TiO2-supported Au144 nanoclusters for enhanced sonocatalytic performance

The production of reactive oxygen species (ROS), such as hydroxyl radicals, by ultrasonic activation of semiconductor nanoparticles (NPs), including TiO2, has excellent potential for use in sonodynamic therapy and for the sonocatalytic degradation of pollutants. However, TiO2 NPs have limitations in...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 155; no. 12; pp. 124702 - 124710
Main Authors Kawamura, Kouhei, Ikeda, Atsuya, Inui, Ayaka, Yamamoto, Ken, Kawasaki, Hideya
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 28.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The production of reactive oxygen species (ROS), such as hydroxyl radicals, by ultrasonic activation of semiconductor nanoparticles (NPs), including TiO2, has excellent potential for use in sonodynamic therapy and for the sonocatalytic degradation of pollutants. However, TiO2 NPs have limitations including low yields of generated ROS that result from fast electron–hole recombination. In this study, we first investigated the sonocatalytic activity of TiO2-supported Au nanoclusters (NCs) (Au NCs/TiO2) by monitoring the production of hydroxyl radicals (•OH) under ultrasonication conditions. The deposition of Au144 NCs on TiO2 NPs was found to enhance sonocatalytic activity for •OH production by approximately a factor of 2. Electron–hole recombination in ultrasonically excited TiO2 NPs is suppressed by Au144 NCs acting as an electron trap; this charge separation resulted in enhanced •OH production. In contrast, the deposition of Au25 NCs on TiO2 NPs resulted in lower sonocatalytic activity due to less charge separation, which highlights the effectiveness of combining Au144 NCs with TiO2 NPs for enhancing sonocatalytic activity. The sonocatalytic action that forms electron–hole pairs on the Au144/TiO2 catalyst is due to both heat and sonoluminescence from the implosive collapse of cavitation bubbles. Consequently, the ultrasonically excited Au144 (3 wt. %)/TiO2 catalyst exhibited higher catalytic activity for the production of •OH because of less light shadowing effect, in contrast to the lower catalytic activity when irradiated with only external light.
AbstractList The production of reactive oxygen species (ROS), such as hydroxyl radicals, by ultrasonic activation of semiconductor nanoparticles (NPs), including TiO2, has excellent potential for use in sonodynamic therapy and for the sonocatalytic degradation of pollutants. However, TiO2 NPs have limitations including low yields of generated ROS that result from fast electron–hole recombination. In this study, we first investigated the sonocatalytic activity of TiO2-supported Au nanoclusters (NCs) (Au NCs/TiO2) by monitoring the production of hydroxyl radicals (•OH) under ultrasonication conditions. The deposition of Au144 NCs on TiO2 NPs was found to enhance sonocatalytic activity for •OH production by approximately a factor of 2. Electron–hole recombination in ultrasonically excited TiO2 NPs is suppressed by Au144 NCs acting as an electron trap; this charge separation resulted in enhanced •OH production. In contrast, the deposition of Au25 NCs on TiO2 NPs resulted in lower sonocatalytic activity due to less charge separation, which highlights the effectiveness of combining Au144 NCs with TiO2 NPs for enhancing sonocatalytic activity. The sonocatalytic action that forms electron–hole pairs on the Au144/TiO2 catalyst is due to both heat and sonoluminescence from the implosive collapse of cavitation bubbles. Consequently, the ultrasonically excited Au144 (3 wt. %)/TiO2 catalyst exhibited higher catalytic activity for the production of •OH because of less light shadowing effect, in contrast to the lower catalytic activity when irradiated with only external light.
