Nonresonant and Resonant Surface-Enhanced Raman Scattering of N-Ethyl-N-(2-hydroxyethyl)-4-(4-nitrophenylazo) Aniline in Poly(methyl methacrylate) on Ag Films with Surface Roughness

Nonresonant and resonant surface-enhanced Raman scatterings (SERS and SERRS) were studied for N-ethyl-N-(2-hydroxyethyl)-4-(4-nitrophenylazo) aniline (Disperse Red 1, or DR1) in poly (methyl methacrylate) on Ag films with surface roughness. DR1 is a chromophore that consists of azobenzene bridged be...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the Chemical Society of Japan Vol. 92; no. 8; pp. 1268 - 1274
Main Authors Izumi, Ayaka, Kumaoka, Kentaro, Shimomura, Masaru, Sugita, Atsushi
Format Journal Article
LanguageEnglish
Published Tokyo The Chemical Society of Japan 15.08.2019
Chemical Society of Japan
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nonresonant and resonant surface-enhanced Raman scatterings (SERS and SERRS) were studied for N-ethyl-N-(2-hydroxyethyl)-4-(4-nitrophenylazo) aniline (Disperse Red 1, or DR1) in poly (methyl methacrylate) on Ag films with surface roughness. DR1 is a chromophore that consists of azobenzene bridged between electron-donating amine and electron-accepting nitro groups, and it has attracted great attention because of its large molecular hyperpolarizability. DR1 hybridized with metal nanoparticles or nanostructures is promising as a building block for nonlinear plasmonics. Our experimental results demonstrated that the Raman cross sections were highly enhanced both at the molecular nonresonant and resonant excitation wavelengths. The spectroscopic properties of SERRS were taken from resonant Raman (RR), and the enhanced RR cross sections were attributed to electromagnetic enhancements due to surface plasmons (SP). The SERS spectrum was also similar to the RR spectrum, rather than the non-resonant Raman (NR) spectrum, even at the molecular non-resonant excitations. A diagram of energy levels was drawn for the DR1/Ag interfaces by using ultraviolet-visible linear absorption and ultraviolet photoelectron spectroscopic data. The enhanced NR cross sections were explained in terms of the electromagnetic enhancements, as well as the metal-to-molecular charge-transfer, by using the energy diagram.
AbstractList Nonresonant and resonant surface-enhanced Raman scatterings (SERS and SERRS) were studied for N-ethyl-N-(2-hydroxyethyl)-4-(4-nitrophenylazo) aniline (Disperse Red 1, or DR1) in poly (methyl methacrylate) on Ag films with surface roughness. DR1 is a chromophore that consists of azobenzene bridged between electron-donating amine and electron-accepting nitro groups, and it has attracted great attention because of its large molecular hyperpolarizability. DR1 hybridized with metal nanoparticles or nanostructures is promising as a building block for nonlinear plasmonics. Our experimental results demonstrated that the Raman cross sections were highly enhanced both at the molecular nonresonant and resonant excitation wavelengths. The spectroscopic properties of SERRS were taken from resonant Raman (RR), and the enhanced RR cross sections were attributed to electromagnetic enhancements due to surface plasmons (SP). The SERS spectrum was also similar to the RR spectrum, rather than the non-resonant Raman (NR) spectrum, even at the molecular non-resonant excitations. A diagram of energy levels was drawn for the DR1/Ag interfaces by using ultraviolet-visible linear absorption and ultraviolet photoelectron spectroscopic data. The enhanced NR cross sections were explained in terms of the electromagnetic enhancements, as well as the metal-to-molecular charge-transfer, by using the energy diagram.
Abstract Nonresonant and resonant surface-enhanced Raman scatterings (SERS and SERRS) were studied for N-ethyl-N-(2-hydroxyethyl)-4-(4-nitrophenylazo) aniline (Disperse Red 1, or DR1) in poly (methyl methacrylate) on Ag films with surface roughness. DR1 is a chromophore that consists of azobenzene bridged between electron-donating amine and electron-accepting nitro groups, and it has attracted great attention because of its large molecular hyperpolarizability. DR1 hybridized with metal nanoparticles or nanostructures is promising as a building block for nonlinear plasmonics. Our experimental results demonstrated that the Raman cross sections were highly enhanced both at the molecular nonresonant and resonant excitation wavelengths. The spectroscopic properties of SERRS were taken from resonant Raman (RR), and the enhanced RR cross sections were attributed to electromagnetic enhancements due to surface plasmons (SP). The SERS spectrum was also similar to the RR spectrum, rather than the non-resonant Raman (NR) spectrum, even at the molecular non-resonant excitations. A diagram of energy levels was drawn for the DR1/Ag interfaces by using ultraviolet-visible linear absorption and ultraviolet photoelectron spectroscopic data. The enhanced NR cross sections were explained in terms of the electromagnetic enhancements, as well as the metal-to-molecular charge-transfer, by using the energy diagram.
