The Enfigram: A robust method for extracting repetitive transients in rolling bearing fault diagnosis

•Enfigram is insensitive to accidental shocks or the rotation frequency interference.•The local minimum is used to divide the boundaries in spectrum trend.•The kurtosis of the spectrum of the component envelope spectrum is calculated to evaluate fault information. In the actual industrial production...

Full description

Saved in:
Bibliographic Details
Published inMechanical Systems and Signal Processing Vol. 158; p. 107779
Main Authors Xu, Yonggang, Deng, Yunjie, Ma, Chaoyong, Zhang, Kun
Format Journal Article
LanguageEnglish
Japanese
Published Berlin Elsevier Ltd 01.09.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0888-3270
1096-1216
DOI10.1016/j.ymssp.2021.107779

Cover

Abstract •Enfigram is insensitive to accidental shocks or the rotation frequency interference.•The local minimum is used to divide the boundaries in spectrum trend.•The kurtosis of the spectrum of the component envelope spectrum is calculated to evaluate fault information. In the actual industrial production, the collected vibration signal often contains accidental impact or harmonic interference due to the influence of mechanical vibration or human interference. However, the current popular Fast Kurtogram (FK) method cannot accurately extract the frequency band with more fault information when processing the signal with such two-type interference. Therefore, this paper proposes a robust method called Enfigram to improve the drawback. In Enfigram method, a new statistical index is designed to select the optimal modulation frequency-band. Envelope Fourier index (Enfi) uses two Fourier transforms to transfer the interference of accidental pulse in the signal envelope to the origin, so that accidental pulse can be eliminated by low-pass filtering. Moreover, the frequency-band segmentation method based on spectrum trend can adaptively divide the fault information into a frequency band in Enfigram, which ensures the integrity of fault information. Compared with FK, Infogram and other methods, the result shows that Enfigram has better performance.
AbstractList In the actual industrial production, the collected vibration signal often contains accidental impact or harmonic interference due to the influence of mechanical vibration or human interference. However, the current popular Fast Kurtogram (FK) method cannot accurately extract the frequency band with more fault information when processing the signal with such two-type interference. Therefore, this paper proposes a robust method called Enfigram to improve the drawback. In Enfigram method, a new statistical index is designed to select the optimal modulation frequency-band. Envelope Fourier index (Enfi) uses two Fourier transforms to transfer the interference of accidental pulse in the signal envelope to the origin, so that accidental pulse can be eliminated by low-pass filtering. Moreover, the frequency-band segmentation method based on spectrum trend can adaptively divide the fault information into a frequency band in Enfigram, which ensures the integrity of fault information. Compared with FK, Infogram and other methods, the result shows that Enfigram has better performance.
•Enfigram is insensitive to accidental shocks or the rotation frequency interference.•The local minimum is used to divide the boundaries in spectrum trend.•The kurtosis of the spectrum of the component envelope spectrum is calculated to evaluate fault information. In the actual industrial production, the collected vibration signal often contains accidental impact or harmonic interference due to the influence of mechanical vibration or human interference. However, the current popular Fast Kurtogram (FK) method cannot accurately extract the frequency band with more fault information when processing the signal with such two-type interference. Therefore, this paper proposes a robust method called Enfigram to improve the drawback. In Enfigram method, a new statistical index is designed to select the optimal modulation frequency-band. Envelope Fourier index (Enfi) uses two Fourier transforms to transfer the interference of accidental pulse in the signal envelope to the origin, so that accidental pulse can be eliminated by low-pass filtering. Moreover, the frequency-band segmentation method based on spectrum trend can adaptively divide the fault information into a frequency band in Enfigram, which ensures the integrity of fault information. Compared with FK, Infogram and other methods, the result shows that Enfigram has better performance.