The production of reactive oxygen species (ROS), such as hydroxyl radicals, by ultrasonic activation of semiconductor nanoparticles (NPs), including TiO2, has excellent potential for use in sonodynamic therapy and for the sonocatalytic degradation of pollutants. However, TiO2 NPs have limitations including low yields of generated ROS that result from fast electron–hole recombination. In this study, we first investigated the sonocatalytic activity of TiO2-supported Au nanoclusters (NCs) (Au NCs/TiO2) by monitoring the production of hydroxyl radicals (•OH) under ultrasonication conditions. The deposition of Au144 NCs on TiO2 NPs was found to enhance sonocatalytic activity for •OH production by approximately a factor of 2. Electron–hole recombination in ultrasonically excited TiO2 NPs is suppressed by Au144 NCs acting as an electron trap; this charge separation resulted in enhanced •OH production. In contrast, the deposition of Au25 NCs on TiO2 NPs resulted in lower sonocatalytic activity due to less charge separation, which highlights the effectiveness of combining Au144 NCs with TiO2 NPs for enhancing sonocatalytic activity. The sonocatalytic action that forms electron–hole pairs on the Au144/TiO2 catalyst is due to both heat and sonoluminescence from the implosive collapse of cavitation bubbles. Consequently, the ultrasonically excited Au144 (3 wt. %)/TiO2 catalyst exhibited higher catalytic activity for the production of •OH because of less light shadowing effect, in contrast to the lower catalytic activity when irradiated with only external light.
The production of reactive oxygen species (ROS), such as hydroxyl radicals, by ultrasonic activation of semiconductor nanoparticles (NPs), including TiO2, has excellent potential for use in sonodynamic therapy and for the sonocatalytic degradation of pollutants. However, TiO2 NPs have limitations including low yields of generated ROS that result from fast electron-hole recombination. In this study, we first investigated the sonocatalytic activity of TiO2-supported Au nanoclusters (NCs) (Au NCs/TiO2) by monitoring the production of hydroxyl radicals (•OH) under ultrasonication conditions. The deposition of Au144 NCs on TiO2 NPs was found to enhance sonocatalytic activity for •OH production by approximately a factor of 2. Electron-hole recombination in ultrasonically excited TiO2 NPs is suppressed by Au144 NCs acting as an electron trap; this charge separation resulted in enhanced •OH production. In contrast, the deposition of Au25 NCs on TiO2 NPs resulted in lower sonocatalytic activity due to less charge separation, which highlights the effectiveness of combining Au144 NCs with TiO2 NPs for enhancing sonocatalytic activity. The sonocatalytic action that forms electron-hole pairs on the Au144/TiO2 catalyst is due to both heat and sonoluminescence from the implosive collapse of cavitation bubbles. Consequently, the ultrasonically excited Au144 (3 wt. %)/TiO2 catalyst exhibited higher catalytic activity for the production of •OH because of less light shadowing effect, in contrast to the lower catalytic activity when irradiated with only external light.The production of reactive oxygen species (ROS), such as hydroxyl radicals, by ultrasonic activation of semiconductor nanoparticles (NPs), including TiO2, has excellent potential for use in sonodynamic therapy and for the sonocatalytic degradation of pollutants. However, TiO2 NPs have limitations including low yields of generated ROS that result from fast electron-hole recombination. In this study, we first investigated the sonocatalytic activity of TiO2-supported Au nanoclusters (NCs) (Au NCs/TiO2) by monitoring the production of hydroxyl radicals (•OH) under ultrasonication conditions. The deposition of Au144 NCs on TiO2 NPs was found to enhance sonocatalytic activity for •OH production by approximately a factor of 2. Electron-hole recombination in ultrasonically excited TiO2 NPs is suppressed by Au144 NCs acting as an electron trap; this charge separation resulted in enhanced •OH production. In contrast, the deposition of Au25 NCs on TiO2 NPs resulted in lower sonocatalytic activity due to less charge separation, which highlights the effectiveness of combining Au144 NCs with TiO2 NPs for enhancing sonocatalytic activity. The sonocatalytic action that forms electron-hole pairs on the Au144/TiO2 catalyst is due to both heat and sonoluminescence from the implosive collapse of cavitation bubbles. Consequently, the ultrasonically excited Au144 (3 wt. %)/TiO2 catalyst exhibited higher catalytic activity for the production of •OH because of less light shadowing effect, in contrast to the lower catalytic activity when irradiated with only external light.
Author Yamamoto, Ken
Inui, Ayaka
Kawamura, Kouhei
Ikeda, Atsuya
Kawasaki, Hideya
Author_xml – sequence: 1
  givenname: Kouhei
  surname: Kawamura
  fullname: Kawamura, Kouhei
  organization: Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University
– sequence: 2
  givenname: Atsuya
  surname: Ikeda
  fullname: Ikeda, Atsuya
  organization: Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University
– sequence: 3
  givenname: Ayaka
  surname: Inui
  fullname: Inui, Ayaka
  organization: Department of Pure and Applied Physics, The Faculty of Engineering Science, Kansai University
– sequence: 4
  givenname: Ken
  surname: Yamamoto
  fullname: Yamamoto, Ken
  organization: Department of Pure and Applied Physics, The Faculty of Engineering Science, Kansai University
– sequence: 5
  givenname: Hideya
  surname: Kawasaki
  fullname: Kawasaki, Hideya
  organization: Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University
BookMark eNp90EFLwzAUB_AgE9ymB79BwYsK3V6SNmmPY6gTBrvMc8nSBDu6pCapsG9vxibCUE_v8P-9x-M_QgNjjULoFsMEA6PTfAKQ5yWlF2iIoShTzkoYoCEAwWnJgF2hkfdbAMCcZEO0WDcrkvq-66wLqk5mPc6yxAhjZdv7oJxPtHWJMu_CyJh7GxMRRLsPjUw65WK6O0TX6FKL1qub0xyjt-en9XyRLlcvr_PZMpUZYSGtNcUaNKOEb2ReAC4FJpphrCjRJWUKFNX5hpc1rTlkmolMFlRLWpM6moKO0f3xbufsR698qHaNl6pthVG29xXJecE5YxRHendGt7Z3Jn53UDnOMONlVA9HJZ313ildda7ZCbevMFSHTqu8OnUa7fTMyiaI0FgTnGjaXzcejxv-W_57_k_8ad0PrLpY4xfNHJUA
CODEN JCPSA6
CitedBy_id crossref_primary_10_1021_acs_jpcc_2c05404
crossref_primary_10_1039_D3CS00862B
crossref_primary_10_1016_j_inoche_2024_113269
crossref_primary_10_1063_5_0095770
crossref_primary_10_1016_j_ultsonch_2023_106630
crossref_primary_10_1002_smll_202311228
crossref_primary_10_1016_j_matchemphys_2023_128844
Cites_doi 10.1126/science.247.4949.1439
10.1021/jacs.5b11174
10.1007/s11426-011-4292-0
10.1002/anie.201906823
10.1007/s12274-020-2992-5
10.1038/18842
10.1016/j.apcatb.2015.02.012
10.1252/jcej.07we234
10.1021/acs.chemrev.0c00495
10.1021/acs.chemrev.6b00769
10.1016/j.cattod.2014.07.040
10.1016/j.ultsonch.2019.02.026
10.1021/acs.jpclett.7b01892
10.1016/j.ultsonch.2006.04.002
10.1016/j.jhazmat.2006.03.022
10.1021/acs.chemrev.8b00726
10.1080/00018738400101711
10.1038/scientificamerican0289-80
10.1021/acs.iecr.9b04581
10.1039/C9NA00583H
10.1021/jz2013352
10.5402/2011/261219
10.1016/j.ultsonch.2004.05.002
10.1021/ja9844635
10.1021/ie9804172
10.1021/ja071329o
10.1063/1.1784553
10.1002/tcr.202100001
10.1021/acs.jpcc.9b06849
10.1021/acs.chemmater.9b03430
10.1103/PhysRevLett.75.2602
10.1021/acs.langmuir.6b02842
10.1002/adma.201004494
10.1021/acs.accounts.8b00383
10.1002/adma.201905488
10.1021/es800168k
10.1016/j.ultsonch.2018.03.003
10.1021/jz401447w
10.1111/j.1349-7006.1989.tb02295.x
10.1038/nature00895
10.1016/j.jclepro.2018.08.165
10.1021/ie0601504
10.7567/JJAP.56.07JA01
10.1016/j.addr.2008.03.009
10.1021/acsami.5b09987
10.1021/acs.nanolett.6b02547
10.1021/acsomega.8b02615
10.1103/PhysRevLett.80.1090
10.1002/smll.201200071
10.1016/j.ultsonch.2011.11.013
10.1016/j.ultsonch.2012.08.005
ContentType Journal Article
Copyright Author(s)
2021 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2021 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
7X8
DOI 10.1063/5.0055933
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList CrossRef
