Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function

The primary objective of this research is to establish the generalized fractional integral inequalities of Hermite-Hadamard-type for -convex functions and to explore some new Hermite-Hadamard-type inequalities in a form of Riemann-Liouville fractional integrals as well as classical integrals. It is...

Full description

Saved in:
Bibliographic Details
Published inOpen mathematics (Warsaw, Poland) Vol. 18; no. 1; pp. 794 - 806
Main Authors Han, Jiangfeng, Mohammed, Pshtiwan Othman, Zeng, Huidan
Format Journal Article
LanguageEnglish
Published Warsaw De Gruyter 22.07.2020
De Gruyter Poland
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The primary objective of this research is to establish the generalized fractional integral inequalities of Hermite-Hadamard-type for -convex functions and to explore some new Hermite-Hadamard-type inequalities in a form of Riemann-Liouville fractional integrals as well as classical integrals. It is worth mentioning that our work generalizes and extends the results appeared in the literature.
AbstractList The primary objective of this research is to establish the generalized fractional integral inequalities of Hermite-Hadamard-type for MT-convex functions and to explore some new Hermite-Hadamard-type inequalities in a form of Riemann-Liouville fractional integrals as well as classical integrals. It is worth mentioning that our work generalizes and extends the results appeared in the literature.
The primary objective of this research is to establish the generalized fractional integral inequalities of Hermite-Hadamard-type for MT -convex functions and to explore some new Hermite-Hadamard-type inequalities in a form of Riemann-Liouville fractional integrals as well as classical integrals. It is worth mentioning that our work generalizes and extends the results appeared in the literature.
The primary objective of this research is to establish the generalized fractional integral inequalities of Hermite-Hadamard-type for -convex functions and to explore some new Hermite-Hadamard-type inequalities in a form of Riemann-Liouville fractional integrals as well as classical integrals. It is worth mentioning that our work generalizes and extends the results appeared in the literature.
Author Han, Jiangfeng
Zeng, Huidan
Mohammed, Pshtiwan Othman
Author_xml – sequence: 1
  givenname: Jiangfeng
  surname: Han
  fullname: Han, Jiangfeng
  email: hanjiangfengky@163.com
  organization: Department of Information and Statistics, Guangxi University of Finance and Economics, Nanning, Guangxi 530003, People’s Republic of China
– sequence: 2
  givenname: Pshtiwan Othman
  surname: Mohammed
  fullname: Mohammed, Pshtiwan Othman
  email: pshtiwansangawi@gmail.com
  organization: Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
– sequence: 3
  givenname: Huidan
  surname: Zeng
  fullname: Zeng, Huidan
  email: huidanzeng@163.com
  organization: Department of Information and Statistics, Guangxi University of Finance and Economics, Nanning, Guangxi 530003, People’s Republic of China
BookMark eNp1kc1r3DAQxUVIoWmaa8-Gnp1IsuQP6CWENhsI9NKcchDj0SjR4rU2stx289dH3m1oKe1JD-n9HjN679jxGEZi7IPg50ILfbGB9FhKLnnJedUesRNZdaLUSuvjP_RbdjZNa855ZngjxAm7v6aRIgz-mWzhImDyYYSh8GOih7gX9DTn9-RpKoIrVhQ3PlG5AgsbiLZMuy0VLsQCCgzjd_pZuHncx7xnbxwME539Ok_Z3ZfP365W5e3X65ury9sSlaxTSbqS2AlJGpu-5o5chU1nW0TkulFd38qaeim1rTvJbU0WXLag0BJc5drqlN0ccm2AtdlGn-famQDe7C9CfDAQk8eBjGiQUNYtSlDKdrwnbUWla9v2vMFe5qyPh6xtDE8zTcmswxzzj0xGaqWUlpp32aUOLoxhmiI5gz7BsnOK4AcjuFlaMUsrZmnFLK1k7Pwv7HXY_wKfDsAPGBJFmyuZd1n8HurfoGhF06nqBcx8pk4
CitedBy_id crossref_primary_10_2298_FIL2308605K
crossref_primary_10_3390_sym13040550
crossref_primary_10_3390_sym14040722
crossref_primary_10_3390_sym13112209
crossref_primary_10_3934_math_2021648
crossref_primary_10_1186_s13660_024_03184_4
crossref_primary_10_3934_math_2021446
crossref_primary_10_2298_FIL2313103H
crossref_primary_10_1186_s13660_021_02624_9
crossref_primary_10_3390_fractalfract6070376
crossref_primary_10_1186_s13661_024_01978_5
crossref_primary_10_1515_math_2021_0072
crossref_primary_10_1155_2020_8871988
crossref_primary_10_3390_math10193491
crossref_primary_10_1186_s13660_022_02910_0
crossref_primary_10_3390_sym12091485
crossref_primary_10_3390_fractalfract6120726
crossref_primary_10_52280_pujm_2024_56_1_2_05
crossref_primary_10_3390_axioms12100914
crossref_primary_10_1155_2022_2247246
crossref_primary_10_1142_S0218348X21502297
crossref_primary_10_18514_MMN_2024_4366
crossref_primary_10_1142_S0218348X24500488
crossref_primary_10_3934_math_2025301
crossref_primary_10_3934_math_2022232
crossref_primary_10_1142_S0218348X21501887
crossref_primary_10_17776_csj_1088703
crossref_primary_10_1002_mma_7558
crossref_primary_10_1142_S0218348X22501316
crossref_primary_10_1080_27690911_2024_2422993
crossref_primary_10_3934_math_2023082
crossref_primary_10_31801_cfsuasmas_1004300
crossref_primary_10_1515_math_2022_0061
crossref_primary_10_3390_sym13091686
crossref_primary_10_1155_2021_9653481
crossref_primary_10_3390_sym13122352
crossref_primary_10_1155_2022_1257104
crossref_primary_10_1186_s13660_021_02732_6
crossref_primary_10_1186_s13662_021_03241_y
crossref_primary_10_3934_math_2021546
crossref_primary_10_3390_fractalfract6100563
crossref_primary_10_1186_s13662_021_03280_5
crossref_primary_10_3390_sym14091774
crossref_primary_10_3934_math_2021275
crossref_primary_10_3390_axioms11110602
crossref_primary_10_1016_j_chaos_2024_114960
crossref_primary_10_3390_fractalfract5040282
crossref_primary_10_3934_math_2021273
crossref_primary_10_1186_s13662_022_03696_7
crossref_primary_10_3390_sym12091503
crossref_primary_10_1142_S0218348X23501098
crossref_primary_10_1186_s13662_021_03463_0
crossref_primary_10_1515_dema_2023_0149
crossref_primary_10_1186_s13660_020_02538_y
crossref_primary_10_3934_math_2020468
crossref_primary_10_3934_math_2021637
crossref_primary_10_3934_math_2021043
crossref_primary_10_1002_mma_7610
crossref_primary_10_3934_math_2021002
crossref_primary_10_1186_s13660_022_02773_5
crossref_primary_10_3390_fractalfract6060309
Cites_doi 10.1002/mma.5784
10.3390/sym12040595
10.1016/j.cam.2020.112740
10.1186/s13662-020-2541-2
10.1002/mma.6188
10.3390/sym11020263
10.1088/1361-6420/ab44d7
10.1186/s13660-019-2079-6
10.3390/sym12040610
10.1007/s00033-020-1260-6
10.1186/s13660-018-1950-1
10.1007/978-3-642-05261-3_5
10.1016/j.camwa.2019.12.025
10.1016/j.aim.2014.12.040
10.1142/S1664360720500095
10.5666/KMJ.2009.49.1.031
10.1016/j.amc.2014.12.067
10.1142/9571
10.1007/s00039-010-0075-6
10.22436/jnsa.009.03.05
10.1016/j.camwa.2003.02.014
10.1016/0022-1236(74)90013-5
10.1007/s00041-012-9223-8
ContentType Journal Article
Copyright 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M2P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1515/math-2020-0038
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2391-5455
EndPage 806
ExternalDocumentID oai_doaj_org_article_17cec268c2a44d90be5d1356d8b07cb2
10_1515_math_2020_0038
10_1515_math_2020_0038181794
GroupedDBID 5VS
88I
AAFWJ
ABFKT
ABUWG
ACGFS
ADBBV
AENEX
AFBDD
AFKRA
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
K7-
KQ8
M2P
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
QD8
AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
Y2W
PUEGO
ID FETCH-LOGICAL-c426t-e532c912e5c7b60fef3c79d8ccc05749b826eb225d6920d6edaff3cc152af3f83
IEDL.DBID BENPR
ISSN 2391-5455
IngestDate Wed Aug 27 01:22:15 EDT 2025
Fri Jul 25 04:30:45 EDT 2025
Tue Jul 01 04:05:17 EDT 2025
Thu Apr 24 23:12:30 EDT 2025
Thu Jul 10 10:37:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-e532c912e5c7b60fef3c79d8ccc05749b826eb225d6920d6edaff3cc152af3f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2544452509?pq-origsite=%requestingapplication%
PQID 2544452509
PQPubID 5000747
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_17cec268c2a44d90be5d1356d8b07cb2
proquest_journals_2544452509
crossref_citationtrail_10_1515_math_2020_0038
crossref_primary_10_1515_math_2020_0038
walterdegruyter_journals_10_1515_math_2020_0038181794
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-22
PublicationDateYYYYMMDD 2020-07-22
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-22
  day: 22
PublicationDecade 2020
PublicationPlace Warsaw
PublicationPlace_xml – name: Warsaw
PublicationTitle Open mathematics (Warsaw, Poland)
PublicationYear 2020
Publisher De Gruyter
De Gruyter Poland
Publisher_xml – name: De Gruyter
– name: De Gruyter Poland
References Mohammed, P. O. (j_math-2020-0038_ref_011) 2016; 4
Mohammed, P. O. (j_math-2020-0038_ref_031) 2018; 30
Barnett, N. S.; Cerone, P.; Dragomir, S. S.; Roumeliotis, J. (j_math-2020-0038_ref_041) 2001; 2
Gavrea, B.; Gavrea, I. (j_math-2020-0038_ref_015) 2010; 18
Mohammed, P. O. (j_math-2020-0038_ref_021) 2019
Mohammed, P. O.; Hamasalh, F. K. (j_math-2020-0038_ref_027) 2019; 11
Rumin, M. (j_math-2020-0038_ref_007) 2010; 20
Brascamp, H. J.; Lieb, E. H.; Luttinger, J. M. (j_math-2020-0038_ref_005) 1974; 17
Katugampola, U. N. (j_math-2020-0038_ref_038) 2011; 218
Hadamard, J. (j_math-2020-0038_ref_019) 1893; 58
Mohammed, P. O. (j_math-2020-0038_ref_022) 2018; 6
Bai, Y. R.; Migórski, S.; Zeng, S. D. (j_math-2020-0038_ref_004) 2020; 79
Katugampola, U. N. (j_math-2020-0038_ref_039) 2015; 257
Mohammed, P. O.; Sarikaya, M. Z.; Baleanu, D. (j_math-2020-0038_ref_026) 2020; 12
Rasheed, S. M.; Hamasalh, F. K.; Mohammed, P. O. (j_math-2020-0038_ref_008) 2016; 18
Fernandez, A.; Mohammed, P. (j_math-2020-0038_ref_020) 2020
Liua, W.; Wena, W.; Park, J. (j_math-2020-0038_ref_032) 2016; 9
Mohammed, P. O.; Brevik, I. (j_math-2020-0038_ref_025) 2020; 12
Sawano, Y.; Wadade, H. (j_math-2020-0038_ref_018) 2013; 19
Mohammed, P. O.; Sarikaya, M. Z. (j_math-2020-0038_ref_024) 2020; 372
Mohammed, P. O. (j_math-2020-0038_ref_036) 2017; 17
Park, J. (j_math-2020-0038_ref_029) 2015; 9
Ciatti, P.; Cowling, M. G.; Ricci, F. (j_math-2020-0038_ref_016) 2015; 277
Meftah, B.; Boukerrioua, K. (j_math-2020-0038_ref_030) 2015; 3
Mubeen, S.; Habibullah, G. M. (j_math-2020-0038_ref_037) 2012; 7
Mohammed, P. O. (j_math-2020-0038_ref_009) 2019; 22
Han, J. F.; Lu, L.; Zeng, S. D. (j_math-2020-0038_ref_006) 2020; 71
Kumar, P. (j_math-2020-0038_ref_043) 2002; 3
Gunawan, H.; Eridani (j_math-2020-0038_ref_017) 2009; 49
Cerone, P.; Dragomir, S. S. (j_math-2020-0038_ref_042) 2000; 8
Mohammed, P. O.; Sarikaya, M. Z. (j_math-2020-0038_ref_028) 2018; 2018
Mohammed, P. O. (j_math-2020-0038_ref_010) 2016; 4
Qi, F.; Mohammed, P. O.; Yao, J.-C.; Yao, Y.-H. (j_math-2020-0038_ref_040) 2019; 2019
Migórski, S.; Khan, A. A.; Zeng, S. D. (j_math-2020-0038_ref_013) 2020; 36
Kumar, P. (j_math-2020-0038_ref_044) 2004; 48
Mohammed, P. O.; Abdeljawad, T. (j_math-2020-0038_ref_023) 2020; 2020
Atici, F. M.; Yaldiz, H. (j_math-2020-0038_ref_012) 2016; 59
2021020923544369946_j_math-2020-0038_ref_009
2021020923544369946_j_math-2020-0038_ref_008
2021020923544369946_j_math-2020-0038_ref_007
2021020923544369946_j_math-2020-0038_ref_029
2021020923544369946_j_math-2020-0038_ref_031
2021020923544369946_j_math-2020-0038_ref_030
2021020923544369946_j_math-2020-0038_ref_013
2021020923544369946_j_math-2020-0038_ref_035
2021020923544369946_j_math-2020-0038_ref_012
2021020923544369946_j_math-2020-0038_ref_034
2021020923544369946_j_math-2020-0038_ref_011
2021020923544369946_j_math-2020-0038_ref_033
2021020923544369946_j_math-2020-0038_ref_010
2021020923544369946_j_math-2020-0038_ref_032
2021020923544369946_j_math-2020-0038_ref_017
2021020923544369946_j_math-2020-0038_ref_039
2021020923544369946_j_math-2020-0038_ref_016
2021020923544369946_j_math-2020-0038_ref_038
2021020923544369946_j_math-2020-0038_ref_015
2021020923544369946_j_math-2020-0038_ref_037
2021020923544369946_j_math-2020-0038_ref_014
2021020923544369946_j_math-2020-0038_ref_036
2021020923544369946_j_math-2020-0038_ref_019
2021020923544369946_j_math-2020-0038_ref_018
2021020923544369946_j_math-2020-0038_ref_020
2021020923544369946_j_math-2020-0038_ref_042
2021020923544369946_j_math-2020-0038_ref_041
2021020923544369946_j_math-2020-0038_ref_040
2021020923544369946_j_math-2020-0038_ref_002
2021020923544369946_j_math-2020-0038_ref_024
2021020923544369946_j_math-2020-0038_ref_001
2021020923544369946_j_math-2020-0038_ref_023
2021020923544369946_j_math-2020-0038_ref_045
2021020923544369946_j_math-2020-0038_ref_022
2021020923544369946_j_math-2020-0038_ref_044
2021020923544369946_j_math-2020-0038_ref_021
2021020923544369946_j_math-2020-0038_ref_043
2021020923544369946_j_math-2020-0038_ref_006
2021020923544369946_j_math-2020-0038_ref_028
2021020923544369946_j_math-2020-0038_ref_005
2021020923544369946_j_math-2020-0038_ref_027
2021020923544369946_j_math-2020-0038_ref_004
2021020923544369946_j_math-2020-0038_ref_026
2021020923544369946_j_math-2020-0038_ref_003
2021020923544369946_j_math-2020-0038_ref_025
References_xml – volume: 3
  start-page: 41
  issue: no. 3
  year: 2002
  ident: j_math-2020-0038_ref_043
  article-title: Moments inequalities of a random variable defined over a finite interval
  publication-title: J. Inequal. Pure Appl. Math.
– volume: 20
  start-page: 817
  year: 2010
  end-page: 844
  ident: j_math-2020-0038_ref_007
  article-title: Spectral density and Sobolev inequalities for pure and mixed states
  publication-title: Geom. Funct. Anal.
– volume: 22
  start-page: 539
  issue: no. 4
  year: 2019
  end-page: 549
  ident: j_math-2020-0038_ref_009
  article-title: New integral inequalities for preinvex functions via generalized beta function
  publication-title: J. Interdiscip. Math.
– volume: 257
  start-page: 566
  year: 2015
  end-page: 580
  ident: j_math-2020-0038_ref_039
  article-title: Mellin transforms of generalized fractional integrals and derivatives
  publication-title: Appl. Math. Comput.
– year: 2019
  ident: j_math-2020-0038_ref_021
  article-title: Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function
  publication-title: Math. Meth. Appl. Sci.
  doi: 10.1002/mma.5784
– volume: 8
  start-page: 357
  issue: no. 2
  year: 2000
  end-page: 380
  ident: j_math-2020-0038_ref_042
  article-title: On some inequalities for the expectation and variance
  publication-title: Korean J. Comp. Appl. Math.
– volume: 277
  start-page: 365
  year: 2015
  end-page: 387
  ident: j_math-2020-0038_ref_016
  article-title: Hardy and uncertainty inequalities on stratified Lie groups
  publication-title: Adv. Math
– volume: 12
  start-page: 595
  year: 2020
  ident: j_math-2020-0038_ref_026
  article-title: On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals
  publication-title: Symmetry
  doi: 10.3390/sym12040595
– volume: 48
  start-page: 257
  year: 2004
  end-page: 273
  ident: j_math-2020-0038_ref_044
  article-title: Inequalities involving moments of a continuous random variable defined over a finite interval
  publication-title: Comput. Math. Appl.
– volume: 59
  start-page: 225
  issue: no. 2
  year: 2016
  end-page: 233
  ident: j_math-2020-0038_ref_012
  article-title: Convex functions on discrete time domains
  publication-title: Canad. Math. Bull
– volume: 18
  start-page: 227
  issue: no. 1
  year: 2016
  end-page: 230
  ident: j_math-2020-0038_ref_008
  article-title: Composition fractional integral inequality for the Reiman-Liouville type with applications
  publication-title: JZS-A
– volume: 372
  start-page: 112740
  year: 2020
  ident: j_math-2020-0038_ref_024
  article-title: On generalized fractional integral inequalities for twice differentiable convex functions
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2020.112740
– volume: 79
  start-page: 2897
  year: 2020
  end-page: 2911
  ident: j_math-2020-0038_ref_004
  article-title: A class of generalized mixed variational-hemivariational inequalities I: Existence and uniqueness result
  publication-title: Comput. Math. Appl.
– volume: 49
  start-page: 31
  year: 2009
  end-page: 39
  ident: j_math-2020-0038_ref_017
  article-title: Fractional integrals and generalized Olsen inequalities
  publication-title: Kyungpook Math. J.
– volume: 218
  start-page: 860
  issue: no. 3
  year: 2011
  end-page: 865
  ident: j_math-2020-0038_ref_038
  article-title: New approach to a generalized fractional integral
  publication-title: Appl. Math. Comput.
– volume: 2020
  start-page: 69
  year: 2020
  ident: j_math-2020-0038_ref_023
  article-title: Modification of certain fractional integral inequalities for convex functions
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-020-2541-2
– volume: 4
  start-page: 93
  issue: no. 1
  year: 2016
  end-page: 99
  ident: j_math-2020-0038_ref_011
  article-title: Some integral inequalities of fractional quantum type
  publication-title: Malaya J. Mat.
– volume: 19
  start-page: 20
  year: 2013
  end-page: 47
  ident: j_math-2020-0038_ref_018
  article-title: On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Orrey space
  publication-title: J. Fourier Anal. Appl.
– volume: 7
  start-page: 89
  issue: no. 2
  year: 2012
  end-page: 94
  ident: j_math-2020-0038_ref_037
  article-title: k-fractional integrals and application
  publication-title: Int. J. Contemp. Math. Sci.
– volume: 18
  start-page: 33
  year: 2010
  end-page: 44
  ident: j_math-2020-0038_ref_015
  article-title: On some Ostrowski type inequalities
  publication-title: Gen. Math.
– year: 2020
  ident: j_math-2020-0038_ref_020
  article-title: Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels
  publication-title: Math. Meth. Appl. Sci.
  doi: 10.1002/mma.6188
– volume: 17
  start-page: 199
  year: 2017
  end-page: 206
  ident: j_math-2020-0038_ref_036
  article-title: A new version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals
  publication-title: Appl. Math. E-Notes
– volume: 58
  start-page: 171
  year: 1893
  end-page: 215
  ident: j_math-2020-0038_ref_019
  article-title: Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann
  publication-title: J. Math. Pure Appl
– volume: 11
  start-page: 263
  year: 2019
  ident: j_math-2020-0038_ref_027
  article-title: New conformable fractional integral inequalities of Hermite-Hadamard type for convex functions
  publication-title: Symmetry
  doi: 10.3390/sym11020263
– volume: 4
  start-page: 135
  issue: no. 5
  year: 2016
  end-page: 139
  ident: j_math-2020-0038_ref_010
  article-title: Inequalities of type Hermite-Hadamard for fractional integrals via differentiable convex functions
  publication-title: TJANT
– volume: 9
  start-page: 766
  year: 2016
  end-page: 777
  ident: j_math-2020-0038_ref_032
  article-title: Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals
  publication-title: J. Nonlinear Sci. Appl.
– volume: 36
  year: 2020
  ident: j_math-2020-0038_ref_013
  article-title: Inverse problems for nonlinear quasi-hemivariational inequalities with application to mixed boundary value problems
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/ab44d7
– volume: 17
  start-page: 227
  year: 1974
  end-page: 237
  ident: j_math-2020-0038_ref_005
  article-title: A general rearrangement inequality for multiple integrals
  publication-title: J. Funct. Anal.
– volume: 2019
  start-page: 135
  year: 2019
  ident: j_math-2020-0038_ref_040
  article-title: Generalized fractional integral inequalities of Hermite-Hadamard type for (α,m)-convex functions
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-019-2079-6
– volume: 12
  start-page: 610
  year: 2020
  ident: j_math-2020-0038_ref_025
  article-title: A new version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals
  publication-title: Symmetry
  doi: 10.3390/sym12040610
– volume: 2
  start-page: 1
  issue: no. 1
  year: 2001
  end-page: 18
  ident: j_math-2020-0038_ref_041
  article-title: Some inequalities for the dispersion of a random variable whose pdf is defined on a finite interval
  publication-title: J. Ineq. Pure Appl. Math.
– volume: 71
  start-page: 32
  year: 2020
  ident: j_math-2020-0038_ref_006
  article-title: Evolutionary variational-hemivariational inequalities with applications to dynamic viscoelastic contact mechanics
  publication-title: Z. Angew. Math. Phys
  doi: 10.1007/s00033-020-1260-6
– volume: 6
  start-page: 125
  issue: no. 4
  year: 2018
  end-page: 128
  ident: j_math-2020-0038_ref_022
  article-title: On new trapezoid type inequalities for h-convex functions via generalized fractional integral
  publication-title: TJANT
– volume: 9
  start-page: 5011
  issue: no. 101
  year: 2015
  end-page: 5026
  ident: j_math-2020-0038_ref_029
  article-title: Some Hermite-Hadamard type inequalities for MT-convex functions via classical and Riemann-Liouville fractional integrals
  publication-title: Appl. Math. Sci
– volume: 2018
  start-page: 359
  year: 2018
  ident: j_math-2020-0038_ref_028
  article-title: Hermite-Hadamard type inequalities for F-convex function involving fractional integrals
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-018-1950-1
– volume: 3
  start-page: 77
  issue: no. 2
  year: 2015
  end-page: 88
  ident: j_math-2020-0038_ref_030
  article-title: On some Cebysev type inequalities for functions whose second derivatives are (h1,h2)-convex on the co-ordinates
  publication-title: Konuralp J. Math
– volume: 30
  start-page: 258
  issue: no. 2
  year: 2018
  end-page: 262
  ident: j_math-2020-0038_ref_031
  article-title: Some new Hermite-Hadamard type inequalities for MT-convex functions on differentiable coordinates
  publication-title: J. King Saud Univ. Sci.
– ident: 2021020923544369946_j_math-2020-0038_ref_020
– ident: 2021020923544369946_j_math-2020-0038_ref_043
– ident: 2021020923544369946_j_math-2020-0038_ref_013
  doi: 10.1088/1361-6420/ab44d7
– ident: 2021020923544369946_j_math-2020-0038_ref_022
– ident: 2021020923544369946_j_math-2020-0038_ref_041
– ident: 2021020923544369946_j_math-2020-0038_ref_002
  doi: 10.1007/978-3-642-05261-3_5
– ident: 2021020923544369946_j_math-2020-0038_ref_001
– ident: 2021020923544369946_j_math-2020-0038_ref_026
– ident: 2021020923544369946_j_math-2020-0038_ref_024
– ident: 2021020923544369946_j_math-2020-0038_ref_004
  doi: 10.1016/j.camwa.2019.12.025
– ident: 2021020923544369946_j_math-2020-0038_ref_016
  doi: 10.1016/j.aim.2014.12.040
– ident: 2021020923544369946_j_math-2020-0038_ref_033
– ident: 2021020923544369946_j_math-2020-0038_ref_003
  doi: 10.1142/S1664360720500095
– ident: 2021020923544369946_j_math-2020-0038_ref_031
– ident: 2021020923544369946_j_math-2020-0038_ref_028
– ident: 2021020923544369946_j_math-2020-0038_ref_035
– ident: 2021020923544369946_j_math-2020-0038_ref_009
– ident: 2021020923544369946_j_math-2020-0038_ref_037
– ident: 2021020923544369946_j_math-2020-0038_ref_012
– ident: 2021020923544369946_j_math-2020-0038_ref_014
– ident: 2021020923544369946_j_math-2020-0038_ref_010
– ident: 2021020923544369946_j_math-2020-0038_ref_017
  doi: 10.5666/KMJ.2009.49.1.031
– ident: 2021020923544369946_j_math-2020-0038_ref_019
– ident: 2021020923544369946_j_math-2020-0038_ref_021
– ident: 2021020923544369946_j_math-2020-0038_ref_023
– ident: 2021020923544369946_j_math-2020-0038_ref_039
  doi: 10.1016/j.amc.2014.12.067
– ident: 2021020923544369946_j_math-2020-0038_ref_045
  doi: 10.1142/9571
– ident: 2021020923544369946_j_math-2020-0038_ref_007
  doi: 10.1007/s00039-010-0075-6
– ident: 2021020923544369946_j_math-2020-0038_ref_032
  doi: 10.22436/jnsa.009.03.05
– ident: 2021020923544369946_j_math-2020-0038_ref_042
– ident: 2021020923544369946_j_math-2020-0038_ref_038
– ident: 2021020923544369946_j_math-2020-0038_ref_025
– ident: 2021020923544369946_j_math-2020-0038_ref_044
  doi: 10.1016/j.camwa.2003.02.014
– ident: 2021020923544369946_j_math-2020-0038_ref_040
– ident: 2021020923544369946_j_math-2020-0038_ref_008
– ident: 2021020923544369946_j_math-2020-0038_ref_006
– ident: 2021020923544369946_j_math-2020-0038_ref_030
– ident: 2021020923544369946_j_math-2020-0038_ref_034
– ident: 2021020923544369946_j_math-2020-0038_ref_027
– ident: 2021020923544369946_j_math-2020-0038_ref_036
– ident: 2021020923544369946_j_math-2020-0038_ref_005
  doi: 10.1016/0022-1236(74)90013-5
– ident: 2021020923544369946_j_math-2020-0038_ref_029
– ident: 2021020923544369946_j_math-2020-0038_ref_018
  doi: 10.1007/s00041-012-9223-8
– ident: 2021020923544369946_j_math-2020-0038_ref_015
– ident: 2021020923544369946_j_math-2020-0038_ref_011
SSID ssj0001510711
Score 2.4554932
Snippet The primary objective of this research is to establish the generalized fractional integral inequalities of Hermite-Hadamard-type for -convex functions and to...
The primary objective of this research is to establish the generalized fractional integral inequalities of Hermite-Hadamard-type for MT -convex functions and...
The primary objective of this research is to establish the generalized fractional integral inequalities of Hermite-Hadamard-type for MT-convex functions and to...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 794
SubjectTerms 26A33
26D07
26D10
26D15
convex function
Fractional calculus
Inequalities
integral inequalities
Integrals
mt-convex function
Riemann-Liouville fractional integral
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz0UnxitsgfBU2iy2SSbo4qlCPVkoeBhyb5U0FbaFB-_3plkW6soXryFMBuW2cnONzsz3xJy4nQUmSg3oebChVwLHiqkcDXOMe64Y4nD847BddYf8qtROlq56gtrwhp64EZx3TjXVrNMaFZybopI2dTESZoZoaJcq3r3BZ-3Ekw1_cEQ1sSxZ2kEn90F_HcPJsGwjxqbUVa8UE3W_wVhtl_qXLWxd9P5W7XIjdYup7dJ2h4r0rNmjltkzY63ycZgSbQ62yG3njb64d0a6qZNlwKM8SwQ-GCbvkmIiOnE0T4Wv1Q2hB2nfMKCWTyDpYBcaUnrCvRXiq4OP7NLhr3Lm4t-6O9LAEWzrAptmjBdxMymOldZ5KxLdF4YobUGVMYLBaEEBNIsNVnBIpNZUzoQ0eDCS5c4keyR1ngytvuE8jwygulEOAsQw5YKGR4AK6QlwIEiLgMSLvQntScTxzstHiUGFaBvifqWqG9kHxUBOV3KPzc0Gr9KnuNyLKWQ_rp-AUYhvVHIv4wiIJ3FYkr_T84kkrHVWdwiIOm3Bf6U-nlWgINg4zr4j7kdkvXGDPOQsQ5pVdO5PQJgU6nj2oY_ANZt97c
  priority: 102
  providerName: Directory of Open Access Journals
Title Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function
URI https://www.degruyter.com/doi/10.1515/math-2020-0038
https://www.proquest.com/docview/2544452509
https://doaj.org/article/17cec268c2a44d90be5d1356d8b07cb2
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED7a9GV9KN0vmrULehj0SdSWZVt-KktpFgotpaxQ2IOxT1I3aJMscWm3v353tpJsY-ubMWdh7k53352kTwAfPEaRjXIrURsvNRota6Zwtd4r7bVXied-x_lFNr7WZzfpTWi4LcK2ymVMbAO1nSL3yI-YSqtdgyuOZ98l3xrFq6vhCo1N2KIQbKj42hqeXlxerbss5HJ5HAe2RsrdR4QDv5JrKD5PzYdSfstGLWn_H0hz57Fds7budv7wo1mukbapZ7QLOwEzio-dkV_Chpu8gu3zFeHq4jV8CfTR3346K_y8O61A3wQ2CH5w3flJqozF1Isxb4JpnKTIU93zxlnuxQpCsKIS7U70J8Epj4d5A9ej088nYxnuTSCFq6yRLk0UFrFyKeZ1FnnnE8wLaxCR0JkuaiopqKBWqc0KFdnM2cqTCFIqr3ziTfIWepPpxO2B0HlkjcLEeEdQw1U1Mz0QZkgrggVFXPVBLvVXYiAV57st7kouLkjfJeu7ZH0zC6npw-FKftbRafxXcsjmWEkxDXb7Yjq_LcOsKuMcHarMoKq0tkVUu9TGSZpZU0c51qoPB0tjlmFuLsq1J_Uh_cvAa6l__xXhIQpg754fdh9edA6WS6UOoNfMH9x7gi5NPYBNM_o0CF46aBsAvwDzBvIN
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gHJQDER9xBaQPGk8dZrp7ZnoOhIiyLMJygoTEQzvTDzSRXdwdAvij_I1WzWMXjXrjNpnUdCbV1dVfVXd9BfA62ChyUea4VTpwZbXiJVG4uhCECioIGSjfMTxOB6fq41lytgA_u1oYulbZ-cTaUbuxpRz5FlFp1Wdw-c7ld05do-h0tWuh0ZjFob-9xpBtun3wAef3jRD9vZP3A952FcDfEWnFfSKFzWPhE5uVaRR8kDbLnbbWInZReYmAG8NNkbg0F5FLvSsCiljc6Iogg5Y47gNYUlLmtKJ0f3-e00EDz-K45YZEpLCFqPMLGqKg6m0qgbmz99UtAn7DtSvX9Qm58-eTq9uqO5GtN7r-Y1hpESp715jUKiz40RNYHs7oXadP4VNLVv31h3csTJraCPym5Z6gB99Ua2IczsaBDejKTeU5-rnigq7pUuaXIV5mBavvvd8w2mBpmGdwei_6fA6Lo_HIvwCmsshpYaUOHoGNL0rilUCEkhQIQvK46AHv9GdsS2FOnTS-GQplUN-G9G1I38R5qnvwdiZ_2ZB3_FNyl6ZjJkWk2_WL8eTctGvYxJn1VqTaikIpl0elT1wsk9TpMspsKXqw3k2maT3B1MzttgfJHxM8l_r7XyH6Qnf58v_DbsLDwcnwyBwdHB-uwaPG2DIuxDosVpMrv4GgqSpf1ZbK4PN9L41fWEgtGw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrYTgULU81IW2-IDEKdrEdhzn2Ba2y6MFCSohcbASP9pKsFvtZgX013cm8aaUx4VbFI0ta8b2fDMefwZ4HmyaurRwiZU6JNJqmdRE4epC4DLIwEWgfMfxiZqcyjef81U14SKWVTp_Nl_-bDqG1JGb2SUlynquAfTAI0Rz52hgTreihR5dunAH1pUqhRzA-v7k6OP7m0QLzroiyyJh45-Nbzmklrf_Ftjc-N4eW_dj-sX7jDdhI8JGtt_ZeQvW_PQB3D_uOVcXD-FLZJC-uPKOhXl3YQHbREII-vDdFUoMjtkssAnVwTQ-wc2n-ka1s5SOZQhiWcXaYvQfjLwedfMITsevPh1Okvh0AuqcqybxueC2zLjPbVGrNPggbFE6ba1FgCbLGqMKjKl57lTJU6e8qwKKWPTmVRBBi8cwmM6mfhuYLFKnuRU6eEQbvqqJ7AFhQ14hMiizagjJSn_GRl5xet7iq6H4AvVtSN-G9E1EpHoIL3r5y45R45-SB2SOXoqYsNsfs_mZiQvLZIX1litteSWlK9Pa5y4TuXK6Tgtb8yHsrIxp4vJcGOJlaw90yyHkvxn4Rurvo0JIhHvYk_9s9wzufng5Nu9en7x9Cve6SVgknO_AoJkv_S4inKbei3P4GtTn-fk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+fractional+integral+inequalities+of+Hermite-Hadamard-type+for+a+convex+function&rft.jtitle=Open+mathematics+%28Warsaw%2C+Poland%29&rft.au=Han%2C+Jiangfeng&rft.au=Pshtiwan+Othman+Mohammed&rft.au=Zeng%2C+Huidan&rft.date=2020-07-22&rft.pub=De+Gruyter+Poland&rft.eissn=2391-5455&rft.volume=18&rft.issue=1&rft.spage=794&rft.epage=806&rft_id=info:doi/10.1515%2Fmath-2020-0038
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2391-5455&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2391-5455&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2391-5455&client=summon