Author Kumaoka, Kentaro
Shimomura, Masaru
Izumi, Ayaka
Sugita, Atsushi
Author_xml – sequence: 1
  givenname: Ayaka
  surname: Izumi
  fullname: Izumi, Ayaka
– sequence: 2
  givenname: Kentaro
  surname: Kumaoka
  fullname: Kumaoka, Kentaro
– sequence: 3
  givenname: Masaru
  surname: Shimomura
  fullname: Shimomura, Masaru
– sequence: 4
  givenname: Atsushi
  surname: Sugita
  fullname: Sugita, Atsushi
BookMark eNptkUFv1DAQhS1UJLaFI3dLXHYPLnbiODG3VbUFpGpBLZwjx5lsvErGi-1VCf-L_0eWdsWF02hmvnlvpHdJLtAjEPJW8GuRSfW-sXF_nXGhOS_zF2QhclkxrnJ5QRacc80yVeavyGWM-7mtCqkX5PfWY4Do0WCiBlt6f24ejqEzFtgGe4MW5o0ZDdIHa1KC4HBHfUe3bJP6aWBbtsxYP7XB_5zgNFkxyZaSoUvBH3rAaTC__Iqu0Q0OgTqkX_0wLce_MD0VY8MMJVhRj3S9o7duGCN9dKk_v0Lv_XHXI8T4mrzszBDhzXO9It9vN99uPrG7Lx8_36zvmJWZSqyVle2aXItSKCm14rwwttSi0Q3nioPIQbZFZQqQVnS6y6pG5VxrXbYamqLIr8i7J91D8D-OEFO998eAs2WdZaXiopg1Z4o9UTb4GAN09SG40YSpFrw-JVOfkqnPycz8h2e-h9HZWc1bB2nam4PBfw7_P_4DH16YpQ
CitedBy_id crossref_primary_10_1021_acs_langmuir_0c01044
Cites_doi 10.1021/nl4014887
10.1016/b978-0-444-59526-3.00002-1
10.1021/jp800167v
10.1021/cr970155y
10.1103/PhysRevB.50.9815
10.1016/0022-2313(70)90082-7
10.1002/jrs.4874
10.1021/ja045763r
10.1103/PhysRevB.6.4370
10.1002/anie.201600218
10.1002/jrs.1841
10.1021/j100051a005
10.1038/425145a
10.1039/b706023h
10.1063/1.4913846
10.1021/nl062901x
10.1039/c0cp02588g
10.1007/978-1-4020-4333-8_2
10.1021/ja2013104
10.1103/PhysRevLett.119.013901
10.1021/jp057413c
10.1021/jp067384l
10.1021/jp204402f
10.1103/RevModPhys.57.783
10.1021/nl4035219
10.1021/jacs.7b12772
10.1021/jp0751460
10.1039/C5CP05206H
10.1002/jrs.1710
10.1021/acs.jpcc.5b00033
10.1021/nl3040948
10.1021/jp711552e
10.1021/j100177a056
10.1021/jp970312x
10.1016/0009-2614(74)85388-1
10.1021/am5076953
10.1021/jp076026v
10.1063/1.450037
10.1117/12.2002949
10.1039/c3cp50770j
10.1103/PhysRevLett.45.201
10.1021/jp9929263
10.1002/polb.23390
10.1134/S0022476614050072
10.1039/C8CP03114B
10.1021/nl403576c
10.1021/ma00180a045
10.1080/00268979300102851
10.1364/JOSAB.17.001554
10.1016/j.jphotochemrev.2014.10.001
10.1021/cr980133r
10.1021/jp054982b
ContentType Journal Article
Copyright The Chemical Society of Japan
Copyright Chemical Society of Japan 2019
Copyright_xml – notice: The Chemical Society of Japan
– notice: Copyright Chemical Society of Japan 2019
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1246/bcsj.20190073
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Nonresonant and Resonant Surface-Enhanced Raman Scattering of N-Ethyl-N-(2-hydroxyethyl)-4-(4-nitrophenylazo) Aniline in Poly(methyl methacrylate) on Ag Films with Surface Roughness
EISSN 1348-0634
EndPage 1274
ExternalDocumentID 10_1246_bcsj_20190073
FullText_t_NoSnippeting true
GroupedDBID 02
23N
5GY
ABEFU
ABFLS
ABZEH
ACCUC
ACIWK
ACNCT
AENEX
AFFNX
AIDUJ
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
F20
F5P
GX1
JSI
JSP
P0W
P2P
RAD
RJT
RZJ
SC5
TN5
TWZ
UPT
WH7
X
XPZ
-~X
0R~
6J9
AAPXW
AAUAY
AAYXX
ABXVV
ACGFO
ADIPN
BCRHZ
CITATION
KOP
OJZSN
OK1
OWPYF
ROX
~02
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c426t-d48cfb3917164496005ac791b9b0060e13e4d58a5e4c1f9f28b6309997d9eb553
ISSN 0009-2673
IngestDate Fri Sep 13 09:05:27 EDT 2024
Thu Sep 12 18:43:14 EDT 2024
Tue Jan 05 20:29:12 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords SERS
Nonlinear optical chromophores
Metal-to-molecule charge-transfer
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c426t-d48cfb3917164496005ac791b9b0060e13e4d58a5e4c1f9f28b6309997d9eb553
OpenAccessLink https://shizuoka.repo.nii.ac.jp/records/11917
PQID 2276015600
PQPubID 1996365
PageCount 7
ParticipantIDs proquest_journals_2276015600
crossref_primary_10_1246_bcsj_20190073
chemicalsocietyjapan_journals_10_1246_bcsj_20190073
ProviderPackageCode RAD
PublicationCentury 2000
PublicationDate 2019-08-15
PublicationDateYYYYMMDD 2019-08-15
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-15
  day: 15
PublicationDecade 2010
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Bulletin of the Chemical Society of Japan
PublicationYear 2019
Publisher The Chemical Society of Japan
Chemical Society of Japan
Publisher_xml – name: The Chemical Society of Japan
– name: Chemical Society of Japan
References 43T. J. Dines, L. D. MavGregor, C. H. Rochester, J. Raman Spectrosc. 2007, 38, 832. 10.1002/jrs.1710
33C. Toro, A. Thibert, L. D. Boni, A. E. Masunov, F. E. Hernández, J. Phys. Chem. B 2008, 112, 929. 10.1021/jp076026v18163605
1A. Spangenberg, R. Métivier, R. Yasukuni, K. Shibata, A. Brosseau, J. Grand, J. Aubard, P. Yu, T. Asahi, K. Nakatani, Phys. Chem. Chem. Phys. 2013, 15, 9670. 10.1039/c3cp50770j23665812
48K. Kim, J.-Y. Choi, K. S. Shin, J. Phys. Chem. C 2015, 119, 5187. 10.1021/acs.jpcc.5b00033
9M. Fleischmann, P. J. Hendra, A. J. McQuillan, Chem. Phys. Lett. 1974, 26, 163. 10.1016/0009-2614(74)85388-1
13K. H. Drexhage, J. Lumin. 1970, 1–2, 693. 10.1016/0022-2313(70)90082-7
17M. Osawa, M. Ikeda, J. Phys. Chem. 1991, 95, 9914. 10.1021/j100177a056
27T. Ikegami, Y. Kageyama, K. Obara, S. Takeda, Angew. Chem., Int. Ed. 2016, 55, 8239. 10.1002/anie.201600218
8I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, P. Törmä, Nano Lett. 2014, 14, 1721. 10.1021/nl403521924279840
40N. Biswas, S. Umapathy, J. Phys. Chem. A 2000, 104, 2734. 10.1021/jp9929263
5A. Hohenau, A. Leithner, F. R. Aussenegg, in Surface Plasmon Nanophotonics, ed. by M. L. Brongersma, P. G. Kik, Springer, Dordrecht, 2007, pp. 11–25. doi:10.1007/978-1-4020-4333-8_2. 10.1007/978-1-4020-4333-8_2
30Y. Tu, Q. Zhang, H. Ågren, J. Phys. Chem. B 2007, 111, 3591. 10.1021/jp067384l17388535
31A. Sugita, K. Suto, T. Sato, A. Ono, W. Inami, Y. Kawata, S. Tasaka, Proc. SPIE 2013, 8622, 86220B. 10.1117/12.2002949
26Y. Yu, M. Nakano, T. Ikeda, Nature 2003, 425, 145. 10.1038/425145a12968169
52Y. Yamamoto, Y. Ozaki, T. Ito, J. Photochem. Photobiol., C 2014, 21, 81. 10.1016/j.jphotochemrev.2014.10.001
2M. Gruber, M. Mayr, T. Lampe, B.-C. Gallheber, B. J. Scholz, W. Brütting, Appl. Phys. Lett. 2015, 106, 083303. 10.1063/1.4913846
41A. M. Nowak, R. L. McCreery, J. Am. Chem. Soc. 2004, 126, 16621. 10.1021/ja045763r15600368
50J. R. Lombardi, R. L. Birke, T. Lu, J. Xu, J. Chem. Phys. 1986, 84, 4174. 10.1063/1.450037
19W. Zhang, M. Caldarola, X. Lu, B. Pradhan, M. Orrit, Phys. Chem. Chem. Phys. 2018, 20, 20468. 10.1039/C8CP03114B30043814
3A.-L. Baudrion, A. Perron, A. Veltri, A. Bouhelier, P.-M. Adam, R. Bachelot, Nano Lett. 2013, 13, 282. 10.1021/nl304094823249360
44W. C. Tsoi, D. T. James, J. S. Kim, P. G. Nicholson, C. E. Murphy, D. D. C. Bradley, J. Nelson, J.-S. Kim, J. Am. Chem. Soc. 2011, 133, 9834. 10.1021/ja201310421615087
20J. H. Yoon, S. Yoon, Phys. Chem. Chem. Phys. 2011, 13, 12900. 10.1039/c0cp02588g21674114
10M. Moskovits, Rev. Mod. Phys. 1985, 57, 783. 10.1103/RevModPhys.57.783
45V. Hernandez, C. Castiglioni, M. Del Zoppo, G. Zerbi, Phys. Rev. B 1994, 50, 9815. 10.1103/PhysRevB.50.9815
6R. Hooper, W. L. Barnes, in Modern Plasmonics, ed. by A. A. Maradudin, J. R. Sambles, W. L. Barnes, Elsevier, Amsterdam, 2014, pp. 37–74. doi:10.1016/b978-0-444-59526-3.00002-1. 10.1016/b978-0-444-59526-3.00002-1
12L. Jensen, C. M. Aikens, G. C. Shatz, Chem. Soc. Rev. 2008, 37, 1061. 10.1039/b706023h18443690
4Y. Zhang, Z. Shuai, H. Zhou, Z. Luo, B. Liu, Y. Zhang, L. Zhang, S. Chen, J. Chao, L. Weng, Q. Fan, C. Fan, W. Huang, L. Wang, J. Am. Chem. Soc. 2018, 140, 3988. 10.1021/jacs.7b1277229504757
18H. Imada, K. Miwa, M. Imai-Imada, S. Kawahara, K. Kimura, Y. Kim, Phys. Rev. Lett. 2017, 119, 013901. 10.1103/PhysRevLett.119.01390128731759
23G. K. Joshi, K. N. Blodgett, B. B. Muhoberac, M. A. Johnson, K. A. Smith, R. Sardar, Nano Lett. 2014, 14, 532. 10.1021/nl403576c24393014
38N. Biswas, S. Umapathy, J. Phys. Chem. A 1997, 101, 5555. 10.1021/jp970312x
21A. Priimagi, A. Shevchenko, J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 163. 10.1002/polb.23390
29T. Pliška, W.-R. Cho, J. Meier, A.-C. Le Duff, V. Ricci, A. Otomo, M. Canva, G. I. Stegeman, P. Raimond, F. Kajzar, J. Opt. Soc. Am. B 2000, 17, 1554. 10.1364/JOSAB.17.001554
25A. Natansohn, P. Rochon, Chem. Rev. 2002, 102, 4139. 10.1021/cr970155y12428986
34P. B. Johnson, R. W. Christy, Phys. Rev. B 1972, 6, 4370. 10.1103/PhysRevB.6.4370
16A. Hartstein, J. R. Kirtley, J. C. Tsang, Phys. Rev. Lett. 1980, 45, 201. 10.1103/PhysRevLett.45.201
35R. Crecca, A. E. Roitberg, J. Phys. Chem. A 2006, 110, 8188. 10.1021/jp057413c16805507
14J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, A. Wokaun, Mol. Phys. 1993, 80, 1031. 10.1080/00268979300102851
11K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, Chem. Rev. 1999, 99, 2957. 10.1021/cr980133r11749507
42A. Minisini, G. Messager, I. Piyanzina, N. Delorme, J.-F. Bardeau, J. Struct. Chem. 2014, 55, 843. 10.1134/S0022476614050072
24K. E. Snell, J.-Y. Mevellec, B. Humbert, F. Lagugné-Labarthet, E. Ishow, ACS Appl. Mater. Interfaces 2015, 7, 1932. 10.1021/am507695325561442
49Y. S. Yamamoto, T. Ito, J. Raman Spectrosc. 2016, 47, 78. 10.1002/jrs.4874
32L. De Boni, C. Toro, A. E. Masunov, F. E. Hernández, J. Phys. Chem. A 2008, 112, 3886. 10.1021/jp711552e18351759
36M. Poprawa-Smoluch, J. Baggerman, H. Zhang, H. P. A. Maas, L. De Cola, A. M. Brouwer, J. Phys. Chem. A 2006, 110, 11926. 10.1021/jp054982b17064180
46G. M. do Nascimento, M. L. A. Temperini, J. Raman Spectrosc. 2008, 39, 772. 10.1002/jrs.1841
22B. C. Galarreta, I. Rupar, A. Young, F. Lagugné-Labarthet, J. Phys. Chem. C 2011, 115, 15318. 10.1021/jp204402f
37A. R. Armstrong, J. Clarkson, W. E. Smith, J. Phys. Chem. 1995, 99, 17825. 10.1021/j100051a005
15F. Tam, G. P. Goodrich, B. R. Johnson, N. J. Halas, Nano Lett. 2007, 7, 496. 10.1021/nl062901x17256995
51J. R. Lombardi, R. L. Birke, J. Phys. Chem. C 2008, 112, 5605. 10.1021/jp800167v
7A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, N. J. Halas, Nano Lett. 2013, 13, 3281. 10.1021/nl401488723746061
28H. L. Hampsch, J. Yang, G. K. Wong, J. M. Torkelson, Macromolecules 1988, 21, 526. 10.1021/ma00180a045
39C. M. Stuart, R. R. Frontiera, R. A. Mathies, J. Phys. Chem. A 2007, 111, 12072. 10.1021/jp075146017985852
47B. Lee, J. H. Kang, I. Jo, D. Shin, B. H. Hong, Phys. Chem. Chem. Phys. 2016, 18, 3413. 10.1039/C5CP05206H26784530
Hernandez (2024012102304914600_r45) 1994; 50
2024012102304914600_r6
do Nascimento (2024012102304914600_r46) 2008; 39
2024012102304914600_r5
Lombardi (2024012102304914600_r51) 2008; 112
Drexhage (2024012102304914600_r13) 1970; 1–2
Minisini (2024012102304914600_r42) 2014; 55
Kümmerlen (2024012102304914600_r14) 1993; 80
Armstrong (2024012102304914600_r37) 1995; 99
Priimagi (2024012102304914600_r21) 2014; 52
Zhang (2024012102304914600_r19) 2018; 20
Biswas (2024012102304914600_r40) 2000; 104
Snell (2024012102304914600_r24) 2015; 7
Väkeväinen (2024012102304914600_r8) 2014; 14
Spangenberg (2024012102304914600_r1) 2013; 15
Tu (2024012102304914600_r30) 2007; 111
Joshi (2024012102304914600_r23) 2014; 14
Galarreta (2024012102304914600_r22) 2011; 115
Kneipp (2024012102304914600_r11) 1999; 99
Natansohn (2024012102304914600_r25) 2002; 102
Jensen (2024012102304914600_r12) 2008; 37
Nowak (2024012102304914600_r41) 2004; 126
Gruber (2024012102304914600_r2) 2015; 106
Toro (2024012102304914600_r33) 2008; 112
Tsoi (2024012102304914600_r44) 2011; 133
Moskovits (2024012102304914600_r10) 1985; 57
Kim (2024012102304914600_r48) 2015; 119
Osawa (2024012102304914600_r17) 1991; 95
Yoon (2024012102304914600_r20) 2011; 13
Johnson (2024012102304914600_r34) 1972; 6
Zhang (2024012102304914600_r4) 2018; 140
Crecca (2024012102304914600_r35) 2006; 110
Fleischmann (2024012102304914600_r9) 1974; 26
Poprawa-Smoluch (2024012102304914600_r36) 2006; 110
Lombardi (2024012102304914600_r50) 1986; 84
De Boni (2024012102304914600_r32) 2008; 112
Lee (2024012102304914600_r47) 2016; 18
Schlather (2024012102304914600_r7) 2013; 13
Yamamoto (2024012102304914600_r49) 2016; 47
Pliška (2024012102304914600_r29) 2000; 17
Ikegami (2024012102304914600_r27) 2016; 55
Hampsch (2024012102304914600_r28) 1988; 21
Imada (2024012102304914600_r18) 2017; 119
Yu (2024012102304914600_r26) 2003; 425
Stuart (2024012102304914600_r39) 2007; 111
Yamamoto (2024012102304914600_r52) 2014; 21
Baudrion (2024012102304914600_r3) 2013; 13
Hartstein (2024012102304914600_r16) 1980; 45
Tam (2024012102304914600_r15) 2007; 7
Dines (2024012102304914600_r43) 2007; 38
Sugita (2024012102304914600_r31) 2013; 8622
Biswas (2024012102304914600_r38) 1997; 101
References_xml – volume: 13
  start-page: 3281
  year: 2013
  ident: 2024012102304914600_r7
  publication-title: Nano Lett.
  doi: 10.1021/nl4014887
  contributor:
    fullname: Schlather
– ident: 2024012102304914600_r6
  doi: 10.1016/b978-0-444-59526-3.00002-1
– volume: 112
  start-page: 5605
  year: 2008
  ident: 2024012102304914600_r51
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp800167v
  contributor:
    fullname: Lombardi
– volume: 102
  start-page: 4139
  year: 2002
  ident: 2024012102304914600_r25
  publication-title: Chem. Rev.
  doi: 10.1021/cr970155y
  contributor:
    fullname: Natansohn
– volume: 50
  start-page: 9815
  year: 1994
  ident: 2024012102304914600_r45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.9815
  contributor:
    fullname: Hernandez
– volume: 1–2
  start-page: 693
  year: 1970
  ident: 2024012102304914600_r13
  publication-title: J. Lumin.
  doi: 10.1016/0022-2313(70)90082-7
  contributor:
    fullname: Drexhage
– volume: 47
  start-page: 78
  year: 2016
  ident: 2024012102304914600_r49
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.4874
  contributor:
    fullname: Yamamoto
– volume: 126
  start-page: 16621
  year: 2004
  ident: 2024012102304914600_r41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja045763r
  contributor:
    fullname: Nowak
– volume: 6
  start-page: 4370
  year: 1972
  ident: 2024012102304914600_r34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.6.4370
  contributor:
    fullname: Johnson
– volume: 55
  start-page: 8239
  year: 2016
  ident: 2024012102304914600_r27
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201600218
  contributor:
    fullname: Ikegami
– volume: 39
  start-page: 772
  year: 2008
  ident: 2024012102304914600_r46
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.1841
  contributor:
    fullname: do Nascimento
– volume: 99
  start-page: 17825
  year: 1995
  ident: 2024012102304914600_r37
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100051a005
  contributor:
    fullname: Armstrong
– volume: 425
  start-page: 145
  year: 2003
  ident: 2024012102304914600_r26
  publication-title: Nature
  doi: 10.1038/425145a
  contributor:
    fullname: Yu
– volume: 37
  start-page: 1061
  year: 2008
  ident: 2024012102304914600_r12
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b706023h
  contributor:
    fullname: Jensen
– volume: 106
  start-page: 083303
  year: 2015
  ident: 2024012102304914600_r2
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4913846
  contributor:
    fullname: Gruber
– volume: 7
  start-page: 496
  year: 2007
  ident: 2024012102304914600_r15
  publication-title: Nano Lett.
  doi: 10.1021/nl062901x
  contributor:
    fullname: Tam
– volume: 13
  start-page: 12900
  year: 2011
  ident: 2024012102304914600_r20
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp02588g
  contributor:
    fullname: Yoon
– ident: 2024012102304914600_r5
  doi: 10.1007/978-1-4020-4333-8_2
– volume: 133
  start-page: 9834
  year: 2011
  ident: 2024012102304914600_r44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2013104
  contributor:
    fullname: Tsoi
– volume: 119
  start-page: 013901
  year: 2017
  ident: 2024012102304914600_r18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.013901
  contributor:
    fullname: Imada
– volume: 110
  start-page: 8188
  year: 2006
  ident: 2024012102304914600_r35
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp057413c
  contributor:
    fullname: Crecca
– volume: 111
  start-page: 3591
  year: 2007
  ident: 2024012102304914600_r30
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp067384l
  contributor:
    fullname: Tu
– volume: 115
  start-page: 15318
  year: 2011
  ident: 2024012102304914600_r22
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp204402f
  contributor:
    fullname: Galarreta
– volume: 57
  start-page: 783
  year: 1985
  ident: 2024012102304914600_r10
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.57.783
  contributor:
    fullname: Moskovits
– volume: 14
  start-page: 1721
  year: 2014
  ident: 2024012102304914600_r8
  publication-title: Nano Lett.
  doi: 10.1021/nl4035219
  contributor:
    fullname: Väkeväinen
– volume: 140
  start-page: 3988
  year: 2018
  ident: 2024012102304914600_r4
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12772
  contributor:
    fullname: Zhang
– volume: 111
  start-page: 12072
  year: 2007
  ident: 2024012102304914600_r39
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0751460
  contributor:
    fullname: Stuart
– volume: 18
  start-page: 3413
  year: 2016
  ident: 2024012102304914600_r47
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP05206H
  contributor:
    fullname: Lee
– volume: 38
  start-page: 832
  year: 2007
  ident: 2024012102304914600_r43
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.1710
  contributor:
    fullname: Dines
– volume: 119
  start-page: 5187
  year: 2015
  ident: 2024012102304914600_r48
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b00033
  contributor:
    fullname: Kim
– volume: 13
  start-page: 282
  year: 2013
  ident: 2024012102304914600_r3
  publication-title: Nano Lett.
  doi: 10.1021/nl3040948
  contributor:
    fullname: Baudrion
– volume: 112
  start-page: 3886
  year: 2008
  ident: 2024012102304914600_r32
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp711552e
  contributor:
    fullname: De Boni
– volume: 95
  start-page: 9914
  year: 1991
  ident: 2024012102304914600_r17
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100177a056
  contributor:
    fullname: Osawa
– volume: 101
  start-page: 5555
  year: 1997
  ident: 2024012102304914600_r38
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp970312x
  contributor:
    fullname: Biswas
– volume: 26
  start-page: 163
  year: 1974
  ident: 2024012102304914600_r9
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(74)85388-1
  contributor:
    fullname: Fleischmann
– volume: 7
  start-page: 1932
  year: 2015
  ident: 2024012102304914600_r24
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5076953
  contributor:
    fullname: Snell
– volume: 112
  start-page: 929
  year: 2008
  ident: 2024012102304914600_r33
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp076026v
  contributor:
    fullname: Toro
– volume: 84
  start-page: 4174
  year: 1986
  ident: 2024012102304914600_r50
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.450037
  contributor:
    fullname: Lombardi
– volume: 8622
  start-page: 86220B
  year: 2013
  ident: 2024012102304914600_r31
  publication-title: Proc. SPIE
  doi: 10.1117/12.2002949
  contributor:
    fullname: Sugita
– volume: 15
  start-page: 9670
  year: 2013
  ident: 2024012102304914600_r1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp50770j
  contributor:
    fullname: Spangenberg
– volume: 45
  start-page: 201
  year: 1980
  ident: 2024012102304914600_r16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.201
  contributor:
    fullname: Hartstein
– volume: 104
  start-page: 2734
  year: 2000
  ident: 2024012102304914600_r40
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9929263
  contributor:
    fullname: Biswas
– volume: 52
  start-page: 163
  year: 2014
  ident: 2024012102304914600_r21
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
  doi: 10.1002/polb.23390
  contributor:
    fullname: Priimagi
– volume: 55
  start-page: 843
  year: 2014
  ident: 2024012102304914600_r42
  publication-title: J. Struct. Chem.
  doi: 10.1134/S0022476614050072
  contributor:
    fullname: Minisini
– volume: 20
  start-page: 20468
  year: 2018
  ident: 2024012102304914600_r19
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP03114B
  contributor:
    fullname: Zhang
– volume: 14
  start-page: 532
  year: 2014
  ident: 2024012102304914600_r23
  publication-title: Nano Lett.
  doi: 10.1021/nl403576c
  contributor:
    fullname: Joshi
– volume: 21
  start-page: 526
  year: 1988
  ident: 2024012102304914600_r28
  publication-title: Macromolecules
  doi: 10.1021/ma00180a045
  contributor:
    fullname: Hampsch
– volume: 80
  start-page: 1031
  year: 1993
  ident: 2024012102304914600_r14
  publication-title: Mol. Phys.
  doi: 10.1080/00268979300102851
  contributor:
    fullname: Kümmerlen
– volume: 17
  start-page: 1554
  year: 2000
  ident: 2024012102304914600_r29
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.17.001554
  contributor:
    fullname: Pliška
– volume: 21
  start-page: 81
  year: 2014
  ident: 2024012102304914600_r52
  publication-title: J. Photochem. Photobiol., C
  doi: 10.1016/j.jphotochemrev.2014.10.001
  contributor:
    fullname: Yamamoto
– volume: 99
  start-page: 2957
  year: 1999
  ident: 2024012102304914600_r11
  publication-title: Chem. Rev.
  doi: 10.1021/cr980133r
  contributor:
    fullname: Kneipp
– volume: 110
  start-page: 11926
  year: 2006
  ident: 2024012102304914600_r36
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp054982b
  contributor:
    fullname: Poprawa-Smoluch
SSID ssj0008549
Score 2.2960985
Snippet Nonresonant and resonant surface-enhanced Raman scatterings (SERS and SERRS) were studied for N-ethyl-N-(2-hydroxyethyl)-4-(4-nitrophenylazo) aniline (Disperse...
Abstract Nonresonant and resonant surface-enhanced Raman scatterings (SERS and SERRS) were studied for N-ethyl-N-(2-hydroxyethyl)-4-(4-nitrophenylazo) aniline...
SourceID proquest
crossref
chemicalsocietyjapan
SourceType Aggregation Database
Publisher
StartPage 1268
SubjectTerms Aniline
Charge transfer
Chromophores
Cross-sections
Energy levels
Excitation
Excitation spectra
Nanoparticles
Photoelectrons
Plasmonics
Plasmons
Polymethyl methacrylate
Raman spectra
Surface roughness
Title Nonresonant and Resonant Surface-Enhanced Raman Scattering of N-Ethyl-N-(2-hydroxyethyl)-4-(4-nitrophenylazo) Aniline in Poly(methyl methacrylate) on Ag Films with Surface Roughness
URI http://dx.doi.org/10.1246/bcsj.20190073
https://www.proquest.com/docview/2276015600/abstract/
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLbKOAAHBAzEYCAfAK2qPJLUSeNjNbVM01ak0Um9RbGbtN3WBLXNoftf_DTuvOfYTTrGBFyi1k0tW9-X-D37e-8R8kGKjuOkqccSn4OD4geSSbDEGVeOEqkTyECnzD8bBMcX_GTkjxqNnzXVUrGSh-rmzriS_0EV2gBXjJL9B2Q3nUIDfAZ84QoIw_WvMB7kmKwnRy2LCTQ0X74VizRWCetl0_KE_zye6wdZZ9M0QucB6wFK12zAwMr02HQ9RklLgm0fPcE4NnMGj_wCcw9k6-v4JsdNhG4207bpLEP1HIAUzvWfdDXqWC3gRqy5J_Acojtp9WfXcxNDZ4bVOsfSQJnVftgjZZMI3KoWNqkMrLAU2k9gaa_YfFPMtRahu46vNqsLasbzq9jEHK3iRb7ZRJoCL-eFLqzUOouX8aKojsQms9KM7q6WxXI6q2-GYPxVyMpw0FKTdO_I7BIgmBeU9VMOk_Kt3-YhA1uN15cF4dXoH9be8a5XFgL6bfHxdNZlqZaXKBkUeAharbJWWTD4GvUvTk-jYW80fEAeeh3h457Bl1GlTAp967WVIzWpYaH7z1udPyG7ykx4Wc73Eue6bWFtGxjaaho-I0-Nu0O7JXefk0aSvSCPjmyVwV3yo8ZhChymlsP0Noep5jCtOEzzlFYcPthmcBP4e3CbvU1quEtnGUXuHpTMpXXmNmme0e6Eat5S5K0dCt3w9iW56PeGR8fMlBJhCkzQFRvzUKWyLTA5FOfgtTt-rDrClZgSNHASt53wsR_GfsKVm4rUC2XQRuepMxaJ9P32K7KT5VnymlA35WBi-zwdy5RzbyxRiO2qTqBcLtNE7JH2XahE5r2xjNDtBiwjxDKyWO6RTxa06HuZZ-ZPN-5bSKsuPQ-lbei8vLn_57fkcfXY7JOd1aJI3oFVvZLvNQd_AfHr1F4
link.rule.ids 315,786,790,27957,27958
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonresonant+and+Resonant+Surface-Enhanced+Raman+Scattering+of+N-Ethyl-N-%282-hydroxyethyl%29-4-%284-nitrophenylazo%29+Aniline+in+Poly%28methyl+methacrylate%29+on+Ag+Films+with+Surface+Roughness&rft.jtitle=Bulletin+of+the+Chemical+Society+of+Japan&rft.au=Izumi%2C+Ayaka&rft.au=Kumaoka%2C+Kentaro&rft.au=Shimomura%2C+Masaru&rft.au=Sugita%2C+Atsushi&rft.date=2019-08-15&rft.pub=Chemical+Society+of+Japan&rft.issn=0009-2673&rft.eissn=1348-0634&rft.volume=92&rft.issue=8&rft.spage=1268&rft_id=info:doi/10.1246%2Fbcsj.20190073&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2673&client=summon