Technology Research Database
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 10_1063_5_0055933
jcp
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: 19K10102; 19H02564
  funderid: https://doi.org/10.13039/501100001691
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c426t-df31f0f6327bc58019a12f611e32f936e0e3f5b79d3d704f6a4c83fc3d2d1e383
ISSN 0021-9606
1089-7690
IngestDate Thu Jul 10 18:42:19 EDT 2025
Mon Jun 30 04:36:27 EDT 2025
Tue Jul 01 00:27:53 EDT 2025
Thu Apr 24 23:07:11 EDT 2025
Fri Jun 21 00:14:05 EDT 2024
Thu Jun 23 13:36:42 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c426t-df31f0f6327bc58019a12f611e32f936e0e3f5b79d3d704f6a4c83fc3d2d1e383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2713-2057
PQID 2575141679
PQPubID 2050685
PageCount 9
ParticipantIDs scitation_primary_10_1063_5_0055933
proquest_journals_2575141679
crossref_primary_10_1063_5_0055933
crossref_citationtrail_10_1063_5_0055933
proquest_miscellaneous_2578776631
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-28
PublicationDateYYYYMMDD 2021-09-28
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-28
  day: 28
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle The Journal of chemical physics
PublicationYear 2021
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Chakraborty, Pradeep (c27) 2017; 117
Higaki (c28) 2018; 51
Han (c44) 2016; 8
Lin (c4) 2020; 59
Ziylan-Yavas (c21) 2015; 172-173
Shi (c33) 2021; 21
Bo (c19) 2011; 54
Kawawaki (c30) 2020; 2
Wang (c14) 2006; 137
Matula (c41) 1995; 75
Suslick (c6) 1989; 260
Jin (c32) 2021; 121
Hilgenfeldt (c40) 1999; 398
Lee (c48) 2011; 2
Kakavandia (c25) 2019; 55
Walton, Reynolds (c11) 1984; 33
Yu (c49) 2013; 4
Du (c29) 2019; 120
Choi (c12) 2017; 56
Deepagan (c22) 2016; 16
Kim, Lee (c43) 2007; 129
Wang (c18) 2008; 42
Matsumoto (c46) 2008; 41
Suslick (c7) 1990; 247
Wu, Nyborg (c10) 2008; 60
Didenko, Suslick (c9) 2002; 418
Sahni (c36) 2006; 45
Kawamura (c37) 2019; 123
Skorb (c47) 2016; 32
Bertorelle (c35) 2018; 3
Shimizu (c15) 2007; 14
Zhu (c20) 2013; 20
Li (c31) 2020; 32
Osorio-Vargas (c39) 2012; 19
Abbas (c50) 2016; 138
Hiller (c42) 1998; 80
Shchukin (c38) 2011; 23
Chavea (c23) 2015; 241
Kwak (c51) 2017; 8
Sousa (c34) 2012; 8
Didenko (c8) 1999; 121
Xu (c5) 2020; 13
Cao (c26) 2019; 31
Qiu (c24) 2018; 45
Tan (c52); 2011
Yumita (c3) 1989; 80
Mizuguchi (c45) 2004; 96
Thompson (c2) 1999; 38
Kung (c17) 2019; 58
Wang (c13) 2004; 12
Sadeghi Rad (c16) 2018; 202
(2023062618323498200_c18) 2008; 42
(2023062618323498200_c51) 2017; 8
(2023062618323498200_c16) 2018; 202
(2023062618323498200_c35) 2018; 3
(2023062618323498200_c12) 2017; 56
(2023062618323498200_c33) 2021; 21
(2023062618323498200_c29) 2019; 120
(2023062618323498200_c11) 1984; 33
(2023062618323498200_c4) 2020; 59
(2023062618323498200_c38) 2011; 23
(2023062618323498200_c15) 2007; 14
(2023062618323498200_c47) 2016; 32
(2023062618323498200_c25) 2019; 55
(2023062618323498200_c21) 2015; 172-173
(2023062618323498200_c31) 2020; 32
(2023062618323498200_c13) 2004; 12
(2023062618323498200_c37) 2019; 123
(2023062618323498200_c43) 2007; 129
(2023062618323498200_c5) 2020; 13
(2023062618323498200_c19) 2011; 54
(2023062618323498200_c36) 2006; 45
(2023062618323498200_c48) 2011; 2
(2023062618323498200_c3) 1989; 80
(2023062618323498200_c40) 1999; 398
(2023062618323498200_c32) 2021; 121
(2023062618323498200_c20) 2013; 20
(2023062618323498200_c42) 1998; 80
(2023062618323498200_c45) 2004; 96
(2023062618323498200_c9) 2002; 418
(2023062618323498200_c28) 2018; 51
(2023062618323498200_c44) 2016; 8
(2023062618323498200_c23) 2015; 241
(2023062618323498200_c30) 2020; 2
(2023062618323498200_c22) 2016; 16
(2023062618323498200_c26) 2019; 31
(2023062618323498200_c52); 2011
(2023062618323498200_c24) 2018; 45
(2023062618323498200_c14) 2006; 137
(2023062618323498200_c10) 2008; 60
(2023062618323498200_c39) 2012; 19
(2023062618323498200_c17) 2019; 58
(2023062618323498200_c49) 2013; 4
(2023062618323498200_c46) 2008; 41
(2023062618323498200_c6) 1989; 260
(2023062618323498200_c34) 2012; 8
(2023062618323498200_c8) 1999; 121
(2023062618323498200_c2) 1999; 38
(2023062618323498200_c27) 2017; 117
2023062618323498200_c1
(2023062618323498200_c41) 1995; 75
(2023062618323498200_c50) 2016; 138
(2023062618323498200_c7) 1990; 247
References_xml – volume: 202
  start-page: 53
  year: 2018
  ident: c16
  publication-title: J. Cleaner Prod.
– volume: 120
  start-page: 526
  year: 2019
  ident: c29
  publication-title: Chem. Rev.
– volume: 137
  start-page: 972
  year: 2006
  ident: c14
  publication-title: J. Hazard. Mater.
– volume: 398
  start-page: 402
  year: 1999
  ident: c40
  publication-title: Nature
– volume: 19
  start-page: 383
  year: 2012
  ident: c39
  publication-title: Ultrason. Sonochem.
– volume: 117
  start-page: 8208
  year: 2017
  ident: c27
  publication-title: Chem. Rev.
– volume: 45
  start-page: 29
  year: 2018
  ident: c24
  publication-title: Ultrason. Sonochem.
– volume: 21
  start-page: 879
  year: 2021
  ident: c33
  publication-title: Chem. Rec.
– volume: 3
  start-page: 15635
  year: 2018
  ident: c35
  publication-title: ACS Omega
– volume: 32
  start-page: 11072
  year: 2016
  ident: c47
  publication-title: Langmuir
– volume: 23
  start-page: 1922
  year: 2011
  ident: c38
  publication-title: Adv. Mater.
– volume: 56
  start-page: 07JA01
  year: 2017
  ident: c12
  publication-title: Jpn. J. Appl. Phys., Part 1
– volume: 14
  start-page: 184
  year: 2007
  ident: c15
  publication-title: Ultrason. Sonochem.
– volume: 123
  start-page: 26644
  year: 2019
  ident: c37
  publication-title: J. Phys. Chem. C
– volume: 260
  start-page: 80
  year: 1989
  ident: c6
  publication-title: Sci. Am.
– volume: 51
  start-page: 2764
  year: 2018
  ident: c28
  publication-title: Acc. Chem. Res.
– volume: 55
  start-page: 75
  year: 2019
  ident: c25
  publication-title: Ultrason. Sonochem.
– volume: 75
  start-page: 2602
  year: 1995
  ident: c41
  publication-title: Phys. Rev. Lett.
– volume: 80
  start-page: 1090
  year: 1998
  ident: c42
  publication-title: Phys. Rev. Lett.
– volume: 418
  start-page: 394
  year: 2002
  ident: c9
  publication-title: Nature
– volume: 8
  start-page: 1067
  year: 2016
  ident: c44
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 2840
  year: 2011
  ident: c48
  publication-title: J. Phys. Chem. Lett.
– volume: 31
  start-page: 9105
  year: 2019
  ident: c26
  publication-title: Chem. Mater.
– volume: 59
  start-page: 14212
  year: 2020
  ident: c4
  publication-title: Angew. Chem., Int. Ed.
