AxK-uHc |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_171840 crossref_primary_10_1016_j_scitotenv_2024_177946 crossref_primary_10_3390_agronomy13122900 crossref_primary_10_1038_s41396_023_01476_z crossref_primary_10_1016_j_foreco_2024_122338 crossref_primary_10_3389_fpls_2023_1206870 crossref_primary_10_1146_annurev_arplant_102820_124504 crossref_primary_10_1016_j_scitotenv_2024_169889 crossref_primary_10_1007_s00374_025_01900_w crossref_primary_10_1007_s11104_025_07291_z crossref_primary_10_1111_ele_14320 crossref_primary_10_3390_agriculture14030358 crossref_primary_10_1186_s40793_024_00638_6 crossref_primary_10_1002_ecy_4418 crossref_primary_10_1016_j_agee_2024_109352 crossref_primary_10_1093_hr_uhac270 crossref_primary_10_1016_j_tplants_2024_05_008 crossref_primary_10_1002_ldr_4821 crossref_primary_10_3390_microorganisms13010151 crossref_primary_10_1007_s00572_023_01132_6 crossref_primary_10_1016_j_jgg_2024_09_018 crossref_primary_10_3390_f14091884 crossref_primary_10_3390_biotech14010003 crossref_primary_10_1016_j_gecco_2023_e02611 crossref_primary_10_1007_s11756_022_01182_9 crossref_primary_10_3389_fmicb_2024_1383813 crossref_primary_10_3390_agronomy14123006 crossref_primary_10_1007_s42729_024_02112_1 crossref_primary_10_1016_j_ecoenv_2024_116592 crossref_primary_10_1186_s40168_023_01726_4 crossref_primary_10_1021_acs_est_2c00099 crossref_primary_10_1111_nph_19078 crossref_primary_10_1111_nph_19112 crossref_primary_10_3390_f16010045 crossref_primary_10_1016_j_cub_2024_09_019 crossref_primary_10_1016_j_tim_2024_08_001 crossref_primary_10_3389_fmicb_2022_916337 crossref_primary_10_1002_saj2_20679 crossref_primary_10_3390_agronomy12123214 crossref_primary_10_1093_jxb_erae340 crossref_primary_10_1016_j_jhazmat_2024_134777 crossref_primary_10_1111_rec_14348 crossref_primary_10_1146_annurev_arplant_061722_090342 crossref_primary_10_3390_plants13223162 crossref_primary_10_1111_nph_18772 crossref_primary_10_3389_fmicb_2024_1280848 crossref_primary_10_1016_j_ecolind_2023_111543 crossref_primary_10_1016_j_jwpe_2024_106799 crossref_primary_10_1016_j_scitotenv_2024_176952 crossref_primary_10_1016_j_apsoil_2024_105588 crossref_primary_10_1016_j_envpol_2025_125846 crossref_primary_10_3390_microorganisms12091927 crossref_primary_10_1016_j_watres_2025_123334 crossref_primary_10_1016_j_agee_2024_109174 crossref_primary_10_1016_j_agee_2024_109450 crossref_primary_10_1016_j_pedsph_2023_06_008 crossref_primary_10_36783_18069657rbcs20230022 crossref_primary_10_1016_j_soilbio_2024_109647 crossref_primary_10_1016_j_scitotenv_2023_164970 crossref_primary_10_1038_s41579_024_01073_7 crossref_primary_10_1093_ismejo_wraf023 crossref_primary_10_1002_ldr_5055 crossref_primary_10_1111_nph_18419 crossref_primary_10_1186_s13059_025_03486_w crossref_primary_10_3389_fmicb_2022_1042944 crossref_primary_10_1111_gcb_17409 crossref_primary_10_3390_agronomy14081678 crossref_primary_10_1111_nph_19178 crossref_primary_10_1016_j_scienta_2024_112879 crossref_primary_10_1111_nph_18642 crossref_primary_10_1007_s11104_024_07018_6 crossref_primary_10_1002_ldr_4877 crossref_primary_10_1093_jpe_rtae105 crossref_primary_10_1002_sae2_12091 crossref_primary_10_1186_s40168_023_01466_5 crossref_primary_10_1038_s41559_024_02437_1 crossref_primary_10_1016_j_jep_2025_119460 crossref_primary_10_1007_s11104_024_07094_8 crossref_primary_10_3389_fmicb_2024_1347745 crossref_primary_10_1128_aem_00534_24 crossref_primary_10_1016_j_soilbio_2024_109471 crossref_primary_10_1134_S1064229322100155 crossref_primary_10_1016_j_soilbio_2023_109175 crossref_primary_10_1007_s00572_023_01107_7 crossref_primary_10_1111_1365_2435_14249 crossref_primary_10_1111_1365_2435_14524 crossref_primary_10_1016_j_ecoenv_2024_116157 crossref_primary_10_1038_s41564_023_01531_7 crossref_primary_10_1111_gcb_17438 crossref_primary_10_3389_fmicb_2023_1284648 crossref_primary_10_1016_j_micres_2025_128081 crossref_primary_10_1016_j_tplants_2024_04_009 crossref_primary_10_1016_j_envres_2025_121049 crossref_primary_10_1038_s41396_022_01308_6 crossref_primary_10_3389_fpls_2024_1473503 crossref_primary_10_1016_j_apsoil_2024_105447 crossref_primary_10_1007_s10725_025_01300_y crossref_primary_10_1016_j_soilbio_2024_109702 crossref_primary_10_1016_j_tplants_2024_04_010 crossref_primary_10_1080_01904167_2024_2414752 crossref_primary_10_1016_j_cpb_2024_100410 crossref_primary_10_1111_mec_16880 crossref_primary_10_1016_j_isci_2022_104168 crossref_primary_10_1007_s00572_023_01134_4 crossref_primary_10_1021_acs_jafc_4c07428 crossref_primary_10_1016_j_pedsph_2023_12_015 crossref_primary_10_1111_1365_2435_14654 crossref_primary_10_1016_j_chemosphere_2022_136033 crossref_primary_10_1007_s00374_024_01872_3 crossref_primary_10_1007_s00374_022_01683_4 crossref_primary_10_3390_ijms252413601 crossref_primary_10_3390_agronomy15030738 crossref_primary_10_1186_s12870_022_03753_z crossref_primary_10_3389_fpls_2021_804861 crossref_primary_10_3390_agronomy14122907 crossref_primary_10_1016_j_geodrs_2024_e00899 crossref_primary_10_3390_su16083349 crossref_primary_10_1016_j_jes_2024_02_029 crossref_primary_10_1111_nph_20304 crossref_primary_10_1016_j_envint_2024_108965 crossref_primary_10_1111_nph_19396 crossref_primary_10_1093_aob_mcad191 crossref_primary_10_1016_j_soilbio_2025_109797 crossref_primary_10_1111_1365_2745_14463 crossref_primary_10_3390_agriculture13101918 crossref_primary_10_1016_j_apsoil_2023_104908 crossref_primary_10_3389_fenvs_2022_1052175 crossref_primary_10_1007_s00572_025_01186_8 crossref_primary_10_1007_s42773_023_00284_0 crossref_primary_10_3390_land12061209 crossref_primary_10_3390_horticulturae8100876 crossref_primary_10_1016_j_fbio_2024_104868 crossref_primary_10_1016_j_pedsph_2023_05_001 crossref_primary_10_3389_ffunb_2023_1141963 crossref_primary_10_1111_nph_19541 crossref_primary_10_3390_agronomy12061277 crossref_primary_10_1371_journal_pbio_3002726 crossref_primary_10_1186_s40538_024_00540_w crossref_primary_10_3389_fmicb_2022_911116 crossref_primary_10_1016_j_apsoil_2024_105425 crossref_primary_10_1007_s11104_024_07047_1 crossref_primary_10_1016_j_apsoil_2025_105869 crossref_primary_10_3389_fpls_2022_860484 crossref_primary_10_3390_jof10070458 crossref_primary_10_1016_j_ejsobi_2022_103448 crossref_primary_10_1016_j_micres_2024_128028 crossref_primary_10_1186_s40793_024_00610_4 crossref_primary_10_1016_j_crbiot_2023_100158 crossref_primary_10_1007_s11104_024_06806_4 crossref_primary_10_1360_TB_2023_0057 crossref_primary_10_1007_s11104_024_06968_1 crossref_primary_10_1111_nph_20090 crossref_primary_10_3390_agronomy14102444 crossref_primary_10_1016_j_catena_2023_107676 crossref_primary_10_1007_s11104_023_06045_z crossref_primary_10_1007_s42729_023_01202_w crossref_primary_10_1016_j_pedsph_2024_11_003 crossref_primary_10_1007_s42729_023_01229_z crossref_primary_10_3390_agriculture14122361 crossref_primary_10_1093_femsre_fuac039 crossref_primary_10_1080_10420940_2025_2449656 crossref_primary_10_3390_jof10030226 crossref_primary_10_3389_fmicb_2022_992909 crossref_primary_10_1002_imo2_46 crossref_primary_10_1007_s11104_023_06458_w crossref_primary_10_1007_s13225_023_00532_5 crossref_primary_10_3390_agriculture14091510 crossref_primary_10_1111_1462_2920_16333 crossref_primary_10_1007_s00374_023_01751_3 crossref_primary_10_1016_j_catena_2025_108732 crossref_primary_10_1007_s00344_024_11339_2 crossref_primary_10_1016_j_envexpbot_2023_105631 |
Cites_doi | 10.1093/pcp/pcz122 10.1111/tpj.13908 10.1111/nph.13838 10.1038/s41396-020-0587-5 10.1038/s41396-018-0059-3 10.1111/j.1469-8137.2010.03636.x 10.1038/s41396-018-0171-4 10.1007/s00572-018-0825-0 10.1128/aem.62.8.3005-3010.1996 10.1146/annurev-arplant-042110-103846 10.1046/j.1469-8137.1999.00422.x 10.1016/j.soilbio.2020.107724 10.1038/35095041 10.1146/annurev-cellbio-101512-122413 10.1139/b01-139 10.1073/pnas.1313452110 10.1016/S0038-0717(03)00003-8 10.1093/femsre/fuy008 10.1111/nph.17081 10.1111/nph.13288 10.1111/1462-2920.12081 10.1111/nph.15687 10.1111/1462-2920.14289 10.1890/12-1943.1 10.1111/1462-2920.14827 10.1007/s00572-011-0418-7 10.1007/s00572-020-01016-z 10.1046/j.1469-8137.1999.00366.x 10.1111/j.1574-6941.2011.01066.x 10.1111/j.1462-2920.2007.01474.x 10.1111/j.1574-6941.2007.00337.x 10.1111/pce.12667 10.1126/science.1208473 10.1073/pnas.60.2.497 10.1128/mSystems.00929-20 10.1016/j.cub.2011.06.044 10.1111/j.1469-8137.2004.01047.x 10.1038/s41396-021-00920-2 10.1023/A:1004249629643 10.3389/fmicb.2016.00233 10.1093/jxb/erv561 10.1038/s41477-020-00799-5 10.1073/pnas.0912421107 10.1016/S0929-1393(02)00133-6 10.1111/ele.12115 10.1016/j.tplants.2017.05.008 10.1007/s00572-013-0486-y 10.1126/science.1224304 10.1111/j.1574-6968.2005.00003.x 10.3389/fpls.2017.00124 10.1007/s00572-019-00896-0 10.1016/j.cub.2021.02.006 10.1186/s12864-018-4853-0 10.1111/j.1574-6941.2006.00125.x 10.1007/s00572-018-0871-7 10.1016/j.soilbio.2015.07.016 10.1111/j.1574-6941.2011.01292.x 10.1081/PLN-120003932 10.1094/MPMI.2001.14.2.255 10.1371/journal.pgen.1004078 10.1017/S0953756299001240 10.1007/s11104-010-0571-3 10.1111/1462-2920.13438 10.1038/s41467-020-18795-w 10.1046/j.1365-294x.1999.00642.x 10.1016/B978-0-12-800259-9.00002-0 10.1128/AEM.67.2.725-732.2001 10.1128/AEM.69.10.6208-6215.2003 10.1038/ismej.2010.5 10.1111/j.1469-8137.1994.tb04003.x 10.1111/nph.13138 10.3389/fmicb.2018.00418 10.1016/j.soilbio.2014.03.004 10.1023/A:1004266907442 10.1126/science.1153213 10.1111/j.1469-8137.2007.02191.x 10.7554/eLife.39813 10.1016/0038-0717(94)90288-7 10.1126/science.295.5562.2051 10.1038/s42003-019-0481-8 10.1007/BF00335912 10.1007/BF02352301 10.1016/j.apsoil.2014.12.008 10.1111/j.1469-8137.2004.01224.x |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. Copyright Elsevier BV Apr 2022 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier BV Apr 2022 |
DBID | AAYXX CITATION NPM 7QL 7QO 7QR 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1016/j.tplants.2021.10.008 |
DatabaseName | CrossRef PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Botany |
EISSN | 1878-4372 |
EndPage | 411 |
ExternalDocumentID | 34782247 10_1016_j_tplants_2021_10_008 S1360138521002831 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M -DZ .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFRAH AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RCE RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K TWZ VQA XPP Y6R ZCA ~G- ~KM AAHBH AAMRU AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7QL 7QO 7QR 7T7 7TM 7U9 8FD C1K EFKBS FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c426t-fc54bdead2436ce1dbaa9ca64e4492f7353f7bdd4b358c386a41daf1b821b8713 |
IEDL.DBID | .~1 |
ISSN | 1360-1385 1878-4372 |
IngestDate | Thu Jul 10 17:36:24 EDT 2025 Fri Jul 11 01:18:58 EDT 2025 Wed Aug 13 10:55:21 EDT 2025 Thu Apr 03 07:09:18 EDT 2025 Thu Apr 24 23:04:44 EDT 2025 Tue Jul 01 00:57:58 EDT 2025 Fri Feb 23 02:40:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | hyphal exudates hyphosphere microbiome arbuscular mycorrhiza organic phosphorus organic nitrogen |
Language | English |
License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-fc54bdead2436ce1dbaa9ca64e4492f7353f7bdd4b358c386a41daf1b821b8713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1052-5009 0000-0003-3231-2159 0000-0002-1663-5620 0000-0002-9668-4085 0000-0001-5435-0442 |
PMID | 34782247 |
PQID | 2654389474 |
PQPubID | 2045386 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2636613371 proquest_miscellaneous_2598079606 proquest_journals_2654389474 pubmed_primary_34782247 crossref_citationtrail_10_1016_j_tplants_2021_10_008 crossref_primary_10_1016_j_tplants_2021_10_008 elsevier_sciencedirect_doi_10_1016_j_tplants_2021_10_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 2022-04-00 20220401 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Kidlington |
PublicationTitle | Trends in plant science |
PublicationTitleAlternate | Trends Plant Sci |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Went, Stark (bb0315) 1968; 60 Fortin (bb0225) 2002; 80 Svenningsen (bb0145) 2018; 12 Nagy, Kovács (bb0365) 2021; 31 Joner, Johansen (bb0395) 2000; 104 Scheublin (bb0095) 2010; 4 Lin (bb0250) 2014; 10 Gahan, Schmalenberger (bb0100) 2015; 89 Toljander (bb0235) 2007; 61 (bb0010) 2008 Ainsworth, Long (bb0420) 2005; 165 Luthfiana (bb0245) 2021; 31 Herman (bb0335) 2012; 80 Hodge (bb0340) 2014; 89 Kaiser (bb0305) 2015; 205 Iffis (bb0445) 2016; 18 Minerdi (bb0375) 2001; 67 Xavier, Germida (bb0435) 2003; 35 Garbaye (bb0125) 1994; 128 van der Heijden (bb0175) 2015; 205 Kameoka (bb0275) 2019; 60 Zhang (bb0035) 2018; 20 Artursson, Jansson (bb0085) 2003; 69 Linderman (bb0030) 1988; 78 Duhamel (bb0170) 2013; 94 Miyauchi (bb0065) 2020; 11 Wang (bb0120) 2016; 67 Marschner (bb0205) 1997; 189 Zhang (bb0230) 2016; 210 Babikova (bb0290) 2013; 16 Singh (bb0155) 2008; 10 Jiang (bb0215) 2021; 230 Feng (bb0385) 2003; 22 Hestrin (bb0345) 2019; 2 Smith, Smith (bb0005) 2011; 62 Venice (bb0060) 2020; 22 Zhang (bb0220) 2020; 14 Rozmoš (bb0355) 2021 Zhang (bb0405) 2019; 29 Gutjahr, Parnisk (bb0015) 2013; 29 Filion (bb0295) 1999; 141 Hodge (bb0020) 1996; 23 Burke (bb0130) 2006; 57 Snelders (bb0285) 2020; 6 Zhou (bb0150) 2020; 5 Bianciotto (bb0080) 2001; 14 Bharadwaj (bb0240) 2012; 22 Kamel (bb0265) 2017; 8 Shi (bb0380) 2021; 58 Taktek (bb0440) 2015; 90 Clapp (bb0180) 1999; 8 26, 387–395 Zeng (bb0270) 2018; 94 Norby, Luo (bb0425) 2004; 162 Andrade (bb0115) 1997; 192 Wang (bb0360) 2018; 9 Chen (bb0045) 2018; 7 Kloppholz (bb0280) 2011; 21 Gehrig (bb0370) 1996; 43 Cheng (bb0430) 2012; 337 Tisserant (bb0040) 2013; 110 Zhang (bb0310) 2020; 142 Drigo (bb0300) 2010; 107 Emmett (bb0110) 2021; 15 Tarafdar, J.C. and Marschner, H. Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Wang (bb0160) 2019; 29 Zhang (bb0410) 2014; 74 Kobayashi (bb0050) 2018; 19 Bianciotto (bb0075) 1996; 62 Zhang (bb0415) 2018; 12 Toro, Brachmann (bb0255) 2016; 17 Rich (bb0025) 2017; 22 Dumbrell (bb0185) 2011; 190 Redecker (bb0135) 2013; 23 Frey-Klett (bb0140) 2007; 176 Kiers (bb0200) 2011; 333 Tang (bb0260) 2016; 7 Hodge (bb0320) 2001; 413 Nuccio (bb0105) 2013; 15 Thirkell (bb0330) 2016; 39 Bukovská (bb0350) 2018; 28 Toljander (bb0090) 2006; 254 Falkowski (bb0070) 2008; 320 Deveau (bb0210) 2018; 42 Vandenkoornhuyse (bb0165) 2002; 295 Morin (bb0055) 2019; 222 Boddington, Dodd (bb0195) 1999; 142 Thonar (bb0190) 2011; 339 Leigh (bb0325) 2011; 76 Feng (bb0400) 2002; 25 Burke (10.1016/j.tplants.2021.10.008_bb0130) 2006; 57 Kobayashi (10.1016/j.tplants.2021.10.008_bb0050) 2018; 19 Vandenkoornhuyse (10.1016/j.tplants.2021.10.008_bb0165) 2002; 295 Dumbrell (10.1016/j.tplants.2021.10.008_bb0185) 2011; 190 Leigh (10.1016/j.tplants.2021.10.008_bb0325) 2011; 76 Iffis (10.1016/j.tplants.2021.10.008_bb0445) 2016; 18 Taktek (10.1016/j.tplants.2021.10.008_bb0440) 2015; 90 Toljander (10.1016/j.tplants.2021.10.008_bb0090) 2006; 254 Thirkell (10.1016/j.tplants.2021.10.008_bb0330) 2016; 39 Nuccio (10.1016/j.tplants.2021.10.008_bb0105) 2013; 15 Chen (10.1016/j.tplants.2021.10.008_bb0045) 2018; 7 Bianciotto (10.1016/j.tplants.2021.10.008_bb0080) 2001; 14 Marschner (10.1016/j.tplants.2021.10.008_bb0205) 1997; 189 Zhang (10.1016/j.tplants.2021.10.008_bb0220) 2020; 14 Feng (10.1016/j.tplants.2021.10.008_bb0400) 2002; 25 Boddington (10.1016/j.tplants.2021.10.008_bb0195) 1999; 142 Hodge (10.1016/j.tplants.2021.10.008_bb0020) 1996; 23 Filion (10.1016/j.tplants.2021.10.008_bb0295) 1999; 141 Gutjahr (10.1016/j.tplants.2021.10.008_bb0015) 2013; 29 Zhang (10.1016/j.tplants.2021.10.008_bb0230) 2016; 210 Tisserant (10.1016/j.tplants.2021.10.008_bb0040) 2013; 110 Norby (10.1016/j.tplants.2021.10.008_bb0425) 2004; 162 Bharadwaj (10.1016/j.tplants.2021.10.008_bb0240) 2012; 22 Duhamel (10.1016/j.tplants.2021.10.008_bb0170) 2013; 94 Kiers (10.1016/j.tplants.2021.10.008_bb0200) 2011; 333 Wang (10.1016/j.tplants.2021.10.008_bb0360) 2018; 9 Smith (10.1016/j.tplants.2021.10.008_bb0005) 2011; 62 Jiang (10.1016/j.tplants.2021.10.008_bb0215) 2021; 230 Minerdi (10.1016/j.tplants.2021.10.008_bb0375) 2001; 67 Zhang (10.1016/j.tplants.2021.10.008_bb0405) 2019; 29 Luthfiana (10.1016/j.tplants.2021.10.008_bb0245) 2021; 31 10.1016/j.tplants.2021.10.008_bb0390 Gahan (10.1016/j.tplants.2021.10.008_bb0100) 2015; 89 Snelders (10.1016/j.tplants.2021.10.008_bb0285) 2020; 6 Nagy (10.1016/j.tplants.2021.10.008_bb0365) 2021; 31 Rich (10.1016/j.tplants.2021.10.008_bb0025) 2017; 22 Scheublin (10.1016/j.tplants.2021.10.008_bb0095) 2010; 4 Falkowski (10.1016/j.tplants.2021.10.008_bb0070) 2008; 320 Artursson (10.1016/j.tplants.2021.10.008_bb0085) 2003; 69 Zhou (10.1016/j.tplants.2021.10.008_bb0150) 2020; 5 Frey-Klett (10.1016/j.tplants.2021.10.008_bb0140) 2007; 176 Hestrin (10.1016/j.tplants.2021.10.008_bb0345) 2019; 2 Garbaye (10.1016/j.tplants.2021.10.008_bb0125) 1994; 128 Wang (10.1016/j.tplants.2021.10.008_bb0160) 2019; 29 Gehrig (10.1016/j.tplants.2021.10.008_bb0370) 1996; 43 Zeng (10.1016/j.tplants.2021.10.008_bb0270) 2018; 94 Hodge (10.1016/j.tplants.2021.10.008_bb0340) 2014; 89 Toljander (10.1016/j.tplants.2021.10.008_bb0235) 2007; 61 Feng (10.1016/j.tplants.2021.10.008_bb0385) 2003; 22 Wang (10.1016/j.tplants.2021.10.008_bb0120) 2016; 67 Miyauchi (10.1016/j.tplants.2021.10.008_bb0065) 2020; 11 (10.1016/j.tplants.2021.10.008_bb0010) 2008 Redecker (10.1016/j.tplants.2021.10.008_bb0135) 2013; 23 Zhang (10.1016/j.tplants.2021.10.008_bb0415) 2018; 12 Andrade (10.1016/j.tplants.2021.10.008_bb0115) 1997; 192 Joner (10.1016/j.tplants.2021.10.008_bb0395) 2000; 104 Thonar (10.1016/j.tplants.2021.10.008_bb0190) 2011; 339 Herman (10.1016/j.tplants.2021.10.008_bb0335) 2012; 80 Rozmoš (10.1016/j.tplants.2021.10.008_bb0355) 2021 van der Heijden (10.1016/j.tplants.2021.10.008_bb0175) 2015; 205 Kloppholz (10.1016/j.tplants.2021.10.008_bb0280) 2011; 21 Venice (10.1016/j.tplants.2021.10.008_bb0060) 2020; 22 Zhang (10.1016/j.tplants.2021.10.008_bb0035) 2018; 20 Zhang (10.1016/j.tplants.2021.10.008_bb0310) 2020; 142 Shi (10.1016/j.tplants.2021.10.008_bb0380) 2021; 58 Toro (10.1016/j.tplants.2021.10.008_bb0255) 2016; 17 Went (10.1016/j.tplants.2021.10.008_bb0315) 1968; 60 Zhang (10.1016/j.tplants.2021.10.008_bb0410) 2014; 74 Linderman (10.1016/j.tplants.2021.10.008_bb0030) 1988; 78 Fortin (10.1016/j.tplants.2021.10.008_bb0225) 2002; 80 Babikova (10.1016/j.tplants.2021.10.008_bb0290) 2013; 16 Bianciotto (10.1016/j.tplants.2021.10.008_bb0075) 1996; 62 Drigo (10.1016/j.tplants.2021.10.008_bb0300) 2010; 107 Svenningsen (10.1016/j.tplants.2021.10.008_bb0145) 2018; 12 Hodge (10.1016/j.tplants.2021.10.008_bb0320) 2001; 413 Tang (10.1016/j.tplants.2021.10.008_bb0260) 2016; 7 Singh (10.1016/j.tplants.2021.10.008_bb0155) 2008; 10 Clapp (10.1016/j.tplants.2021.10.008_bb0180) 1999; 8 Kameoka (10.1016/j.tplants.2021.10.008_bb0275) 2019; 60 Morin (10.1016/j.tplants.2021.10.008_bb0055) 2019; 222 Emmett (10.1016/j.tplants.2021.10.008_bb0110) 2021; 15 Bukovská (10.1016/j.tplants.2021.10.008_bb0350) 2018; 28 Kaiser (10.1016/j.tplants.2021.10.008_bb0305) 2015; 205 Cheng (10.1016/j.tplants.2021.10.008_bb0430) 2012; 337 Xavier (10.1016/j.tplants.2021.10.008_bb0435) 2003; 35 Lin (10.1016/j.tplants.2021.10.008_bb0250) 2014; 10 Deveau (10.1016/j.tplants.2021.10.008_bb0210) 2018; 42 Ainsworth (10.1016/j.tplants.2021.10.008_bb0420) 2005; 165 Kamel (10.1016/j.tplants.2021.10.008_bb0265) 2017; 8 |
References_xml | – volume: 76 start-page: 428 year: 2011 end-page: 438 ident: bb0325 article-title: Growth and symbiotic effectiveness of an arbuscular mycorrhizal fungus in organic matter in competition with soil bacteria publication-title: FEMS Microbiol. Ecol. – volume: 31 start-page: 403 year: 2021 end-page: 412 ident: bb0245 article-title: Metabolite profiling of the hyphal exudates of publication-title: Mycorrhiza – volume: 210 start-page: 1022 year: 2016 end-page: 1032 ident: bb0230 article-title: Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium publication-title: New Phytol. – volume: 333 start-page: 880 year: 2011 end-page: 882 ident: bb0200 article-title: Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis publication-title: Science – volume: 141 start-page: 525 year: 1999 end-page: 533 ident: bb0295 article-title: Direct interaction between the arbuscular mycorrhizal fungus publication-title: New Phytol. – volume: 89 start-page: 113 year: 2015 end-page: 121 ident: bb0100 article-title: Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization publication-title: Appl. Soil Ecol. – reference: Tarafdar, J.C. and Marschner, H. Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. – volume: 8 start-page: 124 year: 2017 end-page: 141 ident: bb0265 article-title: The comparison of expressed candidate secreted proteins from two arbuscular mycorrhizal fungi unravels common and specific molecular tools to invade different host plants publication-title: Front. Plant Sci. – volume: 94 start-page: 411 year: 2018 end-page: 425 ident: bb0270 article-title: Host-and stage-dependent secretome of the arbuscular mycorrhizal fungus publication-title: Plant J. – volume: 43 start-page: 71 year: 1996 end-page: 81 ident: bb0370 article-title: , a fungus forming endocytobiosis with Nostoc (Cyanobacteria), is an ancestral member of the glomales: evidence by SSU rRNA analysis publication-title: J. Mol. Evol. – volume: 42 start-page: 335 year: 2018 end-page: 352 ident: bb0210 article-title: Bacterial–fungal interactions: ecology, mechanisms and challenges publication-title: FEMS Microbiol. Rev. – volume: 29 start-page: 351 year: 2019 end-page: 362 ident: bb0160 article-title: Phosphorus forms affect the hyphosphere bacterial community involved in soil organic phosphorus turnover publication-title: Mycorrhiza – volume: 339 start-page: 231 year: 2011 end-page: 245 ident: bb0190 article-title: Traits related to differences in function among three arbuscular mycorrhizal fungi publication-title: Plant Soil – volume: 12 start-page: 2339 year: 2018 end-page: 2351 ident: bb0415 article-title: Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium publication-title: ISME J. – volume: 57 start-page: 409 year: 2006 end-page: 419 ident: bb0130 article-title: Soil bacterial diversity in a loblolly pine plantation: influence of ectomycorrhizas and fertilization publication-title: FEMS Microbiol. Ecol. – volume: 74 start-page: 177 year: 2014 end-page: 183 ident: bb0410 article-title: Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil publication-title: Soil Biol. Biochem. – volume: 89 start-page: 47 year: 2014 end-page: 99 ident: bb0340 article-title: Interactions between arbuscular mycorrhizal fungi and organic material substrates publication-title: Adv. Appl. Microbiol. – volume: 104 start-page: 81 year: 2000 end-page: 86 ident: bb0395 article-title: Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi publication-title: Mycol. Res. – volume: 29 start-page: 593 year: 2013 end-page: 617 ident: bb0015 article-title: Cell and developmental biology of arbuscular mycorrhiza symbiosis publication-title: Annu. Rev. Cell Dev. Biol. – volume: 142 year: 2020 ident: bb0310 article-title: Addition of fructose to the maize hyphosphere increases phosphatase activity by changing bacterial community structure publication-title: Soil Biol. Biochem. – volume: 189 start-page: 11 year: 1997 end-page: 20 ident: bb0205 article-title: Root exudation and physiological status of a root-colonizing fluorescent pseudomonad in mycorrhizal and non-mycorrhizal pepper ( publication-title: Plant Soil – volume: 230 start-page: 304 year: 2021 end-page: 315 ident: bb0215 article-title: Arbuscular mycorrhizal fungi enhance mineralization of organic phosphorus (P) by carrying bacteria along their extraradical hyphae publication-title: New Phytol. – year: 2008 ident: bb0010 publication-title: Mycorrhizal Symbiosis – volume: 4 start-page: 752 year: 2010 end-page: 763 ident: bb0095 article-title: Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi publication-title: ISME J. – reference: . 26, 387–395 – volume: 23 start-page: 388 year: 1996 end-page: 398 ident: bb0020 article-title: Impact of elevated CO publication-title: Biol. Fertil. Soils – volume: 60 start-page: 497 year: 1968 end-page: 504 ident: bb0315 article-title: The biological and mechanical role of soil fungi publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 80 start-page: 236 year: 2012 end-page: 247 ident: bb0335 article-title: Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition publication-title: FEMS Microbiol. Ecol. – volume: 22 start-page: 652 year: 2017 end-page: 660 ident: bb0025 article-title: Diet of arbuscular mycorrhizal fungi: bread and butter? publication-title: Trends Plant Sci. – volume: 78 start-page: 366 year: 1988 end-page: 371 ident: bb0030 article-title: Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect publication-title: Phytopathol. – volume: 107 start-page: 10938 year: 2010 end-page: 10942 ident: bb0300 article-title: Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 18 start-page: 2689 year: 2016 end-page: 2704 ident: bb0445 article-title: Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore-associated microbes: Assemblages of AMF and their spore-associated microbes publication-title: Environ. Microbiol. – volume: 413 start-page: 297 year: 2001 end-page: 299 ident: bb0320 article-title: An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material publication-title: Nature – volume: 25 start-page: 969 year: 2002 end-page: 980 ident: bb0400 article-title: Histochemical visualization of phosphatase released by arbuscular mycorrhizal fungi in soil publication-title: J. Plant Nutr. – volume: 205 start-page: 1537 year: 2015 end-page: 1551 ident: bb0305 article-title: Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation publication-title: New Phytol. – volume: 19 start-page: 1 year: 2018 end-page: 11 ident: bb0050 article-title: The genome of publication-title: BMC Genomics – volume: 60 start-page: 2272 year: 2019 end-page: 2281 ident: bb0275 article-title: Structure-specific regulation of nutrient transport and metabolism in arbuscular mycorrhizal fungi publication-title: Plant Cell Physiol. – volume: 23 start-page: 515 year: 2013 end-page: 531 ident: bb0135 article-title: An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota) publication-title: Mycorrhiza – volume: 7 start-page: e39813 year: 2018 end-page: e39829 ident: bb0045 article-title: Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi publication-title: eLife – volume: 162 start-page: 281 year: 2004 end-page: 293 ident: bb0425 article-title: Evaluating ecosystem responses to rising atmospheric CO publication-title: New Phytol. – volume: 10 start-page: 534 year: 2008 end-page: 541 ident: bb0155 article-title: Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots publication-title: Environ. Microbiol. – volume: 61 start-page: 295 year: 2007 end-page: 304 ident: bb0235 article-title: Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure publication-title: FEMS Microbiol. Ecol. – volume: 67 start-page: 725 year: 2001 end-page: 732 ident: bb0375 article-title: Nitrogen fixation genes in an endosymbiotic Burkholderia strain publication-title: Appl. Environ. Microbiol. – volume: 8 start-page: 915 year: 1999 end-page: 922 ident: bb0180 article-title: Ribosomal small subunit sequence variation within spores of an arbuscular mycorrhizal fungus, publication-title: Mol. Ecol. – volume: 14 start-page: 1015 year: 2020 end-page: 1029 ident: bb0220 article-title: Mycelial network-mediated rhizobial dispersal enhances legume nodulation publication-title: ISME J. – volume: 142 start-page: 531 year: 1999 end-page: 538 ident: bb0195 article-title: Evidence that differences in phosphate metabolism in mycorrhizas formed by species of publication-title: New Phytol. – volume: 17 start-page: 1 year: 2016 end-page: 13 ident: bb0255 article-title: The effector candidate repertoire of the arbuscular mycorrhizal fungus publication-title: BMC Genomics – volume: 205 start-page: 1406 year: 2015 end-page: 1423 ident: bb0175 article-title: Mycorrhizal ecology and evolution: the past, the present, and the future publication-title: New Phytol. – year: 2021 ident: bb0355 article-title: Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist publication-title: ISME J. – volume: 2 start-page: 233 year: 2019 end-page: 241 ident: bb0345 article-title: Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition publication-title: Commun. Biol. – volume: 12 start-page: 1296 year: 2018 end-page: 1307 ident: bb0145 article-title: Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota publication-title: ISME J. – volume: 320 start-page: 1034 year: 2008 end-page: 1039 ident: bb0070 article-title: The microbial engines that drive Earth’s biogeochemical cycles publication-title: Science – volume: 62 start-page: 3005 year: 1996 end-page: 3010 ident: bb0075 article-title: An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria publication-title: Appl. Environ. Microbiol. – volume: 35 start-page: 471 year: 2003 end-page: 478 ident: bb0435 article-title: Bacteria associated with publication-title: Soil Biol. Biochem. – volume: 39 start-page: 1683 year: 2016 end-page: 1690 ident: bb0330 article-title: Resolving the ‘nitrogen paradox’ of arbuscular mycorrhizas: fertilization with organic matter brings considerable benefits for plant nutrition and growth publication-title: Plant Cell Environ. – volume: 254 start-page: 34 year: 2006 end-page: 40 ident: bb0090 article-title: Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species publication-title: FEMS Microbiol. Lett. – volume: 16 start-page: 835 year: 2013 end-page: 843 ident: bb0290 article-title: Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack publication-title: Ecol. Lett. – volume: 192 start-page: 71 year: 1997 end-page: 79 ident: bb0115 article-title: Bacteria from rhizosphere and hyphosphere soils of different arbuscular mycorrhizal fungi publication-title: Plant Soil – volume: 7 start-page: 233 year: 2016 end-page: 248 ident: bb0260 article-title: A survey of the gene repertoire of publication-title: Front. Microbiol. – volume: 80 start-page: 1 year: 2002 end-page: 20 ident: bb0225 article-title: Arbuscular mycorrhiza on root-organ cultures publication-title: Can. J. Bot. – volume: 10 year: 2014 ident: bb0250 article-title: Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus publication-title: PLoS Genet. – volume: 22 start-page: 122 year: 2020 end-page: 141 ident: bb0060 article-title: At the nexus of three kingdoms: the genome of the mycorrhizal fungus publication-title: Environ. Microbiol. – volume: 14 start-page: 255 year: 2001 end-page: 260 ident: bb0080 article-title: Mucoid mutants of the biocontrol strain publication-title: Mol. Plant-Microbe Interact. – volume: 62 start-page: 227 year: 2011 end-page: 250 ident: bb0005 article-title: Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales publication-title: Ann. Rev. Plant Biol. – volume: 69 start-page: 6208 year: 2003 end-page: 6215 ident: bb0085 article-title: Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae publication-title: Appl. Environ. Microbiol. – volume: 90 start-page: 1 year: 2015 end-page: 9 ident: bb0440 article-title: Trapping of phosphate solubilizing bacteria on hyphae of the arbuscular mycorrhizal fungus publication-title: Soil Biol. Biochem. – volume: 29 start-page: 69 year: 2019 end-page: 75 ident: bb0405 article-title: The arbuscular mycorrhizal fungus publication-title: Mycorrhiza – volume: 128 start-page: 197 year: 1994 end-page: 210 ident: bb0125 article-title: Helper Bacteria – a new dimension to the mycorrhizal symbiosis publication-title: New Phytol. – volume: 58 start-page: 1289 year: 2021 end-page: 1298 ident: bb0380 article-title: Dual functions of bacteria colonized on AM fungal hyphae: fixing N publication-title: Acta Pedol. Sin. – volume: 15 start-page: 2276 year: 2021 end-page: 2288 ident: bb0110 article-title: Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi publication-title: ISME J. – volume: 222 start-page: 1584 year: 2019 end-page: 1598 ident: bb0055 article-title: Comparative genomics of publication-title: New Phytol. – volume: 110 start-page: 20117 year: 2013 end-page: 20122 ident: bb0040 article-title: Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 28 start-page: 269 year: 2018 end-page: 283 ident: bb0350 article-title: Utilization of organic nitrogen by arbuscular mycorrhizal fungi—is there a specific role for protists and ammonia oxidizers? publication-title: Mycorrhiza – volume: 20 start-page: 2639 year: 2018 end-page: 2651 ident: bb0035 article-title: Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions publication-title: Environ. Microbiol. – volume: 15 start-page: 1870 year: 2013 end-page: 1881 ident: bb0105 article-title: An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition publication-title: Environ. Microbiol. – volume: 5 year: 2020 ident: bb0150 article-title: Different arbuscular mycorrhizal fungi cocolonizing on a single plant root system recruit distinct microbiomes publication-title: mSystems – volume: 31 start-page: R342 year: 2021 end-page: R344 ident: bb0365 article-title: Mycology: rediscovery of a lost model fungus highlights the origin of mycorrhizal symbioses publication-title: Curr. Biol. – volume: 337 start-page: 1084 year: 2012 end-page: 1087 ident: bb0430 article-title: Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO publication-title: Science – volume: 21 start-page: 1204 year: 2011 end-page: 1209 ident: bb0280 article-title: A secreted fungal effector of publication-title: Curr. Biol. – volume: 67 start-page: 1689 year: 2016 end-page: 1701 ident: bb0120 article-title: stable isotope probing of phosphate-solubilizing bacteria in the hyphosphere publication-title: J. Exp. Bot. – volume: 190 start-page: 794 year: 2011 end-page: 804 ident: bb0185 article-title: Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing publication-title: New Phytol. – volume: 11 start-page: 5125 year: 2020 end-page: 5141 ident: bb0065 article-title: Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits publication-title: Nat. Commun. – volume: 295 start-page: 2051 year: 2002 ident: bb0165 article-title: Extensive fungal diversity in plant roots publication-title: Science – volume: 9 start-page: 418 year: 2018 ident: bb0360 article-title: Arbuscular mycorrhizal fungi negatively affect nitrogen acquisition and grain yield of maize in a N deficient soil publication-title: Front. Microbiol. – volume: 22 start-page: 437 year: 2012 end-page: 447 ident: bb0240 article-title: Interactions among publication-title: Mycorrhiza – volume: 22 start-page: 139 year: 2003 end-page: 148 ident: bb0385 article-title: Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil publication-title: Appl. Soil Ecol. – volume: 176 start-page: 22 year: 2007 end-page: 36 ident: bb0140 article-title: The mycorrhiza helper bacteria revisited publication-title: New Phytol. – volume: 94 start-page: 2019 year: 2013 end-page: 2029 ident: bb0170 article-title: Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae? publication-title: Ecology – volume: 6 start-page: 1365 year: 2020 end-page: 1374 ident: bb0285 article-title: Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins publication-title: Nat. Plants – volume: 165 start-page: 351 year: 2005 end-page: 372 ident: bb0420 article-title: What have we learned from 15 years of free-air CO publication-title: New Phytol. – volume: 60 start-page: 2272 year: 2019 ident: 10.1016/j.tplants.2021.10.008_bb0275 article-title: Structure-specific regulation of nutrient transport and metabolism in arbuscular mycorrhizal fungi publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcz122 – volume: 94 start-page: 411 year: 2018 ident: 10.1016/j.tplants.2021.10.008_bb0270 article-title: Host-and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis publication-title: Plant J. doi: 10.1111/tpj.13908 – volume: 210 start-page: 1022 year: 2016 ident: 10.1016/j.tplants.2021.10.008_bb0230 article-title: Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium publication-title: New Phytol. doi: 10.1111/nph.13838 – volume: 14 start-page: 1015 year: 2020 ident: 10.1016/j.tplants.2021.10.008_bb0220 article-title: Mycelial network-mediated rhizobial dispersal enhances legume nodulation publication-title: ISME J. doi: 10.1038/s41396-020-0587-5 – volume: 12 start-page: 1296 year: 2018 ident: 10.1016/j.tplants.2021.10.008_bb0145 article-title: Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota publication-title: ISME J. doi: 10.1038/s41396-018-0059-3 – volume: 190 start-page: 794 year: 2011 ident: 10.1016/j.tplants.2021.10.008_bb0185 article-title: Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03636.x – volume: 12 start-page: 2339 year: 2018 ident: 10.1016/j.tplants.2021.10.008_bb0415 article-title: Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium publication-title: ISME J. doi: 10.1038/s41396-018-0171-4 – volume: 28 start-page: 269 year: 2018 ident: 10.1016/j.tplants.2021.10.008_bb0350 article-title: Utilization of organic nitrogen by arbuscular mycorrhizal fungi—is there a specific role for protists and ammonia oxidizers? publication-title: Mycorrhiza doi: 10.1007/s00572-018-0825-0 – volume: 62 start-page: 3005 year: 1996 ident: 10.1016/j.tplants.2021.10.008_bb0075 article-title: An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.62.8.3005-3010.1996 – volume: 62 start-page: 227 year: 2011 ident: 10.1016/j.tplants.2021.10.008_bb0005 article-title: Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales publication-title: Ann. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042110-103846 – volume: 58 start-page: 1289 year: 2021 ident: 10.1016/j.tplants.2021.10.008_bb0380 article-title: Dual functions of bacteria colonized on AM fungal hyphae: fixing N2 and solubilizing phosphate publication-title: Acta Pedol. Sin. – volume: 142 start-page: 531 year: 1999 ident: 10.1016/j.tplants.2021.10.008_bb0195 article-title: Evidence that differences in phosphate metabolism in mycorrhizas formed by species of Glomus and Gigaspora might be related to their life-cycle strategies publication-title: New Phytol. doi: 10.1046/j.1469-8137.1999.00422.x – volume: 142 year: 2020 ident: 10.1016/j.tplants.2021.10.008_bb0310 article-title: Addition of fructose to the maize hyphosphere increases phosphatase activity by changing bacterial community structure publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.107724 – volume: 413 start-page: 297 year: 2001 ident: 10.1016/j.tplants.2021.10.008_bb0320 article-title: An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material publication-title: Nature doi: 10.1038/35095041 – volume: 29 start-page: 593 year: 2013 ident: 10.1016/j.tplants.2021.10.008_bb0015 article-title: Cell and developmental biology of arbuscular mycorrhiza symbiosis publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-101512-122413 – volume: 80 start-page: 1 year: 2002 ident: 10.1016/j.tplants.2021.10.008_bb0225 article-title: Arbuscular mycorrhiza on root-organ cultures publication-title: Can. J. Bot. doi: 10.1139/b01-139 – volume: 110 start-page: 20117 year: 2013 ident: 10.1016/j.tplants.2021.10.008_bb0040 article-title: Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1313452110 – volume: 35 start-page: 471 year: 2003 ident: 10.1016/j.tplants.2021.10.008_bb0435 article-title: Bacteria associated with Glomus clarum spores influence mycorrhizal activity publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(03)00003-8 – volume: 42 start-page: 335 year: 2018 ident: 10.1016/j.tplants.2021.10.008_bb0210 article-title: Bacterial–fungal interactions: ecology, mechanisms and challenges publication-title: FEMS Microbiol. Rev. doi: 10.1093/femsre/fuy008 – volume: 230 start-page: 304 year: 2021 ident: 10.1016/j.tplants.2021.10.008_bb0215 article-title: Arbuscular mycorrhizal fungi enhance mineralization of organic phosphorus (P) by carrying bacteria along their extraradical hyphae publication-title: New Phytol. doi: 10.1111/nph.17081 – volume: 205 start-page: 1406 year: 2015 ident: 10.1016/j.tplants.2021.10.008_bb0175 article-title: Mycorrhizal ecology and evolution: the past, the present, and the future publication-title: New Phytol. doi: 10.1111/nph.13288 – volume: 15 start-page: 1870 year: 2013 ident: 10.1016/j.tplants.2021.10.008_bb0105 article-title: An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12081 – volume: 222 start-page: 1584 year: 2019 ident: 10.1016/j.tplants.2021.10.008_bb0055 article-title: Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina publication-title: New Phytol. doi: 10.1111/nph.15687 – volume: 20 start-page: 2639 year: 2018 ident: 10.1016/j.tplants.2021.10.008_bb0035 article-title: Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.14289 – volume: 94 start-page: 2019 year: 2013 ident: 10.1016/j.tplants.2021.10.008_bb0170 article-title: Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae? publication-title: Ecology doi: 10.1890/12-1943.1 – volume: 22 start-page: 122 year: 2020 ident: 10.1016/j.tplants.2021.10.008_bb0060 article-title: At the nexus of three kingdoms: the genome of the mycorrhizal fungus Gigaspora margarita provides insights into plant, endobacterial and fungal interactions publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.14827 – volume: 22 start-page: 437 year: 2012 ident: 10.1016/j.tplants.2021.10.008_bb0240 article-title: Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions publication-title: Mycorrhiza doi: 10.1007/s00572-011-0418-7 – volume: 31 start-page: 403 year: 2021 ident: 10.1016/j.tplants.2021.10.008_bb0245 article-title: Metabolite profiling of the hyphal exudates of Rhizophagus clarus and Rhizophagus irregularis under phosphorus deficiency publication-title: Mycorrhiza doi: 10.1007/s00572-020-01016-z – volume: 141 start-page: 525 year: 1999 ident: 10.1016/j.tplants.2021.10.008_bb0295 article-title: Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms publication-title: New Phytol. doi: 10.1046/j.1469-8137.1999.00366.x – volume: 76 start-page: 428 year: 2011 ident: 10.1016/j.tplants.2021.10.008_bb0325 article-title: Growth and symbiotic effectiveness of an arbuscular mycorrhizal fungus in organic matter in competition with soil bacteria publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2011.01066.x – volume: 10 start-page: 534 year: 2008 ident: 10.1016/j.tplants.2021.10.008_bb0155 article-title: Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2007.01474.x – volume: 61 start-page: 295 year: 2007 ident: 10.1016/j.tplants.2021.10.008_bb0235 article-title: Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2007.00337.x – volume: 39 start-page: 1683 year: 2016 ident: 10.1016/j.tplants.2021.10.008_bb0330 article-title: Resolving the ‘nitrogen paradox’ of arbuscular mycorrhizas: fertilization with organic matter brings considerable benefits for plant nutrition and growth publication-title: Plant Cell Environ. doi: 10.1111/pce.12667 – volume: 333 start-page: 880 year: 2011 ident: 10.1016/j.tplants.2021.10.008_bb0200 article-title: Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis publication-title: Science doi: 10.1126/science.1208473 – volume: 60 start-page: 497 year: 1968 ident: 10.1016/j.tplants.2021.10.008_bb0315 article-title: The biological and mechanical role of soil fungi publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.60.2.497 – volume: 5 year: 2020 ident: 10.1016/j.tplants.2021.10.008_bb0150 article-title: Different arbuscular mycorrhizal fungi cocolonizing on a single plant root system recruit distinct microbiomes publication-title: mSystems doi: 10.1128/mSystems.00929-20 – volume: 21 start-page: 1204 year: 2011 ident: 10.1016/j.tplants.2021.10.008_bb0280 article-title: A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.06.044 – volume: 162 start-page: 281 year: 2004 ident: 10.1016/j.tplants.2021.10.008_bb0425 article-title: Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world publication-title: New Phytol. doi: 10.1111/j.1469-8137.2004.01047.x – volume: 15 start-page: 2276 year: 2021 ident: 10.1016/j.tplants.2021.10.008_bb0110 article-title: Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi publication-title: ISME J. doi: 10.1038/s41396-021-00920-2 – volume: 192 start-page: 71 year: 1997 ident: 10.1016/j.tplants.2021.10.008_bb0115 article-title: Bacteria from rhizosphere and hyphosphere soils of different arbuscular mycorrhizal fungi publication-title: Plant Soil doi: 10.1023/A:1004249629643 – volume: 7 start-page: 233 year: 2016 ident: 10.1016/j.tplants.2021.10.008_bb0260 article-title: A survey of the gene repertoire of Gigaspora rosea unravels conserved features among Glomeromycota for obligate biotrophy publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.00233 – volume: 67 start-page: 1689 year: 2016 ident: 10.1016/j.tplants.2021.10.008_bb0120 article-title: In situ stable isotope probing of phosphate-solubilizing bacteria in the hyphosphere publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv561 – volume: 6 start-page: 1365 year: 2020 ident: 10.1016/j.tplants.2021.10.008_bb0285 article-title: Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins publication-title: Nat. Plants doi: 10.1038/s41477-020-00799-5 – volume: 107 start-page: 10938 year: 2010 ident: 10.1016/j.tplants.2021.10.008_bb0300 article-title: Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0912421107 – volume: 22 start-page: 139 year: 2003 ident: 10.1016/j.tplants.2021.10.008_bb0385 article-title: Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil publication-title: Appl. Soil Ecol. doi: 10.1016/S0929-1393(02)00133-6 – volume: 16 start-page: 835 year: 2013 ident: 10.1016/j.tplants.2021.10.008_bb0290 article-title: Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack publication-title: Ecol. Lett. doi: 10.1111/ele.12115 – volume: 22 start-page: 652 year: 2017 ident: 10.1016/j.tplants.2021.10.008_bb0025 article-title: Diet of arbuscular mycorrhizal fungi: bread and butter? publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2017.05.008 – volume: 23 start-page: 515 year: 2013 ident: 10.1016/j.tplants.2021.10.008_bb0135 article-title: An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota) publication-title: Mycorrhiza doi: 10.1007/s00572-013-0486-y – volume: 337 start-page: 1084 year: 2012 ident: 10.1016/j.tplants.2021.10.008_bb0430 article-title: Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2 publication-title: Science doi: 10.1126/science.1224304 – volume: 254 start-page: 34 year: 2006 ident: 10.1016/j.tplants.2021.10.008_bb0090 article-title: Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2005.00003.x – volume: 8 start-page: 124 year: 2017 ident: 10.1016/j.tplants.2021.10.008_bb0265 article-title: The comparison of expressed candidate secreted proteins from two arbuscular mycorrhizal fungi unravels common and specific molecular tools to invade different host plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00124 – volume: 29 start-page: 351 year: 2019 ident: 10.1016/j.tplants.2021.10.008_bb0160 article-title: Phosphorus forms affect the hyphosphere bacterial community involved in soil organic phosphorus turnover publication-title: Mycorrhiza doi: 10.1007/s00572-019-00896-0 – volume: 31 start-page: R342 year: 2021 ident: 10.1016/j.tplants.2021.10.008_bb0365 article-title: Mycology: rediscovery of a lost model fungus highlights the origin of mycorrhizal symbioses publication-title: Curr. Biol. doi: 10.1016/j.cub.2021.02.006 – volume: 19 start-page: 1 year: 2018 ident: 10.1016/j.tplants.2021.10.008_bb0050 article-title: The genome of Rhizophagus clarus HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi publication-title: BMC Genomics doi: 10.1186/s12864-018-4853-0 – volume: 78 start-page: 366 year: 1988 ident: 10.1016/j.tplants.2021.10.008_bb0030 article-title: Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect publication-title: Phytopathol. – volume: 57 start-page: 409 year: 2006 ident: 10.1016/j.tplants.2021.10.008_bb0130 article-title: Soil bacterial diversity in a loblolly pine plantation: influence of ectomycorrhizas and fertilization publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2006.00125.x – year: 2021 ident: 10.1016/j.tplants.2021.10.008_bb0355 article-title: Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist publication-title: ISME J. – volume: 29 start-page: 69 year: 2019 ident: 10.1016/j.tplants.2021.10.008_bb0405 article-title: The arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 43194 induces the gene expression of citrate synthase in the tricarboxylic acid cycle of the phosphate-solubilizing bacterium Rahnella aquatilis HX2 publication-title: Mycorrhiza doi: 10.1007/s00572-018-0871-7 – volume: 90 start-page: 1 year: 2015 ident: 10.1016/j.tplants.2021.10.008_bb0440 article-title: Trapping of phosphate solubilizing bacteria on hyphae of the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM 197198 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.07.016 – volume: 80 start-page: 236 year: 2012 ident: 10.1016/j.tplants.2021.10.008_bb0335 article-title: Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2011.01292.x – volume: 25 start-page: 969 year: 2002 ident: 10.1016/j.tplants.2021.10.008_bb0400 article-title: Histochemical visualization of phosphatase released by arbuscular mycorrhizal fungi in soil publication-title: J. Plant Nutr. doi: 10.1081/PLN-120003932 – year: 2008 ident: 10.1016/j.tplants.2021.10.008_bb0010 – volume: 14 start-page: 255 year: 2001 ident: 10.1016/j.tplants.2021.10.008_bb0080 article-title: Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI.2001.14.2.255 – volume: 10 year: 2014 ident: 10.1016/j.tplants.2021.10.008_bb0250 article-title: Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004078 – volume: 104 start-page: 81 year: 2000 ident: 10.1016/j.tplants.2021.10.008_bb0395 article-title: Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi publication-title: Mycol. Res. doi: 10.1017/S0953756299001240 – volume: 339 start-page: 231 year: 2011 ident: 10.1016/j.tplants.2021.10.008_bb0190 article-title: Traits related to differences in function among three arbuscular mycorrhizal fungi publication-title: Plant Soil doi: 10.1007/s11104-010-0571-3 – volume: 18 start-page: 2689 year: 2016 ident: 10.1016/j.tplants.2021.10.008_bb0445 article-title: Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore-associated microbes: Assemblages of AMF and their spore-associated microbes publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13438 – volume: 11 start-page: 5125 year: 2020 ident: 10.1016/j.tplants.2021.10.008_bb0065 article-title: Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits publication-title: Nat. Commun. doi: 10.1038/s41467-020-18795-w – volume: 8 start-page: 915 year: 1999 ident: 10.1016/j.tplants.2021.10.008_bb0180 article-title: Ribosomal small subunit sequence variation within spores of an arbuscular mycorrhizal fungus, Scutellospora sp publication-title: Mol. Ecol. doi: 10.1046/j.1365-294x.1999.00642.x – volume: 89 start-page: 47 year: 2014 ident: 10.1016/j.tplants.2021.10.008_bb0340 article-title: Interactions between arbuscular mycorrhizal fungi and organic material substrates publication-title: Adv. Appl. Microbiol. doi: 10.1016/B978-0-12-800259-9.00002-0 – volume: 67 start-page: 725 year: 2001 ident: 10.1016/j.tplants.2021.10.008_bb0375 article-title: Nitrogen fixation genes in an endosymbiotic Burkholderia strain publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.67.2.725-732.2001 – volume: 69 start-page: 6208 year: 2003 ident: 10.1016/j.tplants.2021.10.008_bb0085 article-title: Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.69.10.6208-6215.2003 – volume: 4 start-page: 752 year: 2010 ident: 10.1016/j.tplants.2021.10.008_bb0095 article-title: Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi publication-title: ISME J. doi: 10.1038/ismej.2010.5 – volume: 128 start-page: 197 year: 1994 ident: 10.1016/j.tplants.2021.10.008_bb0125 article-title: Helper Bacteria – a new dimension to the mycorrhizal symbiosis publication-title: New Phytol. doi: 10.1111/j.1469-8137.1994.tb04003.x – volume: 205 start-page: 1537 year: 2015 ident: 10.1016/j.tplants.2021.10.008_bb0305 article-title: Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation publication-title: New Phytol. doi: 10.1111/nph.13138 – volume: 9 start-page: 418 year: 2018 ident: 10.1016/j.tplants.2021.10.008_bb0360 article-title: Arbuscular mycorrhizal fungi negatively affect nitrogen acquisition and grain yield of maize in a N deficient soil publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.00418 – volume: 74 start-page: 177 year: 2014 ident: 10.1016/j.tplants.2021.10.008_bb0410 article-title: Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.03.004 – volume: 189 start-page: 11 year: 1997 ident: 10.1016/j.tplants.2021.10.008_bb0205 article-title: Root exudation and physiological status of a root-colonizing fluorescent pseudomonad in mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L.) publication-title: Plant Soil doi: 10.1023/A:1004266907442 – volume: 17 start-page: 1 year: 2016 ident: 10.1016/j.tplants.2021.10.008_bb0255 article-title: The effector candidate repertoire of the arbuscular mycorrhizal fungus Rhizophagus clarus publication-title: BMC Genomics – volume: 320 start-page: 1034 year: 2008 ident: 10.1016/j.tplants.2021.10.008_bb0070 article-title: The microbial engines that drive Earth’s biogeochemical cycles publication-title: Science doi: 10.1126/science.1153213 – volume: 176 start-page: 22 year: 2007 ident: 10.1016/j.tplants.2021.10.008_bb0140 article-title: The mycorrhiza helper bacteria revisited publication-title: New Phytol. doi: 10.1111/j.1469-8137.2007.02191.x – volume: 7 start-page: e39813 year: 2018 ident: 10.1016/j.tplants.2021.10.008_bb0045 article-title: Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi publication-title: eLife doi: 10.7554/eLife.39813 – ident: 10.1016/j.tplants.2021.10.008_bb0390 doi: 10.1016/0038-0717(94)90288-7 – volume: 295 start-page: 2051 year: 2002 ident: 10.1016/j.tplants.2021.10.008_bb0165 article-title: Extensive fungal diversity in plant roots publication-title: Science doi: 10.1126/science.295.5562.2051 – volume: 2 start-page: 233 year: 2019 ident: 10.1016/j.tplants.2021.10.008_bb0345 article-title: Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition publication-title: Commun. Biol. doi: 10.1038/s42003-019-0481-8 – volume: 23 start-page: 388 year: 1996 ident: 10.1016/j.tplants.2021.10.008_bb0020 article-title: Impact of elevated CO2 on mycorrhizal associations and implications for plant growth publication-title: Biol. Fertil. Soils doi: 10.1007/BF00335912 – volume: 43 start-page: 71 year: 1996 ident: 10.1016/j.tplants.2021.10.008_bb0370 article-title: Geosiphon pyriforme, a fungus forming endocytobiosis with Nostoc (Cyanobacteria), is an ancestral member of the glomales: evidence by SSU rRNA analysis publication-title: J. Mol. Evol. doi: 10.1007/BF02352301 – volume: 89 start-page: 113 year: 2015 ident: 10.1016/j.tplants.2021.10.008_bb0100 article-title: Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2014.12.008 – volume: 165 start-page: 351 year: 2005 ident: 10.1016/j.tplants.2021.10.008_bb0420 article-title: What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2 publication-title: New Phytol. doi: 10.1111/j.1469-8137.2004.01224.x |
SSID | ssj0007186 |
Score | 2.6859841 |
SecondaryResourceType | review_article |
Snippet | More than two-thirds of terrestrial plants acquire nutrients by forming a symbiosis with arbuscular mycorrhizal (AM) fungi. AM fungal hyphae recruit distinct... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 402 |
SubjectTerms | arbuscular mycorrhiza Arbuscular mycorrhizas bacterial growth Community structure Exudates Fungi genome Genomes Hyphae hyphal exudates hyphosphere microbiome microbial communities microbiome Microbiomes Microorganisms Nutrient cycles Nutrients organic nitrogen organic phosphorus soil Symbiosis vesicular arbuscular mycorrhizae |
Title | Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra |
URI | https://dx.doi.org/10.1016/j.tplants.2021.10.008 https://www.ncbi.nlm.nih.gov/pubmed/34782247 https://www.proquest.com/docview/2654389474 https://www.proquest.com/docview/2598079606 https://www.proquest.com/docview/2636613371 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LThsxcISAQ3uoKPQRoGgrcd0Er2ft9TEgUFoElxaJ28pre5sgmo3ScAgHvp2ZfYRyoEg97MWekbwz43nI8wA4TMiFlq7Usaf4J0aTYWyt5CxCo51LgigEVyNfXKrRFX6_Tq_X4KSrheG0ylb3Nzq91tbtyqCl5mA2mQx-CKn4mY3sTz1wp65gR81S3n94SvMg3aua2qsj7reXPlXxDG76i9ktZ5tQmJiIfp3klb1kn17yP2s7dLYF71oHMho2Z3wPa2G6DZvHFTl5y214-1d_wR04HxLNmkzT6PeS4sz5eHJPyGTMfk0iioS52StBRuQFRuPlbFz94S4DISqaHs4EWs3riVpz-wGuzk5_nozidnpC7MjqLuLSpVh4EpQEpXJB-MJa46zCgGiSUstUlrrwHguZZk5myqLwthRFltBHsetHWJ9W0_AZIq88lkmw1iuD3mjjS2GJpUEQb11QPcCOZrlrW4vzhIvbvMshu8lbUudMal4mUvegv0KbNb01XkPIOobkz4QkJ_3_Gup-x8C8vaW0z4W1mUGNPfi62qb7xY8mdhqqO4JJTXakOc77B4yS5OZIqUUPPjXCsfohieyDod79_7PvwZuEiy7qfKF9WF_M78IXcoUWxUEt6wewMfx2Prp8BIWSClE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1dT9sw8IQK0raHabCNdWMsk_aaFseOHT92aKhQ6MtA4i1ybIcWQVOV8lB-_e4Sp2MPDImHvNh3knN3vg_5PgB-JOhCc1uq2GH8EwudidgYTlmEWlmbeFYwqkY-G8vhhTi5TC834LCthaG0yqD7G51ea-uw0g_U7M-n0_5vxiU9s6H9qQfuYAi0Sd2p0g5sDo5Hw_FaIaP6lU351QG13Ev_FvL0r3vL-Q0lnGCkmLBeneeVPWWinnJBa1N09A7eBh8yGjTH3IYNP9uBrZ8V-nmrHXjzqMXgexgNkGxNsml0u8JQczGZPiAy2rOraYTBMPV7RcgIHcFosppPqjtqNOCjomnjjKDVoh6qtTAf4OLo1_nhMA4DFGKLhncZlzYVhUNZSQSX1jNXGKOtkcILoZNS8ZSXqnBOFDzNLM-kEcyZkhVZgh-Grx-hM6tm_hNETjpRJt4YJ7VwWmlXMoNc9QzZa73sgmhpltvQXZyGXNzkbRrZdR5InROpaRlJ3YXeGm3etNd4DiFrGZL_Iyc5moDnUPdaBubhouI-1dZmWijRhe_rbbxi9G5iZr66R5hUZweKQr3_wEiOng7ninVhtxGO9Q9xQW6YUJ9ffvZv8Gp4fnaanx6PR1_gdUI1GHX60B50lot7_xU9o2WxHyT_D5Y3DQI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arbuscular+mycorrhizal+fungi+conducting+the+hyphosphere+bacterial+orchestra&rft.jtitle=Trends+in+plant+science&rft.au=Zhang%2C+Lin&rft.au=Zhou%2C+Jiachao&rft.au=George%2C+Timothy+S.&rft.au=Limpens%2C+Erik&rft.date=2022-04-01&rft.issn=1360-1385&rft.volume=27&rft.issue=4&rft.spage=402&rft.epage=411&rft_id=info:doi/10.1016%2Fj.tplants.2021.10.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tplants_2021_10_008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-1385&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-1385&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-1385&client=summon |