Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra

More than two-thirds of terrestrial plants acquire nutrients by forming a symbiosis with arbuscular mycorrhizal (AM) fungi. AM fungal hyphae recruit distinct microbes into their hyphosphere, the narrow region of soil influenced by hyphal exudates. They thereby shape this so-called second genome of A...

Full description

Saved in:
Bibliographic Details
Published inTrends in plant science Vol. 27; no. 4; pp. 402 - 411
Main Authors Zhang, Lin, Zhou, Jiachao, George, Timothy S., Limpens, Erik, Feng, Gu
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.04.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract More than two-thirds of terrestrial plants acquire nutrients by forming a symbiosis with arbuscular mycorrhizal (AM) fungi. AM fungal hyphae recruit distinct microbes into their hyphosphere, the narrow region of soil influenced by hyphal exudates. They thereby shape this so-called second genome of AM fungi, which significantly contributes to nutrient mobilization and turnover. We summarize current insights into characteristics of the hyphosphere microbiome and the role of hyphal exudates on orchestrating its composition. The hyphal exudates not only contain carbon-rich compounds but also promote bacterial growth and activity and influence the microbial community structure. These effects lead to shifts in function and cause changes in organic nutrient cycling, making the hyphosphere a unique and largely overlooked functional zone in ecosystems. Arbuscular mycorrhizal (AM) fungi release hyphal compounds into the soil to orchestrate the hyphosphere colonized by a diversity of microbes.The composition of the hyphosphere microbiome is different to bulk soil and rhizosphere.Nutrient cycling in the hyphosphere is affected by the change in microbiome.Shifts in microbial function cause changes in organic nutrient cycling, making the hyphosphere a unique and important functional zone in ecosystems.
AbstractList More than two-thirds of terrestrial plants acquire nutrients by forming a symbiosis with arbuscular mycorrhizal (AM) fungi. AM fungal hyphae recruit distinct microbes into their hyphosphere, the narrow region of soil influenced by hyphal exudates. They thereby shape this so-called second genome of AM fungi, which significantly contributes to nutrient mobilization and turnover. We summarize current insights into characteristics of the hyphosphere microbiome and the role of hyphal exudates on orchestrating its composition. The hyphal exudates not only contain carbon-rich compounds but also promote bacterial growth and activity and influence the microbial community structure. These effects lead to shifts in function and cause changes in organic nutrient cycling, making the hyphosphere a unique and largely overlooked functional zone in ecosystems.More than two-thirds of terrestrial plants acquire nutrients by forming a symbiosis with arbuscular mycorrhizal (AM) fungi. AM fungal hyphae recruit distinct microbes into their hyphosphere, the narrow region of soil influenced by hyphal exudates. They thereby shape this so-called second genome of AM fungi, which significantly contributes to nutrient mobilization and turnover. We summarize current insights into characteristics of the hyphosphere microbiome and the role of hyphal exudates on orchestrating its composition. The hyphal exudates not only contain carbon-rich compounds but also promote bacterial growth and activity and influence the microbial community structure. These effects lead to shifts in function and cause changes in organic nutrient cycling, making the hyphosphere a unique and largely overlooked functional zone in ecosystems.
More than two-thirds of terrestrial plants acquire nutrients by forming a symbiosis with arbuscular mycorrhizal (AM) fungi. AM fungal hyphae recruit distinct microbes into their hyphosphere, the narrow region of soil influenced by hyphal exudates. They thereby shape this so-called second genome of AM fungi, which significantly contributes to nutrient mobilization and turnover. We summarize current insights into characteristics of the hyphosphere microbiome and the role of hyphal exudates on orchestrating its composition. The hyphal exudates not only contain carbon-rich compounds but also promote bacterial growth and activity and influence the microbial community structure. These effects lead to shifts in function and cause changes in organic nutrient cycling, making the hyphosphere a unique and largely overlooked functional zone in ecosystems.
More than two-thirds of terrestrial plants acquire nutrients by forming a symbiosis with arbuscular mycorrhizal (AM) fungi. AM fungal hyphae recruit distinct microbes into their hyphosphere, the narrow region of soil influenced by hyphal exudates. They thereby shape this so-called second genome of AM fungi, which significantly contributes to nutrient mobilization and turnover. We summarize current insights into characteristics of the hyphosphere microbiome and the role of hyphal exudates on orchestrating its composition. The hyphal exudates not only contain carbon-rich compounds but also promote bacterial growth and activity and influence the microbial community structure. These effects lead to shifts in function and cause changes in organic nutrient cycling, making the hyphosphere a unique and largely overlooked functional zone in ecosystems. Arbuscular mycorrhizal (AM) fungi release hyphal compounds into the soil to orchestrate the hyphosphere colonized by a diversity of microbes.The composition of the hyphosphere microbiome is different to bulk soil and rhizosphere.Nutrient cycling in the hyphosphere is affected by the change in microbiome.Shifts in microbial function cause changes in organic nutrient cycling, making the hyphosphere a unique and important functional zone in ecosystems.
Author Zhou, Jiachao
Zhang, Lin
George, Timothy S.
Limpens, Erik
Feng, Gu
Author_xml – sequence: 1
  givenname: Lin
  orcidid: 0000-0002-1663-5620
  surname: Zhang
  fullname: Zhang, Lin
  organization: College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
– sequence: 2
  givenname: Jiachao
  orcidid: 0000-0001-5435-0442
  surname: Zhou
  fullname: Zhou, Jiachao
  organization: College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
– sequence: 3
  givenname: Timothy S.
  orcidid: 0000-0003-3231-2159
  surname: George
  fullname: George, Timothy S.
  organization: The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
– sequence: 4
  givenname: Erik
  orcidid: 0000-0002-9668-4085
  surname: Limpens
  fullname: Limpens, Erik
  organization: Laboratory of Molecular Biology, Wageningen University & Research, Wageningen 6708, PB, The Netherlands
– sequence: 5
  givenname: Gu
  orcidid: 0000-0002-1052-5009
  surname: Feng
  fullname: Feng, Gu
  email: fenggu@cau.edu.cn
  organization: College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34782247$$D View this record in MEDLINE/PubMed
BookMark eNqNkUuLFDEUhYOMOA_9CUqBGzfV5lVJChcyDDMqDrjRdUglt6bSVCdlkhLaX2-a7tnMZlyEhMt3ziXnXKKzEAMg9JbgDcFEfNxuyjKbUPKGYkrqbIOxeoEuiJKq5UzSs_pmAreEqe4cXea8xRhLosQrdM64VJRyeYG-X6dhzXadTWp2extTmvxfMzfjGh58Y2Nwqy0-PDRlgmbaL1PMywQJmsHYAslXNCY7QS7JvEYvRzNneHO6r9Cvu9ufN1_b-x9fvt1c37eWU1Ha0XZ8cGAc5UxYIG4wprdGcOC8p6NkHRvl4BwfWKcsU8Jw4sxIBkXrkYRdoQ9H3yXF32tdrXc-W5hrHBDXrKlgQhDG_gfteoVlL7Co6Psn6DauKdSPVMOOM9VzySv17kStww6cXpLfmbTXj4lW4NMRsCnmnGDU1hdTfAw1IT9rgvWhP73Vp_70ob_DuPZX1d0T9eOC53Sfjzqouf_xkHS2HoIF5xPYol30zzj8AxK-uHc
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_171840
crossref_primary_10_1016_j_scitotenv_2024_177946
crossref_primary_10_3390_agronomy13122900
crossref_primary_10_1038_s41396_023_01476_z
crossref_primary_10_1016_j_foreco_2024_122338
crossref_primary_10_3389_fpls_2023_1206870
crossref_primary_10_1146_annurev_arplant_102820_124504
crossref_primary_10_1016_j_scitotenv_2024_169889
crossref_primary_10_1007_s00374_025_01900_w
crossref_primary_10_1007_s11104_025_07291_z
crossref_primary_10_1111_ele_14320
crossref_primary_10_3390_agriculture14030358
crossref_primary_10_1186_s40793_024_00638_6
crossref_primary_10_1002_ecy_4418
crossref_primary_10_1016_j_agee_2024_109352
crossref_primary_10_1093_hr_uhac270
crossref_primary_10_1016_j_tplants_2024_05_008
crossref_primary_10_1002_ldr_4821
crossref_primary_10_3390_microorganisms13010151
crossref_primary_10_1007_s00572_023_01132_6
crossref_primary_10_1016_j_jgg_2024_09_018
crossref_primary_10_3390_f14091884
crossref_primary_10_3390_biotech14010003
crossref_primary_10_1016_j_gecco_2023_e02611
crossref_primary_10_1007_s11756_022_01182_9
crossref_primary_10_3389_fmicb_2024_1383813
crossref_primary_10_3390_agronomy14123006
crossref_primary_10_1007_s42729_024_02112_1
crossref_primary_10_1016_j_ecoenv_2024_116592
crossref_primary_10_1186_s40168_023_01726_4
crossref_primary_10_1021_acs_est_2c00099
crossref_primary_10_1111_nph_19078
crossref_primary_10_1111_nph_19112
crossref_primary_10_3390_f16010045
crossref_primary_10_1016_j_cub_2024_09_019
crossref_primary_10_1016_j_tim_2024_08_001
crossref_primary_10_3389_fmicb_2022_916337
crossref_primary_10_1002_saj2_20679
crossref_primary_10_3390_agronomy12123214
crossref_primary_10_1093_jxb_erae340
crossref_primary_10_1016_j_jhazmat_2024_134777
crossref_primary_10_1111_rec_14348
crossref_primary_10_1146_annurev_arplant_061722_090342
crossref_primary_10_3390_plants13223162
crossref_primary_10_1111_nph_18772
crossref_primary_10_3389_fmicb_2024_1280848
crossref_primary_10_1016_j_ecolind_2023_111543
crossref_primary_10_1016_j_jwpe_2024_106799
crossref_primary_10_1016_j_scitotenv_2024_176952
crossref_primary_10_1016_j_apsoil_2024_105588
crossref_primary_10_1016_j_envpol_2025_125846
crossref_primary_10_3390_microorganisms12091927
crossref_primary_10_1016_j_watres_2025_123334
crossref_primary_10_1016_j_agee_2024_109174
crossref_primary_10_1016_j_agee_2024_109450
crossref_primary_10_1016_j_pedsph_2023_06_008
crossref_primary_10_36783_18069657rbcs20230022
crossref_primary_10_1016_j_soilbio_2024_109647
crossref_primary_10_1016_j_scitotenv_2023_164970
crossref_primary_10_1038_s41579_024_01073_7
crossref_primary_10_1093_ismejo_wraf023
crossref_primary_10_1002_ldr_5055
crossref_primary_10_1111_nph_18419
crossref_primary_10_1186_s13059_025_03486_w
crossref_primary_10_3389_fmicb_2022_1042944
crossref_primary_10_1111_gcb_17409
crossref_primary_10_3390_agronomy14081678
crossref_primary_10_1111_nph_19178
crossref_primary_10_1016_j_scienta_2024_112879
crossref_primary_10_1111_nph_18642
crossref_primary_10_1007_s11104_024_07018_6
crossref_primary_10_1002_ldr_4877
crossref_primary_10_1093_jpe_rtae105
crossref_primary_10_1002_sae2_12091
crossref_primary_10_1186_s40168_023_01466_5
crossref_primary_10_1038_s41559_024_02437_1
crossref_primary_10_1016_j_jep_2025_119460
crossref_primary_10_1007_s11104_024_07094_8
crossref_primary_10_3389_fmicb_2024_1347745
crossref_primary_10_1128_aem_00534_24
crossref_primary_10_1016_j_soilbio_2024_109471
crossref_primary_10_1134_S1064229322100155
crossref_primary_10_1016_j_soilbio_2023_109175
crossref_primary_10_1007_s00572_023_01107_7
crossref_primary_10_1111_1365_2435_14249
crossref_primary_10_1111_1365_2435_14524
crossref_primary_10_1016_j_ecoenv_2024_116157
crossref_primary_10_1038_s41564_023_01531_7
crossref_primary_10_1111_gcb_17438
crossref_primary_10_3389_fmicb_2023_1284648
crossref_primary_10_1016_j_micres_2025_128081
crossref_primary_10_1016_j_tplants_2024_04_009
crossref_primary_10_1016_j_envres_2025_121049
crossref_primary_10_1038_s41396_022_01308_6
crossref_primary_10_3389_fpls_2024_1473503
crossref_primary_10_1016_j_apsoil_2024_105447
crossref_primary_10_1007_s10725_025_01300_y
crossref_primary_10_1016_j_soilbio_2024_109702
crossref_primary_10_1016_j_tplants_2024_04_010
crossref_primary_10_1080_01904167_2024_2414752
crossref_primary_10_1016_j_cpb_2024_100410
crossref_primary_10_1111_mec_16880
crossref_primary_10_1016_j_isci_2022_104168
crossref_primary_10_1007_s00572_023_01134_4
crossref_primary_10_1021_acs_jafc_4c07428
crossref_primary_10_1016_j_pedsph_2023_12_015
crossref_primary_10_1111_1365_2435_14654
crossref_primary_10_1016_j_chemosphere_2022_136033
crossref_primary_10_1007_s00374_024_01872_3
crossref_primary_10_1007_s00374_022_01683_4
crossref_primary_10_3390_ijms252413601
crossref_primary_10_3390_agronomy15030738
crossref_primary_10_1186_s12870_022_03753_z
crossref_primary_10_3389_fpls_2021_804861
crossref_primary_10_3390_agronomy14122907
crossref_primary_10_1016_j_geodrs_2024_e00899
crossref_primary_10_3390_su16083349
crossref_primary_10_1016_j_jes_2024_02_029
crossref_primary_10_1111_nph_20304
crossref_primary_10_1016_j_envint_2024_108965
crossref_primary_10_1111_nph_19396
crossref_primary_10_1093_aob_mcad191
crossref_primary_10_1016_j_soilbio_2025_109797
crossref_primary_10_1111_1365_2745_14463
crossref_primary_10_3390_agriculture13101918
crossref_primary_10_1016_j_apsoil_2023_104908
crossref_primary_10_3389_fenvs_2022_1052175
crossref_primary_10_1007_s00572_025_01186_8
crossref_primary_10_1007_s42773_023_00284_0
crossref_primary_10_3390_land12061209
crossref_primary_10_3390_horticulturae8100876
crossref_primary_10_1016_j_fbio_2024_104868
crossref_primary_10_1016_j_pedsph_2023_05_001
crossref_primary_10_3389_ffunb_2023_1141963
crossref_primary_10_1111_nph_19541
crossref_primary_10_3390_agronomy12061277
crossref_primary_10_1371_journal_pbio_3002726
crossref_primary_10_1186_s40538_024_00540_w
crossref_primary_10_3389_fmicb_2022_911116
crossref_primary_10_1016_j_apsoil_2024_105425
crossref_primary_10_1007_s11104_024_07047_1
crossref_primary_10_1016_j_apsoil_2025_105869
crossref_primary_10_3389_fpls_2022_860484
crossref_primary_10_3390_jof10070458
crossref_primary_10_1016_j_ejsobi_2022_103448
crossref_primary_10_1016_j_micres_2024_128028
crossref_primary_10_1186_s40793_024_00610_4
crossref_primary_10_1016_j_crbiot_2023_100158
crossref_primary_10_1007_s11104_024_06806_4
crossref_primary_10_1360_TB_2023_0057
crossref_primary_10_1007_s11104_024_06968_1
crossref_primary_10_1111_nph_20090
crossref_primary_10_3390_agronomy14102444
crossref_primary_10_1016_j_catena_2023_107676
crossref_primary_10_1007_s11104_023_06045_z
crossref_primary_10_1007_s42729_023_01202_w
crossref_primary_10_1016_j_pedsph_2024_11_003
crossref_primary_10_1007_s42729_023_01229_z
crossref_primary_10_3390_agriculture14122361
crossref_primary_10_1093_femsre_fuac039
crossref_primary_10_1080_10420940_2025_2449656
crossref_primary_10_3390_jof10030226
crossref_primary_10_3389_fmicb_2022_992909
crossref_primary_10_1002_imo2_46
crossref_primary_10_1007_s11104_023_06458_w
crossref_primary_10_1007_s13225_023_00532_5
crossref_primary_10_3390_agriculture14091510
crossref_primary_10_1111_1462_2920_16333
crossref_primary_10_1007_s00374_023_01751_3
crossref_primary_10_1016_j_catena_2025_108732
crossref_primary_10_1007_s00344_024_11339_2
crossref_primary_10_1016_j_envexpbot_2023_105631
Cites_doi 10.1093/pcp/pcz122
10.1111/tpj.13908
10.1111/nph.13838
10.1038/s41396-020-0587-5
10.1038/s41396-018-0059-3
10.1111/j.1469-8137.2010.03636.x
10.1038/s41396-018-0171-4
10.1007/s00572-018-0825-0
10.1128/aem.62.8.3005-3010.1996
10.1146/annurev-arplant-042110-103846