– volume: 38
  start-page: 1215
  year: 1999
  ident: c2
  publication-title: Ind. Eng. Chem. Res.
– volume: 13
  start-page: 2898
  year: 2020
  ident: c5
  publication-title: Nano Res.
– volume: 96
  start-page: 3514
  year: 2004
  ident: c45
  publication-title: J. Appl. Phys.
– volume: 80
  start-page: 219
  year: 1989
  ident: c3
  publication-title: Jpn. J. Cancer Res.
– volume: 12
  start-page: 331
  year: 2004
  ident: c13
  publication-title: Ultrason. Sonochem.
– volume: 8
  start-page: 4898
  year: 2017
  ident: c51
  publication-title: J. Phys. Chem. Lett.
– volume: 121
  start-page: 567
  year: 2021
  ident: c32
  publication-title: Chem. Rev.
– volume: 121
  start-page: 5817
  year: 1999
  ident: c8
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 17325
  year: 2019
  ident: c17
  publication-title: Ind. Eng. Chem. Res.
– volume: 138
  start-page: 390
  year: 2016
  ident: c50
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 887
  year: 2011
  ident: c19
  publication-title: Sci. China: Chem.
– volume: 45
  start-page: 5819
  year: 2006
  ident: c36
  publication-title: Ind. Eng. Chem. Res.
– volume: 32
  start-page: 1905488
  year: 2020
  ident: c31
  publication-title: Adv. Mater.
– volume: 4
  start-page: 2847
  year: 2013
  ident: c49
  publication-title: J. Phys. Chem. Lett.
– volume: 2011
  start-page: 261219
  ident: c52
  publication-title: ISRN Mater. Sci.
– volume: 41
  start-page: 57
  year: 2008
  ident: c46
  publication-title: J. Chem. Eng. Jpn.
– volume: 8
  start-page: 2277
  year: 2012
  ident: c34
  publication-title: Small
– volume: 60
  start-page: 1103
  year: 2008
  ident: c10
  publication-title: Adv. Drug Delivery Rev.
– volume: 42
  start-page: 6173
  year: 2008
  ident: c18
  publication-title: Environ. Sci. Technol.
– volume: 129
  start-page: 7706
  year: 2007
  ident: c43
  publication-title: J. Am. Chem. Soc.
– volume: 247
  start-page: 1439
  year: 1990
  ident: c7
  publication-title: Science
– volume: 172-173
  start-page: 7
  year: 2015
  ident: c21
  publication-title: Appl. Catal., B
– volume: 2
  start-page: 17
  year: 2020
  ident: c30
  publication-title: Nanoscale Adv.
– volume: 33
  start-page: 595
  year: 1984
  ident: c11
  publication-title: Adv. Phys.
– volume: 16
  start-page: 6257
  year: 2016
  ident: c22
  publication-title: Nano Lett.
– volume: 20
  start-page: 478
  year: 2013
  ident: c20
  publication-title: Ultrason. Sonochem.
– volume: 241
  start-page: 55
  year: 2015
  ident: c23
  publication-title: Catal. Today
– volume: 247
  start-page: 1439
  issue: 4949
  year: 1990
  ident: 2023062618323498200_c7
  publication-title: Science
  doi: 10.1126/science.247.4949.1439
– volume: 138
  start-page: 390
  issue: 1
  year: 2016
  ident: 2023062618323498200_c50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11174
– volume: 54
  start-page: 887
  year: 2011
  ident: 2023062618323498200_c19
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-011-4292-0
– volume: 59
  start-page: 14212
  year: 2020
  ident: 2023062618323498200_c4
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201906823
– volume: 13
  start-page: 2898
  year: 2020
  ident: 2023062618323498200_c5
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2992-5
– volume: 398
  start-page: 402
  year: 1999
  ident: 2023062618323498200_c40
  publication-title: Nature
  doi: 10.1038/18842
– volume: 172-173
  start-page: 7
  year: 2015
  ident: 2023062618323498200_c21
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2015.02.012
– volume: 41
  start-page: 57
  year: 2008
  ident: 2023062618323498200_c46
  publication-title: J. Chem. Eng. Jpn.
  doi: 10.1252/jcej.07we234
– volume: 121
  start-page: 567
  year: 2021
  ident: 2023062618323498200_c32
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00495
– volume: 117
  start-page: 8208
  year: 2017
  ident: 2023062618323498200_c27
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00769
– volume: 241
  start-page: 55
  year: 2015
  ident: 2023062618323498200_c23
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2014.07.040
– volume: 55
  start-page: 75
  year: 2019
  ident: 2023062618323498200_c25
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2019.02.026
– volume: 8
  start-page: 4898
  year: 2017
  ident: 2023062618323498200_c51
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b01892
– volume: 14
  start-page: 184
  year: 2007
  ident: 2023062618323498200_c15
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2006.04.002
– volume: 137
  start-page: 972
  year: 2006
  ident: 2023062618323498200_c14
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.03.022
– volume: 120
  start-page: 526
  year: 2019
  ident: 2023062618323498200_c29
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00726
– volume: 33
  start-page: 595
  issue: 6
  year: 1984
  ident: 2023062618323498200_c11
  publication-title: Adv. Phys.
  doi: 10.1080/00018738400101711
– volume: 260
  start-page: 80
  year: 1989
  ident: 2023062618323498200_c6
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0289-80
– volume: 58
  start-page: 17325
  year: 2019
  ident: 2023062618323498200_c17
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b04581
– volume: 2
  start-page: 17
  year: 2020
  ident: 2023062618323498200_c30
  publication-title: Nanoscale Adv.
  doi: 10.1039/C9NA00583H
– volume: 2
  start-page: 2840
  year: 2011
  ident: 2023062618323498200_c48
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz2013352
– volume: 2011
  start-page: 261219
  ident: 2023062618323498200_c52
  publication-title: ISRN Mater. Sci.
  doi: 10.5402/2011/261219
– volume: 12
  start-page: 331
  year: 2004
  ident: 2023062618323498200_c13
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2004.05.002
– volume: 121
  start-page: 5817
  year: 1999
  ident: 2023062618323498200_c8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9844635
– volume: 38
  start-page: 1215
  year: 1999
  ident: 2023062618323498200_c2
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie9804172
– volume: 129
  start-page: 7706
  year: 2007
  ident: 2023062618323498200_c43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja071329o
– volume: 96
  start-page: 3514
  year: 2004
  ident: 2023062618323498200_c45
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1784553
– volume: 21
  start-page: 879
  year: 2021
  ident: 2023062618323498200_c33
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.202100001
– volume: 123
  start-page: 26644
  year: 2019
  ident: 2023062618323498200_c37
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b06849
– volume: 31
  start-page: 9105
  year: 2019
  ident: 2023062618323498200_c26
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b03430
– volume: 75
  start-page: 2602
  year: 1995
  ident: 2023062618323498200_c41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.2602
– volume: 32
  start-page: 11072
  year: 2016
  ident: 2023062618323498200_c47
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b02842
– volume: 23
  start-page: 1922
  year: 2011
  ident: 2023062618323498200_c38
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201004494
– volume: 51
  start-page: 2764
  year: 2018
  ident: 2023062618323498200_c28
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00383
– volume: 32
  start-page: 1905488
  year: 2020
  ident: 2023062618323498200_c31
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905488
– volume: 42
  start-page: 6173
  year: 2008
  ident: 2023062618323498200_c18
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es800168k
– volume: 45
  start-page: 29
  year: 2018
  ident: 2023062618323498200_c24
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2018.03.003
– volume-title: Handbook of Ultrasonics and Sonochemistry
  ident: 2023062618323498200_c1
– volume: 4
  start-page: 2847
  year: 2013
  ident: 2023062618323498200_c49
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz401447w
– volume: 80
  start-page: 219
  year: 1989
  ident: 2023062618323498200_c3
  publication-title: Jpn. J. Cancer Res.
  doi: 10.1111/j.1349-7006.1989.tb02295.x
– volume: 418
  start-page: 394
  year: 2002
  ident: 2023062618323498200_c9
  publication-title: Nature
  doi: 10.1038/nature00895
– volume: 202
  start-page: 53
  year: 2018
  ident: 2023062618323498200_c16
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.08.165
– volume: 45
  start-page: 5819
  year: 2006
  ident: 2023062618323498200_c36
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0601504
– volume: 56
  start-page: 07JA01
  year: 2017
  ident: 2023062618323498200_c12
  publication-title: Jpn. J. Appl. Phys., Part 1
  doi: 10.7567/JJAP.56.07JA01
– volume: 60
  start-page: 1103
  year: 2008
  ident: 2023062618323498200_c10
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2008.03.009
– volume: 8
  start-page: 1067
  year: 2016
  ident: 2023062618323498200_c44
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b09987
– volume: 16
  start-page: 6257
  year: 2016
  ident: 2023062618323498200_c22
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b02547
– volume: 3
  start-page: 15635
  year: 2018
  ident: 2023062618323498200_c35
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b02615
– volume: 80
  start-page: 1090
  year: 1998
  ident: 2023062618323498200_c42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.1090
– volume: 8
  start-page: 2277
  year: 2012
  ident: 2023062618323498200_c34
  publication-title: Small
  doi: 10.1002/smll.201200071
– volume: 19
  start-page: 383
  year: 2012
  ident: 2023062618323498200_c39
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2011.11.013
– volume: 20
  start-page: 478
  year: 2013
  ident: 2023062618323498200_c20
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2012.08.005
SSID ssj0001724
Score 2.4161425
Snippet The production of reactive oxygen species (ROS), such as hydroxyl radicals, by ultrasonic activation of semiconductor nanoparticles (NPs), including TiO2, has...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 124702
SubjectTerms Catalysts
Catalytic activity
Cavitation
Deposition
Electrons
Hydroxyl radicals
Nanoclusters
Nanoparticles
Pollutants
Separation
Sonoluminescence
Titanium dioxide
Title TiO2-supported Au144 nanoclusters for enhanced sonocatalytic performance
URI http://dx.doi.org/10.1063/5.0055933
https://www.proquest.com/docview/2575141679
https://www.proquest.com/docview/2578776631
Volume 155
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLWgExovEwwQZQOFjwekKJDY-XyMxqYC3YZEK5WnyHFsrdqWVG0CKr-e6zhxEqmagJeocq5S694T5_ja9xihd2HIgBSQyOLCk9kq17aox7AVEUEwd73UrpWYzi_8ydz9svAWXe1JXV1Sph_Y7511Jf8TVWiDuMoq2X-IrH4oNMBviC9cIcJw_bsYLy-xtalWtTh5ZsYVzFvMnOYFu6mkAMJGCXrnV2qZH6h1UadrtlKlddWVDPQZalcrVrNU1goKqBRIt_RDf9Hbak3Nr0V1xZcaYdc8o2ZcbqqtHu8_59XSjLf0Wrf8oLcUIFI0hUH9zAN25DaJppK72-xP8-G2hm-93rT1Ao4l50nqi6OGWTuMrMBXB4XqcVjp9baAwzsHeGBUEBWZB4OpkJLQGIpoX1wmZ_PpNJmdLmb30R6G2QMeob340_n0u_5EA2tr5LlV11rJKZ981I8eEpVu9rEP1ETtkugRkdkjdNDExogVHB6jezw_RPsn7cF9h-hB45wnaDIEiFEDxOgDxAAIGC1AjAFAjB5AnqL52ensZGI1R2dYDChXaWWCOMIWPsFByjxgIRF1sPAdhxMsIuJzmxPhpUGUkSywXeFTl4VEMJLhDGxC8gyN8iLnz5Hh8kzmGJjtMd-1XSCQBNMwDFOMpaUzRu9bPyWtZ-TxJjdJvb_BJ4mXNC4dozfadKXEVHYZHbfOTpp3bZNguTzoyiXDMXqtb4Nf5fIWzXlR1TZhEACDhi691UG66492WP0s1p1FssrEi7u7c4Qedq_GMRqV64q_BJpapq8a0P0BQSWTuw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TiO2-supported+Au144+nanoclusters+for+enhanced+sonocatalytic+performance&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Kawamura+Kouhei&rft.au=Ikeda+Atsuya&rft.au=Inui+Ayaka&rft.au=Yamamoto%2C+Ken&rft.date=2021-09-28&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=155&rft.issue=12&rft_id=info:doi/10.1063%2F5.0055933&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon