Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function
The primary objective of this research is to establish the generalized fractional integral inequalities of Hermite-Hadamard-type for -convex functions and to explore some new Hermite-Hadamard-type inequalities in a form of Riemann-Liouville fractional integrals as well as classical integrals. It is...
Saved in:
Published in | Open mathematics (Warsaw, Poland) Vol. 18; no. 1; pp. 794 - 806 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Warsaw
De Gruyter
22.07.2020
De Gruyter Poland |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The primary objective of this research is to establish the generalized fractional integral inequalities of Hermite-Hadamard-type for
-convex functions and to explore some new Hermite-Hadamard-type inequalities in a form of Riemann-Liouville fractional integrals as well as classical integrals. It is worth mentioning that our work generalizes and extends the results appeared in the literature. |
---|---|
AbstractList | The primary objective of this research is to establish the generalized fractional integral inequalities of Hermite-Hadamard-type for MT-convex functions and to explore some new Hermite-Hadamard-type inequalities in a form of Riemann-Liouville fractional integrals as well as classical integrals. It is worth mentioning that our work generalizes and extends the results appeared in the literature. The primary objective of this research is to establish the generalized fractional integral inequalities of Hermite-Hadamard-type for MT -convex functions and to explore some new Hermite-Hadamard-type inequalities in a form of Riemann-Liouville fractional integrals as well as classical integrals. It is worth mentioning that our work generalizes and extends the results appeared in the literature. The primary objective of this research is to establish the generalized fractional integral inequalities of Hermite-Hadamard-type for -convex functions and to explore some new Hermite-Hadamard-type inequalities in a form of Riemann-Liouville fractional integrals as well as classical integrals. It is worth mentioning that our work generalizes and extends the results appeared in the literature. |
Author | Han, Jiangfeng Zeng, Huidan Mohammed, Pshtiwan Othman |
Author_xml | – sequence: 1 givenname: Jiangfeng surname: Han fullname: Han, Jiangfeng email: hanjiangfengky@163.com organization: Department of Information and Statistics, Guangxi University of Finance and Economics, Nanning, Guangxi 530003, People’s Republic of China – sequence: 2 givenname: Pshtiwan Othman surname: Mohammed fullname: Mohammed, Pshtiwan Othman email: pshtiwansangawi@gmail.com organization: Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China – sequence: 3 givenname: Huidan surname: Zeng fullname: Zeng, Huidan email: huidanzeng@163.com organization: Department of Information and Statistics, Guangxi University of Finance and Economics, Nanning, Guangxi 530003, People’s Republic of China |
BookMark | eNp1kc1r3DAQxUVIoWmaa8-Gnp1IsuQP6CWENhsI9NKcchDj0SjR4rU2stx289dH3m1oKe1JD-n9HjN679jxGEZi7IPg50ILfbGB9FhKLnnJedUesRNZdaLUSuvjP_RbdjZNa855ZngjxAm7v6aRIgz-mWzhImDyYYSh8GOih7gX9DTn9-RpKoIrVhQ3PlG5AgsbiLZMuy0VLsQCCgzjd_pZuHncx7xnbxwME539Ok_Z3ZfP365W5e3X65ury9sSlaxTSbqS2AlJGpu-5o5chU1nW0TkulFd38qaeim1rTvJbU0WXLag0BJc5drqlN0ccm2AtdlGn-famQDe7C9CfDAQk8eBjGiQUNYtSlDKdrwnbUWla9v2vMFe5qyPh6xtDE8zTcmswxzzj0xGaqWUlpp32aUOLoxhmiI5gz7BsnOK4AcjuFlaMUsrZmnFLK1k7Pwv7HXY_wKfDsAPGBJFmyuZd1n8HurfoGhF06nqBcx8pk4 |
CitedBy_id | crossref_primary_10_2298_FIL2308605K crossref_primary_10_3390_sym13040550 crossref_primary_10_3390_sym14040722 crossref_primary_10_3390_sym13112209 crossref_primary_10_3934_math_2021648 crossref_primary_10_1186_s13660_024_03184_4 crossref_primary_10_3934_math_2021446 crossref_primary_10_2298_FIL2313103H crossref_primary_10_1186_s13660_021_02624_9 crossref_primary_10_3390_fractalfract6070376 crossref_primary_10_1186_s13661_024_01978_5 crossref_primary_10_1515_math_2021_0072 crossref_primary_10_1155_2020_8871988 crossref_primary_10_3390_math10193491 crossref_primary_10_1186_s13660_022_02910_0 crossref_primary_10_3390_sym12091485 crossref_primary_10_3390_fractalfract6120726 crossref_primary_10_52280_pujm_2024_56_1_2_05 crossref_primary_10_3390_axioms12100914 crossref_primary_10_1155_2022_2247246 crossref_primary_10_1142_S0218348X21502297 crossref_primary_10_18514_MMN_2024_4366 crossref_primary_10_1142_S0218348X24500488 crossref_primary_10_3934_math_2025301 crossref_primary_10_3934_math_2022232 crossref_primary_10_1142_S0218348X21501887 crossref_primary_10_17776_csj_1088703 crossref_primary_10_1002_mma_7558 crossref_primary_10_1142_S0218348X22501316 crossref_primary_10_1080_27690911_2024_2422993 crossref_primary_10_3934_math_2023082 crossref_primary_10_31801_cfsuasmas_1004300 crossref_primary_10_1515_math_2022_0061 crossref_primary_10_3390_sym13091686 crossref_primary_10_1155_2021_9653481 crossref_primary_10_3390_sym13122352 crossref_primary_10_1155_2022_1257104 crossref_primary_10_1186_s13660_021_02732_6 crossref_primary_10_1186_s13662_021_03241_y crossref_primary_10_3934_math_2021546 crossref_primary_10_3390_fractalfract6100563 crossref_primary_10_1186_s13662_021_03280_5 crossref_primary_10_3390_sym14091774 crossref_primary_10_3934_math_2021275 crossref_primary_10_3390_axioms11110602 crossref_primary_10_1016_j_chaos_2024_114960 crossref_primary_10_3390_fractalfract5040282 crossref_primary_10_3934_math_2021273 crossref_primary_10_1186_s13662_022_03696_7 crossref_primary_10_3390_sym12091503 crossref_primary_10_1142_S0218348X23501098 crossref_primary_10_1186_s13662_021_03463_0 crossref_primary_10_1515_dema_2023_0149 crossref_primary_10_1186_s13660_020_02538_y crossref_primary_10_3934_math_2020468 crossref_primary_10_3934_math_2021637 crossref_primary_10_3934_math_2021043 crossref_primary_10_1002_mma_7610 crossref_primary_10_3934_math_2021002 crossref_primary_10_1186_s13660_022_02773_5 crossref_primary_10_3390_fractalfract6060309 |
Cites_doi | 10.1002/mma.5784 10.3390/sym12040595 10.1016/j.cam.2020.112740 10.1186/s13662-020-2541-2 10.1002/mma.6188 10.3390/sym11020263 10.1088/1361-6420/ab44d7 10.1186/s13660-019-2079-6 10.3390/sym12040610 10.1007/s00033-020-1260-6 10.1186/s13660-018-1950-1 10.1007/978-3-642-05261-3_5 10.1016/j.camwa.2019.12.025 10.1016/j.aim.2014.12.040 10.1142/S1664360720500095 10.5666/KMJ.2009.49.1.031 10.1016/j.amc.2014.12.067 10.1142/9571 10.1007/s00039-010-0075-6 10.22436/jnsa.009.03.05 10.1016/j.camwa.2003.02.014 10.1016/0022-1236(74)90013-5 10.1007/s00041-012-9223-8 |
ContentType | Journal Article |
Copyright | 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M2P P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1515/math-2020-0038 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2391-5455 |
EndPage | 806 |
ExternalDocumentID | oai_doaj_org_article_17cec268c2a44d90be5d1356d8b07cb2 10_1515_math_2020_0038 10_1515_math_2020_0038181794 |
GroupedDBID | 5VS 88I AAFWJ ABFKT ABUWG ACGFS ADBBV AENEX AFBDD AFKRA AFPKN AHGSO ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ K7- KQ8 M2P M~E OK1 PHGZM PHGZT PIMPY PQGLB QD8 AAYXX CITATION 3V. 7XB 8FE 8FG 8FK JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U Y2W PUEGO |
ID | FETCH-LOGICAL-c426t-e532c912e5c7b60fef3c79d8ccc05749b826eb225d6920d6edaff3cc152af3f83 |
IEDL.DBID | BENPR |
ISSN | 2391-5455 |
IngestDate | Wed Aug 27 01:22:15 EDT 2025 Fri Jul 25 04:30:45 EDT 2025 Tue Jul 01 04:05:17 EDT 2025 Thu Apr 24 23:12:30 EDT 2025 Thu Jul 10 10:37:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-e532c912e5c7b60fef3c79d8ccc05749b826eb225d6920d6edaff3cc152af3f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2544452509?pq-origsite=%requestingapplication% |
PQID | 2544452509 |
PQPubID | 5000747 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_17cec268c2a44d90be5d1356d8b07cb2 proquest_journals_2544452509 crossref_citationtrail_10_1515_math_2020_0038 crossref_primary_10_1515_math_2020_0038 walterdegruyter_journals_10_1515_math_2020_0038181794 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-22 |
PublicationDateYYYYMMDD | 2020-07-22 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Warsaw |
PublicationPlace_xml | – name: Warsaw |
PublicationTitle | Open mathematics (Warsaw, Poland) |
PublicationYear | 2020 |
Publisher | De Gruyter De Gruyter Poland |
Publisher_xml | – name: De Gruyter – name: De Gruyter Poland |
References | Mohammed, P. O. (j_math-2020-0038_ref_011) 2016; 4 Mohammed, P. O. (j_math-2020-0038_ref_031) 2018; 30 Barnett, N. S.; Cerone, P.; Dragomir, S. S.; Roumeliotis, J. (j_math-2020-0038_ref_041) 2001; 2 Gavrea, B.; Gavrea, I. (j_math-2020-0038_ref_015) 2010; 18 Mohammed, P. O. (j_math-2020-0038_ref_021) 2019 Mohammed, P. O.; Hamasalh, F. K. (j_math-2020-0038_ref_027) 2019; 11 Rumin, M. (j_math-2020-0038_ref_007) 2010; 20 Brascamp, H. J.; Lieb, E. H.; Luttinger, J. M. (j_math-2020-0038_ref_005) 1974; 17 Katugampola, U. N. (j_math-2020-0038_ref_038) 2011; 218 Hadamard, J. (j_math-2020-0038_ref_019) 1893; 58 Mohammed, P. O. (j_math-2020-0038_ref_022) 2018; 6 Bai, Y. R.; Migórski, S.; Zeng, S. D. (j_math-2020-0038_ref_004) 2020; 79 Katugampola, U. N. (j_math-2020-0038_ref_039) 2015; 257 Mohammed, P. O.; Sarikaya, M. Z.; Baleanu, D. (j_math-2020-0038_ref_026) 2020; 12 Rasheed, S. M.; Hamasalh, F. K.; Mohammed, P. O. (j_math-2020-0038_ref_008) 2016; 18 Fernandez, A.; Mohammed, P. (j_math-2020-0038_ref_020) 2020 Liua, W.; Wena, W.; Park, J. (j_math-2020-0038_ref_032) 2016; 9 Mohammed, P. O.; Brevik, I. (j_math-2020-0038_ref_025) 2020; 12 Sawano, Y.; Wadade, H. (j_math-2020-0038_ref_018) 2013; 19 Mohammed, P. O.; Sarikaya, M. Z. (j_math-2020-0038_ref_024) 2020; 372 Mohammed, P. O. (j_math-2020-0038_ref_036) 2017; 17 Park, J. (j_math-2020-0038_ref_029) 2015; 9 Ciatti, P.; Cowling, M. G.; Ricci, F. (j_math-2020-0038_ref_016) 2015; 277 Meftah, B.; Boukerrioua, K. (j_math-2020-0038_ref_030) 2015; 3 Mubeen, S.; Habibullah, G. M. (j_math-2020-0038_ref_037) 2012; 7 Mohammed, P. O. (j_math-2020-0038_ref_009) 2019; 22 Han, J. F.; Lu, L.; Zeng, S. D. (j_math-2020-0038_ref_006) 2020; 71 Kumar, P. (j_math-2020-0038_ref_043) 2002; 3 Gunawan, H.; Eridani (j_math-2020-0038_ref_017) 2009; 49 Cerone, P.; Dragomir, S. S. (j_math-2020-0038_ref_042) 2000; 8 Mohammed, P. O.; Sarikaya, M. Z. (j_math-2020-0038_ref_028) 2018; 2018 Mohammed, P. O. (j_math-2020-0038_ref_010) 2016; 4 Qi, F.; Mohammed, P. O.; Yao, J.-C.; Yao, Y.-H. (j_math-2020-0038_ref_040) 2019; 2019 Migórski, S.; Khan, A. A.; Zeng, S. D. (j_math-2020-0038_ref_013) 2020; 36 Kumar, P. (j_math-2020-0038_ref_044) 2004; 48 Mohammed, P. O.; Abdeljawad, T. (j_math-2020-0038_ref_023) 2020; 2020 Atici, F. M.; Yaldiz, H. (j_math-2020-0038_ref_012) 2016; 59 2021020923544369946_j_math-2020-0038_ref_009 2021020923544369946_j_math-2020-0038_ref_008 2021020923544369946_j_math-2020-0038_ref_007 2021020923544369946_j_math-2020-0038_ref_029 2021020923544369946_j_math-2020-0038_ref_031 2021020923544369946_j_math-2020-0038_ref_030 2021020923544369946_j_math-2020-0038_ref_013 2021020923544369946_j_math-2020-0038_ref_035 2021020923544369946_j_math-2020-0038_ref_012 2021020923544369946_j_math-2020-0038_ref_034 2021020923544369946_j_math-2020-0038_ref_011 2021020923544369946_j_math-2020-0038_ref_033 2021020923544369946_j_math-2020-0038_ref_010 2021020923544369946_j_math-2020-0038_ref_032 2021020923544369946_j_math-2020-0038_ref_017 2021020923544369946_j_math-2020-0038_ref_039 2021020923544369946_j_math-2020-0038_ref_016 2021020923544369946_j_math-2020-0038_ref_038 2021020923544369946_j_math-2020-0038_ref_015 2021020923544369946_j_math-2020-0038_ref_037 2021020923544369946_j_math-2020-0038_ref_014 2021020923544369946_j_math-2020-0038_ref_036 2021020923544369946_j_math-2020-0038_ref_019 2021020923544369946_j_math-2020-0038_ref_018 2021020923544369946_j_math-2020-0038_ref_020 2021020923544369946_j_math-2020-0038_ref_042 2021020923544369946_j_math-2020-0038_ref_041 2021020923544369946_j_math-2020-0038_ref_040 2021020923544369946_j_math-2020-0038_ref_002 2021020923544369946_j_math-2020-0038_ref_024 2021020923544369946_j_math-2020-0038_ref_001 2021020923544369946_j_math-2020-0038_ref_023 2021020923544369946_j_math-2020-0038_ref_045 2021020923544369946_j_math-2020-0038_ref_022 2021020923544369946_j_math-2020-0038_ref_044 2021020923544369946_j_math-2020-0038_ref_021 2021020923544369946_j_math-2020-0038_ref_043 2021020923544369946_j_math-2020-0038_ref_006 2021020923544369946_j_math-2020-0038_ref_028 2021020923544369946_j_math-2020-0038_ref_005 2021020923544369946_j_math-2020-0038_ref_027 2021020923544369946_j_math-2020-0038_ref_004 2021020923544369946_j_math-2020-0038_ref_026 2021020923544369946_j_math-2020-0038_ref_003 2021020923544369946_j_math-2020-0038_ref_025 |
References_xml | – volume: 3 start-page: 41 issue: no. 3 year: 2002 ident: j_math-2020-0038_ref_043 article-title: Moments inequalities of a random variable defined over a finite interval publication-title: J. Inequal. Pure Appl. Math. – volume: 20 start-page: 817 year: 2010 end-page: 844 ident: j_math-2020-0038_ref_007 article-title: Spectral density and Sobolev inequalities for pure and mixed states publication-title: Geom. Funct. Anal. – volume: 22 start-page: 539 issue: no. 4 year: 2019 end-page: 549 ident: j_math-2020-0038_ref_009 article-title: New integral inequalities for preinvex functions via generalized beta function publication-title: J. Interdiscip. Math. – volume: 257 start-page: 566 year: 2015 end-page: 580 ident: j_math-2020-0038_ref_039 article-title: Mellin transforms of generalized fractional integrals and derivatives publication-title: Appl. Math. Comput. – year: 2019 ident: j_math-2020-0038_ref_021 article-title: Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function publication-title: Math. Meth. Appl. Sci. doi: 10.1002/mma.5784 – volume: 8 start-page: 357 issue: no. 2 year: 2000 end-page: 380 ident: j_math-2020-0038_ref_042 article-title: On some inequalities for the expectation and variance publication-title: Korean J. Comp. Appl. Math. – volume: 277 start-page: 365 year: 2015 end-page: 387 ident: j_math-2020-0038_ref_016 article-title: Hardy and uncertainty inequalities on stratified Lie groups publication-title: Adv. Math – volume: 12 start-page: 595 year: 2020 ident: j_math-2020-0038_ref_026 article-title: On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals publication-title: Symmetry doi: 10.3390/sym12040595 – volume: 48 start-page: 257 year: 2004 end-page: 273 ident: j_math-2020-0038_ref_044 article-title: Inequalities involving moments of a continuous random variable defined over a finite interval publication-title: Comput. Math. Appl. – volume: 59 start-page: 225 issue: no. 2 year: 2016 end-page: 233 ident: j_math-2020-0038_ref_012 article-title: Convex functions on discrete time domains publication-title: Canad. Math. Bull – volume: 18 start-page: 227 issue: no. 1 year: 2016 end-page: 230 ident: j_math-2020-0038_ref_008 article-title: Composition fractional integral inequality for the Reiman-Liouville type with applications publication-title: JZS-A – volume: 372 start-page: 112740 year: 2020 ident: j_math-2020-0038_ref_024 article-title: On generalized fractional integral inequalities for twice differentiable convex functions publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2020.112740 – volume: 79 start-page: 2897 year: 2020 end-page: 2911 ident: j_math-2020-0038_ref_004 article-title: A class of generalized mixed variational-hemivariational inequalities I: Existence and uniqueness result publication-title: Comput. Math. Appl. – volume: 49 start-page: 31 year: 2009 end-page: 39 ident: j_math-2020-0038_ref_017 article-title: Fractional integrals and generalized Olsen inequalities publication-title: Kyungpook Math. J. – volume: 218 start-page: 860 issue: no. 3 year: 2011 end-page: 865 ident: j_math-2020-0038_ref_038 article-title: New approach to a generalized fractional integral publication-title: Appl. Math. Comput. – volume: 2020 start-page: 69 year: 2020 ident: j_math-2020-0038_ref_023 article-title: Modification of certain fractional integral inequalities for convex functions publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-020-2541-2 – volume: 4 start-page: 93 issue: no. 1 year: 2016 end-page: 99 ident: j_math-2020-0038_ref_011 article-title: Some integral inequalities of fractional quantum type publication-title: Malaya J. Mat. – volume: 19 start-page: 20 year: 2013 end-page: 47 ident: j_math-2020-0038_ref_018 article-title: On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Orrey space publication-title: J. Fourier Anal. Appl. – volume: 7 start-page: 89 issue: no. 2 year: 2012 end-page: 94 ident: j_math-2020-0038_ref_037 article-title: k-fractional integrals and application publication-title: Int. J. Contemp. Math. Sci. – volume: 18 start-page: 33 year: 2010 end-page: 44 ident: j_math-2020-0038_ref_015 article-title: On some Ostrowski type inequalities publication-title: Gen. Math. – year: 2020 ident: j_math-2020-0038_ref_020 article-title: Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels publication-title: Math. Meth. Appl. Sci. doi: 10.1002/mma.6188 – volume: 17 start-page: 199 year: 2017 end-page: 206 ident: j_math-2020-0038_ref_036 article-title: A new version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals publication-title: Appl. Math. E-Notes – volume: 58 start-page: 171 year: 1893 end-page: 215 ident: j_math-2020-0038_ref_019 article-title: Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann publication-title: J. Math. Pure Appl – volume: 11 start-page: 263 year: 2019 ident: j_math-2020-0038_ref_027 article-title: New conformable fractional integral inequalities of Hermite-Hadamard type for convex functions publication-title: Symmetry doi: 10.3390/sym11020263 – volume: 4 start-page: 135 issue: no. 5 year: 2016 end-page: 139 ident: j_math-2020-0038_ref_010 article-title: Inequalities of type Hermite-Hadamard for fractional integrals via differentiable convex functions publication-title: TJANT – volume: 9 start-page: 766 year: 2016 end-page: 777 ident: j_math-2020-0038_ref_032 article-title: Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals publication-title: J. Nonlinear Sci. Appl. – volume: 36 year: 2020 ident: j_math-2020-0038_ref_013 article-title: Inverse problems for nonlinear quasi-hemivariational inequalities with application to mixed boundary value problems publication-title: Inverse Problems doi: 10.1088/1361-6420/ab44d7 – volume: 17 start-page: 227 year: 1974 end-page: 237 ident: j_math-2020-0038_ref_005 article-title: A general rearrangement inequality for multiple integrals publication-title: J. Funct. Anal. – volume: 2019 start-page: 135 year: 2019 ident: j_math-2020-0038_ref_040 article-title: Generalized fractional integral inequalities of Hermite-Hadamard type for (α,m)-convex functions publication-title: J. Inequal. Appl. doi: 10.1186/s13660-019-2079-6 – volume: 12 start-page: 610 year: 2020 ident: j_math-2020-0038_ref_025 article-title: A new version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals publication-title: Symmetry doi: 10.3390/sym12040610 – volume: 2 start-page: 1 issue: no. 1 year: 2001 end-page: 18 ident: j_math-2020-0038_ref_041 article-title: Some inequalities for the dispersion of a random variable whose pdf is defined on a finite interval publication-title: J. Ineq. Pure Appl. Math. – volume: 71 start-page: 32 year: 2020 ident: j_math-2020-0038_ref_006 article-title: Evolutionary variational-hemivariational inequalities with applications to dynamic viscoelastic contact mechanics publication-title: Z. Angew. Math. Phys doi: 10.1007/s00033-020-1260-6 – volume: 6 start-page: 125 issue: no. 4 year: 2018 end-page: 128 ident: j_math-2020-0038_ref_022 article-title: On new trapezoid type inequalities for h-convex functions via generalized fractional integral publication-title: TJANT – volume: 9 start-page: 5011 issue: no. 101 year: 2015 end-page: 5026 ident: j_math-2020-0038_ref_029 article-title: Some Hermite-Hadamard type inequalities for MT-convex functions via classical and Riemann-Liouville fractional integrals publication-title: Appl. Math. Sci – volume: 2018 start-page: 359 year: 2018 ident: j_math-2020-0038_ref_028 article-title: Hermite-Hadamard type inequalities for F-convex function involving fractional integrals publication-title: J. Inequal. Appl. doi: 10.1186/s13660-018-1950-1 – volume: 3 start-page: 77 issue: no. 2 year: 2015 end-page: 88 ident: j_math-2020-0038_ref_030 article-title: On some Cebysev type inequalities for functions whose second derivatives are (h1,h2)-convex on the co-ordinates publication-title: Konuralp J. Math – volume: 30 start-page: 258 issue: no. 2 year: 2018 end-page: 262 ident: j_math-2020-0038_ref_031 article-title: Some new Hermite-Hadamard type inequalities for MT-convex functions on differentiable coordinates publication-title: J. King Saud Univ. Sci. – ident: 2021020923544369946_j_math-2020-0038_ref_020 – ident: 2021020923544369946_j_math-2020-0038_ref_043 – ident: 2021020923544369946_j_math-2020-0038_ref_013 doi: 10.1088/1361-6420/ab44d7 – ident: 2021020923544369946_j_math-2020-0038_ref_022 – ident: 2021020923544369946_j_math-2020-0038_ref_041 – ident: 2021020923544369946_j_math-2020-0038_ref_002 doi: 10.1007/978-3-642-05261-3_5 – ident: 2021020923544369946_j_math-2020-0038_ref_001 – ident: 2021020923544369946_j_math-2020-0038_ref_026 – ident: 2021020923544369946_j_math-2020-0038_ref_024 – ident: 2021020923544369946_j_math-2020-0038_ref_004 doi: 10.1016/j.camwa.2019.12.025 – ident: 2021020923544369946_j_math-2020-0038_ref_016 doi: 10.1016/j.aim.2014.12.040 – ident: 2021020923544369946_j_math-2020-0038_ref_033 – ident: 2021020923544369946_j_math-2020-0038_ref_003 doi: 10.1142/S1664360720500095 – ident: 2021020923544369946_j_math-2020-0038_ref_031 – ident: 2021020923544369946_j_math-2020-0038_ref_028 – ident: 2021020923544369946_j_math-2020-0038_ref_035 – ident: 2021020923544369946_j_math-2020-0038_ref_009 – ident: 2021020923544369946_j_math-2020-0038_ref_037 – ident: 2021020923544369946_j_math-2020-0038_ref_012 – ident: 2021020923544369946_j_math-2020-0038_ref_014 – ident: 2021020923544369946_j_math-2020-0038_ref_010 – ident: 2021020923544369946_j_math-2020-0038_ref_017 doi: 10.5666/KMJ.2009.49.1.031 – ident: 2021020923544369946_j_math-2020-0038_ref_019 – ident: 2021020923544369946_j_math-2020-0038_ref_021 – ident: 2021020923544369946_j_math-2020-0038_ref_023 – ident: 2021020923544369946_j_math-2020-0038_ref_039 doi: 10.1016/j.amc.2014.12.067 – ident: 2021020923544369946_j_math-2020-0038_ref_045 doi: 10.1142/9571 – ident: 2021020923544369946_j_math-2020-0038_ref_007 doi: 10.1007/s00039-010-0075-6 – ident: 2021020923544369946_j_math-2020-0038_ref_032 doi: 10.22436/jnsa.009.03.05 – ident: 2021020923544369946_j_math-2020-0038_ref_042 – ident: 2021020923544369946_j_math-2020-0038_ref_038 – ident: 2021020923544369946_j_math-2020-0038_ref_025 – ident: 2021020923544369946_j_math-2020-0038_ref_044 doi: 10.1016/j.camwa.2003.02.014 – ident: 2021020923544369946_j_math-2020-0038_ref_040 – ident: 2021020923544369946_j_math-2020-0038_ref_008 – ident: 2021020923544369946_j_math-2020-0038_ref_006 – ident: 2021020923544369946_j_math-2020-0038_ref_030 – ident: 2021020923544369946_j_math-2020-0038_ref_034 – ident: 2021020923544369946_j_math-2020-0038_ref_027 – ident: 2021020923544369946_j_math-2020-0038_ref_036 – ident: 2021020923544369946_j_math-2020-0038_ref_005 doi: 10.1016/0022-1236(74)90013-5 – ident: 2021020923544369946_j_math-2020-0038_ref_029 – ident: 2021020923544369946_j_math-2020-0038_ref_018 doi: 10.1007/s00041-012-9223-8 – ident: 2021020923544369946_j_math-2020-0038_ref_015 – ident: 2021020923544369946_j_math-2020-0038_ref_011 |
SSID | ssj0001510711 |
Score | 2.4554932 |
Snippet | The primary objective of this research is to establish the generalized fractional integral inequalities of Hermite-Hadamard-type for
-convex functions and to... The primary objective of this research is to establish the generalized fractional integral inequalities of Hermite-Hadamard-type for MT -convex functions and... The primary objective of this research is to establish the generalized fractional integral inequalities of Hermite-Hadamard-type for MT-convex functions and to... |
SourceID | doaj proquest crossref walterdegruyter |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 794 |
SubjectTerms | 26A33 26D07 26D10 26D15 convex function Fractional calculus Inequalities integral inequalities Integrals mt-convex function Riemann-Liouville fractional integral |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz0UnxitsgfBU2iy2SSbo4qlCPVkoeBhyb5U0FbaFB-_3plkW6soXryFMBuW2cnONzsz3xJy4nQUmSg3oebChVwLHiqkcDXOMe64Y4nD847BddYf8qtROlq56gtrwhp64EZx3TjXVrNMaFZybopI2dTESZoZoaJcq3r3BZ-3Ekw1_cEQ1sSxZ2kEn90F_HcPJsGwjxqbUVa8UE3W_wVhtl_qXLWxd9P5W7XIjdYup7dJ2h4r0rNmjltkzY63ycZgSbQ62yG3njb64d0a6qZNlwKM8SwQ-GCbvkmIiOnE0T4Wv1Q2hB2nfMKCWTyDpYBcaUnrCvRXiq4OP7NLhr3Lm4t-6O9LAEWzrAptmjBdxMymOldZ5KxLdF4YobUGVMYLBaEEBNIsNVnBIpNZUzoQ0eDCS5c4keyR1ngytvuE8jwygulEOAsQw5YKGR4AK6QlwIEiLgMSLvQntScTxzstHiUGFaBvifqWqG9kHxUBOV3KPzc0Gr9KnuNyLKWQ_rp-AUYhvVHIv4wiIJ3FYkr_T84kkrHVWdwiIOm3Bf6U-nlWgINg4zr4j7kdkvXGDPOQsQ5pVdO5PQJgU6nj2oY_ANZt97c priority: 102 providerName: Directory of Open Access Journals |
Title | Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function |
URI | https://www.degruyter.com/doi/10.1515/math-2020-0038 https://www.proquest.com/docview/2544452509 https://doaj.org/article/17cec268c2a44d90be5d1356d8b07cb2 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED7a9GV9KN0vmrULehj0SdSWZVt-KktpFgotpaxQ2IOxT1I3aJMscWm3v353tpJsY-ubMWdh7k53352kTwAfPEaRjXIrURsvNRota6Zwtd4r7bVXied-x_lFNr7WZzfpTWi4LcK2ymVMbAO1nSL3yI-YSqtdgyuOZ98l3xrFq6vhCo1N2KIQbKj42hqeXlxerbss5HJ5HAe2RsrdR4QDv5JrKD5PzYdSfstGLWn_H0hz57Fds7budv7wo1mukbapZ7QLOwEzio-dkV_Chpu8gu3zFeHq4jV8CfTR3346K_y8O61A3wQ2CH5w3flJqozF1Isxb4JpnKTIU93zxlnuxQpCsKIS7U70J8Epj4d5A9ej088nYxnuTSCFq6yRLk0UFrFyKeZ1FnnnE8wLaxCR0JkuaiopqKBWqc0KFdnM2cqTCFIqr3ziTfIWepPpxO2B0HlkjcLEeEdQw1U1Mz0QZkgrggVFXPVBLvVXYiAV57st7kouLkjfJeu7ZH0zC6npw-FKftbRafxXcsjmWEkxDXb7Yjq_LcOsKuMcHarMoKq0tkVUu9TGSZpZU0c51qoPB0tjlmFuLsq1J_Uh_cvAa6l__xXhIQpg754fdh9edA6WS6UOoNfMH9x7gi5NPYBNM_o0CF46aBsAvwDzBvIN |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gHJQDER9xBaQPGk8dZrp7ZnoOhIiyLMJygoTEQzvTDzSRXdwdAvij_I1WzWMXjXrjNpnUdCbV1dVfVXd9BfA62ChyUea4VTpwZbXiJVG4uhCECioIGSjfMTxOB6fq41lytgA_u1oYulbZ-cTaUbuxpRz5FlFp1Wdw-c7ld05do-h0tWuh0ZjFob-9xpBtun3wAef3jRD9vZP3A952FcDfEWnFfSKFzWPhE5uVaRR8kDbLnbbWInZReYmAG8NNkbg0F5FLvSsCiljc6Iogg5Y47gNYUlLmtKJ0f3-e00EDz-K45YZEpLCFqPMLGqKg6m0qgbmz99UtAn7DtSvX9Qm58-eTq9uqO5GtN7r-Y1hpESp715jUKiz40RNYHs7oXadP4VNLVv31h3csTJraCPym5Z6gB99Ua2IczsaBDejKTeU5-rnigq7pUuaXIV5mBavvvd8w2mBpmGdwei_6fA6Lo_HIvwCmsshpYaUOHoGNL0rilUCEkhQIQvK46AHv9GdsS2FOnTS-GQplUN-G9G1I38R5qnvwdiZ_2ZB3_FNyl6ZjJkWk2_WL8eTctGvYxJn1VqTaikIpl0elT1wsk9TpMspsKXqw3k2maT3B1MzttgfJHxM8l_r7XyH6Qnf58v_DbsLDwcnwyBwdHB-uwaPG2DIuxDosVpMrv4GgqSpf1ZbK4PN9L41fWEgtGw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrYTgULU81IW2-IDEKdrEdhzn2Ba2y6MFCSohcbASP9pKsFvtZgX013cm8aaUx4VbFI0ta8b2fDMefwZ4HmyaurRwiZU6JNJqmdRE4epC4DLIwEWgfMfxiZqcyjef81U14SKWVTp_Nl_-bDqG1JGb2SUlynquAfTAI0Rz52hgTreihR5dunAH1pUqhRzA-v7k6OP7m0QLzroiyyJh45-Nbzmklrf_Ftjc-N4eW_dj-sX7jDdhI8JGtt_ZeQvW_PQB3D_uOVcXD-FLZJC-uPKOhXl3YQHbREII-vDdFUoMjtkssAnVwTQ-wc2n-ka1s5SOZQhiWcXaYvQfjLwedfMITsevPh1Okvh0AuqcqybxueC2zLjPbVGrNPggbFE6ba1FgCbLGqMKjKl57lTJU6e8qwKKWPTmVRBBi8cwmM6mfhuYLFKnuRU6eEQbvqqJ7AFhQ14hMiizagjJSn_GRl5xet7iq6H4AvVtSN-G9E1EpHoIL3r5y45R45-SB2SOXoqYsNsfs_mZiQvLZIX1litteSWlK9Pa5y4TuXK6Tgtb8yHsrIxp4vJcGOJlaw90yyHkvxn4Rurvo0JIhHvYk_9s9wzufng5Nu9en7x9Cve6SVgknO_AoJkv_S4inKbei3P4GtTn-fk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+fractional+integral+inequalities+of+Hermite-Hadamard-type+for+a+convex+function&rft.jtitle=Open+mathematics+%28Warsaw%2C+Poland%29&rft.au=Han%2C+Jiangfeng&rft.au=Pshtiwan+Othman+Mohammed&rft.au=Zeng%2C+Huidan&rft.date=2020-07-22&rft.pub=De+Gruyter+Poland&rft.eissn=2391-5455&rft.volume=18&rft.issue=1&rft.spage=794&rft.epage=806&rft_id=info:doi/10.1515%2Fmath-2020-0038 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2391-5455&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2391-5455&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2391-5455&client=summon |