10.1046/j.1469-8137.1999.00422.x
10.1016/j.soilbio.2020.107724
10.1038/35095041
10.1146/annurev-cellbio-101512-122413
10.1139/b01-139
10.1073/pnas.1313452110
10.1016/S0038-0717(03)00003-8
10.1093/femsre/fuy008
10.1111/nph.17081
10.1111/nph.13288
10.1111/1462-2920.12081
10.1111/nph.15687
10.1111/1462-2920.14289
10.1890/12-1943.1
10.1111/1462-2920.14827
10.1007/s00572-011-0418-7
10.1007/s00572-020-01016-z
10.1046/j.1469-8137.1999.00366.x
10.1111/j.1574-6941.2011.01066.x
10.1111/j.1462-2920.2007.01474.x
10.1111/j.1574-6941.2007.00337.x
10.1111/pce.12667
10.1126/science.1208473
10.1073/pnas.60.2.497
10.1128/mSystems.00929-20
10.1016/j.cub.2011.06.044
10.1111/j.1469-8137.2004.01047.x
10.1038/s41396-021-00920-2
10.1023/A:1004249629643
10.3389/fmicb.2016.00233
10.1093/jxb/erv561
10.1038/s41477-020-00799-5
10.1073/pnas.0912421107
10.1016/S0929-1393(02)00133-6
10.1111/ele.12115
10.1016/j.tplants.2017.05.008
10.1007/s00572-013-0486-y
10.1126/science.1224304
10.1111/j.1574-6968.2005.00003.x
10.3389/fpls.2017.00124
10.1007/s00572-019-00896-0
10.1016/j.cub.2021.02.006
10.1186/s12864-018-4853-0
10.1111/j.1574-6941.2006.00125.x
10.1007/s00572-018-0871-7
10.1016/j.soilbio.2015.07.016
10.1111/j.1574-6941.2011.01292.x
10.1081/PLN-120003932
10.1094/MPMI.2001.14.2.255
10.1371/journal.pgen.1004078
10.1017/S0953756299001240
10.1007/s11104-010-0571-3
10.1111/1462-2920.13438
10.1038/s41467-020-18795-w
10.1046/j.1365-294x.1999.00642.x
10.1016/B978-0-12-800259-9.00002-0
10.1128/AEM.67.2.725-732.2001
10.1128/AEM.69.10.6208-6215.2003
10.1038/ismej.2010.5
10.1111/j.1469-8137.1994.tb04003.x
10.1111/nph.13138
10.3389/fmicb.2018.00418
10.1016/j.soilbio.2014.03.004
10.1023/A:1004266907442
10.1126/science.1153213
10.1111/j.1469-8137.2007.02191.x
10.7554/eLife.39813
10.1016/0038-0717(94)90288-7
10.1126/science.295.5562.2051
10.1038/s42003-019-0481-8
10.1007/BF00335912
10.1007/BF02352301
10.1016/j.apsoil.2014.12.008
10.1111/j.1469-8137.2004.01224.x
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright Elsevier BV Apr 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier BV Apr 2022
DBID AAYXX
CITATION
NPM
7QL
7QO
7QR
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1016/j.tplants.2021.10.008
DatabaseName CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Virology and AIDS Abstracts
AGRICOLA
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Botany
EISSN 1878-4372
EndPage 411
ExternalDocumentID 34782247
10_1016_j_tplants_2021_10_008
S1360138521002831
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
-DZ
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RCE
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
TWZ
VQA
XPP
Y6R
ZCA
~G-
~KM
AAHBH
AAMRU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7QL
7QO
7QR
7T7
7TM
7U9
8FD
C1K
EFKBS
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c426t-fc54bdead2436ce1dbaa9ca64e4492f7353f7bdd4b358c386a41daf1b821b8713
IEDL.DBID .~1
ISSN 1360-1385
1878-4372
IngestDate Thu Jul 10 17:36:24 EDT 2025
Fri Jul 11 01:18:58 EDT 2025
Wed Aug 13 10:55:21 EDT 2025
Thu Apr 03 07:09:18 EDT 2025
Thu Apr 24 23:04:44 EDT 2025
Tue Jul 01 00:57:58 EDT 2025
Fri Feb 23 02:40:17 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords hyphal exudates
hyphosphere microbiome
arbuscular mycorrhiza
organic phosphorus
organic nitrogen
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-fc54bdead2436ce1dbaa9ca64e4492f7353f7bdd4b358c386a41daf1b821b8713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1052-5009
0000-0003-3231-2159
0000-0002-1663-5620
0000-0002-9668-4085
0000-0001-5435-0442
PMID 34782247
PQID 2654389474
PQPubID 2045386
PageCount 10
ParticipantIDs proquest_miscellaneous_2636613371
proquest_miscellaneous_2598079606
proquest_journals_2654389474
pubmed_primary_34782247
crossref_citationtrail_10_1016_j_tplants_2021_10_008
crossref_primary_10_1016_j_tplants_2021_10_008
elsevier_sciencedirect_doi_10_1016_j_tplants_2021_10_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Kidlington
PublicationTitle Trends in plant science
PublicationTitleAlternate Trends Plant Sci
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Went, Stark (bb0315) 1968; 60
Fortin (bb0225) 2002; 80
Svenningsen (bb0145) 2018; 12
Nagy, Kovács (bb0365) 2021; 31
Joner, Johansen (bb0395) 2000; 104
Scheublin (bb0095) 2010; 4
Lin (bb0250) 2014; 10
Gahan, Schmalenberger (bb0100) 2015; 89
Toljander (bb0235) 2007; 61
(bb0010) 2008
Ainsworth, Long (bb0420) 2005; 165
Luthfiana (bb0245) 2021; 31
Herman (bb0335) 2012; 80
Hodge (bb0340) 2014; 89
Kaiser (bb0305) 2015; 205
Iffis (bb0445) 2016; 18
Minerdi (bb0375) 2001; 67
Xavier, Germida (bb0435) 2003; 35
Garbaye (bb0125) 1994; 128
van der Heijden (bb0175) 2015; 205
Kameoka (bb0275) 2019; 60
Zhang (bb0035) 2018; 20
Artursson, Jansson (bb0085) 2003; 69
Linderman (bb0030) 1988; 78
Duhamel (bb0170) 2013; 94
Miyauchi (bb0065) 2020; 11
Wang (bb0120) 2016; 67
Marschner (bb0205) 1997; 189
Zhang (bb0230) 2016; 210
Babikova (bb0290) 2013; 16
Singh (bb0155) 2008; 10
Jiang (bb0215) 2021; 230
Feng (bb0385) 2003; 22
Hestrin (bb0345) 2019; 2
Smith, Smith (bb0005) 2011; 62
Venice (bb0060) 2020; 22
Zhang (bb0220) 2020; 14
Rozmoš (bb0355) 2021
Zhang (bb0405) 2019; 29
Gutjahr, Parnisk (bb0015) 2013; 29
Filion (bb0295) 1999; 141
Hodge (bb0020) 1996; 23
Burke (bb0130) 2006; 57
Snelders (bb0285) 2020; 6
Zhou (bb0150) 2020; 5
Bianciotto (bb0080) 2001; 14
Bharadwaj (bb0240) 2012; 22
Kamel (bb0265) 2017; 8
Shi (bb0380) 2021; 58
Taktek (bb0440) 2015; 90
Clapp (bb0180) 1999; 8
26, 387–395
Zeng (bb0270) 2018; 94
Norby, Luo (bb0425) 2004; 162
Andrade (bb0115) 1997; 192
Wang (bb0360) 2018; 9
Chen (bb0045) 2018; 7
Kloppholz (bb0280) 2011; 21
Gehrig (bb0370) 1996; 43
Cheng (bb0430) 2012; 337
Tisserant (bb0040) 2013; 110
Zhang (bb0310) 2020; 142
Drigo (bb0300) 2010; 107
Emmett (bb0110) 2021; 15
Tarafdar, J.C. and Marschner, H. Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus.
Wang (bb0160) 2019; 29
Zhang (bb0410) 2014; 74
Kobayashi (bb0050) 2018; 19
Bianciotto (bb0075) 1996; 62
Zhang (bb0415) 2018; 12
Toro, Brachmann (bb0255) 2016; 17
Rich (bb0025) 2017; 22
Dumbrell (bb0185) 2011; 190
Redecker (bb0135) 2013; 23
Frey-Klett (bb0140) 2007; 176
Kiers (bb0200) 2011; 333
Tang (bb0260) 2016; 7
Hodge (bb0320) 2001; 413
Nuccio (bb0105) 2013; 15
Thirkell (bb0330) 2016; 39
Bukovská (bb0350) 2018; 28
Toljander (bb0090) 2006; 254
Falkowski (bb0070) 2008; 320
Deveau (bb0210) 2018; 42
Vandenkoornhuyse (bb0165) 2002; 295
Morin (bb0055) 2019; 222
Boddington, Dodd (bb0195) 1999; 142
Thonar (bb0190) 2011; 339
Leigh (bb0325) 2011; 76
Feng (bb0400) 2002; 25
Burke (10.1016/j.tplants.2021.10.008_bb0130) 2006; 57
Kobayashi (10.1016/j.tplants.2021.10.008_bb0050) 2018; 19
Vandenkoornhuyse (10.1016/j.tplants.2021.10.008_bb0165) 2002; 295
Dumbrell (10.1016/j.tplants.2021.10.008_bb0185) 2011; 190
Leigh (10.1016/j.tplants.2021.10.008_bb0325) 2011; 76
Iffis (10.1016/j.tplants.2021.10.008_bb0445) 2016; 18
Taktek (10.1016/j.tplants.2021.10.008_bb0440) 2015; 90
Toljander (10.1016/j.tplants.2021.10.008_bb0090) 2006; 254
Thirkell (10.1016/j.tplants.2021.10.008_bb0330) 2016; 39
Nuccio (10.1016/j.tplants.2021.10.008_bb0105) 2013; 15
Chen (10.1016/j.tplants.2021.10.008_bb0045) 2018; 7
Bianciotto (10.1016/j.tplants.2021.10.008_bb0080) 2001; 14
Marschner (10.1016/j.tplants.2021.10.008_bb0205) 1997; 189
Zhang (10.1016/j.tplants.2021.10.008_bb0220) 2020; 14
Feng (10.1016/j.tplants.2021.10.008_bb0400) 2002; 25
Boddington (10.1016/j.tplants.2021.10.008_bb0195) 1999; 142
Hodge (10.1016/j.tplants.2021.10.008_bb0020) 1996; 23
Filion (10.1016/j.tplants.2021.10.008_bb0295) 1999; 141
Gutjahr (10.1016/j.tplants.2021.10.008_bb0015) 2013; 29
Zhang (10.1016/j.tplants.2021.10.008_bb0230) 2016; 210
Tisserant (10.1016/j.tplants.2021.10.008_bb0040) 2013; 110
Norby (10.1016/j.tplants.2021.10.008_bb0425) 2004; 162
Bharadwaj (10.1016/j.tplants.2021.10.008_bb0240) 2012; 22
Duhamel (10.1016/j.tplants.2021.10.008_bb0170) 2013; 94
Kiers (10.1016/j.tplants.2021.10.008_bb0200) 2011; 333
Wang (10.1016/j.tplants.2021.10.008_bb0360) 2018; 9
Smith (10.1016/j.tplants.2021.10.008_bb0005) 2011; 62
Jiang (10.1016/j.tplants.2021.10.008_bb0215) 2021; 230
Minerdi (10.1016/j.tplants.2021.10.008_bb0375) 2001; 67
Zhang (10.1016/j.tplants.2021.10.008_bb0405) 2019; 29
Luthfiana (10.1016/j.tplants.2021.10.008_bb0245) 2021; 31
10.1016/j.tplants.2021.10.008_bb0390
Gahan (10.1016/j.tplants.2021.10.008_bb0100) 2015; 89
Snelders (10.1016/j.tplants.2021.10.008_bb0285) 2020; 6
Nagy (10.1016/j.tplants.2021.10.008_bb0365) 2021; 31
Rich (10.1016/j.tplants.2021.10.008_bb0025) 2017; 22
Scheublin (10.1016/j.tplants.2021.10.008_bb0095) 2010; 4
Falkowski (10.1016/j.tplants.2021.10.008_bb0070) 2008; 320
Artursson (10.1016/j.tplants.2021.10.008_bb0085) 2003; 69
Zhou (10.1016/j.tplants.2021.10.008_bb0150) 2020; 5
Frey-Klett (10.1016/j.tplants.2021.10.008_bb0140) 2007; 176
Hestrin (10.1016/j.tplants.2021.10.008_bb0345) 2019; 2
Garbaye (10.1016/j.tplants.2021.10.008_bb0125) 1994; 128
Wang (10.1016/j.tplants.2021.10.008_bb0160) 2019; 29
Gehrig (10.1016/j.tplants.2021.10.008_bb0370) 1996; 43
Zeng (10.1016/j.tplants.2021.10.008_bb0270) 2018; 94
Hodge (10.1016/j.tplants.2021.10.008_bb0340) 2014; 89
Toljander (10.1016/j.tplants.2021.10.008_bb0235) 2007; 61
Feng (10.1016/j.tplants.2021.10.008_bb0385) 2003; 22
Wang (10.1016/j.tplants.2021.10.008_bb0120) 2016; 67
Miyauchi (10.1016/j.tplants.2021.10.008_bb0065) 2020; 11
(10.1016/j.tplants.2021.10.008_bb0010) 2008
Redecker (10.1016/j.tplants.2021.10.008_bb0135) 2013; 23
Zhang (10.1016/j.tplants.2021.10.008_bb0415) 2018; 12
Andrade (10.1016/j.tplants.2021.10.008_bb0115) 1997; 192
Joner (10.1016/j.tplants.2021.10.008_bb0395) 2000; 104
Thonar (10.1016/j.tplants.2021.10.008_bb0190) 2011; 339
Herman (10.1016/j.tplants.2021.10.008_bb0335) 2012; 80
Rozmoš (10.1016/j.tplants.2021.10.008_bb0355) 2021
van der Heijden (10.1016/j.tplants.2021.10.008_bb0175) 2015; 205
Kloppholz (10.1016/j.tplants.2021.10.008_bb0280) 2011; 21
Venice (10.1016/j.tplants.2021.10.008_bb0060) 2020; 22
Zhang (10.1016/j.tplants.2021.10.008_bb0035) 2018; 20
Zhang (10.1016/j.tplants.2021.10.008_bb0310) 2020; 142
Shi (10.1016/j.tplants.2021.10.008_bb0380) 2021; 58
Toro (10.1016/j.tplants.2021.10.008_bb0255) 2016; 17
Went (10.1016/j.tplants.2021.10.008_bb0315) 1968; 60
Zhang (10.1016/j.tplants.2021.10.008_bb0410) 2014; 74
Linderman (10.1016/j.tplants.2021.10.008_bb0030) 1988; 78
Fortin (10.1016/j.tplants.2021.10.008_bb0225) 2002; 80
Babikova (10.1016/j.tplants.2021.10.008_bb0290) 2013; 16
Bianciotto (10.1016/j.tplants.2021.10.008_bb0075) 1996; 62
Drigo (10.1016/j.tplants.2021.10.008_bb0300) 2010; 107
Svenningsen (10.1016/j.tplants.2021.10.008_bb0145) 2018; 12
Hodge (10.1016/j.tplants.2021.10.008_bb0320) 2001; 413
Tang (10.1016/j.tplants.2021.10.008_bb0260) 2016; 7
Singh (10.1016/j.tplants.2021.10.008_bb0155) 2008; 10
Clapp (10.1016/j.tplants.2021.10.008_bb0180) 1999; 8
Kameoka (10.1016/j.tplants.2021.10.008_bb0275) 2019; 60
Morin (10.1016/j.tplants.2021.10.008_bb0055) 2019; 222
Emmett (10.1016/j.tplants.2021.10.008_bb0110) 2021; 15
Bukovská (10.1016/j.tplants.2021.10.008_bb0350) 2018; 28
Kaiser (10.1016/j.tplants.2021.10.008_bb0305) 2015; 205
Cheng (10.1016/j.tplants.2021.10.008_bb0430) 2012; 337
Xavier (10.1016/j.tplants.2021.10.008_bb0435) 2003; 35
Lin (10.1016/j.tplants.2021.10.008_bb0250) 2014; 10
Deveau (10.1016/j.tplants.2021.10.008_bb0210) 2018; 42
Ainsworth (10.1016/j.tplants.2021.10.008_bb0420) 2005; 165
Kamel (10.1016/j.tplants.2021.10.008_bb0265) 2017; 8
References_xml – volume: 76
  start-page: 428
  year: 2011
  end-page: 438
  ident: bb0325
  article-title: Growth and symbiotic effectiveness of an arbuscular mycorrhizal fungus in organic matter in competition with soil bacteria
  publication-title: FEMS Microbiol. Ecol.
– volume: 31
  start-page: 403
  year: 2021
  end-page: 412
  ident: bb0245
  article-title: Metabolite profiling of the hyphal exudates of
  publication-title: Mycorrhiza
– volume: 210
  start-page: 1022
  year: 2016
  end-page: 1032
  ident: bb0230
  article-title: Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium
  publication-title: New Phytol.
– volume: 333
  start-page: 880
  year: 2011
  end-page: 882
  ident: bb0200
  article-title: Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis
  publication-title: Science
– volume: 141
  start-page: 525
  year: 1999
  end-page: 533
  ident: bb0295
  article-title: Direct interaction between the arbuscular mycorrhizal fungus
  publication-title: New Phytol.
– volume: 89
  start-page: 113
  year: 2015
  end-page: 121
  ident: bb0100
  article-title: Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization
  publication-title: Appl. Soil Ecol.
– reference: Tarafdar, J.C. and Marschner, H. Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus.
– volume: 8
  start-page: 124
  year: 2017
  end-page: 141
  ident: bb0265
  article-title: The comparison of expressed candidate secreted proteins from two arbuscular mycorrhizal fungi unravels common and specific molecular tools to invade different host plants
  publication-title: Front. Plant Sci.
– volume: 94
  start-page: 411
  year: 2018
  end-page: 425
  ident: bb0270
  article-title: Host-and stage-dependent secretome of the arbuscular mycorrhizal fungus
  publication-title: Plant J.
– volume: 43
  start-page: 71
  year: 1996
  end-page: 81
  ident: bb0370
  article-title: , a fungus forming endocytobiosis with Nostoc (Cyanobacteria), is an ancestral member of the glomales: evidence by SSU rRNA analysis
  publication-title: J. Mol. Evol.
– volume: 42
  start-page: 335
  year: 2018
  end-page: 352
  ident: bb0210
  article-title: Bacterial–fungal interactions: ecology, mechanisms and challenges
  publication-title: FEMS Microbiol. Rev.
– volume: 29
  start-page: 351
  year: 2019
  end-page: 362
  ident: bb0160
  article-title: Phosphorus forms affect the hyphosphere bacterial community involved in soil organic phosphorus turnover
  publication-title: Mycorrhiza
– volume: 339
  start-page: 231
  year: 2011
  end-page: 245
  ident: bb0190
  article-title: Traits related to differences in function among three arbuscular mycorrhizal fungi
  publication-title: Plant Soil
– volume: 12
  start-page: 2339
  year: 2018
  end-page: 2351
  ident: bb0415
  article-title: Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium
  publication-title: ISME J.
– volume: 57
  start-page: 409
  year: 2006
  end-page: 419
  ident: bb0130
  article-title: Soil bacterial diversity in a loblolly pine plantation: influence of ectomycorrhizas and fertilization
  publication-title: FEMS Microbiol. Ecol.
– volume: 74
  start-page: 177
  year: 2014
  end-page: 183
  ident: bb0410
  article-title: Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil
  publication-title: Soil Biol. Biochem.
– volume: 89
  start-page: 47
  year: 2014
  end-page: 99
  ident: bb0340
  article-title: Interactions between arbuscular mycorrhizal fungi and organic material substrates
  publication-title: Adv. Appl. Microbiol.
– volume: 104
  start-page: 81
  year: 2000
  end-page: 86
  ident: bb0395
  article-title: Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi
  publication-title: Mycol. Res.
– volume: 29
  start-page: 593
  year: 2013
  end-page: 617
  ident: bb0015
  article-title: Cell and developmental biology of arbuscular mycorrhiza symbiosis
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 142
  year: 2020
  ident: bb0310
  article-title: Addition of fructose to the maize hyphosphere increases phosphatase activity by changing bacterial community structure
  publication-title: Soil Biol. Biochem.
– volume: 189
  start-page: 11
  year: 1997
  end-page: 20
  ident: bb0205
  article-title: Root exudation and physiological status of a root-colonizing fluorescent pseudomonad in mycorrhizal and non-mycorrhizal pepper (
  publication-title: Plant Soil
– volume: 230
  start-page: 304
  year: 2021
  end-page: 315
  ident: bb0215
  article-title: Arbuscular mycorrhizal fungi enhance mineralization of organic phosphorus (P) by carrying bacteria along their extraradical hyphae
  publication-title: New Phytol.
– year: 2008
  ident: bb0010
  publication-title: Mycorrhizal Symbiosis
– volume: 4
  start-page: 752
  year: 2010
  end-page: 763
  ident: bb0095
  article-title: Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi
  publication-title: ISME J.
– reference: . 26, 387–395
– volume: 23
  start-page: 388
  year: 1996
  end-page: 398
  ident: bb0020
  article-title: Impact of elevated CO
  publication-title: Biol. Fertil. Soils
– volume: 60
  start-page: 497
  year: 1968
  end-page: 504
  ident: bb0315
  article-title: The biological and mechanical role of soil fungi
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 80
  start-page: 236
  year: 2012
  end-page: 247
  ident: bb0335
  article-title: Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition
  publication-title: FEMS Microbiol. Ecol.
– volume: 22
  start-page: 652
  year: 2017
  end-page: 660
  ident: bb0025
  article-title: Diet of arbuscular mycorrhizal fungi: bread and butter?
  publication-title: Trends Plant Sci.
– volume: 78
  start-page: 366
  year: 1988
  end-page: 371
  ident: bb0030
  article-title: Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect
  publication-title: Phytopathol.
– volume: 107
  start-page: 10938
  year: 2010
  end-page: 10942
  ident: bb0300
  article-title: Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 18
  start-page: 2689
  year: 2016
  end-page: 2704
  ident: bb0445
  article-title: Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore-associated microbes: Assemblages of AMF and their spore-associated microbes
  publication-title: Environ. Microbiol.
– volume: 413
  start-page: 297
  year: 2001
  end-page: 299
  ident: bb0320
  article-title: An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material
  publication-title: Nature
– volume: 25
  start-page: 969
  year: 2002
  end-page: 980
  ident: bb0400
  article-title: Histochemical visualization of phosphatase released by arbuscular mycorrhizal fungi in soil
  publication-title: J. Plant Nutr.
– volume: 205
  start-page: 1537
  year: 2015
  end-page: 1551
  ident: bb0305
  article-title: Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation
  publication-title: New Phytol.
– volume: 19
  start-page: 1
  year: 2018
  end-page: 11
  ident: bb0050
  article-title: The genome of
  publication-title: BMC Genomics
– volume: 60
  start-page: 2272
  year: 2019
  end-page: 2281
  ident: bb0275
  article-title: Structure-specific regulation of nutrient transport and metabolism in arbuscular mycorrhizal fungi
  publication-title: Plant Cell Physiol.
– volume: 23
  start-page: 515
  year: 2013
  end-page: 531
  ident: bb0135
  article-title: An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota)
  publication-title: Mycorrhiza
– volume: 7
  start-page: e39813
  year: 2018
  end-page: e39829
  ident: bb0045
  article-title: Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi
  publication-title: eLife
– volume: 162
  start-page: 281
  year: 2004
  end-page: 293
  ident: bb0425
  article-title: Evaluating ecosystem responses to rising atmospheric CO
  publication-title: New Phytol.
– volume: 10
  start-page: 534
  year: 2008
  end-page: 541
  ident: bb0155
  article-title: Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots
  publication-title: Environ. Microbiol.
– volume: 61
  start-page: 295
  year: 2007
  end-page: 304
  ident: bb0235
  article-title: Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure
  publication-title: FEMS Microbiol. Ecol.
– volume: 67
  start-page: 725
  year: 2001
  end-page: 732
  ident: bb0375
  article-title: Nitrogen fixation genes in an endosymbiotic Burkholderia strain
  publication-title: Appl. Environ. Microbiol.
– volume: 8
  start-page: 915
  year: 1999
  end-page: 922
  ident: bb0180
  article-title: Ribosomal small subunit sequence variation within spores of an arbuscular mycorrhizal fungus,
  publication-title: Mol. Ecol.
– volume: 14
  start-page: 1015
  year: 2020
  end-page: 1029
  ident: bb0220
  article-title: Mycelial network-mediated rhizobial dispersal enhances legume nodulation
  publication-title: ISME J.
– volume: 142
  start-page: 531
  year: 1999
  end-page: 538
  ident: bb0195
  article-title: Evidence that differences in phosphate metabolism in mycorrhizas formed by species of
  publication-title: New Phytol.
– volume: 17
  start-page: 1
  year: 2016
  end-page: 13
  ident: bb0255
  article-title: The effector candidate repertoire of the arbuscular mycorrhizal fungus
  publication-title: BMC Genomics
– volume: 205
  start-page: 1406
  year: 2015
  end-page: 1423
  ident: bb0175
  article-title: Mycorrhizal ecology and evolution: the past, the present, and the future
  publication-title: New Phytol.
– year: 2021
  ident: bb0355
  article-title: Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist
  publication-title: ISME J.
– volume: 2
  start-page: 233
  year: 2019
  end-page: 241
  ident: bb0345
  article-title: Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition
  publication-title: Commun. Biol.
– volume: 12
  start-page: 1296
  year: 2018
  end-page: 1307
  ident: bb0145
  article-title: Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota
  publication-title: ISME J.
– volume: 320
  start-page: 1034
  year: 2008
  end-page: 1039
  ident: bb0070
  article-title: The microbial engines that drive Earth’s biogeochemical cycles
  publication-title: Science
– volume: 62
  start-page: 3005
  year: 1996
  end-page: 3010
  ident: bb0075
  article-title: An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria
  publication-title: Appl. Environ. Microbiol.
– volume: 35
  start-page: 471
  year: 2003
  end-page: 478
  ident: bb0435
  article-title: Bacteria associated with
  publication-title: Soil Biol. Biochem.
– volume: 39
  start-page: 1683
  year: 2016
  end-page: 1690
  ident: bb0330
  article-title: Resolving the ‘nitrogen paradox’ of arbuscular mycorrhizas: fertilization with organic matter brings considerable benefits for plant nutrition and growth
  publication-title: Plant Cell Environ.
– volume: 254
  start-page: 34
  year: 2006
  end-page: 40
  ident: bb0090
  article-title: Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species
  publication-title: FEMS Microbiol. Lett.
– volume: 16
  start-page: 835
  year: 2013
  end-page: 843
  ident: bb0290
  article-title: Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack
  publication-title: Ecol. Lett.
– volume: 192
  start-page: 71
  year: 1997
  end-page: 79
  ident: bb0115
  article-title: Bacteria from rhizosphere and hyphosphere soils of different arbuscular mycorrhizal fungi
  publication-title: Plant Soil
– volume: 7
  start-page: 233
  year: 2016
  end-page: 248
  ident: bb0260
  article-title: A survey of the gene repertoire of
  publication-title: Front. Microbiol.
– volume: 80
  start-page: 1
  year: 2002
  end-page: 20
  ident: bb0225
  article-title: Arbuscular mycorrhiza on root-organ cultures
  publication-title: Can. J. Bot.
– volume: 10
  year: 2014
  ident: bb0250
  article-title: Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus
  publication-title: PLoS Genet.
– volume: 22
  start-page: 122
  year: 2020
  end-page: 141
  ident: bb0060
  article-title: At the nexus of three kingdoms: the genome of the mycorrhizal fungus
  publication-title: Environ. Microbiol.
– volume: 14
  start-page: 255
  year: 2001
  end-page: 260
  ident: bb0080
  article-title: Mucoid mutants of the biocontrol strain
  publication-title: Mol. Plant-Microbe Interact.
– volume: 62
  start-page: 227
  year: 2011
  end-page: 250
  ident: bb0005
  article-title: Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales
  publication-title: Ann. Rev. Plant Biol.
– volume: 69
  start-page: 6208
  year: 2003
  end-page: 6215
  ident: bb0085
  article-title: Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae
  publication-title: Appl. Environ. Microbiol.
– volume: 90
  start-page: 1
  year: 2015
  end-page: 9
  ident: bb0440
  article-title: Trapping of phosphate solubilizing bacteria on hyphae of the arbuscular mycorrhizal fungus
  publication-title: Soil Biol. Biochem.
– volume: 29
  start-page: 69
  year: 2019
  end-page: 75
  ident: bb0405
  article-title: The arbuscular mycorrhizal fungus
  publication-title: Mycorrhiza
– volume: 128
  start-page: 197
  year: 1994
  end-page: 210
  ident: bb0125
  article-title: Helper Bacteria – a new dimension to the mycorrhizal symbiosis
  publication-title: New Phytol.
– volume: 58
  start-page: 1289
  year: 2021
  end-page: 1298
  ident: bb0380
  article-title: Dual functions of bacteria colonized on AM fungal hyphae: fixing N
  publication-title: Acta Pedol. Sin.
– volume: 15
  start-page: 2276
  year: 2021
  end-page: 2288
  ident: bb0110
  article-title: Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi
  publication-title: ISME J.
– volume: 222
  start-page: 1584
  year: 2019
  end-page: 1598
  ident: bb0055
  article-title: Comparative genomics of
  publication-title: New Phytol.
– volume: 110
  start-page: 20117
  year: 2013
  end-page: 20122
  ident: bb0040
  article-title: Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 28
  start-page: 269
  year: 2018
  end-page: 283
  ident: bb0350
  article-title: Utilization of organic nitrogen by arbuscular mycorrhizal fungi—is there a specific role for protists and ammonia oxidizers?
  publication-title: Mycorrhiza
– volume: 20
  start-page: 2639
  year: 2018
  end-page: 2651
  ident: bb0035
  article-title: Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions
  publication-title: Environ. Microbiol.
– volume: 15
  start-page: 1870
  year: 2013
  end-page: 1881
  ident: bb0105
  article-title: An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition
  publication-title: Environ. Microbiol.
– volume: 5
  year: 2020
  ident: bb0150
  article-title: Different arbuscular mycorrhizal fungi cocolonizing on a single plant root system recruit distinct microbiomes
  publication-title: mSystems
– volume: 31
  start-page: R342
  year: 2021
  end-page: R344
  ident: bb0365
  article-title: Mycology: rediscovery of a lost model fungus highlights the origin of mycorrhizal symbioses
  publication-title: Curr. Biol.
– volume: 337
  start-page: 1084
  year: 2012
  end-page: 1087
  ident: bb0430
  article-title: Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO
  publication-title: Science
– volume: 21
  start-page: 1204
  year: 2011
  end-page: 1209
  ident: bb0280
  article-title: A secreted fungal effector of
  publication-title: Curr. Biol.
– volume: 67
  start-page: 1689
  year: 2016
  end-page: 1701
  ident: bb0120
  article-title: stable isotope probing of phosphate-solubilizing bacteria in the hyphosphere
  publication-title: J. Exp. Bot.
– volume: 190
  start-page: 794
  year: 2011
  end-page: 804
  ident: bb0185
  article-title: Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing
  publication-title: New Phytol.
– volume: 11
  start-page: 5125
  year: 2020
  end-page: 5141
  ident: bb0065
  article-title: Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits
  publication-title: Nat. Commun.
– volume: 295
  start-page: 2051
  year: 2002
  ident: bb0165
  article-title: Extensive fungal diversity in plant roots
  publication-title: Science
– volume: 9
  start-page: 418
  year: 2018
  ident: bb0360
  article-title: Arbuscular mycorrhizal fungi negatively affect nitrogen acquisition and grain yield of maize in a N deficient soil
  publication-title: Front. Microbiol.
– volume: 22
  start-page: 437
  year: 2012
  end-page: 447
  ident: bb0240
  article-title: Interactions among
  publication-title: Mycorrhiza
– volume: 22
  start-page: 139
  year: 2003
  end-page: 148
  ident: bb0385
  article-title: Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil
  publication-title: Appl. Soil Ecol.
– volume: 176
  start-page: 22
  year: 2007
  end-page: 36
  ident: bb0140
  article-title: The mycorrhiza helper bacteria revisited
  publication-title: New Phytol.
– volume: 94
  start-page: 2019
  year: 2013
  end-page: 2029
  ident: bb0170
  article-title: Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae?
  publication-title: Ecology
– volume: 6
  start-page: 1365
  year: 2020
  end-page: 1374
  ident: bb0285
  article-title: Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins
  publication-title: Nat. Plants
– volume: 165
  start-page: 351
  year: 2005
  end-page: 372
  ident: bb0420
  article-title: What have we learned from 15 years of free-air CO
  publication-title: New Phytol.
– volume: 60
  start-page: 2272
  year: 2019
  ident: 10.1016/j.tplants.2021.10.008_bb0275
  article-title: Structure-specific regulation of nutrient transport and metabolism in arbuscular mycorrhizal fungi
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcz122
– volume: 94
  start-page: 411
  year: 2018
  ident: 10.1016/j.tplants.2021.10.008_bb0270
  article-title: Host-and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis
  publication-title: Plant J.
  doi: 10.1111/tpj.13908
– volume: 210
  start-page: 1022
  year: 2016
  ident: 10.1016/j.tplants.2021.10.008_bb0230
  article-title: Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium
  publication-title: New Phytol.
  doi: 10.1111/nph.13838
– volume: 14
  start-page: 1015
  year: 2020
  ident: 10.1016/j.tplants.2021.10.008_bb0220
  article-title: Mycelial network-mediated rhizobial dispersal enhances legume nodulation
  publication-title: ISME J.
  doi: 10.1038/s41396-020-0587-5
– volume: 12
  start-page: 1296
  year: 2018
  ident: 10.1016/j.tplants.2021.10.008_bb0145
  article-title: Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota
  publication-title: ISME J.
  doi: 10.1038/s41396-018-0059-3
– volume: 190
  start-page: 794
  year: 2011
  ident: 10.1016/j.tplants.2021.10.008_bb0185
  article-title: Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03636.x
– volume: 12
  start-page: 2339
  year: 2018
  ident: 10.1016/j.tplants.2021.10.008_bb0415
  article-title: Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium
  publication-title: ISME J.
  doi: 10.1038/s41396-018-0171-4
– volume: 28
  start-page: 269
  year: 2018
  ident: 10.1016/j.tplants.2021.10.008_bb0350
  article-title: Utilization of organic nitrogen by arbuscular mycorrhizal fungi—is there a specific role for protists and ammonia oxidizers?
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-018-0825-0
– volume: 62
  start-page: 3005
  year: 1996
  ident: 10.1016/j.tplants.2021.10.008_bb0075
  article-title: An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.62.8.3005-3010.1996
– volume: 62
  start-page: 227
  year: 2011
  ident: 10.1016/j.tplants.2021.10.008_bb0005
  article-title: Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales
  publication-title: Ann. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042110-103846
– volume: 58
  start-page: 1289
  year: 2021
  ident: 10.1016/j.tplants.2021.10.008_bb0380
  article-title: Dual functions of bacteria colonized on AM fungal hyphae: fixing N2 and solubilizing phosphate
  publication-title: Acta Pedol. Sin.
– volume: 142
  start-page: 531
  year: 1999
  ident: 10.1016/j.tplants.2021.10.008_bb0195
  article-title: Evidence that differences in phosphate metabolism in mycorrhizas formed by species of Glomus and Gigaspora might be related to their life-cycle strategies
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.1999.00422.x
– volume: 142
  year: 2020
  ident: 10.1016/j.tplants.2021.10.008_bb0310
  article-title: Addition of fructose to the maize hyphosphere increases phosphatase activity by changing bacterial community structure
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2020.107724
– volume: 413
  start-page: 297
  year: 2001
  ident: 10.1016/j.tplants.2021.10.008_bb0320
  article-title: An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material
  publication-title: Nature
  doi: 10.1038/35095041
– volume: 29
  start-page: 593
  year: 2013
  ident: 10.1016/j.tplants.2021.10.008_bb0015
  article-title: Cell and developmental biology of arbuscular mycorrhiza symbiosis
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-101512-122413
– volume: 80
  start-page: 1
  year: 2002
  ident: 10.1016/j.tplants.2021.10.008_bb0225
  article-title: Arbuscular mycorrhiza on root-organ cultures
  publication-title: Can. J. Bot.
  doi: 10.1139/b01-139
– volume: 110
  start-page: 20117
  year: 2013
  ident: 10.1016/j.tplants.2021.10.008_bb0040
  article-title: Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1313452110
– volume: 35
  start-page: 471
  year: 2003
  ident: 10.1016/j.tplants.2021.10.008_bb0435
  article-title: Bacteria associated with Glomus clarum spores influence mycorrhizal activity
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(03)00003-8
– volume: 42
  start-page: 335
  year: 2018
  ident: 10.1016/j.tplants.2021.10.008_bb0210
  article-title: Bacterial–fungal interactions: ecology, mechanisms and challenges
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1093/femsre/fuy008
– volume: 230
  start-page: 304
  year: 2021
  ident: 10.1016/j.tplants.2021.10.008_bb0215
  article-title: Arbuscular mycorrhizal fungi enhance mineralization of organic phosphorus (P) by carrying bacteria along their extraradical hyphae
  publication-title: New Phytol.
  doi: 10.1111/nph.17081
– volume: 205
  start-page: 1406
  year: 2015
  ident: 10.1016/j.tplants.2021.10.008_bb0175
  article-title: Mycorrhizal ecology and evolution: the past, the present, and the future
  publication-title: New Phytol.
  doi: 10.1111/nph.13288
– volume: 15
  start-page: 1870
  year: 2013
  ident: 10.1016/j.tplants.2021.10.008_bb0105
  article-title: An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12081
– volume: 222
  start-page: 1584
  year: 2019
  ident: 10.1016/j.tplants.2021.10.008_bb0055
  article-title: Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina
  publication-title: New Phytol.
  doi: 10.1111/nph.15687
– volume: 20
  start-page: 2639
  year: 2018
  ident: 10.1016/j.tplants.2021.10.008_bb0035
  article-title: Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.14289
– volume: 94
  start-page: 2019
  year: 2013
  ident: 10.1016/j.tplants.2021.10.008_bb0170
  article-title: Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae?
  publication-title: Ecology
  doi: 10.1890/12-1943.1
– volume: 22
  start-page: 122
  year: 2020
  ident: 10.1016/j.tplants.2021.10.008_bb0060
  article-title: At the nexus of three kingdoms: the genome of the mycorrhizal fungus Gigaspora margarita provides insights into plant, endobacterial and fungal interactions
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.14827
– volume: 22
  start-page: 437
  year: 2012
  ident: 10.1016/j.tplants.2021.10.008_bb0240
  article-title: Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-011-0418-7
– volume: 31
  start-page: 403
  year: 2021
  ident: 10.1016/j.tplants.2021.10.008_bb0245
  article-title: Metabolite profiling of the hyphal exudates of Rhizophagus clarus and Rhizophagus irregularis under phosphorus deficiency
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-020-01016-z
– volume: 141
  start-page: 525
  year: 1999
  ident: 10.1016/j.tplants.2021.10.008_bb0295
  article-title: Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.1999.00366.x
– volume: 76
  start-page: 428
  year: 2011
  ident: 10.1016/j.tplants.2021.10.008_bb0325
  article-title: Growth and symbiotic effectiveness of an arbuscular mycorrhizal fungus in organic matter in competition with soil bacteria
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2011.01066.x
– volume: 10
  start-page: 534
  year: 2008
  ident: 10.1016/j.tplants.2021.10.008_bb0155
  article-title: Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2007.01474.x
– volume: 61
  start-page: 295
  year: 2007
  ident: 10.1016/j.tplants.2021.10.008_bb0235
  article-title: Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2007.00337.x
– volume: 39
  start-page: 1683
  year: 2016
  ident: 10.1016/j.tplants.2021.10.008_bb0330
  article-title: Resolving the ‘nitrogen paradox’ of arbuscular mycorrhizas: fertilization with organic matter brings considerable benefits for plant nutrition and growth
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12667
– volume: 333
  start-page: 880
  year: 2011
  ident: 10.1016/j.tplants.2021.10.008_bb0200
  article-title: Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis
  publication-title: Science
  doi: 10.1126/science.1208473
– volume: 60
  start-page: 497
  year: 1968
  ident: 10.1016/j.tplants.2021.10.008_bb0315
  article-title: The biological and mechanical role of soil fungi
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.60.2.497
– volume: 5
  year: 2020
  ident: 10.1016/j.tplants.2021.10.008_bb0150
  article-title: Different arbuscular mycorrhizal fungi cocolonizing on a single plant root system recruit distinct microbiomes
  publication-title: mSystems
  doi: 10.1128/mSystems.00929-20
– volume: 21
  start-page: 1204
  year: 2011
  ident: 10.1016/j.tplants.2021.10.008_bb0280
  article-title: A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2011.06.044
– volume: 162
  start-page: 281
  year: 2004
  ident: 10.1016/j.tplants.2021.10.008_bb0425
  article-title: Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2004.01047.x
– volume: 15
  start-page: 2276
  year: 2021
  ident: 10.1016/j.tplants.2021.10.008_bb0110
  article-title: Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi
  publication-title: ISME J.
  doi: 10.1038/s41396-021-00920-2
– volume: 192
  start-page: 71
  year: 1997
  ident: 10.1016/j.tplants.2021.10.008_bb0115
  article-title: Bacteria from rhizosphere and hyphosphere soils of different arbuscular mycorrhizal fungi
  publication-title: Plant Soil
  doi: 10.1023/A:1004249629643
– volume: 7
  start-page: 233
  year: 2016
  ident: 10.1016/j.tplants.2021.10.008_bb0260
  article-title: A survey of the gene repertoire of Gigaspora rosea unravels conserved features among Glomeromycota for obligate biotrophy
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.00233
– volume: 67
  start-page: 1689
  year: 2016
  ident: 10.1016/j.tplants.2021.10.008_bb0120
  article-title: In situ stable isotope probing of phosphate-solubilizing bacteria in the hyphosphere
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv561
– volume: 6
  start-page: 1365
  year: 2020
  ident: 10.1016/j.tplants.2021.10.008_bb0285
  article-title: Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins
  publication-title: Nat. Plants
  doi: 10.1038/s41477-020-00799-5
– volume: 107
  start-page: 10938
  year: 2010
  ident: 10.1016/j.tplants.2021.10.008_bb0300
  article-title: Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0912421107
– volume: 22
  start-page: 139
  year: 2003
  ident: 10.1016/j.tplants.2021.10.008_bb0385
  article-title: Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/S0929-1393(02)00133-6
– volume: 16
  start-page: 835
  year: 2013
  ident: 10.1016/j.tplants.2021.10.008_bb0290
  article-title: Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12115
– volume: 22
  start-page: 652
  year: 2017
  ident: 10.1016/j.tplants.2021.10.008_bb0025
  article-title: Diet of arbuscular mycorrhizal fungi: bread and butter?
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2017.05.008
– volume: 23
  start-page: 515
  year: 2013
  ident: 10.1016/j.tplants.2021.10.008_bb0135
  article-title: An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota)
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-013-0486-y
– volume: 337
  start-page: 1084
  year: 2012
  ident: 10.1016/j.tplants.2021.10.008_bb0430
  article-title: Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2
  publication-title: Science
  doi: 10.1126/science.1224304
– volume: 254
  start-page: 34
  year: 2006
  ident: 10.1016/j.tplants.2021.10.008_bb0090
  article-title: Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2005.00003.x
– volume: 8
  start-page: 124
  year: 2017
  ident: 10.1016/j.tplants.2021.10.008_bb0265
  article-title: The comparison of expressed candidate secreted proteins from two arbuscular mycorrhizal fungi unravels common and specific molecular tools to invade different host plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00124
– volume: 29
  start-page: 351
  year: 2019
  ident: 10.1016/j.tplants.2021.10.008_bb0160
  article-title: Phosphorus forms affect the hyphosphere bacterial community involved in soil organic phosphorus turnover
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-019-00896-0
– volume: 31
  start-page: R342
  year: 2021
  ident: 10.1016/j.tplants.2021.10.008_bb0365
  article-title: Mycology: rediscovery of a lost model fungus highlights the origin of mycorrhizal symbioses
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2021.02.006
– volume: 19
  start-page: 1
  year: 2018
  ident: 10.1016/j.tplants.2021.10.008_bb0050
  article-title: The genome of Rhizophagus clarus HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-4853-0
– volume: 78
  start-page: 366
  year: 1988
  ident: 10.1016/j.tplants.2021.10.008_bb0030
  article-title: Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect
  publication-title: Phytopathol.
– volume: 57
  start-page: 409
  year: 2006
  ident: 10.1016/j.tplants.2021.10.008_bb0130
  article-title: Soil bacterial diversity in a loblolly pine plantation: influence of ectomycorrhizas and fertilization
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2006.00125.x
– year: 2021
  ident: 10.1016/j.tplants.2021.10.008_bb0355
  article-title: Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist
  publication-title: ISME J.
– volume: 29
  start-page: 69
  year: 2019
  ident: 10.1016/j.tplants.2021.10.008_bb0405
  article-title: The arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 43194 induces the gene expression of citrate synthase in the tricarboxylic acid cycle of the phosphate-solubilizing bacterium Rahnella aquatilis HX2
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-018-0871-7
– volume: 90
  start-page: 1
  year: 2015
  ident: 10.1016/j.tplants.2021.10.008_bb0440
  article-title: Trapping of phosphate solubilizing bacteria on hyphae of the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM 197198
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.07.016
– volume: 80
  start-page: 236
  year: 2012
  ident: 10.1016/j.tplants.2021.10.008_bb0335
  article-title: Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2011.01292.x
– volume: 25
  start-page: 969
  year: 2002
  ident: 10.1016/j.tplants.2021.10.008_bb0400
  article-title: Histochemical visualization of phosphatase released by arbuscular mycorrhizal fungi in soil
  publication-title: J. Plant Nutr.
  doi: 10.1081/PLN-120003932
– year: 2008
  ident: 10.1016/j.tplants.2021.10.008_bb0010
– volume: 14
  start-page: 255
  year: 2001
  ident: 10.1016/j.tplants.2021.10.008_bb0080
  article-title: Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots
  publication-title: Mol. Plant-Microbe Interact.
  doi: 10.1094/MPMI.2001.14.2.255
– volume: 10
  year: 2014
  ident: 10.1016/j.tplants.2021.10.008_bb0250
  article-title: Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004078
– volume: 104
  start-page: 81
  year: 2000
  ident: 10.1016/j.tplants.2021.10.008_bb0395
  article-title: Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi
  publication-title: Mycol. Res.
  doi: 10.1017/S0953756299001240
– volume: 339
  start-page: 231
  year: 2011
  ident: 10.1016/j.tplants.2021.10.008_bb0190
  article-title: Traits related to differences in function among three arbuscular mycorrhizal fungi
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0571-3
– volume: 18
  start-page: 2689
  year: 2016
  ident: 10.1016/j.tplants.2021.10.008_bb0445
  article-title: Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore-associated microbes: Assemblages of AMF and their spore-associated microbes
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.13438
– volume: 11
  start-page: 5125
  year: 2020
  ident: 10.1016/j.tplants.2021.10.008_bb0065
  article-title: Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18795-w
– volume: 8
  start-page: 915
  year: 1999
  ident: 10.1016/j.tplants.2021.10.008_bb0180
  article-title: Ribosomal small subunit sequence variation within spores of an arbuscular mycorrhizal fungus, Scutellospora sp
  publication-title: Mol. Ecol.
  doi: 10.1046/j.1365-294x.1999.00642.x
– volume: 89
  start-page: 47
  year: 2014
  ident: 10.1016/j.tplants.2021.10.008_bb0340
  article-title: Interactions between arbuscular mycorrhizal fungi and organic material substrates
  publication-title: Adv. Appl. Microbiol.
  doi: 10.1016/B978-0-12-800259-9.00002-0
– volume: 67
  start-page: 725
  year: 2001
  ident: 10.1016/j.tplants.2021.10.008_bb0375
  article-title: Nitrogen fixation genes in an endosymbiotic Burkholderia strain
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.67.2.725-732.2001
– volume: 69
  start-page: 6208
  year: 2003
  ident: 10.1016/j.tplants.2021.10.008_bb0085
  article-title: Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.69.10.6208-6215.2003
– volume: 4
  start-page: 752
  year: 2010
  ident: 10.1016/j.tplants.2021.10.008_bb0095
  article-title: Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi
  publication-title: ISME J.
  doi: 10.1038/ismej.2010.5
– volume: 128
  start-page: 197
  year: 1994
  ident: 10.1016/j.tplants.2021.10.008_bb0125
  article-title: Helper Bacteria – a new dimension to the mycorrhizal symbiosis
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1994.tb04003.x
– volume: 205
  start-page: 1537
  year: 2015
  ident: 10.1016/j.tplants.2021.10.008_bb0305
  article-title: Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation
  publication-title: New Phytol.
  doi: 10.1111/nph.13138
– volume: 9
  start-page: 418
  year: 2018
  ident: 10.1016/j.tplants.2021.10.008_bb0360
  article-title: Arbuscular mycorrhizal fungi negatively affect nitrogen acquisition and grain yield of maize in a N deficient soil
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.00418
– volume: 74
  start-page: 177
  year: 2014
  ident: 10.1016/j.tplants.2021.10.008_bb0410
  article-title: Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.03.004
– volume: 189
  start-page: 11
  year: 1997
  ident: 10.1016/j.tplants.2021.10.008_bb0205
  article-title: Root exudation and physiological status of a root-colonizing fluorescent pseudomonad in mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L.)
  publication-title: Plant Soil
  doi: 10.1023/A:1004266907442
– volume: 17
  start-page: 1
  year: 2016
  ident: 10.1016/j.tplants.2021.10.008_bb0255
  article-title: The effector candidate repertoire of the arbuscular mycorrhizal fungus Rhizophagus clarus
  publication-title: BMC Genomics
– volume: 320
  start-page: 1034
  year: 2008
  ident: 10.1016/j.tplants.2021.10.008_bb0070
  article-title: The microbial engines that drive Earth’s biogeochemical cycles
  publication-title: Science
  doi: 10.1126/science.1153213
– volume: 176
  start-page: 22
  year: 2007
  ident: 10.1016/j.tplants.2021.10.008_bb0140
  article-title: The mycorrhiza helper bacteria revisited
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2007.02191.x
– volume: 7
  start-page: e39813
  year: 2018
  ident: 10.1016/j.tplants.2021.10.008_bb0045
  article-title: Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi
  publication-title: eLife
  doi: 10.7554/eLife.39813
– ident: 10.1016/j.tplants.2021.10.008_bb0390
  doi: 10.1016/0038-0717(94)90288-7
– volume: 295
  start-page: 2051
  year: 2002
  ident: 10.1016/j.tplants.2021.10.008_bb0165
  article-title: Extensive fungal diversity in plant roots
  publication-title: Science
  doi: 10.1126/science.295.5562.2051
– volume: 2
  start-page: 233
  year: 2019
  ident: 10.1016/j.tplants.2021.10.008_bb0345
  article-title: Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-019-0481-8
– volume: 23
  start-page: 388
  year: 1996
  ident: 10.1016/j.tplants.2021.10.008_bb0020
  article-title: Impact of elevated CO2 on mycorrhizal associations and implications for plant growth
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/BF00335912
– volume: 43
  start-page: 71
  year: 1996
  ident: 10.1016/j.tplants.2021.10.008_bb0370
  article-title: Geosiphon pyriforme, a fungus forming endocytobiosis with Nostoc (Cyanobacteria), is an ancestral member of the glomales: evidence by SSU rRNA analysis
  publication-title: J. Mol. Evol.
  doi: 10.1007/BF02352301
– volume: 89
  start-page: 113
  year: 2015
  ident: 10.1016/j.tplants.2021.10.008_bb0100
  article-title: Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2014.12.008
– volume: 165
  start-page: 351
  year: 2005
  ident: 10.1016/j.tplants.2021.10.008_bb0420
  article-title: What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2004.01224.x
SSID ssj0007186
Score 2.6859841
SecondaryResourceType review_article
Snippet More than two-thirds of terrestrial plants acquire nutrients by forming a symbiosis with arbuscular mycorrhizal (AM) fungi. AM fungal hyphae recruit distinct...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 402
SubjectTerms arbuscular mycorrhiza
Arbuscular mycorrhizas
bacterial growth
Community structure
Exudates
Fungi
genome
Genomes
Hyphae
hyphal exudates
hyphosphere microbiome
microbial communities
microbiome
Microbiomes
Microorganisms
Nutrient cycles
Nutrients
organic nitrogen
organic phosphorus
soil
Symbiosis
vesicular arbuscular mycorrhizae
Title Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra
URI https://dx.doi.org/10.1016/j.tplants.2021.10.008
https://www.ncbi.nlm.nih.gov/pubmed/34782247
https://www.proquest.com/docview/2654389474
https://www.proquest.com/docview/2598079606
https://www.proquest.com/docview/2636613371
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LThsxcISAQ3uoKPQRoGgrcd0Er2ft9TEgUFoElxaJ28pre5sgmo3ScAgHvp2ZfYRyoEg97MWekbwz43nI8wA4TMiFlq7Usaf4J0aTYWyt5CxCo51LgigEVyNfXKrRFX6_Tq_X4KSrheG0ylb3Nzq91tbtyqCl5mA2mQx-CKn4mY3sTz1wp65gR81S3n94SvMg3aua2qsj7reXPlXxDG76i9ktZ5tQmJiIfp3klb1kn17yP2s7dLYF71oHMho2Z3wPa2G6DZvHFTl5y214-1d_wR04HxLNmkzT6PeS4sz5eHJPyGTMfk0iioS52StBRuQFRuPlbFz94S4DISqaHs4EWs3riVpz-wGuzk5_nozidnpC7MjqLuLSpVh4EpQEpXJB-MJa46zCgGiSUstUlrrwHguZZk5myqLwthRFltBHsetHWJ9W0_AZIq88lkmw1iuD3mjjS2GJpUEQb11QPcCOZrlrW4vzhIvbvMshu8lbUudMal4mUvegv0KbNb01XkPIOobkz4QkJ_3_Gup-x8C8vaW0z4W1mUGNPfi62qb7xY8mdhqqO4JJTXakOc77B4yS5OZIqUUPPjXCsfohieyDod79_7PvwZuEiy7qfKF9WF_M78IXcoUWxUEt6wewMfx2Prp8BIWSClE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1dT9sw8IQK0raHabCNdWMsk_aaFseOHT92aKhQ6MtA4i1ybIcWQVOV8lB-_e4Sp2MPDImHvNh3knN3vg_5PgB-JOhCc1uq2GH8EwudidgYTlmEWlmbeFYwqkY-G8vhhTi5TC834LCthaG0yqD7G51ea-uw0g_U7M-n0_5vxiU9s6H9qQfuYAi0Sd2p0g5sDo5Hw_FaIaP6lU351QG13Ev_FvL0r3vL-Q0lnGCkmLBeneeVPWWinnJBa1N09A7eBh8yGjTH3IYNP9uBrZ8V-nmrHXjzqMXgexgNkGxNsml0u8JQczGZPiAy2rOraYTBMPV7RcgIHcFosppPqjtqNOCjomnjjKDVoh6qtTAf4OLo1_nhMA4DFGKLhncZlzYVhUNZSQSX1jNXGKOtkcILoZNS8ZSXqnBOFDzNLM-kEcyZkhVZgh-Grx-hM6tm_hNETjpRJt4YJ7VwWmlXMoNc9QzZa73sgmhpltvQXZyGXNzkbRrZdR5InROpaRlJ3YXeGm3etNd4DiFrGZL_Iyc5moDnUPdaBubhouI-1dZmWijRhe_rbbxi9G5iZr66R5hUZweKQr3_wEiOng7ninVhtxGO9Q9xQW6YUJ9ffvZv8Gp4fnaanx6PR1_gdUI1GHX60B50lot7_xU9o2WxHyT_D5Y3DQI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arbuscular+mycorrhizal+fungi+conducting+the+hyphosphere+bacterial+orchestra&rft.jtitle=Trends+in+plant+science&rft.au=Zhang%2C+Lin&rft.au=Zhou%2C+Jiachao&rft.au=George%2C+Timothy+S.&rft.au=Limpens%2C+Erik&rft.date=2022-04-01&rft.issn=1360-1385&rft.volume=27&rft.issue=4&rft.spage=402&rft.epage=411&rft_id=info:doi/10.1016%2Fj.tplants.2021.10.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tplants_2021_10_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-1385&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-1385&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-1385&client=summon