Identification of Mutations in Members of the Connexin Gene Family as a Cause of Nonsyndromic Deafness in Taiwan
Connexins (Cx), a large family of membrane proteins, are key components of gap junction channels. These channels are critical intercellular pathways through which ions or small molecules are passed, regulating a variety ofphysiological and developmental processes. One of these processes is hearing....
Saved in:
Published in | Audiology & neurotology Vol. 12; no. 3; pp. 198 - 208 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel, Switzerland
Karger
01.01.2007
S. Karger AG |
Subjects | |
Online Access | Get full text |
ISSN | 1420-3030 1421-9700 1421-9700 |
DOI | 10.1159/000099024 |
Cover
Abstract | Connexins (Cx), a large family of membrane proteins, are key components of gap junction channels. These channels are critical intercellular pathways through which ions or small molecules are passed, regulating a variety ofphysiological and developmental processes. One of these processes is hearing. In the current study, a genetic survey was made on 380 Taiwanese individuals, 260 with nonsyndromic deafness and 120 with normal hearing. All the 380 Taiwanese were screened for the presence of mutations in 8 genes of the Cx gene family. These genes included Cx26 (GJB2), Cx29 (GJE1), Cx30 (GJB6), Cx30.3 (GJB4), Cx31 (GJB3), Cx32 (GJB1), Cx43 (GJA1) and pseudogene [ρ] of Cx43 (ρ GJA1). Mutations were identified in 7 out of the 8 screened genes of the Cx family from 62 of the 260 deaf subjects (23.85%). Of the 17 mutations observed in the Cx gene family, 11 were novel mutations. Fourteen polymorphisms that were not associated with hearing loss were identified in the Cx gene family. The first 2 most frequently occurring mutations were found in the Cx26 (28/62; 45.16%) and the ρ Cx43 (17/62; 27.42%), respectively. Nine cases of mutations were found in the Cx30.3 (9/62; 14.52%). In the Cx30, 1 novel mutation was identified in 1 case (1/62; 1.61%). Two patients with mutations of each of Cx29 and Cx43 were found (2/62; 3.23%). One novel mutation of Cx31 was identified in 3 patients with nonsyndromic deafness (3/62; 4.84%). The Cx32 was the only gene without detecting any mutation or polymorphism.Our study provides information for understanding the importance of genetic factors in nonsyndromic deafness of the Taiwanese and may be of use in the improvement of genetic diagnosis of hearing loss in Taiwan. |
---|---|
AbstractList | Connexins (Cx), a large family of membrane proteins, are key components of gap junction channels. These channels are critical intercellular pathways through which ions or small molecules are passed, regulating a variety of physiological and developmental processes. One of these processes is hearing. In the current study, a genetic survey was made on 380 Taiwanese individuals, 260 with nonsyndromic deafness and 120 with normal hearing. All the 380 Taiwanese were screened for the presence of mutations in 8 genes of the Cx gene family. These genes included Cx26 (GJB2), Cx29 (GJE1), Cx30 (GJB6), Cx30.3 (GJB4), Cx31 (GJB3), Cx32 (GJB1), Cx43 (GJA1) and pseudogene [rho] of Cx43 (rho GJA1). Mutations were identified in 7 out of the 8 screened genes of the Cx family from 62 of the 260 deaf subjects (23.85%). Of the 17 mutations observed in the Cx gene family, 11 were novel mutations. Fourteen polymorphisms that were not associated with hearing loss were identified in the Cx gene family. The first 2 most frequently occurring mutations were found in the Cx26 (28/62; 45.16%) and the rho Cx43 (17/62; 27.42%), respectively. Nine cases of mutations were found in the Cx30.3 (9/62; 14.52%). In the Cx30, 1 novel mutation was identified in 1 case (1/62; 1.61%). Two patients with mutations of each of Cx29 and Cx43 were found (2/62; 3.23%). One novel mutation of Cx31 was identified in 3 patients with nonsyndromic deafness (3/62; 4.84%). The Cx32 was the only gene without detecting any mutation or polymorphism.Our study provides information for understanding the importance of genetic factors in nonsyndromic deafness of the Taiwanese and may be of use in the improvement of genetic diagnosis of hearing loss in Taiwan. Connexins (Cx), a large family of membrane proteins, are key components of gap junction channels. These channels are critical intercellular pathways through which ions or small molecules are passed, regulating a variety ofphysiological and developmental processes. One of these processes is hearing. In the current study, a genetic survey was made on 380 Taiwanese individuals, 260 with nonsyndromic deafness and 120 with normal hearing. All the 380 Taiwanese were screened for the presence of mutations in 8 genes of the Cx gene family. These genes included Cx26 (GJB2), Cx29 (GJE1), Cx30 (GJB6), Cx30.3 (GJB4), Cx31 (GJB3), Cx32 (GJB1), Cx43 (GJA1) and pseudogene [ρ] of Cx43 (ρ GJA1). Mutations were identified in 7 out of the 8 screened genes of the Cx family from 62 of the 260 deaf subjects (23.85%). Of the 17 mutations observed in the Cx gene family, 11 were novel mutations. Fourteen polymorphisms that were not associated with hearing loss were identified in the Cx gene family. The first 2 most frequently occurring mutations were found in the Cx26 (28/62; 45.16%) and the ρ Cx43 (17/62; 27.42%), respectively. Nine cases of mutations were found in the Cx30.3 (9/62; 14.52%). In the Cx30, 1 novel mutation was identified in 1 case (1/62; 1.61%). Two patients with mutations of each of Cx29 and Cx43 were found (2/62; 3.23%). One novel mutation of Cx31 was identified in 3 patients with nonsyndromic deafness (3/62; 4.84%). The Cx32 was the only gene without detecting any mutation or polymorphism.Our study provides information for understanding the importance of genetic factors in nonsyndromic deafness of the Taiwanese and may be of use in the improvement of genetic diagnosis of hearing loss in Taiwan. Connexins (Cx), a large family of membrane proteins, are key components of gap junction channels. These channels are critical intercellular pathways through which ions or small molecules are passed, regulating a variety of physiological and developmental processes. One of these processes is hearing. In the current study, a genetic survey was made on 380 Taiwanese individuals, 260 with nonsyndromic deafness and 120 with normal hearing. All the 380 Taiwanese were screened for the presence of mutations in 8 genes of the Cx gene family. These genes included Cx26 (GJB2), Cx29 (GJE1), Cx30 (GJB6), Cx30.3 (GJB4), Cx31 (GJB3), Cx32 (GJB1), Cx43 (GJA1) and pseudogene [rho] of Cx43 (rho GJA1). Mutations were identified in 7 out of the 8 screened genes of the Cx family from 62 of the 260 deaf subjects (23.85%). Of the 17 mutations observed in the Cx gene family, 11 were novel mutations. Fourteen polymorphisms that were not associated with hearing loss were identified in the Cx gene family. The first 2 most frequently occurring mutations were found in the Cx26 (28/62; 45.16%) and the rho Cx43 (17/62; 27.42%), respectively. Nine cases of mutations were found in the Cx30.3 (9/62; 14.52%). In the Cx30, 1 novel mutation was identified in 1 case (1/62; 1.61%). Two patients with mutations of each of Cx29 and Cx43 were found (2/62; 3.23%). One novel mutation of Cx31 was identified in 3 patients with nonsyndromic deafness (3/62; 4.84%). The Cx32 was the only gene without detecting any mutation or polymorphism.Our study provides information for understanding the importance of genetic factors in nonsyndromic deafness of the Taiwanese and may be of use in the improvement of genetic diagnosis of hearing loss in Taiwan.Connexins (Cx), a large family of membrane proteins, are key components of gap junction channels. These channels are critical intercellular pathways through which ions or small molecules are passed, regulating a variety of physiological and developmental processes. One of these processes is hearing. In the current study, a genetic survey was made on 380 Taiwanese individuals, 260 with nonsyndromic deafness and 120 with normal hearing. All the 380 Taiwanese were screened for the presence of mutations in 8 genes of the Cx gene family. These genes included Cx26 (GJB2), Cx29 (GJE1), Cx30 (GJB6), Cx30.3 (GJB4), Cx31 (GJB3), Cx32 (GJB1), Cx43 (GJA1) and pseudogene [rho] of Cx43 (rho GJA1). Mutations were identified in 7 out of the 8 screened genes of the Cx family from 62 of the 260 deaf subjects (23.85%). Of the 17 mutations observed in the Cx gene family, 11 were novel mutations. Fourteen polymorphisms that were not associated with hearing loss were identified in the Cx gene family. The first 2 most frequently occurring mutations were found in the Cx26 (28/62; 45.16%) and the rho Cx43 (17/62; 27.42%), respectively. Nine cases of mutations were found in the Cx30.3 (9/62; 14.52%). In the Cx30, 1 novel mutation was identified in 1 case (1/62; 1.61%). Two patients with mutations of each of Cx29 and Cx43 were found (2/62; 3.23%). One novel mutation of Cx31 was identified in 3 patients with nonsyndromic deafness (3/62; 4.84%). The Cx32 was the only gene without detecting any mutation or polymorphism.Our study provides information for understanding the importance of genetic factors in nonsyndromic deafness of the Taiwanese and may be of use in the improvement of genetic diagnosis of hearing loss in Taiwan. Connexins (Cx) , a large family of membrane proteins, are key components of gap junction channels. These channels are critical intercellular pathways through which ions or small molecules are passed, regulating a variety of physiological and developmental processes. One of these processes is hearing. In the current study, a genetic survey was made on 380 Taiwanese individuals, 260 with nonsyndromic deafness and 120 with normal hearing. All the 380 Taiwanese were screened for the presence of mutations in 8 genes of the Cx gene family. These genes included Cx26 (GJB2), Cx29 (GJE1), Cx30 (GJB6) , Cx30.3 (GJB4) , Cx31 (GJB3) , Cx32 (GJB1) , Cx43 (GJA1) and pseudogene [?] of Cx43 (? GJA1). Mutations were identified in 7 out of the 8 screened genes of the Cx family from 62 of the 260 deaf subjects (23.85%). Of the 17 mutations observed in the Cx gene family, 11 were novel mutations. Fourteen polymorphisms that were not associated with hearing loss were identified in the Cx gene family. The first 2 most frequently occurring mutations were found in the Cx26 (28/62; 45.16%) and the ? Cx43 (17/62; 27.42%), respectively. Nine cases of mutations were found in the Cx30.3 (9/62; 14.52%). In the Cx30 , 1 novel mutation was identified in 1 case (1/62; 1.61%). Two patients with mutations of each of Cx29 and Cx43 were found (2/62; 3.23%). One novel mutation of Cx31 was identified in 3 patients with nonsyndromic deafness (3/62; 4.84%). The Cx32 was the only gene without detecting any mutation or polymorphism. Our study provides information for understanding the importance of genetic factors in nonsyndromic deafness of the Taiwanese and may be of use in the improvement of genetic diagnosis of hearing loss in Taiwan. [PUBLICATION ABSTRACT] |
Author | Liao, Pei-Ju Chou, Kvei-Hsiu Su, Ching-Chyuan Li, Shuan-Yow Yang, Jiann-Jou Huang, Shih-Hsin |
Author_xml | – sequence: 1 givenname: Jiann-Jou surname: Yang fullname: Yang, Jiann-Jou – sequence: 2 givenname: Shih-Hsin surname: Huang fullname: Huang, Shih-Hsin – sequence: 3 givenname: Kvei-Hsiu surname: Chou fullname: Chou, Kvei-Hsiu – sequence: 4 givenname: Pei-Ju surname: Liao fullname: Liao, Pei-Ju – sequence: 5 givenname: Ching-Chyuan surname: Su fullname: Su, Ching-Chyuan – sequence: 6 givenname: Shuan-Yow surname: Li fullname: Li, Shuan-Yow |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18625832$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17259707$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0Utv1DAQAGALFdEHHDgjIQupSD2k9XPjHNGWPqS2XMo5mjhjcEmcrZ0I9t_j3SytVOGLR-NvRrbnkOyFISAh7zk75VxXZyyvqmJCvSIHXAleVCVje9uYFZJJtk8OU3rISmut3pB9XgqdTXlAVtcthtE7b2H0Q6CDo7fTuI0T9YHeYt9gTJv8-BPpcggB_-T8JQakF9D7bk0hUaBLmBJu2F2uXIc2Dr239BzBBUzbVvfgf0N4S1476BK-2-1H5PvF1_vlVXHz7fJ6-eWmsEosxsIKtMYpprg1SjegULW6bRYVNMa2BoVtZaUkZ_kZjXVgpBPATCu1lUw4K4_I57nvKg6PE6ax7n2y2HUQcJhSXTKpDCt5hp9ewIdhiiHfrRaCGS2qUmT0cYempse2XkXfQ1zX_z4yg-MdgGShcxGC9enZmYXQRm4anczOxiGliO6ZsHozzPppmNmevbDWz6MZI_juvxUf5opfEH9gfOo9n_4F7Qmndw |
CitedBy_id | crossref_primary_10_1089_ars_2008_2128 crossref_primary_10_3390_v13040623 crossref_primary_10_1371_journal_pone_0021473 crossref_primary_10_1002_lary_24249 crossref_primary_10_1016_j_neuint_2020_104727 crossref_primary_10_1002_jcla_22592 crossref_primary_10_1016_j_ijporl_2015_01_033 crossref_primary_10_1089_omi_2013_0166 crossref_primary_10_3390_biomedicines10030589 crossref_primary_10_1007_s00424_010_0789_1 crossref_primary_10_3390_biom13040712 crossref_primary_10_1089_ars_2008_2138 crossref_primary_10_1016_j_heares_2010_02_008 crossref_primary_10_3390_ohbm1010003 crossref_primary_10_1016_j_bbamem_2011_08_015 crossref_primary_10_1089_gtmb_2010_0026 crossref_primary_10_1016_j_ijporl_2011_07_033 crossref_primary_10_2119_molmed_2010_00183 crossref_primary_10_3390_cells9051291 crossref_primary_10_1111_j_1365_2230_2010_03986_x crossref_primary_10_3389_fncel_2015_00202 crossref_primary_10_1016_j_ijporl_2010_02_001 crossref_primary_10_3390_ijms23084255 crossref_primary_10_3390_ijms21072382 crossref_primary_10_1038_eye_2015_74 crossref_primary_10_1111_ahg_12141 crossref_primary_10_3390_biom13101521 crossref_primary_10_1007_s00441_014_2024_4 crossref_primary_10_1002_glia_21073 crossref_primary_10_3389_fgene_2022_797124 crossref_primary_10_3390_life10110258 crossref_primary_10_1002_ajmg_c_31485 crossref_primary_10_1002_lary_20621 crossref_primary_10_1016_j_ijporl_2009_02_009 crossref_primary_10_1007_s12013_011_9188_2 crossref_primary_10_1016_j_ijporl_2012_10_015 crossref_primary_10_1111_ahg_12213 crossref_primary_10_3892_mmr_2014_2725 crossref_primary_10_1016_j_bbrc_2010_10_021 crossref_primary_10_3389_fphys_2020_00974 crossref_primary_10_1016_j_brainres_2009_02_008 crossref_primary_10_1002_mgg3_1171 crossref_primary_10_18632_oncotarget_17325 crossref_primary_10_1007_s00439_010_0791_x crossref_primary_10_1002_lary_24332 crossref_primary_10_1111_exd_14490 crossref_primary_10_1007_s00439_009_0758_y crossref_primary_10_1007_s00439_010_0856_x crossref_primary_10_15412_J_JBTW_01030502 crossref_primary_10_1016_j_febslet_2013_12_022 crossref_primary_10_17430_882155 crossref_primary_10_1016_j_ijporl_2011_11_018 crossref_primary_10_1016_j_bbamem_2012_06_024 crossref_primary_10_1242_jcs_214635 crossref_primary_10_1007_s12013_012_9481_8 crossref_primary_10_1038_ejhg_2010_50 crossref_primary_10_3389_fncel_2019_00529 crossref_primary_10_1139_bcb_2013_0126 crossref_primary_10_1016_j_pedneo_2015_04_002 crossref_primary_10_1080_14992020802249259 crossref_primary_10_1371_journal_pone_0240129 crossref_primary_10_1074_jbc_R700041200 crossref_primary_10_1007_s00439_008_0556_y crossref_primary_10_1007_s00405_016_4229_5 crossref_primary_10_1016_j_heares_2014_04_010 crossref_primary_10_1111_j_1365_2362_2010_02378_x |
Cites_doi | 10.1126%2Fscience.7892609 10.1073%2Fpnas.88.9.3525 10.1016%2FS1471-4914%2802%2902327-4 10.1126%2Fscience.8266101 10.1080%2F09687680210139839 10.1097%2F01.GIM.0000066796.11916.94 10.1016%2FS1383-5742%2800%2900037-5 10.1002%2Fcne.10916 10.1038%2F3845 10.1086%2F302329 10.1038%2F30639 10.1056%2FNEJMoa012052 10.1038%2Fsj.ejhg.5200838 10.1016%2F0378-5955%2896%2900106-2 10.1074%2Fjbc.273.5.2808 10.1016%2Fj.jaad.2003.12.042 10.1073%2Fpnas.96.11.6495 10.1086%2F301807 10.1111%2Fj.1749-6632.1991.tb19572.x 10.1006%2Fnbdi.2002.0545 10.1016%2Fj.bbrc.2005.09.193 10.1136%2Fjmg.37.1.41 10.1093%2Fhmg%2F6.12.2173 10.1126%2Fscience.1063525 10.1056%2FNEJM199505183322002 10.1136%2Fjmg.2006.042051 10.1093%2Fhmg%2F9.1.63 10.1056%2FNEJM199811193392103 10.1016%2FS0006-3495%2897%2978840-4 10.1097%2F00001756-200008030-00022 10.1016%2FS0006-291X%2803%2901166-5 10.1078%2F0171-9335-00132 10.1038%2Fsj.onc.1207506 10.1126%2Fscience.8202715 10.1097%2F00005537-200009000-00023 10.1002%2F%28SICI%291098-1004%28200005%2915%3A5%3C481%3A%3AAID-HUMU15%3E3.0.CO%3B2-7 10.1152%2Fajpcell.00341.2004 10.1093%2Fhmg%2F11.10.1229 10.1002%2Fjnr.10255 10.1002%2Fhumu.9023 10.1007%2Fs00439-002-0811-6 10.1136%2Fjmg.2004.028324 10.1007%2Fs004390000273 10.1007%2FBF00186783 10.1097%2F00129492-200111000-00025 10.1002%2Fhumu.1156 10.1007%2Fs00441-004-0861-2 10.1074%2Fjbc.273.21.12725 10.1073%2Fpnas.93.3.1287 10.1016%2FS0960-9822%2807%2900375-2 10.1002%2Fhumu.1222 10.1002%2F%28SICI%291096-8628%2820000117%2990%3A2%3C141%3A%3AAID-AJMG10%3E3.0.CO%3B2-G 10.1093%2Fhmg%2F10.25.2945 10.1038%2Fsj.ejhg.5200762 10.1086%2F346090 |
ContentType | Journal Article |
Copyright | 2007 S. Karger AG, Basel 2007 INIST-CNRS Copyright 2007 S. Karger AG, Basel. Copyright (c) 2007 S. Karger AG, Basel |
Copyright_xml | – notice: 2007 S. Karger AG, Basel – notice: 2007 INIST-CNRS – notice: Copyright 2007 S. Karger AG, Basel. – notice: Copyright (c) 2007 S. Karger AG, Basel |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 88G 8AO 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ K9. KB0 M0S M1P M2M NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PSYQQ Q9U 7X8 |
DOI | 10.1159/000099024 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Health & Medical Collection (Alumni) Medical Database Psychology Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1421-9700 |
EndPage | 208 |
ExternalDocumentID | 1252188391 17259707 18625832 10_1159_000099024 99024 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Asia Taiwan |
GeographicLocations_xml | – name: Taiwan |
GroupedDBID | --- 0R~ 0~5 0~B 23N 30W 329 36B 3O. 3V. 4.4 53G 5GY 6PF 7RV 7X7 88E 8AO 8FI 8FJ 8UI AALGM AAWTL AAYIC ABIVO ABJNI ABPAZ ABUWG ACGFO ACGFS ACPSR ADAGL ADBBV AENEX AEYAO AFJJK AFKRA AFOSN AHMBA ALDHI ALIPV ALMA_UNASSIGNED_HOLDINGS AZPMC AZQEC BENPR BKEYQ BPHCQ BVXVI C45 CAG CCPQU COF CS3 CYUIP DWQXO E0A EBS EJD EMB EMOBN EX3 F5P FB. FYUFA GNUQQ HMCUK HZ~ IY7 KUZGX M1P M2M N9A NAPCQ O1H O9- OVD P2P PQQKQ PROAC PSQYO PSYQQ RIG RKO RXVBD SV3 TEORI UJ6 UKHRP WOW AAYXX ABBTS ABWCG ACQXL AFSIO AHFRZ CITATION PHGZM PHGZT PJZUB PPXIY IQODW CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c426t-c2ec8f4041c845ba4e4d5db69ab8cd8e2cd394310970bcfa83f2a08d35c302fc3 |
IEDL.DBID | 7X7 |
ISSN | 1420-3030 1421-9700 |
IngestDate | Thu Sep 04 19:52:06 EDT 2025 Sat Aug 23 13:29:26 EDT 2025 Wed Feb 19 02:09:35 EST 2025 Mon Jul 21 09:11:38 EDT 2025 Tue Aug 05 12:06:41 EDT 2025 Thu Apr 24 23:11:19 EDT 2025 Thu Aug 29 12:04:38 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Connexin, mutation Deafness, nonsyndromic Gap junction Connexin Gene Family study Auditory disorder Family environment ENT disease Identification Mutation Connexin, mutation, Deafness, nonsyndromic Hearing loss |
Language | English |
License | Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. https://www.karger.com/Services/SiteLicenses CC BY 4.0 Copyright 2007 S. Karger AG, Basel. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-c2ec8f4041c845ba4e4d5db69ab8cd8e2cd394310970bcfa83f2a08d35c302fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 17259707 |
PQID | 220852972 |
PQPubID | 33658 |
PageCount | 11 |
ParticipantIDs | pubmed_primary_17259707 crossref_citationtrail_10_1159_000099024 crossref_primary_10_1159_000099024 pascalfrancis_primary_18625832 proquest_miscellaneous_70348071 karger_primary_99024 proquest_journals_220852972 |
PublicationCentury | 2000 |
PublicationDate | 2007-01-01 |
PublicationDateYYYYMMDD | 2007-01-01 |
PublicationDate_xml | – month: 01 year: 2007 text: 2007-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Basel, Switzerland |
PublicationPlace_xml | – name: Basel, Switzerland – name: Basel – name: Switzerland |
PublicationTitle | Audiology & neurotology |
PublicationTitleAlternate | Audiol Neurotol |
PublicationYear | 2007 |
Publisher | Karger S. Karger AG |
Publisher_xml | – name: Karger – name: S. Karger AG |
References | Paznekas WA, Boyadjiev SA, Shapiro RE, Daniels O, Wollnik B, Keegan CE, Innis JW, Dinulos MB, Christian C, Hannibal MC, Jabs EW: Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 2003;72:408-418.1245734010.1086%2F346090 Zhou XW, Pfahnl A, Werner R, Hudder A, Llanes A, Lubeke A, Dahl G: Identification of a pore lining segment in gap junction hemichannels. Biophys J 1997;72:1946-1953.912979910.1016%2FS0006-3495%2897%2978840-4 Harris AL: Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 2001;34:325-472.11838236 Park HJ, Hahn SH, Chun YM, Park K, Kim HN: Connexin26 mutations associated with nonsyndromic hearing loss. Laryngoscope 2000;110:1535-1538.1098395610.1097%2F00005537-200009000-00023 Hamelmann C, Amedofu GK, Albrecht K, Muntau B, Gelhaus A, Brobby GW, Horstmann RD: Pattern of connexin 26 (GJB2) mutations causing sensorineural hearing impairment in Ghana. Hum Mutat 2001;18:84-85.1143900010.1002%2Fhumu.1156 Kandouz M, Bier A, Carystinos GD, Alaoui-Jamali MA, Batist G: Connexin43 pseudogene is expressed in tumor cells and inhibits growth. Oncogene 2004;23:4763-4770.1512232910.1038%2Fsj.onc.1207506 Yum SW, Kleopa KA, Shumas S, Scherer SS: Diverse trafficking abnormalities of connexin32 mutants causing CMTX. Neurobiol Dis 2002;11:43-52.1246054510.1006%2Fnbdi.2002.0545 Abe S, Usami SI, Shinkawa H, Kelley PM, Kimberling WJ: Prevalent connexin 26 gene (GJB2) mutations in Japanese. J Med Genet 2000;37:41-43.1063313310.1136%2Fjmg.37.1.41 Del Castillo I, Villamar M, Moreno-Pelayo MA, del Castillo FJ, Alvarez A, Telleria D, Menendez I, Moreno F: A deletion involving the Connexin 30 gene in non-syndromic hearing impairment. N Engl J Med 2002;346:243-249.1180714810.1056%2FNEJMoa012052 Bevans CG, Kordel M, Rhee SK, Harris AL: Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J Biol Chem 1998;273:2808-2816.944658910.1074%2Fjbc.273.5.2808 Denoyelle F, Lina-Granade G, Plauchu H, Bruzzone R, Chaib H, Levi-Acobas F, Weil D, Petit C: Connexin 26 gene linked to a dominant deafness. Nature 1998;393:319-320.962079610.1038%2F30639 Liu XZ, Xia XJ, Ke XM, Ouyang XM, Du LL, Liu YH, Angeli S, Telischi FF, Nance WE, Balkany T, Xu LR: The prevalence of connexin 26 (GJB2) mutations in the Chinese population. Hum Genet 2002;111:394-397.1238478110.1007%2Fs00439-002-0811-6 Spicer SS, Schulte BA: The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear Res 1996;100:80-100.892298210.1016%2F0378-5955%2896%2900106-2 Brink PR, Cronin K, Banach K, Peterson E, Westphale EM, Seul KH, Ramanan SV, Beyer EC: Evidence for heteromeric gap junction channels formed from rat connexin43 and human connexin37. Am J Physiol 1997;273:C1386-C1396.9357785 Britz-Cunningham SH, Shah MM, Zuppan CW, Fletcher WH: Mutations of the connexin43 gap-junction gene in patients with heart malformations and defects of laterality. N Engl J Med1995;332:1323-1329.771564010.1056%2FNEJM199505183322002 Lerer I, Sagi M, Ben-Neriah Z, Wang T, Levi H, Abeliovich D: A deletion mutation in GJB6 cooperating with a GJB2 mutation in trans in non-syndromic deafness: a novel founder mutation in Ashkenazi Jews. Hum Mutat 2001;18:460.1166864410.1002%2Fhumu.1222 Huculak C, Bruyere H, Nelson TN, Kozak FK, Langlois S: V37I connexin 26 allele in patients with sensorineural hearing loss: evidence of its pathogenicity. Am J Med Genet A 2006;140:2394-2400. Jiang JX, Goodenough DA: Heteromeric connexons in lens gap junction channels. Proc Natl Acad Sci USA 1996;93:1287-1291.857775610.1073%2Fpnas.93.3.1287 Morton CC: Genetics, genomics and gene discovery in the auditory system. Hum Mol Genet 2002;11:1229-1240.1201528310.1093%2Fhmg%2F11.10.1229 Spicer SS, Schulte BA: Evidence for a medial K+ recycling pathway from inner hair cells.Hear Res 1998;118:1-12. Morell R, Kim H, Hood L, Goforth L, Friderici K, Fisher R, Van Camp G, Berlin C, Oddoux C, Ostrer H, Keats B, Friedman T: Mutations in the connexin 26 gene (GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness. N Engl J Med 1998;339:1500-1505.981944810.1056%2FNEJM199811193392103 López-Bigas N, Rabionet R, Martinez E, Banchs I, Volpini V, Vance J, Arbones M, Estivill X: Identification of seven novel SNPS (five nucleotide and two amino acid substitutions) in the connexin31 (GJB3) gene. Hum Mutat 2000;15:481-482.1079021510.1002%2F%28SICI%291098-1004%28200005%2915%3A5%3C481%3A%3AAID-HUMU15%3E3.0.CO%3B2-7 Bergoffen J, Scherer SS, Wang S, Scott MO, Bone LJ, Paul DL, Chen K, Lensch MW, Chance PF, Fischbeck KH: Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science 1993;262:2039-2042.826610110.1126%2Fscience.8266101 Del Castillo FJ, Rodriguez-Ballesteros M, Alvarez A, Hutchin T, Leonardi E, de Oliveira CA, Azaiez H, Brownstein Z, Avenarius MR, Marlin S, Pandya A, Shahin H: A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment (letter). J Med Genet 2005;42:588-594.1599488110.1136%2Fjmg.2004.028324 Wang YC, Kung CY, Su MC, Su CC, Hsu HM, Tsai CC, Lin CC, Li SY: Mutations of Cx26 gene (GJB2) for prelingual deafness in Taiwan. Eur J Hum Genet 2002;10:495-498.1211164610.1038%2Fsj.ejhg.5200838 Liu XZ, Xia XJ, Xu LR, Pandya A, Liang CY, Blanton SH, Brown SD, Steel KP, Nance WE: Mutations in connexin31 underlie recessive as well as dominant non-syndromic hearing loss. Hum Mol Genet 2000;9:63-67.1058757910.1093%2Fhmg%2F9.1.63 Hereditary Hearing Loss Homepage. http://www.uia.ac.be/dnalab/hhh/hhhgenes.html. Katsanis N, Beales PL, Woods MO, Lewis RA, Green JS, Parfrey PS, Ansley SJ, Davidson WS, Lupski JR: Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science 2001;293:2256-2259.1156713910.1126%2Fscience.1063525 Kelley PM, Harris DJ, Comer BC, Askew JW, Fowler T, Smith SD, Kimberling WJ: Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet 1998;62:792-799.952936510.1086%2F301807 Rabionet R, López-Bigas N, Arbones ML, Estivill X: Connexin mutations in hearing loss, dermatological and neurological disorders. Trends Mol Med 2002;8:205-212.1206762910.1016%2FS1471-4914%2802%2902327-4 Dahl HH, Tobin SE, Poulakis Z, Rickards FW, Xu X, Gillam L, Williams J, Saunders K, Cone-Wesson B, Wake M: The contribution of GJB2 mutations to slight/mild hearing loss in Australian elementary school children. J Med Genet 2006;43:850-855.1684057110.1136%2Fjmg.2006.042051 Berthoud VM, Montegna EA, Atal N, Aithal NH, Brink PR, Beyer EC: Heteromeric connexons formed by the lens connexins, connexin43 and connexin56. Eur J Cell Biol 2001;80:11-19.1121193010.1078%2F0171-9335-00132 Leube RE: The topogenic fate of the polytopic transmembrane proteins, synaptophysin and connexin, is determined by their membrane-spanning domains. J Cell Sci 1995;108:883-894.7622617 Auricchio A, Griseri P, Carpentieri ML, Betsos N, Staiano A, Tozzi A, Priolo M, Thompson H, Bocciardi R, Romeo G, Ballabio A, Ceccherini I: Double heterozygosity for a RET substitution interfering with splicing and an EDNRB missense mutation in Hirschsprung disease. Am J Hum Genet 1999;64:1216-1221.1009090810.1086%2F302329 Ahmad S, Chen S, Sun J, Lin X, Connexins 26 and 30 are co-assembled to form gap junctions in the cochlea of mouse. Biochem Biophys Res Commun 2003;307:362-368.1285996510.1016%2FS0006-291X%2803%2901166-5 Cohen-Salmon M, Maxeiner S, Kruger O, Theis M, Willecke K, Petit C: Expression of the connexin43- and connexin45-encoding genes in the developing and mature mouse inner ear. Cell Tissue Res 2004;316:15-22.1498610210.1007%2Fs00441-004-0861-2 Fishman GI, Moreno AP, Spray DC, Leinwand LA: Functional analysis of human cardiac junction channel mutants. Proc Natl Acad Sci USA 1991;88:3525-3529.185083110.1073%2Fpnas.88.9.3525 Xia JH, Liu CY, Tang BS, Pan Q, Huang L, Dai HP, Zhang BR, Xie W, Hu DX, Zheng D, Shi XL, Wang DA, Xia K, Yu KP, Liao XD, Feng Y, Yang YF, Xiao JY, Xie DH, Huang JZ: Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat Genet 1998;20:370-373.984321010.1038%2F3845 López-Bigas N, Melchionda S, Gasparini P, Borragán A, Arbonés ML, Estivill X: A common frameshift mutation and other variants in GJB4 (connexin 30.3): analysis of hearing impairment families. Hum Mutat 2002;19:458.1193320110.1002%2Fhumu.9023 Sun J, Ahmad S, Chen S, Tang W, Zhang Y, Chen P, Lin X: Cochlear gap junctions coassembled from Cx26 and 30 show faster intercellular Ca2+ signaling than homomeric counterparts. Am J Physiol Cell Physiol 2005;288:613-623.10.1152%2Fajpcell.00341.2004 Liu XZ, Xia XJ, Adams J, Chen ZY, Welch KO, Tekin M, Ouyang XM, Kristiansen A, Pandya A, Balkany T, Arnos KS, Nance WE: Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal recessive deafness. Hum Mol Genet 2001;10:2945-2951.1174183710.1093%2Fhmg%2F10.25.2945 Krutovskikh V, Yamasaki H: Connexin gene mutations in human genetic diseases. Mutat Res 2000;462:197-207.1076763110.1016%2FS1383-5742%2800%2900037-5 He DS, Jiang JX, Taffet SM, Burt JM: Formation of heteromeric gap junction channels by connexins 40 and 43 in vascular smooth muscle cells. Proc Natl Acad Sci USA1999;96:6495-6500.1033961610.1073%2Fpnas.96.11.6495 Pallares-Ruiz N, Blanchet P, Mondain M, Claustres M, Roux AF: A large deletion including most of GJB6 in recessive nonsyndromic deafness: a digenic effect? Eur J Hum Genet 2002;10:72-76.1189645810.1038%2Fsj.ejhg.5200762 Kudo T, Ikeda K, Kure S, Matsubara Y, Oshima T, Watanabe K, Kawase T, Narisawa K, Takasaka T: Novel mutations in the connexin 26 gene (GJB2) responsible for childhood deafness in the Japanese population. Am J Med Genet 2000;90:141-145.1060795310.1002%2F%28SICI%291096-8628%2820000117%2990%3A2%3C141%3A%3AAID-AJMG10%3E3.0.CO%3B2-G Kikuchi T, Kimura RS, Pau ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Audiol Neurootol. 2007;12(5):344 |
References_xml | – reference: Denoyelle F, Lina-Granade G, Plauchu H, Bruzzone R, Chaib H, Levi-Acobas F, Weil D, Petit C: Connexin 26 gene linked to a dominant deafness. Nature 1998;393:319-320.962079610.1038%2F30639 – reference: Grifa A, Wagner CA, D'Ambrosio L, Melchionda S, Bernardi F, López-Bigas N, Rabionet R, Arbones M, Monica MD, Estivill X, Zelante L, Lang F, Gasparini P: Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat Genet 1999;23:16-18.10471490 – reference: Berthoud VM, Montegna EA, Atal N, Aithal NH, Brink PR, Beyer EC: Heteromeric connexons formed by the lens connexins, connexin43 and connexin56. Eur J Cell Biol 2001;80:11-19.1121193010.1078%2F0171-9335-00132 – reference: Abe S, Usami SI, Shinkawa H, Kelley PM, Kimberling WJ: Prevalent connexin 26 gene (GJB2) mutations in Japanese. J Med Genet 2000;37:41-43.1063313310.1136%2Fjmg.37.1.41 – reference: Kikuchi T, Kimura RS, Paul DL, Adams JC: Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol 1995;191:101-118.772638910.1007%2FBF00186783 – reference: Britz-Cunningham SH, Shah MM, Zuppan CW, Fletcher WH: Mutations of the connexin43 gap-junction gene in patients with heart malformations and defects of laterality. N Engl J Med1995;332:1323-1329.771564010.1056%2FNEJM199505183322002 – reference: Park HJ, Hahn SH, Chun YM, Park K, Kim HN: Connexin26 mutations associated with nonsyndromic hearing loss. Laryngoscope 2000;110:1535-1538.1098395610.1097%2F00005537-200009000-00023 – reference: Lerer I, Sagi M, Ben-Neriah Z, Wang T, Levi H, Abeliovich D: A deletion mutation in GJB6 cooperating with a GJB2 mutation in trans in non-syndromic deafness: a novel founder mutation in Ashkenazi Jews. Hum Mutat 2001;18:460.1166864410.1002%2Fhumu.1222 – reference: Liu XZ, Xia XJ, Ke XM, Ouyang XM, Du LL, Liu YH, Angeli S, Telischi FF, Nance WE, Balkany T, Xu LR: The prevalence of connexin 26 (GJB2) mutations in the Chinese population. Hum Genet 2002;111:394-397.1238478110.1007%2Fs00439-002-0811-6 – reference: Wang YC, Kung CY, Su MC, Su CC, Hsu HM, Tsai CC, Lin CC, Li SY: Mutations of Cx26 gene (GJB2) for prelingual deafness in Taiwan. Eur J Hum Genet 2002;10:495-498.1211164610.1038%2Fsj.ejhg.5200838 – reference: Auricchio A, Griseri P, Carpentieri ML, Betsos N, Staiano A, Tozzi A, Priolo M, Thompson H, Bocciardi R, Romeo G, Ballabio A, Ceccherini I: Double heterozygosity for a RET substitution interfering with splicing and an EDNRB missense mutation in Hirschsprung disease. Am J Hum Genet 1999;64:1216-1221.1009090810.1086%2F302329 – reference: Toyofuku T, Yabuki M, Otsu K, Kuzuya T, Hori M, Tada M: Direct association of the gap junction protein connexin43 with ZO-1 in cardiac myocytes. J Biol Chem 1998;172:12725-12731.10.1074%2Fjbc.273.21.12725 – reference: Forge A, Becker D, Casalotti S, Edwards J, Marziano N, Nevill G: Gap junctions in the inner ear: comparison of distribution patterns in different vertebrates and assessment of connexin composition in mammals. J Comp Neurol 2003;467:207-231.1459576910.1002%2Fcne.10916 – reference: Hereditary Hearing Loss Homepage. http://www.uia.ac.be/dnalab/hhh/hhhgenes.html. – reference: Kajiwara K, Berson EL, Dryja TP: Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science 1994;264:1604-1608.820271510.1126%2Fscience.8202715 – reference: Leube RE: The topogenic fate of the polytopic transmembrane proteins, synaptophysin and connexin, is determined by their membrane-spanning domains. J Cell Sci 1995;108:883-894.7622617 – reference: Giepmans BNG, Moolenaar WH: The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Curr Biol 1998;8:931-934.970740710.1016%2FS0960-9822%2807%2900375-2 – reference: Xia AP, Ikeda K, Katori Y, Oshima T, Kikuchi T, Takasaka T: Expression of connexin 31 in the developing mouse cochlea. Neuroreport 2000;11:2449-2453.1094370210.1097%2F00001756-200008030-00022 – reference: Hamelmann C, Amedofu GK, Albrecht K, Muntau B, Gelhaus A, Brobby GW, Horstmann RD: Pattern of connexin 26 (GJB2) mutations causing sensorineural hearing impairment in Ghana. Hum Mutat 2001;18:84-85.1143900010.1002%2Fhumu.1156 – reference: Kudo T, Ikeda K, Oshima T, Kure S, Tammasaeng M, Prasansuk S, Matsubara Y: GJB2 (connexin 26) mutations and childhood deafness in Thailand. Otol Neurotol 2001;22:858-861.1169880910.1097%2F00129492-200111000-00025 – reference: Del Castillo FJ, Rodriguez-Ballesteros M, Alvarez A, Hutchin T, Leonardi E, de Oliveira CA, Azaiez H, Brownstein Z, Avenarius MR, Marlin S, Pandya A, Shahin H: A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment (letter). J Med Genet 2005;42:588-594.1599488110.1136%2Fjmg.2004.028324 – reference: Spicer SS, Schulte BA: Evidence for a medial K+ recycling pathway from inner hair cells.Hear Res 1998;118:1-12. – reference: Valiunas V, Gemel J, Brink PR, Beyer EC: Gap junction channels formed by coexpressed connexin40 and connexin43. Am J PhysiolHeart Circ Physiol 2001;281:H1675-H1689.11557558 – reference: Evans WH, Martin PE: Gap junctions: structure and function (review). Mol Membr Biol 2002;19:121-136.1212623010.1080%2F09687680210139839 – reference: Yang JJ, Liao PJ, Su CC, Li SY: Expression patterns of connexin 29 (GJE1) in mouse and rat cochlea. Biochem Biophys Res Commun 2005;338:723-728.1623625010.1016%2Fj.bbrc.2005.09.193 – reference: Kleopa KA, Yum SW, Scherer SS: Cellular mechanisms of connexin32 mutations associated with CNS manifestations. J Neurosci Res 2002;68:522-534.1211184210.1002%2Fjnr.10255 – reference: Liu XZ, Xia XJ, Xu LR, Pandya A, Liang CY, Blanton SH, Brown SD, Steel KP, Nance WE: Mutations in connexin31 underlie recessive as well as dominant non-syndromic hearing loss. Hum Mol Genet 2000;9:63-67.1058757910.1093%2Fhmg%2F9.1.63 – reference: Spicer SS, Schulte BA: The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear Res 1996;100:80-100.892298210.1016%2F0378-5955%2896%2900106-2 – reference: Bevans CG, Kordel M, Rhee SK, Harris AL: Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J Biol Chem 1998;273:2808-2816.944658910.1074%2Fjbc.273.5.2808 – reference: Kelley PM, Harris DJ, Comer BC, Askew JW, Fowler T, Smith SD, Kimberling WJ: Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet 1998;62:792-799.952936510.1086%2F301807 – reference: Kandouz M, Bier A, Carystinos GD, Alaoui-Jamali MA, Batist G: Connexin43 pseudogene is expressed in tumor cells and inhibits growth. Oncogene 2004;23:4763-4770.1512232910.1038%2Fsj.onc.1207506 – reference: Fishman GI, Moreno AP, Spray DC, Leinwand LA: Functional analysis of human cardiac junction channel mutants. Proc Natl Acad Sci USA 1991;88:3525-3529.185083110.1073%2Fpnas.88.9.3525 – reference: Brink PR, Cronin K, Banach K, Peterson E, Westphale EM, Seul KH, Ramanan SV, Beyer EC: Evidence for heteromeric gap junction channels formed from rat connexin43 and human connexin37. Am J Physiol 1997;273:C1386-C1396.9357785 – reference: Kudo T, Ikeda K, Kure S, Matsubara Y, Oshima T, Watanabe K, Kawase T, Narisawa K, Takasaka T: Novel mutations in the connexin 26 gene (GJB2) responsible for childhood deafness in the Japanese population. Am J Med Genet 2000;90:141-145.1060795310.1002%2F%28SICI%291096-8628%2820000117%2990%3A2%3C141%3A%3AAID-AJMG10%3E3.0.CO%3B2-G – reference: Zhou XW, Pfahnl A, Werner R, Hudder A, Llanes A, Lubeke A, Dahl G: Identification of a pore lining segment in gap junction hemichannels. Biophys J 1997;72:1946-1953.912979910.1016%2FS0006-3495%2897%2978840-4 – reference: Wilcox SA, Saunders K, Osborn AH, Arnold A, Wunderlich J, Kelly T, Collins V, Wilcox LJ, Gardner RJM, Kamarinos M, Cone-Wesson B, Williamson R, Dahl HHM: High frequency hearing loss correlated with mutations in the GJB2 gene. Hum Genet 2000;106:399-405.1083090610.1007%2Fs004390000273 – reference: Dahl HH, Tobin SE, Poulakis Z, Rickards FW, Xu X, Gillam L, Williams J, Saunders K, Cone-Wesson B, Wake M: The contribution of GJB2 mutations to slight/mild hearing loss in Australian elementary school children. J Med Genet 2006;43:850-855.1684057110.1136%2Fjmg.2006.042051 – reference: Ahmad S, Chen S, Sun J, Lin X, Connexins 26 and 30 are co-assembled to form gap junctions in the cochlea of mouse. Biochem Biophys Res Commun 2003;307:362-368.1285996510.1016%2FS0006-291X%2803%2901166-5 – reference: Harris AL: Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 2001;34:325-472.11838236 – reference: He DS, Jiang JX, Taffet SM, Burt JM: Formation of heteromeric gap junction channels by connexins 40 and 43 in vascular smooth muscle cells. Proc Natl Acad Sci USA1999;96:6495-6500.1033961610.1073%2Fpnas.96.11.6495 – reference: Denoyelle F, Weil D, Maw MA, Wilcox SA, Lench NJ, Allen-Powell DR, Osborn AH, Dahl HH, Middleton A, Houseman MJ, Dode C, Marlin S, Boulila-ElGaied A, Grati M, Ayadi H, Benarab S, Bitoun P, Lina-Granade G, Godet J, Mustapha M, Loiselet J, El Zir E, Aubois A, Joannard A, Petit C: Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene. Hum Mol Genet 1997;6:2173-2177.933644210.1093%2Fhmg%2F6.12.2173 – reference: Sun J, Ahmad S, Chen S, Tang W, Zhang Y, Chen P, Lin X: Cochlear gap junctions coassembled from Cx26 and 30 show faster intercellular Ca2+ signaling than homomeric counterparts. Am J Physiol Cell Physiol 2005;288:613-623.10.1152%2Fajpcell.00341.2004 – reference: Montgomery JR, White TW, Martin BL, Turner ML, Holland SM: A novel connexin 26 gene mutation associated with features of the keratitisichthyosis-deafness syndrome and the follicular occlusion triad. J Am Acad Dermatol 2004;51:377-382.1533798010.1016%2Fj.jaad.2003.12.042 – reference: Maw MA, Allen-Powell DR, Goodey RJ, Stewart IA, Nancarrow DJ, Hayward NK, Gardner RJ: The contribution of the DFNB1 locus to neurosensory deafness in a Caucasian population. Am J Hum Genet 1995;57:629-635.7668291 – reference: Morell R, Kim H, Hood L, Goforth L, Friderici K, Fisher R, Van Camp G, Berlin C, Oddoux C, Ostrer H, Keats B, Friedman T: Mutations in the connexin 26 gene (GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness. N Engl J Med 1998;339:1500-1505.981944810.1056%2FNEJM199811193392103 – reference: Bergoffen J, Scherer SS, Wang S, Scott MO, Bone LJ, Paul DL, Chen K, Lensch MW, Chance PF, Fischbeck KH: Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science 1993;262:2039-2042.826610110.1126%2Fscience.8266101 – reference: Pallares-Ruiz N, Blanchet P, Mondain M, Claustres M, Roux AF: A large deletion including most of GJB6 in recessive nonsyndromic deafness: a digenic effect? Eur J Hum Genet 2002;10:72-76.1189645810.1038%2Fsj.ejhg.5200762 – reference: López-Bigas N, Melchionda S, Gasparini P, Borragán A, Arbonés ML, Estivill X: A common frameshift mutation and other variants in GJB4 (connexin 30.3): analysis of hearing impairment families. Hum Mutat 2002;19:458.1193320110.1002%2Fhumu.9023 – reference: Morton NE: Genetic epidemiogy of hearing impairment. Ann NY Acad Sci 1991;630:16-31.195258710.1111%2Fj.1749-6632.1991.tb19572.x – reference: Paznekas WA, Boyadjiev SA, Shapiro RE, Daniels O, Wollnik B, Keegan CE, Innis JW, Dinulos MB, Christian C, Hannibal MC, Jabs EW: Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 2003;72:408-418.1245734010.1086%2F346090 – reference: Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J: Cardiac malformation in neonatal mice lacking connexin43. Science 1995;267:1831-1834.789260910.1126%2Fscience.7892609 – reference: Xia JH, Liu CY, Tang BS, Pan Q, Huang L, Dai HP, Zhang BR, Xie W, Hu DX, Zheng D, Shi XL, Wang DA, Xia K, Yu KP, Liao XD, Feng Y, Yang YF, Xiao JY, Xie DH, Huang JZ: Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat Genet 1998;20:370-373.984321010.1038%2F3845 – reference: Morton CC: Genetics, genomics and gene discovery in the auditory system. Hum Mol Genet 2002;11:1229-1240.1201528310.1093%2Fhmg%2F11.10.1229 – reference: Krutovskikh V, Yamasaki H: Connexin gene mutations in human genetic diseases. Mutat Res 2000;462:197-207.1076763110.1016%2FS1383-5742%2800%2900037-5 – reference: Huculak C, Bruyere H, Nelson TN, Kozak FK, Langlois S: V37I connexin 26 allele in patients with sensorineural hearing loss: evidence of its pathogenicity. Am J Med Genet A 2006;140:2394-2400. – reference: Hwa HL, Ko TM, Hsu CJ, Huang CH, Chiang YL, Oong JL, Chen CC, Hsu CK: Mutation spectrum of the connexin 26 (GJB2) gene in Taiwanese patients with prelingual deafness. Genet Med2003;5:161-165.1279242310.1097%2F01.GIM.0000066796.11916.94 – reference: Katsanis N, Beales PL, Woods MO, Lewis RA, Green JS, Parfrey PS, Ansley SJ, Davidson WS, Lupski JR: Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science 2001;293:2256-2259.1156713910.1126%2Fscience.1063525 – reference: Jiang JX, Goodenough DA: Heteromeric connexons in lens gap junction channels. Proc Natl Acad Sci USA 1996;93:1287-1291.857775610.1073%2Fpnas.93.3.1287 – reference: Yum SW, Kleopa KA, Shumas S, Scherer SS: Diverse trafficking abnormalities of connexin32 mutants causing CMTX. Neurobiol Dis 2002;11:43-52.1246054510.1006%2Fnbdi.2002.0545 – reference: Cohen-Salmon M, Maxeiner S, Kruger O, Theis M, Willecke K, Petit C: Expression of the connexin43- and connexin45-encoding genes in the developing and mature mouse inner ear. Cell Tissue Res 2004;316:15-22.1498610210.1007%2Fs00441-004-0861-2 – reference: Del Castillo I, Villamar M, Moreno-Pelayo MA, del Castillo FJ, Alvarez A, Telleria D, Menendez I, Moreno F: A deletion involving the Connexin 30 gene in non-syndromic hearing impairment. N Engl J Med 2002;346:243-249.1180714810.1056%2FNEJMoa012052 – reference: López-Bigas N, Rabionet R, Martinez E, Banchs I, Volpini V, Vance J, Arbones M, Estivill X: Identification of seven novel SNPS (five nucleotide and two amino acid substitutions) in the connexin31 (GJB3) gene. Hum Mutat 2000;15:481-482.1079021510.1002%2F%28SICI%291098-1004%28200005%2915%3A5%3C481%3A%3AAID-HUMU15%3E3.0.CO%3B2-7 – reference: Liu XZ, Xia XJ, Adams J, Chen ZY, Welch KO, Tekin M, Ouyang XM, Kristiansen A, Pandya A, Balkany T, Arnos KS, Nance WE: Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal recessive deafness. Hum Mol Genet 2001;10:2945-2951.1174183710.1093%2Fhmg%2F10.25.2945 – reference: Rabionet R, López-Bigas N, Arbones ML, Estivill X: Connexin mutations in hearing loss, dermatological and neurological disorders. Trends Mol Med 2002;8:205-212.1206762910.1016%2FS1471-4914%2802%2902327-4 – ident: ref45 doi: 10.1126%2Fscience.7892609 – ident: ref15 doi: 10.1073%2Fpnas.88.9.3525 – ident: ref44 doi: 10.1016%2FS1471-4914%2802%2902327-4 – ident: ref4 doi: 10.1126%2Fscience.8266101 – ident: ref14 doi: 10.1080%2F09687680210139839 – ident: ref20 doi: 10.1097%2F01.GIM.0000066796.11916.94 – ident: ref28 doi: 10.1016%2FS1383-5742%2800%2900037-5 – ident: ref16 doi: 10.1002%2Fcne.10916 – ident: ref52 doi: 10.1038%2F3845 – ident: ref3 doi: 10.1086%2F302329 – ident: ref12 doi: 10.1038%2F30639 – ident: ref11 doi: 10.1056%2FNEJMoa012052 – ident: ref49 doi: 10.1038%2Fsj.ejhg.5200838 – ident: ref46 doi: 10.1016%2F0378-5955%2896%2900106-2 – ident: ref6 doi: 10.1074%2Fjbc.273.5.2808 – ident: ref37 doi: 10.1016%2Fj.jaad.2003.12.042 – ident: ref19 doi: 10.1073%2Fpnas.96.11.6495 – ident: ref25 doi: 10.1086%2F301807 – ident: ref40 doi: 10.1111%2Fj.1749-6632.1991.tb19572.x – ident: ref54 doi: 10.1006%2Fnbdi.2002.0545 – ident: ref53 doi: 10.1016%2Fj.bbrc.2005.09.193 – ident: ref1 doi: 10.1136%2Fjmg.37.1.41 – ident: ref13 doi: 10.1093%2Fhmg%2F6.12.2173 – ident: ref24 doi: 10.1126%2Fscience.1063525 – ident: ref7 doi: 10.1056%2FNEJM199505183322002 – ident: ref9 doi: 10.1136%2Fjmg.2006.042051 – ident: ref34 doi: 10.1093%2Fhmg%2F9.1.63 – ident: ref38 doi: 10.1056%2FNEJM199811193392103 – ident: ref55 doi: 10.1016%2FS0006-3495%2897%2978840-4 – ident: ref51 doi: 10.1097%2F00001756-200008030-00022 – ident: ref2 doi: 10.1016%2FS0006-291X%2803%2901166-5 – ident: ref5 doi: 10.1078%2F0171-9335-00132 – ident: ref23 doi: 10.1038%2Fsj.onc.1207506 – ident: ref22 doi: 10.1126%2Fscience.8202715 – ident: ref42 doi: 10.1097%2F00005537-200009000-00023 – ident: ref36 doi: 10.1002%2F%28SICI%291098-1004%28200005%2915%3A5%3C481%3A%3AAID-HUMU15%3E3.0.CO%3B2-7 – ident: ref47 doi: 10.1152%2Fajpcell.00341.2004 – ident: ref39 doi: 10.1093%2Fhmg%2F11.10.1229 – ident: ref27 doi: 10.1002%2Fjnr.10255 – ident: ref35 doi: 10.1002%2Fhumu.9023 – ident: ref33 doi: 10.1007%2Fs00439-002-0811-6 – ident: ref10 doi: 10.1136%2Fjmg.2004.028324 – ident: ref50 doi: 10.1007%2Fs004390000273 – ident: ref26 doi: 10.1007%2FBF00186783 – ident: ref30 doi: 10.1097%2F00129492-200111000-00025 – ident: ref18 doi: 10.1002%2Fhumu.1156 – ident: ref8 doi: 10.1007%2Fs00441-004-0861-2 – ident: ref48 doi: 10.1074%2Fjbc.273.21.12725 – ident: ref21 doi: 10.1073%2Fpnas.93.3.1287 – ident: ref17 doi: 10.1016%2FS0960-9822%2807%2900375-2 – ident: ref31 doi: 10.1002%2Fhumu.1222 – ident: ref29 doi: 10.1002%2F%28SICI%291096-8628%2820000117%2990%3A2%3C141%3A%3AAID-AJMG10%3E3.0.CO%3B2-G – ident: ref32 doi: 10.1093%2Fhmg%2F10.25.2945 – ident: ref41 doi: 10.1038%2Fsj.ejhg.5200762 – ident: ref43 doi: 10.1086%2F346090 – reference: - Audiol Neurootol. 2007;12(5):344 |
SSID | ssj0005554 |
Score | 2.07044 |
Snippet | Connexins (Cx), a large family of membrane proteins, are key components of gap junction channels. These channels are critical intercellular pathways through... Connexins (Cx) , a large family of membrane proteins, are key components of gap junction channels. These channels are critical intercellular pathways through... |
SourceID | proquest pubmed pascalfrancis crossref karger |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 198 |
SubjectTerms | Adult Audiology Biological and medical sciences Cellular biology Child Connexin 26 Connexin 30 Connexin 43 - genetics Connexins - genetics Deafness - ethnology Deafness - genetics Ear, auditive nerve, cochleovestibular tract, facial nerve: diseases, semeiology Ears & hearing Family Health Female Frameshift Mutation Gap Junction beta-1 Protein Gap Junctions Genes Genetic Predisposition to Disease - epidemiology Genotype Hearing loss Humans Male Medical sciences Membranes Multigene Family - genetics Mutation Mutation, Missense Nerve Tissue Proteins - genetics Non tumoral diseases Original Paper Otorhinolaryngology. Stomatology Polymorphism Proteins Taiwan - epidemiology |
Title | Identification of Mutations in Members of the Connexin Gene Family as a Cause of Nonsyndromic Deafness in Taiwan |
URI | https://karger.com/doi/10.1159/000099024 https://www.ncbi.nlm.nih.gov/pubmed/17259707 https://www.proquest.com/docview/220852972 https://www.proquest.com/docview/70348071 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB-0FfFF1PpxVs9FfPAlNN3sZpMn0dpShDtEWri3MNkPOJTc2dyhf74z2b0cBfV1sxlIZna-d34A78ijDljqkGmvkAIUXWdIajDTtdZWlaWzQ0J_Ni8vr9WXhV6k3pw-tVXudOKgqN3Kco78RDKYpKyN_LD-mTFoFBdXE4LGXTgcJpeROJuF2Xd46AEE7VTxJWES5jRYiAz4SXSNcqlumaN737n7-ob7I7GnXxQitsW_nc_BCF08gofJexQfI7sfwx3fPYH7s1QfP4J1vHcbUiJOrIKYbWOxvRfLTsw843_0vE6Onxi6XH7TOg-fFhEDQ2AvUJzhtve8bU5vxqEGSys-ewysGpnUFS5_YfcUri_Or84us4SpkFmyxZvMSm-roHJ1aiulW1ReOe3assa2sq7y0rqiVjwu1OStDVgVQWJeuULbIpfBFs_goFt1_gWItnLemRZ1KCiIKSjSsqXBwle1li05KhN4v_u1jU0Dxxn34kczBB66bkYuTODtuHUdp2z8bdNR5M-4JS1Pb3FrT4CCNU0KawLHO_Y16YD2zShOE3gzPqWTxeUS7Pxq2zekC_m-PX3H88jzPWVDIm5y8_K_lI_hQUwEc77mFRxsbrb-NXkwm3Y6yOkUDj-dz79--wPvIu5n |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbKFlEuFVAoS6EdIZC4RE0nM3kcKgR9aEubFUJbqbcwmYe0AmWXZleFH8V_xM4kWVUCbr1OHEuJxx7bY_sDeIMetVOxdIG0QmGAIrNAoRkMZCalFnFsdJPQz8fx6FJ8upJXa_C764WhssrOJjaG2sw05cj3OYFJ8izh7-c_AgKNosvVDkHD74pz--sGI7b68OwYxfuW89OTydEoaEEFAo2H0SLQ3OrUiVAc6FTIUgkrjDRlnKky1Sa1XJsoEzQvMwlL7VQaOa7C1ERSRyF3OkK-92BdUEPrANY_now_f1nVlMgGdu1AUFsyqk87yghdhn3vjIVc3DoA73-jeu9rqshUNQrFeTSNf7u7zbF3-gg2W3-VffAb7DGs2eoJPMjbG_ktmPtOX9em_tjMsXzpr_drNq1YbglxpKZ1dDVZU1fzE9dp3DXzqBtM1UyxI7WsLZGN8U0_RmGq2bFVjowxsZqo6Y2qnsLlnfzwZzCoZpV9DqxMjTVJqaSLMGyKMLbTcaIim2aSl-gaDeFd92sL3Y44J6SN70UT6sis6KUwhNc96dzP9fgb0ZaXT0_SLu_ektaKAYaHEk3kEHY68RWtSaiLfgMPYa9_irpMFzSqsrNlXaD1pQ5__I5tL_MV5wSVKgmTF__lvAcbo0l-UVycjc934KFPQ1O26CUMFtdL-wr9p0W52-5aBl_vWlH-AAl7LFU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+mutations+in+members+of+the+connexin+gene+family+as+a+cause+of+nonsyndromic+deafness+in+Taiwan&rft.jtitle=Audiology+%26+neurotology&rft.au=Yang%2C+Jiann-Jou&rft.au=Huang%2C+Shih-Hsin&rft.au=Chou%2C+Kvei-Hsiu&rft.au=Liao%2C+Pei-Ju&rft.date=2007-01-01&rft.eissn=1421-9700&rft.volume=12&rft.issue=3&rft.spage=198&rft_id=info:doi/10.1159%2F000099024&rft_id=info%3Apmid%2F17259707&rft.externalDocID=17259707 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3030&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3030&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3030&client=summon |