ArticleNumber 107779
Author Zhang, Kun
Deng, Yunjie
Xu, Yonggang
Ma, Chaoyong
Author_xml – sequence: 1
  givenname: Yonggang
  surname: Xu
  fullname: Xu, Yonggang
  organization: Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing 100124, China
– sequence: 2
  givenname: Yunjie
  surname: Deng
  fullname: Deng, Yunjie
  organization: Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing 100124, China
– sequence: 3
  givenname: Chaoyong
  surname: Ma
  fullname: Ma, Chaoyong
  organization: Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing 100124, China
– sequence: 4
  givenname: Kun
  surname: Zhang
  fullname: Zhang, Kun
  email: zkun212@163.com
  organization: Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing 100124, China
BackLink https://cir.nii.ac.jp/crid/1870302168232196352$$DView record in CiNii
BookMark eNqFkMtq3DAUQEVJoJOkX9CNoN16qoctWYUsQkgfEOgmXQtZvp7cwSNNJU1o_j5y3VUX6UYXLudI4lyQsxADEPKesy1nXH3ab58POR-3ggleN1pr84ZsODOq4YKrM7Jhfd83Umj2llzkvGeMmZapDYGHR6B3YcJdcofP9IamOJxyoQcoj3GkU0wUfpfkfMGwowmOULDgE9C6CxkhlEwxVGueF2AAl5Y5udNc6IhuF2LGfEXOJzdnePd3XpKfX-4ebr819z--fr-9uW98K1RpfCe8mJxx0JlBm8634J0C57RqpVH1y9JxxYZRimEavYFOKC6k8057pTsuL8mH9d5jir9OkIvdx1MK9UlbyZaLnrW6UnKlfIo5J5jsMeHBpWfLmV162r3909MuPe3as1rmH8tjcQVjqClw_o_7cXUDYtWWk_eayYqoXkjBjZKdqNj1ikFt9ISQbPY1sYcRE_hix4ivPvMCOHygGw
CitedBy_id crossref_primary_10_1109_TIM_2024_3412223
crossref_primary_10_1088_1361_6501_ac7bd5
crossref_primary_10_1016_j_anucene_2021_108639
crossref_primary_10_1016_j_ymssp_2021_108366
crossref_primary_10_3390_app13042160
crossref_primary_10_3389_fphy_2023_1199180
crossref_primary_10_1016_j_aei_2024_102731
crossref_primary_10_1016_j_ymssp_2023_110747
crossref_primary_10_3390_ma16093529
crossref_primary_10_1088_1361_6501_ac4a1b
crossref_primary_10_1002_acs_3754
crossref_primary_10_1109_TR_2023_3311769
crossref_primary_10_3390_s22239369
crossref_primary_10_1155_2021_8290717
crossref_primary_10_1088_1361_6501_acf0dd
crossref_primary_10_1016_j_measurement_2022_110798
crossref_primary_10_1007_s40430_023_04184_z
crossref_primary_10_1016_j_ymssp_2021_108751
crossref_primary_10_1109_TMECH_2022_3206435
crossref_primary_10_1016_j_ymssp_2022_109424
crossref_primary_10_1016_j_measurement_2021_110348
crossref_primary_10_1016_j_aei_2024_102487
crossref_primary_10_1016_j_isatra_2023_01_006
crossref_primary_10_1109_TIM_2025_3529067
crossref_primary_10_1007_s12206_022_1107_5
crossref_primary_10_1177_14759217231178653
crossref_primary_10_1088_2631_8695_ad0f79
crossref_primary_10_1007_s11668_022_01406_9
Cites_doi 10.1088/1361-6501/aafb44
10.1016/j.ymssp.2013.09.015
10.1016/j.ymssp.2015.04.039
10.1016/j.ymssp.2017.12.009
10.1016/j.ymssp.2020.107582
10.1016/j.ymssp.2013.03.021
10.1016/j.ymssp.2004.09.001
10.1016/j.compind.2018.12.013
10.1016/j.ymssp.2004.09.002
10.1016/j.ymssp.2019.05.003
10.1115/1.1379745
10.1016/j.ymssp.2009.06.015
10.1016/j.ndteint.2009.01.009
10.1016/j.ymssp.2015.04.034
10.1016/0022-460X(84)90595-9
10.1016/j.ymssp.2013.05.024
10.1016/j.ymssp.2010.12.008
10.1063/1.3082021
10.1016/j.ymssp.2012.10.003
10.1016/j.ymssp.2010.12.011
10.1016/j.ymssp.2010.05.018
10.1016/j.measurement.2018.12.028
10.1109/ACCESS.2019.2899036
10.3390/app8122352
10.1016/j.ymssp.2005.12.002
10.1016/j.ymssp.2009.02.003
10.1016/j.ymssp.2010.07.017
10.1109/TSP.2013.2265222
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Sep 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 2021
DBID RYH
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ymssp.2021.107779
DatabaseName CiNii Complete
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
ExternalDocumentID 10_1016_j_ymssp_2021_107779
S0888327021001746
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
RYH
SSH
AAYXX
ABDPE
ABWVN
ACRPL
ADNMO
AFJKZ
AGQPQ
CITATION
7SC
7SP
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c426t-c52c2fa9ae59b795c4eca6eaa7643960943a160bd32bfdc9e526123aca7c67513
IEDL.DBID AIKHN
ISSN 0888-3270
IngestDate Sun Jul 13 04:42:15 EDT 2025
Thu Apr 24 22:56:42 EDT 2025
Tue Jul 01 04:30:09 EDT 2025
Thu Jun 26 22:57:39 EDT 2025
Fri Feb 23 02:46:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Optimal frequency-band extraction
Enfigram
Robust
Accidental pulse
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-c52c2fa9ae59b795c4eca6eaa7643960943a160bd32bfdc9e526123aca7c67513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3513-8988
0000-0002-2206-8968
0000-0001-9109-891X
PQID 2614128047
PQPubID 2045429
ParticipantIDs proquest_journals_2614128047
crossref_primary_10_1016_j_ymssp_2021_107779
crossref_citationtrail_10_1016_j_ymssp_2021_107779
nii_cinii_1870302168232196352
elsevier_sciencedirect_doi_10_1016_j_ymssp_2021_107779
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
2021-09-01
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Mechanical Systems and Signal Processing
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Antoni (b0060) 2006; 20
Cui, Wang, Xu, Jiang, Zhou (b0005) 2019; 135
Zhang, Randall (b0075) 2009; 23
Moshrefzadeh, Fasana (b0135) 2018; 105
Antoni (b0130) 2016; 74
Gilles (b0140) 2013; 61
McFadden, Smith (b0050) 1984; 96
Wang, Li, Song, Cui (b0015) 2019; 105
Xu, Zhang, Ma, Cui, Tian (b0010) 2019; 130
Wang, Liang (b0085) 2011; 25
Liang, Lei, Que (b0110) 2008; 79
Barszcz, JabŁoński (b0115) 2011; 25
Dwyer (b0055) 1983
Cui, Wang, Wang, Wu (b0030) 2019; 7
Chen, Li, Li, Huang (b0125) 2009; 80
Chen, Zhang, Zi, He, Sun (b0100) 2013; 40
Wang, He, Zi (b0080) 2010; 24
Xu, Tian, Zhang, Ma (b0025) 2019; 30
Wang, Xiang, Markert, Liang (b0150) 2016; 66–67
Sun, He, Zi, Yuan, Wang, Chen, He (b0105) 2014; 43
Tse, Wang (b0035) 2013; 40
Lei, Lin, He, Zi (b0090) 2011; 25
Liang, Huang, Que (b0120) 2009; 42
Zhang, Xu, Liao, Song, Chen (b0020) 2021; 154
Wang, Tse, Tsui (b0095) 2013; 35
Xu, Zhang, Ma, Li, Zhang (b0145) 2018; 8
Antoni, Randall (b0065) 2006; 20
Tse, Peng, Yam (b0045) 2001; 123
Randall, Antoni (b0040) 2011; 25
Antoni (b0070) 2007; 21
Barszcz (10.1016/j.ymssp.2021.107779_b0115) 2011; 25
Antoni (10.1016/j.ymssp.2021.107779_b0065) 2006; 20
Xu (10.1016/j.ymssp.2021.107779_b0145) 2018; 8
Wang (10.1016/j.ymssp.2021.107779_b0080) 2010; 24
Liang (10.1016/j.ymssp.2021.107779_b0120) 2009; 42
Wang (10.1016/j.ymssp.2021.107779_b0085) 2011; 25
Moshrefzadeh (10.1016/j.ymssp.2021.107779_b0135) 2018; 105
Sun (10.1016/j.ymssp.2021.107779_b0105) 2014; 43
Dwyer (10.1016/j.ymssp.2021.107779_b0055) 1983
Antoni (10.1016/j.ymssp.2021.107779_b0060) 2006; 20
Tse (10.1016/j.ymssp.2021.107779_b0035) 2013; 40
Zhang (10.1016/j.ymssp.2021.107779_b0020) 2021; 154
Chen (10.1016/j.ymssp.2021.107779_b0100) 2013; 40
Xu (10.1016/j.ymssp.2021.107779_b0025) 2019; 30
Tse (10.1016/j.ymssp.2021.107779_b0045) 2001; 123
Wang (10.1016/j.ymssp.2021.107779_b0150) 2016; 66–67
Chen (10.1016/j.ymssp.2021.107779_b0125) 2009; 80
Randall (10.1016/j.ymssp.2021.107779_b0040) 2011; 25
Xu (10.1016/j.ymssp.2021.107779_b0010) 2019; 130
Antoni (10.1016/j.ymssp.2021.107779_b0070) 2007; 21
Lei (10.1016/j.ymssp.2021.107779_b0090) 2011; 25
Antoni (10.1016/j.ymssp.2021.107779_b0130) 2016; 74
Gilles (10.1016/j.ymssp.2021.107779_b0140) 2013; 61
Wang (10.1016/j.ymssp.2021.107779_b0095) 2013; 35
McFadden (10.1016/j.ymssp.2021.107779_b0050) 1984; 96
Zhang (10.1016/j.ymssp.2021.107779_b0075) 2009; 23
Wang (10.1016/j.ymssp.2021.107779_b0015) 2019; 105
Cui (10.1016/j.ymssp.2021.107779_b0030) 2019; 7
Cui (10.1016/j.ymssp.2021.107779_b0005) 2019; 135
Liang (10.1016/j.ymssp.2021.107779_b0110) 2008; 79
References_xml – volume: 135
  start-page: 678
  year: 2019
  end-page: 684
  ident: b0005
  article-title: A novel Switching Unscented Kalman Filter method for remaining useful life prediction of rolling bearing
  publication-title: Measurement
– volume: 40
  start-page: 499
  year: 2013
  end-page: 519
  ident: b0035
  article-title: The design of a new sparsogram for fast bearing fault diagnosis: Part 1 of the two related manuscripts that have a joint title as “Two automatic vibration-based fault diagnostic methods using the novel sparsity measurement
  publication-title: Mech. Syst. Signal Process.
– volume: 35
  start-page: 176
  year: 2013
  end-page: 199
  ident: b0095
  article-title: An enhanced Kurtogram method for fault diagnosis of rolling element bearings
  publication-title: Mech. Syst. Sig. Process.
– volume: 25
  start-page: 431
  year: 2011
  end-page: 451
  ident: b0115
  article-title: A novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram
  publication-title: Mech. Syst. Signal Process.
– volume: 25
  start-page: 1738
  year: 2011
  end-page: 1749
  ident: b0090
  article-title: Application of an improved kurtogram method for fault diagnosis of rolling element bearings
  publication-title: Mech. Syst. Sig. Process.
– volume: 43
  start-page: 1
  year: 2014
  end-page: 24
  ident: b0105
  article-title: Multiwavelet transform and its applications in mechanical fault diagnosis—a review
  publication-title: Mech. Syst. Sig. Process.
– volume: 25
  start-page: 485
  year: 2011
  end-page: 520
  ident: b0040
  article-title: Rolling element bearing diagnostics—A tutorial
  publication-title: Mech. Syst. Signal Process.
– volume: 24
  start-page: 119
  year: 2010
  end-page: 137
  ident: b0080
  article-title: Enhancement of signal denoising and multiple fault signatures detecting in rotating machinery using dual-tree complex wavelet transform
  publication-title: Mech. Syst. Sig. Process.
– volume: 123
  start-page: 303
  year: 2001
  end-page: 310
  ident: b0045
  article-title: Wavelet analysis and envelope detection for rolling element bearing fault diagnosis – their effectiveness and flexibilities
  publication-title: J. Vib. Acoust.
– volume: 79
  start-page: 1
  year: 2008
  end-page: 6
  ident: b0110
  article-title: Sparsity enhancement for blind deconvolution of ultrasonic signals in nondestructive testing application
  publication-title: Rev. Sci. Instrum.
– volume: 105
  start-page: 182
  year: 2019
  end-page: 190
  ident: b0015
  article-title: A novel convolutional neural network based fault recognition method via image fusion of multi-vibration-signals
  publication-title: Comput. Indust.
– volume: 23
  start-page: 1509
  year: 2009
  end-page: 1517
  ident: b0075
  article-title: Rolling element bearing fault diagnosis based on the combination of genetic algorithms and fast kurtogram
  publication-title: Mech. Syst. Sig. Process.
– volume: 30
  start-page: 1
  year: 2019
  end-page: 19
  ident: b0025
  article-title: Application of an enhanced fast kurtogram based on empirical wavelet transform for bearing fault diagnosis
  publication-title: Meas. Sci. Technol.
– volume: 40
  start-page: 1
  year: 2013
  end-page: 37
  ident: b0100
  article-title: Detecting of transient vibration signatures using an improved fast spatial–spectral ensemble kurtosis kurtogram and its applications to mechanical signature analysis of short duration data from rotating machinery
  publication-title: Mech. Syst. Sig. Process.
– volume: 7
  start-page: 22710
  year: 2019
  end-page: 22718
  ident: b0030
  article-title: Improved fault size estimation method for rolling element bearings based on concatenation dictionary
  publication-title: IEEE Access
– volume: 42
  start-page: 430
  year: 2009
  end-page: 434
  ident: b0120
  article-title: Sparse deconvolution method for improving the time-resolution of ultrasonic NDE signals
  publication-title: NDT E Int.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 25
  ident: b0145
  article-title: An improved empirical wavelet transform and its applications in rolling bearing fault diagnosis
  publication-title: Appl. Sci.
– start-page: 607
  year: 1983
  end-page: 610
  ident: b0055
  article-title: Detection of non-Gaussian signals by frequency domain kurtosis estimation
  publication-title: International Conference on Acoustic, Speech, and Signal Processing, Boston
– volume: 25
  start-page: 1750
  year: 2011
  end-page: 1764
  ident: b0085
  article-title: An adaptive SK technique and its application for fault detection of rolling element bearings
  publication-title: Mech. Syst. Sig. Process.
– volume: 130
  start-page: 87
  year: 2019
  end-page: 107
  ident: b0010
  article-title: Adaptive Kurtogram and its applications in rolling bearing fault diagnosis
  publication-title: Mech. Syst. Signal Process.
– volume: 105
  start-page: 294
  year: 2018
  end-page: 318
  ident: b0135
  article-title: The Autogram: An effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis
  publication-title: Mech. Syst. Signal Process.
– volume: 20
  start-page: 282
  year: 2006
  end-page: 307
  ident: b0060
  article-title: The spectral kurtosis: a useful tool for characterising non-stationary signals
  publication-title: Mech. Syst. Signal Process.
– volume: 61
  start-page: 3999
  year: 2013
  end-page: 4010
  ident: b0140
  article-title: Empirical wavelet transform
  publication-title: IEEE Trans. Signal Process.
– volume: 21
  start-page: 108
  year: 2007
  end-page: 124
  ident: b0070
  article-title: Fast computation of the kurtogram for the detection of transient faults
  publication-title: Mech. Syst. Signal Process.
– volume: 154
  start-page: 107582
  year: 2021
  ident: b0020
  article-title: A novel Fast Entrogram and its applications in rolling bearing fault diagnosis
  publication-title: Mechanical Systems and Signal Processing
– volume: 66–67
  start-page: 679
  year: 2016
  end-page: 698
  ident: b0150
  article-title: Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications
  publication-title: Mech. Syst. Signal Process.
– volume: 74
  start-page: 73
  year: 2016
  end-page: 94
  ident: b0130
  article-title: The infogram: Entropic evidence of the signature of repetitive transients
  publication-title: Mech. Syst. Signal Process.
– volume: 20
  start-page: 308
  year: 2006
  end-page: 331
  ident: b0065
  article-title: The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines
  publication-title: Mech. Syst. Signal Process.
– volume: 80
  start-page: 1
  year: 2009
  end-page: 7
  ident: b0125
  article-title: Signal extraction using ensemble empirical mode decomposition and sparsity in pipeline magnetic flux leakage nondestructive evaluation
  publication-title: Rev. Sci. Instrum.
– volume: 96
  start-page: 69
  year: 1984
  end-page: 82
  ident: b0050
  article-title: Model for the vibration produced by a single point defect in a rolling element bearing
  publication-title: J. Sound Vib.
– volume: 30
  start-page: 1
  issue: 3
  year: 2019
  ident: 10.1016/j.ymssp.2021.107779_b0025
  article-title: Application of an enhanced fast kurtogram based on empirical wavelet transform for bearing fault diagnosis
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aafb44
– volume: 43
  start-page: 1
  issue: 1–2
  year: 2014
  ident: 10.1016/j.ymssp.2021.107779_b0105
  article-title: Multiwavelet transform and its applications in mechanical fault diagnosis—a review
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2013.09.015
– volume: 66–67
  start-page: 679
  year: 2016
  ident: 10.1016/j.ymssp.2021.107779_b0150
  article-title: Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.04.039
– volume: 105
  start-page: 294
  year: 2018
  ident: 10.1016/j.ymssp.2021.107779_b0135
  article-title: The Autogram: An effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.12.009
– volume: 154
  start-page: 107582
  year: 2021
  ident: 10.1016/j.ymssp.2021.107779_b0020
  article-title: A novel Fast Entrogram and its applications in rolling bearing fault diagnosis
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2020.107582
– volume: 40
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.ymssp.2021.107779_b0100
  article-title: Detecting of transient vibration signatures using an improved fast spatial–spectral ensemble kurtosis kurtogram and its applications to mechanical signature analysis of short duration data from rotating machinery
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2013.03.021
– volume: 20
  start-page: 282
  issue: 2
  year: 2006
  ident: 10.1016/j.ymssp.2021.107779_b0060
  article-title: The spectral kurtosis: a useful tool for characterising non-stationary signals
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2004.09.001
– volume: 105
  start-page: 182
  year: 2019
  ident: 10.1016/j.ymssp.2021.107779_b0015
  article-title: A novel convolutional neural network based fault recognition method via image fusion of multi-vibration-signals
  publication-title: Comput. Indust.
  doi: 10.1016/j.compind.2018.12.013
– volume: 20
  start-page: 308
  year: 2006
  ident: 10.1016/j.ymssp.2021.107779_b0065
  article-title: The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2004.09.002
– volume: 130
  start-page: 87
  year: 2019
  ident: 10.1016/j.ymssp.2021.107779_b0010
  article-title: Adaptive Kurtogram and its applications in rolling bearing fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.05.003
– volume: 123
  start-page: 303
  year: 2001
  ident: 10.1016/j.ymssp.2021.107779_b0045
  article-title: Wavelet analysis and envelope detection for rolling element bearing fault diagnosis – their effectiveness and flexibilities
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.1379745
– volume: 24
  start-page: 119
  issue: 1
  year: 2010
  ident: 10.1016/j.ymssp.2021.107779_b0080
  article-title: Enhancement of signal denoising and multiple fault signatures detecting in rotating machinery using dual-tree complex wavelet transform
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2009.06.015
– volume: 42
  start-page: 430
  year: 2009
  ident: 10.1016/j.ymssp.2021.107779_b0120
  article-title: Sparse deconvolution method for improving the time-resolution of ultrasonic NDE signals
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2009.01.009
– volume: 74
  start-page: 73
  year: 2016
  ident: 10.1016/j.ymssp.2021.107779_b0130
  article-title: The infogram: Entropic evidence of the signature of repetitive transients
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.04.034
– volume: 96
  start-page: 69
  issue: 1
  year: 1984
  ident: 10.1016/j.ymssp.2021.107779_b0050
  article-title: Model for the vibration produced by a single point defect in a rolling element bearing
  publication-title: J. Sound Vib.
  doi: 10.1016/0022-460X(84)90595-9
– volume: 40
  start-page: 499
  year: 2013
  ident: 10.1016/j.ymssp.2021.107779_b0035
  article-title: The design of a new sparsogram for fast bearing fault diagnosis: Part 1 of the two related manuscripts that have a joint title as “Two automatic vibration-based fault diagnostic methods using the novel sparsity measurement
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.05.024
– volume: 25
  start-page: 1750
  issue: 5
  year: 2011
  ident: 10.1016/j.ymssp.2021.107779_b0085
  article-title: An adaptive SK technique and its application for fault detection of rolling element bearings
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2010.12.008
– volume: 80
  start-page: 1
  year: 2009
  ident: 10.1016/j.ymssp.2021.107779_b0125
  article-title: Signal extraction using ensemble empirical mode decomposition and sparsity in pipeline magnetic flux leakage nondestructive evaluation
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3082021
– volume: 35
  start-page: 176
  issue: 1–2
  year: 2013
  ident: 10.1016/j.ymssp.2021.107779_b0095
  article-title: An enhanced Kurtogram method for fault diagnosis of rolling element bearings
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2012.10.003
– volume: 25
  start-page: 1738
  issue: 5
  year: 2011
  ident: 10.1016/j.ymssp.2021.107779_b0090
  article-title: Application of an improved kurtogram method for fault diagnosis of rolling element bearings
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2010.12.011
– volume: 79
  start-page: 1
  year: 2008
  ident: 10.1016/j.ymssp.2021.107779_b0110
  article-title: Sparsity enhancement for blind deconvolution of ultrasonic signals in nondestructive testing application
  publication-title: Rev. Sci. Instrum.
– volume: 25
  start-page: 431
  year: 2011
  ident: 10.1016/j.ymssp.2021.107779_b0115
  article-title: A novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2010.05.018
– volume: 135
  start-page: 678
  year: 2019
  ident: 10.1016/j.ymssp.2021.107779_b0005
  article-title: A novel Switching Unscented Kalman Filter method for remaining useful life prediction of rolling bearing
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.12.028
– volume: 7
  start-page: 22710
  year: 2019
  ident: 10.1016/j.ymssp.2021.107779_b0030
  article-title: Improved fault size estimation method for rolling element bearings based on concatenation dictionary
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2899036
– volume: 8
  start-page: 1
  issue: 12
  year: 2018
  ident: 10.1016/j.ymssp.2021.107779_b0145
  article-title: An improved empirical wavelet transform and its applications in rolling bearing fault diagnosis
  publication-title: Appl. Sci.
  doi: 10.3390/app8122352
– volume: 21
  start-page: 108
  year: 2007
  ident: 10.1016/j.ymssp.2021.107779_b0070
  article-title: Fast computation of the kurtogram for the detection of transient faults
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2005.12.002
– volume: 23
  start-page: 1509
  issue: 5
  year: 2009
  ident: 10.1016/j.ymssp.2021.107779_b0075
  article-title: Rolling element bearing fault diagnosis based on the combination of genetic algorithms and fast kurtogram
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2009.02.003
– volume: 25
  start-page: 485
  year: 2011
  ident: 10.1016/j.ymssp.2021.107779_b0040
  article-title: Rolling element bearing diagnostics—A tutorial
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2010.07.017
– start-page: 607
  year: 1983
  ident: 10.1016/j.ymssp.2021.107779_b0055
  article-title: Detection of non-Gaussian signals by frequency domain kurtosis estimation
– volume: 61
  start-page: 3999
  issue: 16
  year: 2013
  ident: 10.1016/j.ymssp.2021.107779_b0140
  article-title: Empirical wavelet transform
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2265222
SSID ssj0009406
ssib006540756
ssib006540755
Score 2.4933069
Snippet •Enfigram is insensitive to accidental shocks or the rotation frequency interference.•The local minimum is used to divide the boundaries in spectrum trend.•The...
In the actual industrial production, the collected vibration signal often contains accidental impact or harmonic interference due to the influence of...
SourceID proquest
crossref
nii
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107779
SubjectTerms Accidental pulse
Enfigram
Fault diagnosis
Fourier transforms
Frequencies
Interference
Low pass filters
Optimal frequency-band extraction
Robust
Robustness
Roller bearings
Segmentation
Signal processing
Vibration
Title The Enfigram: A robust method for extracting repetitive transients in rolling bearing fault diagnosis
URI https://dx.doi.org/10.1016/j.ymssp.2021.107779
https://cir.nii.ac.jp/crid/1870302168232196352
https://www.proquest.com/docview/2614128047
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T-QwEB6xS8MVCDjQLS-5oCRs4sROQrdCoAUEDYdEZ9mOg3KCsNpkCxp-OzN58BCI4ppEsTKKNW8rM98AHASB5YmOMy8JnfQi6YRnXI7mLkSWpNZPk2Zaw9W1nN5GF3fibglO-l4YKqvsfH_r0xtv3a2MO26OZ0UxvkH7QHWM6dCCahXJASzzMJViCMuT88vp9Tv2btSM2KT3PSLowYeaMq_nx6oi3Eoe4EocU0nX9wFqUBbFF4fdRKGzNVjt0kc2aXe4Dkuu3IBfH0AFf4NDybPTMi-o7uqYTdj8ySyqmrWzohkmqQwdctMcVd6zuZtRnxn6PFZT2KL2yIoVJVI1aN3MoCnQPdeLh5plbWVeUW3C7dnp35Op1w1T8CwG4dqzglueExa3SE2cChs5q6XTOqacRFKBoQ6kb7KQmzyzqRMELhZqq2OLh4og3IJh-VS6P8BMqBPjMpfzTESScnQr6W9f6EKZON8fAe85qGyHNE4DLx5UX1L2TzVsV8R21bJ9BIdvRLMWaOPn12UvGvVJXxSGgp8J91CQuC-6Bgk5PB7IBBNL8kWCj2C3F7HqzLlSyIoIA7kfxdv_-90dWKGntjxtF4b1fOH2MJ-pzT4Mjl6C_U5rXwHpPvJ8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615QAcEE-xfYAPHAmbOH4k3Kqq1QJtL7RSb5btOChVSVeb7IFLf3tnnIQWgXrgkkiJrVgz45mx8s03AB-yzPPC6iop8qASoYJMXKhxu0tZFaVPyyJ2azg5VYtz8fVCXmzAwVQLQ7DK0fcPPj166_HJfJTmfNk08--4P9AcNR1a0KyE2oRHQuaacH2fbu5wHqWIDTZpdELDJ-qhCPL69bPriLWSZ_hEawJ0_Ts8bbZN85e7jjHo6Dk8G5NHtj-s7wVshPYlPL1HKfgKAuqdHbZ1Q6irz2yfra7duuvZ0CmaYYrK0B3H0qj2B1uFJVWZocdjPQUtKo7sWNPirMjVzRxuBLrXdn3Vs2rA5TXdazg_Ojw7WCRjK4XEYwjuEy-55zUxccvS6VJ6EbxVwVpNGYkieKHNVOqqnLu68mWQRC2WW2-1xyNFlr-Brfa6DW-BudwWLlSh5pUUijJ0r-hfXx5yVYQ0nQGfJGj8yDNO7S6uzAQouzRR7IbEbgaxz-Dj70nLgWbj4eFqUo35w1oMBoKHJ-6hInFddM0Kcnc8UwWmleSJJJ_B7qRiM27mzqAoBIbxVOjt__3ue3i8ODs5NsdfTr_twBN6MwDVdmGrX63DHmY2vXsXLfcW8vvzRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Enfigram%3A+A+robust+method+for+extracting+repetitive+transients+in+rolling+bearing+fault+diagnosis&rft.jtitle=Mechanical+Systems+and+Signal+Processing&rft.au=Yonggang+Xu&rft.au=Chaoyong+Ma&rft.au=Yunjie+Deng&rft.au=Kun+Zhang&rft.date=2021-09-01&rft.pub=Elsevier+BV&rft.issn=0888-3270&rft.volume=158&rft.spage=107779&rft_id=info:doi/10.1016%2Fj.ymssp.2021.107779
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon