TiO2-supported Au144 nanoclusters for enhanced sonocatalytic performance
The production of reactive oxygen species (ROS), such as hydroxyl radicals, by ultrasonic activation of semiconductor nanoparticles (NPs), including TiO2, has excellent potential for use in sonodynamic therapy and for the sonocatalytic degradation of pollutants. However, TiO2 NPs have limitations in...
Saved in:
Published in | The Journal of chemical physics Vol. 155; no. 12; pp. 124702 - 124710 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
28.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The production of reactive oxygen species (ROS), such as hydroxyl radicals, by ultrasonic activation of semiconductor nanoparticles (NPs), including TiO2, has excellent potential for use in sonodynamic therapy and for the sonocatalytic degradation of pollutants. However, TiO2 NPs have limitations including low yields of generated ROS that result from fast electron–hole recombination. In this study, we first investigated the sonocatalytic activity of TiO2-supported Au nanoclusters (NCs) (Au NCs/TiO2) by monitoring the production of hydroxyl radicals (•OH) under ultrasonication conditions. The deposition of Au144 NCs on TiO2 NPs was found to enhance sonocatalytic activity for •OH production by approximately a factor of 2. Electron–hole recombination in ultrasonically excited TiO2 NPs is suppressed by Au144 NCs acting as an electron trap; this charge separation resulted in enhanced •OH production. In contrast, the deposition of Au25 NCs on TiO2 NPs resulted in lower sonocatalytic activity due to less charge separation, which highlights the effectiveness of combining Au144 NCs with TiO2 NPs for enhancing sonocatalytic activity. The sonocatalytic action that forms electron–hole pairs on the Au144/TiO2 catalyst is due to both heat and sonoluminescence from the implosive collapse of cavitation bubbles. Consequently, the ultrasonically excited Au144 (3 wt. %)/TiO2 catalyst exhibited higher catalytic activity for the production of •OH because of less light shadowing effect, in contrast to the lower catalytic activity when irradiated with only external light. |
---|---|
AbstractList | The production of reactive oxygen species (ROS), such as hydroxyl radicals, by ultrasonic activation of semiconductor nanoparticles (NPs), including TiO2, has excellent potential for use in sonodynamic therapy and for the sonocatalytic degradation of pollutants. However, TiO2 NPs have limitations including low yields of generated ROS that result from fast electron–hole recombination. In this study, we first investigated the sonocatalytic activity of TiO2-supported Au nanoclusters (NCs) (Au NCs/TiO2) by monitoring the production of hydroxyl radicals (•OH) under ultrasonication conditions. The deposition of Au144 NCs on TiO2 NPs was found to enhance sonocatalytic activity for •OH production by approximately a factor of 2. Electron–hole recombination in ultrasonically excited TiO2 NPs is suppressed by Au144 NCs acting as an electron trap; this charge separation resulted in enhanced •OH production. In contrast, the deposition of Au25 NCs on TiO2 NPs resulted in lower sonocatalytic activity due to less charge separation, which highlights the effectiveness of combining Au144 NCs with TiO2 NPs for enhancing sonocatalytic activity. The sonocatalytic action that forms electron–hole pairs on the Au144/TiO2 catalyst is due to both heat and sonoluminescence from the implosive collapse of cavitation bubbles. Consequently, the ultrasonically excited Au144 (3 wt. %)/TiO2 catalyst exhibited higher catalytic activity for the production of •OH because of less light shadowing effect, in contrast to the lower catalytic activity when irradiated with only external light. The production of reactive oxygen species (ROS), such as hydroxyl radicals, by ultrasonic activation of semiconductor nanoparticles (NPs), including TiO2, has excellent potential for use in sonodynamic therapy and for the sonocatalytic degradation of pollutants. However, TiO2 NPs have limitations including low yields of generated ROS that result from fast electron–hole recombination. In this study, we first investigated the sonocatalytic activity of TiO2-supported Au nanoclusters (NCs) (Au NCs/TiO2) by monitoring the production of hydroxyl radicals (•OH) under ultrasonication conditions. The deposition of Au144 NCs on TiO2 NPs was found to enhance sonocatalytic activity for •OH production by approximately a factor of 2. Electron–hole recombination in ultrasonically excited TiO2 NPs is suppressed by Au144 NCs acting as an electron trap; this charge separation resulted in enhanced •OH production. In contrast, the deposition of Au25 NCs on TiO2 NPs resulted in lower sonocatalytic activity due to less charge separation, which highlights the effectiveness of combining Au144 NCs with TiO2 NPs for enhancing sonocatalytic activity. The sonocatalytic action that forms electron–hole pairs on the Au144/TiO2 catalyst is due to both heat and sonoluminescence from the implosive collapse of cavitation bubbles. Consequently, the ultrasonically excited Au144 (3 wt. %)/TiO2 catalyst exhibited higher catalytic activity for the production of •OH because of less light shadowing effect, in contrast to the lower catalytic activity when irradiated with only external light. The production of reactive oxygen species (ROS), such as hydroxyl radicals, by ultrasonic activation of semiconductor nanoparticles (NPs), including TiO2, has excellent potential for use in sonodynamic therapy and for the sonocatalytic degradation of pollutants. However, TiO2 NPs have limitations including low yields of generated ROS that result from fast electron-hole recombination. In this study, we first investigated the sonocatalytic activity of TiO2-supported Au nanoclusters (NCs) (Au NCs/TiO2) by monitoring the production of hydroxyl radicals (•OH) under ultrasonication conditions. The deposition of Au144 NCs on TiO2 NPs was found to enhance sonocatalytic activity for •OH production by approximately a factor of 2. Electron-hole recombination in ultrasonically excited TiO2 NPs is suppressed by Au144 NCs acting as an electron trap; this charge separation resulted in enhanced •OH production. In contrast, the deposition of Au25 NCs on TiO2 NPs resulted in lower sonocatalytic activity due to less charge separation, which highlights the effectiveness of combining Au144 NCs with TiO2 NPs for enhancing sonocatalytic activity. The sonocatalytic action that forms electron-hole pairs on the Au144/TiO2 catalyst is due to both heat and sonoluminescence from the implosive collapse of cavitation bubbles. Consequently, the ultrasonically excited Au144 (3 wt. %)/TiO2 catalyst exhibited higher catalytic activity for the production of •OH because of less light shadowing effect, in contrast to the lower catalytic activity when irradiated with only external light.The production of reactive oxygen species (ROS), such as hydroxyl radicals, by ultrasonic activation of semiconductor nanoparticles (NPs), including TiO2, has excellent potential for use in sonodynamic therapy and for the sonocatalytic degradation of pollutants. However, TiO2 NPs have limitations including low yields of generated ROS that result from fast electron-hole recombination. In this study, we first investigated the sonocatalytic activity of TiO2-supported Au nanoclusters (NCs) (Au NCs/TiO2) by monitoring the production of hydroxyl radicals (•OH) under ultrasonication conditions. The deposition of Au144 NCs on TiO2 NPs was found to enhance sonocatalytic activity for •OH production by approximately a factor of 2. Electron-hole recombination in ultrasonically excited TiO2 NPs is suppressed by Au144 NCs acting as an electron trap; this charge separation resulted in enhanced •OH production. In contrast, the deposition of Au25 NCs on TiO2 NPs resulted in lower sonocatalytic activity due to less charge separation, which highlights the effectiveness of combining Au144 NCs with TiO2 NPs for enhancing sonocatalytic activity. The sonocatalytic action that forms electron-hole pairs on the Au144/TiO2 catalyst is due to both heat and sonoluminescence from the implosive collapse of cavitation bubbles. Consequently, the ultrasonically excited Au144 (3 wt. %)/TiO2 catalyst exhibited higher catalytic activity for the production of •OH because of less light shadowing effect, in contrast to the lower catalytic activity when irradiated with only external light. |
Author | Yamamoto, Ken Inui, Ayaka Kawamura, Kouhei Ikeda, Atsuya Kawasaki, Hideya |
Author_xml | – sequence: 1 givenname: Kouhei surname: Kawamura fullname: Kawamura, Kouhei organization: Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University – sequence: 2 givenname: Atsuya surname: Ikeda fullname: Ikeda, Atsuya organization: Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University – sequence: 3 givenname: Ayaka surname: Inui fullname: Inui, Ayaka organization: Department of Pure and Applied Physics, The Faculty of Engineering Science, Kansai University – sequence: 4 givenname: Ken surname: Yamamoto fullname: Yamamoto, Ken organization: Department of Pure and Applied Physics, The Faculty of Engineering Science, Kansai University – sequence: 5 givenname: Hideya surname: Kawasaki fullname: Kawasaki, Hideya organization: Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University |
BookMark | eNp90EFLwzAUB_AgE9ymB79BwYsK3V6SNmmPY6gTBrvMc8nSBDu6pCapsG9vxibCUE_v8P-9x-M_QgNjjULoFsMEA6PTfAKQ5yWlF2iIoShTzkoYoCEAwWnJgF2hkfdbAMCcZEO0WDcrkvq-66wLqk5mPc6yxAhjZdv7oJxPtHWJMu_CyJh7GxMRRLsPjUw65WK6O0TX6FKL1qub0xyjt-en9XyRLlcvr_PZMpUZYSGtNcUaNKOEb2ReAC4FJpphrCjRJWUKFNX5hpc1rTlkmolMFlRLWpM6moKO0f3xbufsR698qHaNl6pthVG29xXJecE5YxRHendGt7Z3Jn53UDnOMONlVA9HJZ313ildda7ZCbevMFSHTqu8OnUa7fTMyiaI0FgTnGjaXzcejxv-W_57_k_8ad0PrLpY4xfNHJUA |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_2c05404 crossref_primary_10_1039_D3CS00862B crossref_primary_10_1016_j_inoche_2024_113269 crossref_primary_10_1063_5_0095770 crossref_primary_10_1016_j_ultsonch_2023_106630 crossref_primary_10_1002_smll_202311228 crossref_primary_10_1016_j_matchemphys_2023_128844 |
Cites_doi | 10.1126/science.247.4949.1439 10.1021/jacs.5b11174 10.1007/s11426-011-4292-0 10.1002/anie.201906823 10.1007/s12274-020-2992-5 10.1038/18842 10.1016/j.apcatb.2015.02.012 10.1252/jcej.07we234 10.1021/acs.chemrev.0c00495 10.1021/acs.chemrev.6b00769 10.1016/j.cattod.2014.07.040 10.1016/j.ultsonch.2019.02.026 10.1021/acs.jpclett.7b01892 10.1016/j.ultsonch.2006.04.002 10.1016/j.jhazmat.2006.03.022 10.1021/acs.chemrev.8b00726 10.1080/00018738400101711 10.1038/scientificamerican0289-80 10.1021/acs.iecr.9b04581 10.1039/C9NA00583H 10.1021/jz2013352 10.5402/2011/261219 10.1016/j.ultsonch.2004.05.002 10.1021/ja9844635 10.1021/ie9804172 10.1021/ja071329o 10.1063/1.1784553 10.1002/tcr.202100001 10.1021/acs.jpcc.9b06849 10.1021/acs.chemmater.9b03430 10.1103/PhysRevLett.75.2602 10.1021/acs.langmuir.6b02842 10.1002/adma.201004494 10.1021/acs.accounts.8b00383 10.1002/adma.201905488 10.1021/es800168k 10.1016/j.ultsonch.2018.03.003 10.1021/jz401447w 10.1111/j.1349-7006.1989.tb02295.x 10.1038/nature00895 10.1016/j.jclepro.2018.08.165 10.1021/ie0601504 10.7567/JJAP.56.07JA01 10.1016/j.addr.2008.03.009 10.1021/acsami.5b09987 10.1021/acs.nanolett.6b02547 10.1021/acsomega.8b02615 10.1103/PhysRevLett.80.1090 10.1002/smll.201200071 10.1016/j.ultsonch.2011.11.013 10.1016/j.ultsonch.2012.08.005 |
ContentType | Journal Article |
Copyright | Author(s) 2021 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2021 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M 7X8 |
DOI | 10.1063/5.0055933 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | CrossRef Technology Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 10_1063_5_0055933 jcp |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 19K10102; 19H02564 funderid: https://doi.org/10.13039/501100001691 |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M 7X8 |
ID | FETCH-LOGICAL-c426t-df31f0f6327bc58019a12f611e32f936e0e3f5b79d3d704f6a4c83fc3d2d1e383 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Thu Jul 10 18:42:19 EDT 2025 Mon Jun 30 04:36:27 EDT 2025 Tue Jul 01 00:27:53 EDT 2025 Thu Apr 24 23:07:11 EDT 2025 Fri Jun 21 00:14:05 EDT 2024 Thu Jun 23 13:36:42 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c426t-df31f0f6327bc58019a12f611e32f936e0e3f5b79d3d704f6a4c83fc3d2d1e383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2713-2057 |
PQID | 2575141679 |
PQPubID | 2050685 |
PageCount | 9 |
ParticipantIDs | scitation_primary_10_1063_5_0055933 proquest_journals_2575141679 crossref_primary_10_1063_5_0055933 crossref_citationtrail_10_1063_5_0055933 proquest_miscellaneous_2578776631 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-28 |
PublicationDateYYYYMMDD | 2021-09-28 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationYear | 2021 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Chakraborty, Pradeep (c27) 2017; 117 Higaki (c28) 2018; 51 Han (c44) 2016; 8 Lin (c4) 2020; 59 Ziylan-Yavas (c21) 2015; 172-173 Shi (c33) 2021; 21 Bo (c19) 2011; 54 Kawawaki (c30) 2020; 2 Wang (c14) 2006; 137 Matula (c41) 1995; 75 Suslick (c6) 1989; 260 Jin (c32) 2021; 121 Hilgenfeldt (c40) 1999; 398 Lee (c48) 2011; 2 Kakavandia (c25) 2019; 55 Walton, Reynolds (c11) 1984; 33 Yu (c49) 2013; 4 Du (c29) 2019; 120 Choi (c12) 2017; 56 Deepagan (c22) 2016; 16 Kim, Lee (c43) 2007; 129 Wang (c18) 2008; 42 Matsumoto (c46) 2008; 41 Suslick (c7) 1990; 247 Wu, Nyborg (c10) 2008; 60 Didenko, Suslick (c9) 2002; 418 Sahni (c36) 2006; 45 Kawamura (c37) 2019; 123 Skorb (c47) 2016; 32 Bertorelle (c35) 2018; 3 Shimizu (c15) 2007; 14 Zhu (c20) 2013; 20 Li (c31) 2020; 32 Osorio-Vargas (c39) 2012; 19 Abbas (c50) 2016; 138 Hiller (c42) 1998; 80 Shchukin (c38) 2011; 23 Chavea (c23) 2015; 241 Kwak (c51) 2017; 8 Sousa (c34) 2012; 8 Didenko (c8) 1999; 121 Xu (c5) 2020; 13 Cao (c26) 2019; 31 Qiu (c24) 2018; 45 Tan (c52); 2011 Yumita (c3) 1989; 80 Mizuguchi (c45) 2004; 96 Thompson (c2) 1999; 38 Kung (c17) 2019; 58 Wang (c13) 2004; 12 Sadeghi Rad (c16) 2018; 202 (2023062618323498200_c18) 2008; 42 (2023062618323498200_c51) 2017; 8 (2023062618323498200_c16) 2018; 202 (2023062618323498200_c35) 2018; 3 (2023062618323498200_c12) 2017; 56 (2023062618323498200_c33) 2021; 21 (2023062618323498200_c29) 2019; 120 (2023062618323498200_c11) 1984; 33 (2023062618323498200_c4) 2020; 59 (2023062618323498200_c38) 2011; 23 (2023062618323498200_c15) 2007; 14 (2023062618323498200_c47) 2016; 32 (2023062618323498200_c25) 2019; 55 (2023062618323498200_c21) 2015; 172-173 (2023062618323498200_c31) 2020; 32 (2023062618323498200_c13) 2004; 12 (2023062618323498200_c37) 2019; 123 (2023062618323498200_c43) 2007; 129 (2023062618323498200_c5) 2020; 13 (2023062618323498200_c19) 2011; 54 (2023062618323498200_c36) 2006; 45 (2023062618323498200_c48) 2011; 2 (2023062618323498200_c3) 1989; 80 (2023062618323498200_c40) 1999; 398 (2023062618323498200_c32) 2021; 121 (2023062618323498200_c20) 2013; 20 (2023062618323498200_c42) 1998; 80 (2023062618323498200_c45) 2004; 96 (2023062618323498200_c9) 2002; 418 (2023062618323498200_c28) 2018; 51 (2023062618323498200_c44) 2016; 8 (2023062618323498200_c23) 2015; 241 (2023062618323498200_c30) 2020; 2 (2023062618323498200_c22) 2016; 16 (2023062618323498200_c26) 2019; 31 (2023062618323498200_c52); 2011 (2023062618323498200_c24) 2018; 45 (2023062618323498200_c14) 2006; 137 (2023062618323498200_c10) 2008; 60 (2023062618323498200_c39) 2012; 19 (2023062618323498200_c17) 2019; 58 (2023062618323498200_c49) 2013; 4 (2023062618323498200_c46) 2008; 41 (2023062618323498200_c6) 1989; 260 (2023062618323498200_c34) 2012; 8 (2023062618323498200_c8) 1999; 121 (2023062618323498200_c2) 1999; 38 (2023062618323498200_c27) 2017; 117 2023062618323498200_c1 (2023062618323498200_c41) 1995; 75 (2023062618323498200_c50) 2016; 138 (2023062618323498200_c7) 1990; 247 |
References_xml | – volume: 202 start-page: 53 year: 2018 ident: c16 publication-title: J. Cleaner Prod. – volume: 120 start-page: 526 year: 2019 ident: c29 publication-title: Chem. Rev. – volume: 137 start-page: 972 year: 2006 ident: c14 publication-title: J. Hazard. Mater. – volume: 398 start-page: 402 year: 1999 ident: c40 publication-title: Nature – volume: 19 start-page: 383 year: 2012 ident: c39 publication-title: Ultrason. Sonochem. – volume: 117 start-page: 8208 year: 2017 ident: c27 publication-title: Chem. Rev. – volume: 45 start-page: 29 year: 2018 ident: c24 publication-title: Ultrason. Sonochem. – volume: 21 start-page: 879 year: 2021 ident: c33 publication-title: Chem. Rec. – volume: 3 start-page: 15635 year: 2018 ident: c35 publication-title: ACS Omega – volume: 32 start-page: 11072 year: 2016 ident: c47 publication-title: Langmuir – volume: 23 start-page: 1922 year: 2011 ident: c38 publication-title: Adv. Mater. – volume: 56 start-page: 07JA01 year: 2017 ident: c12 publication-title: Jpn. J. Appl. Phys., Part 1 – volume: 14 start-page: 184 year: 2007 ident: c15 publication-title: Ultrason. Sonochem. – volume: 123 start-page: 26644 year: 2019 ident: c37 publication-title: J. Phys. Chem. C – volume: 260 start-page: 80 year: 1989 ident: c6 publication-title: Sci. Am. – volume: 51 start-page: 2764 year: 2018 ident: c28 publication-title: Acc. Chem. Res. – volume: 55 start-page: 75 year: 2019 ident: c25 publication-title: Ultrason. Sonochem. – volume: 75 start-page: 2602 year: 1995 ident: c41 publication-title: Phys. Rev. Lett. – volume: 80 start-page: 1090 year: 1998 ident: c42 publication-title: Phys. Rev. Lett. – volume: 418 start-page: 394 year: 2002 ident: c9 publication-title: Nature – volume: 8 start-page: 1067 year: 2016 ident: c44 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 2840 year: 2011 ident: c48 publication-title: J. Phys. Chem. Lett. – volume: 31 start-page: 9105 year: 2019 ident: c26 publication-title: Chem. Mater. – volume: 59 start-page: 14212 year: 2020 ident: c4 publication-title: Angew. Chem., Int. Ed. – volume: 38 start-page: 1215 year: 1999 ident: c2 publication-title: Ind. Eng. Chem. Res. – volume: 13 start-page: 2898 year: 2020 ident: c5 publication-title: Nano Res. – volume: 96 start-page: 3514 year: 2004 ident: c45 publication-title: J. Appl. Phys. – volume: 80 start-page: 219 year: 1989 ident: c3 publication-title: Jpn. J. Cancer Res. – volume: 12 start-page: 331 year: 2004 ident: c13 publication-title: Ultrason. Sonochem. – volume: 8 start-page: 4898 year: 2017 ident: c51 publication-title: J. Phys. Chem. Lett. – volume: 121 start-page: 567 year: 2021 ident: c32 publication-title: Chem. Rev. – volume: 121 start-page: 5817 year: 1999 ident: c8 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 17325 year: 2019 ident: c17 publication-title: Ind. Eng. Chem. Res. – volume: 138 start-page: 390 year: 2016 ident: c50 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 887 year: 2011 ident: c19 publication-title: Sci. China: Chem. – volume: 45 start-page: 5819 year: 2006 ident: c36 publication-title: Ind. Eng. Chem. Res. – volume: 32 start-page: 1905488 year: 2020 ident: c31 publication-title: Adv. Mater. – volume: 4 start-page: 2847 year: 2013 ident: c49 publication-title: J. Phys. Chem. Lett. – volume: 2011 start-page: 261219 ident: c52 publication-title: ISRN Mater. Sci. – volume: 41 start-page: 57 year: 2008 ident: c46 publication-title: J. Chem. Eng. Jpn. – volume: 8 start-page: 2277 year: 2012 ident: c34 publication-title: Small – volume: 60 start-page: 1103 year: 2008 ident: c10 publication-title: Adv. Drug Delivery Rev. – volume: 42 start-page: 6173 year: 2008 ident: c18 publication-title: Environ. Sci. Technol. – volume: 129 start-page: 7706 year: 2007 ident: c43 publication-title: J. Am. Chem. Soc. – volume: 247 start-page: 1439 year: 1990 ident: c7 publication-title: Science – volume: 172-173 start-page: 7 year: 2015 ident: c21 publication-title: Appl. Catal., B – volume: 2 start-page: 17 year: 2020 ident: c30 publication-title: Nanoscale Adv. – volume: 33 start-page: 595 year: 1984 ident: c11 publication-title: Adv. Phys. – volume: 16 start-page: 6257 year: 2016 ident: c22 publication-title: Nano Lett. – volume: 20 start-page: 478 year: 2013 ident: c20 publication-title: Ultrason. Sonochem. – volume: 241 start-page: 55 year: 2015 ident: c23 publication-title: Catal. Today – volume: 247 start-page: 1439 issue: 4949 year: 1990 ident: 2023062618323498200_c7 publication-title: Science doi: 10.1126/science.247.4949.1439 – volume: 138 start-page: 390 issue: 1 year: 2016 ident: 2023062618323498200_c50 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11174 – volume: 54 start-page: 887 year: 2011 ident: 2023062618323498200_c19 publication-title: Sci. China: Chem. doi: 10.1007/s11426-011-4292-0 – volume: 59 start-page: 14212 year: 2020 ident: 2023062618323498200_c4 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201906823 – volume: 13 start-page: 2898 year: 2020 ident: 2023062618323498200_c5 publication-title: Nano Res. doi: 10.1007/s12274-020-2992-5 – volume: 398 start-page: 402 year: 1999 ident: 2023062618323498200_c40 publication-title: Nature doi: 10.1038/18842 – volume: 172-173 start-page: 7 year: 2015 ident: 2023062618323498200_c21 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2015.02.012 – volume: 41 start-page: 57 year: 2008 ident: 2023062618323498200_c46 publication-title: J. Chem. Eng. Jpn. doi: 10.1252/jcej.07we234 – volume: 121 start-page: 567 year: 2021 ident: 2023062618323498200_c32 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00495 – volume: 117 start-page: 8208 year: 2017 ident: 2023062618323498200_c27 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00769 – volume: 241 start-page: 55 year: 2015 ident: 2023062618323498200_c23 publication-title: Catal. Today doi: 10.1016/j.cattod.2014.07.040 – volume: 55 start-page: 75 year: 2019 ident: 2023062618323498200_c25 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2019.02.026 – volume: 8 start-page: 4898 year: 2017 ident: 2023062618323498200_c51 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b01892 – volume: 14 start-page: 184 year: 2007 ident: 2023062618323498200_c15 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2006.04.002 – volume: 137 start-page: 972 year: 2006 ident: 2023062618323498200_c14 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2006.03.022 – volume: 120 start-page: 526 year: 2019 ident: 2023062618323498200_c29 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00726 – volume: 33 start-page: 595 issue: 6 year: 1984 ident: 2023062618323498200_c11 publication-title: Adv. Phys. doi: 10.1080/00018738400101711 – volume: 260 start-page: 80 year: 1989 ident: 2023062618323498200_c6 publication-title: Sci. Am. doi: 10.1038/scientificamerican0289-80 – volume: 58 start-page: 17325 year: 2019 ident: 2023062618323498200_c17 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b04581 – volume: 2 start-page: 17 year: 2020 ident: 2023062618323498200_c30 publication-title: Nanoscale Adv. doi: 10.1039/C9NA00583H – volume: 2 start-page: 2840 year: 2011 ident: 2023062618323498200_c48 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz2013352 – volume: 2011 start-page: 261219 ident: 2023062618323498200_c52 publication-title: ISRN Mater. Sci. doi: 10.5402/2011/261219 – volume: 12 start-page: 331 year: 2004 ident: 2023062618323498200_c13 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2004.05.002 – volume: 121 start-page: 5817 year: 1999 ident: 2023062618323498200_c8 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9844635 – volume: 38 start-page: 1215 year: 1999 ident: 2023062618323498200_c2 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9804172 – volume: 129 start-page: 7706 year: 2007 ident: 2023062618323498200_c43 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja071329o – volume: 96 start-page: 3514 year: 2004 ident: 2023062618323498200_c45 publication-title: J. Appl. Phys. doi: 10.1063/1.1784553 – volume: 21 start-page: 879 year: 2021 ident: 2023062618323498200_c33 publication-title: Chem. Rec. doi: 10.1002/tcr.202100001 – volume: 123 start-page: 26644 year: 2019 ident: 2023062618323498200_c37 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b06849 – volume: 31 start-page: 9105 year: 2019 ident: 2023062618323498200_c26 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b03430 – volume: 75 start-page: 2602 year: 1995 ident: 2023062618323498200_c41 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.2602 – volume: 32 start-page: 11072 year: 2016 ident: 2023062618323498200_c47 publication-title: Langmuir doi: 10.1021/acs.langmuir.6b02842 – volume: 23 start-page: 1922 year: 2011 ident: 2023062618323498200_c38 publication-title: Adv. Mater. doi: 10.1002/adma.201004494 – volume: 51 start-page: 2764 year: 2018 ident: 2023062618323498200_c28 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00383 – volume: 32 start-page: 1905488 year: 2020 ident: 2023062618323498200_c31 publication-title: Adv. Mater. doi: 10.1002/adma.201905488 – volume: 42 start-page: 6173 year: 2008 ident: 2023062618323498200_c18 publication-title: Environ. Sci. Technol. doi: 10.1021/es800168k – volume: 45 start-page: 29 year: 2018 ident: 2023062618323498200_c24 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2018.03.003 – volume-title: Handbook of Ultrasonics and Sonochemistry ident: 2023062618323498200_c1 – volume: 4 start-page: 2847 year: 2013 ident: 2023062618323498200_c49 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz401447w – volume: 80 start-page: 219 year: 1989 ident: 2023062618323498200_c3 publication-title: Jpn. J. Cancer Res. doi: 10.1111/j.1349-7006.1989.tb02295.x – volume: 418 start-page: 394 year: 2002 ident: 2023062618323498200_c9 publication-title: Nature doi: 10.1038/nature00895 – volume: 202 start-page: 53 year: 2018 ident: 2023062618323498200_c16 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2018.08.165 – volume: 45 start-page: 5819 year: 2006 ident: 2023062618323498200_c36 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0601504 – volume: 56 start-page: 07JA01 year: 2017 ident: 2023062618323498200_c12 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.7567/JJAP.56.07JA01 – volume: 60 start-page: 1103 year: 2008 ident: 2023062618323498200_c10 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2008.03.009 – volume: 8 start-page: 1067 year: 2016 ident: 2023062618323498200_c44 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b09987 – volume: 16 start-page: 6257 year: 2016 ident: 2023062618323498200_c22 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b02547 – volume: 3 start-page: 15635 year: 2018 ident: 2023062618323498200_c35 publication-title: ACS Omega doi: 10.1021/acsomega.8b02615 – volume: 80 start-page: 1090 year: 1998 ident: 2023062618323498200_c42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.1090 – volume: 8 start-page: 2277 year: 2012 ident: 2023062618323498200_c34 publication-title: Small doi: 10.1002/smll.201200071 – volume: 19 start-page: 383 year: 2012 ident: 2023062618323498200_c39 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2011.11.013 – volume: 20 start-page: 478 year: 2013 ident: 2023062618323498200_c20 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2012.08.005 |
SSID | ssj0001724 |
Score | 2.4161425 |
Snippet | The production of reactive oxygen species (ROS), such as hydroxyl radicals, by ultrasonic activation of semiconductor nanoparticles (NPs), including TiO2, has... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 124702 |
SubjectTerms | Catalysts Catalytic activity Cavitation Deposition Electrons Hydroxyl radicals Nanoclusters Nanoparticles Pollutants Separation Sonoluminescence Titanium dioxide |
Title | TiO2-supported Au144 nanoclusters for enhanced sonocatalytic performance |
URI | http://dx.doi.org/10.1063/5.0055933 https://www.proquest.com/docview/2575141679 https://www.proquest.com/docview/2578776631 |
Volume | 155 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLWgExovEwwQZQOFjwekKJDY-XyMxqYC3YZEK5WnyHFsrdqWVG0CKr-e6zhxEqmagJeocq5S694T5_ja9xihd2HIgBSQyOLCk9kq17aox7AVEUEwd73UrpWYzi_8ydz9svAWXe1JXV1Sph_Y7511Jf8TVWiDuMoq2X-IrH4oNMBviC9cIcJw_bsYLy-xtalWtTh5ZsYVzFvMnOYFu6mkAMJGCXrnV2qZH6h1UadrtlKlddWVDPQZalcrVrNU1goKqBRIt_RDf9Hbak3Nr0V1xZcaYdc8o2ZcbqqtHu8_59XSjLf0Wrf8oLcUIFI0hUH9zAN25DaJppK72-xP8-G2hm-93rT1Ao4l50nqi6OGWTuMrMBXB4XqcVjp9baAwzsHeGBUEBWZB4OpkJLQGIpoX1wmZ_PpNJmdLmb30R6G2QMeob340_n0u_5EA2tr5LlV11rJKZ981I8eEpVu9rEP1ETtkugRkdkjdNDExogVHB6jezw_RPsn7cF9h-hB45wnaDIEiFEDxOgDxAAIGC1AjAFAjB5AnqL52ensZGI1R2dYDChXaWWCOMIWPsFByjxgIRF1sPAdhxMsIuJzmxPhpUGUkSywXeFTl4VEMJLhDGxC8gyN8iLnz5Hh8kzmGJjtMd-1XSCQBNMwDFOMpaUzRu9bPyWtZ-TxJjdJvb_BJ4mXNC4dozfadKXEVHYZHbfOTpp3bZNguTzoyiXDMXqtb4Nf5fIWzXlR1TZhEACDhi691UG66492WP0s1p1FssrEi7u7c4Qedq_GMRqV64q_BJpapq8a0P0BQSWTuw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TiO2-supported+Au144+nanoclusters+for+enhanced+sonocatalytic+performance&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Kawamura+Kouhei&rft.au=Ikeda+Atsuya&rft.au=Inui+Ayaka&rft.au=Yamamoto%2C+Ken&rft.date=2021-09-28&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=155&rft.issue=12&rft_id=info:doi/10.1063%2F5.0055933&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |