Identification of Mutations in Members of the Connexin Gene Family as a Cause of Nonsyndromic Deafness in Taiwan

Connexins (Cx), a large family of membrane proteins, are key components of gap junction channels. These channels are critical intercellular pathways through which ions or small molecules are passed, regulating a variety ofphysiological and developmental processes. One of these processes is hearing....

Full description

Saved in:
Bibliographic Details
Published inAudiology & neurotology Vol. 12; no. 3; pp. 198 - 208
Main Authors Yang, Jiann-Jou, Huang, Shih-Hsin, Chou, Kvei-Hsiu, Liao, Pei-Ju, Su, Ching-Chyuan, Li, Shuan-Yow
Format Journal Article
LanguageEnglish
Published Basel, Switzerland Karger 01.01.2007
S. Karger AG
Subjects
Online AccessGet full text
ISSN1420-3030
1421-9700
1421-9700
DOI10.1159/000099024

Cover

Abstract Connexins (Cx), a large family of membrane proteins, are key components of gap junction channels. These channels are critical intercellular pathways through which ions or small molecules are passed, regulating a variety ofphysiological and developmental processes. One of these processes is hearing. In the current study, a genetic survey was made on 380 Taiwanese individuals, 260 with nonsyndromic deafness and 120 with normal hearing. All the 380 Taiwanese were screened for the presence of mutations in 8 genes of the Cx gene family. These genes included Cx26 (GJB2), Cx29 (GJE1), Cx30 (GJB6), Cx30.3 (GJB4), Cx31 (GJB3), Cx32 (GJB1), Cx43 (GJA1) and pseudogene [ρ] of Cx43 (ρ GJA1). Mutations were identified in 7 out of the 8 screened genes of the Cx family from 62 of the 260 deaf subjects (23.85%). Of the 17 mutations observed in the Cx gene family, 11 were novel mutations. Fourteen polymorphisms that were not associated with hearing loss were identified in the Cx gene family. The first 2 most frequently occurring mutations were found in the Cx26 (28/62; 45.16%) and the ρ Cx43 (17/62; 27.42%), respectively. Nine cases of mutations were found in the Cx30.3 (9/62; 14.52%). In the Cx30, 1 novel mutation was identified in 1 case (1/62; 1.61%). Two patients with mutations of each of Cx29 and Cx43 were found (2/62; 3.23%). One novel mutation of Cx31 was identified in 3 patients with nonsyndromic deafness (3/62; 4.84%). The Cx32 was the only gene without detecting any mutation or polymorphism.Our study provides information for understanding the importance of genetic factors in nonsyndromic deafness of the Taiwanese and may be of use in the improvement of genetic diagnosis of hearing loss in Taiwan.
AbstractList Connexins (Cx), a large family of membrane proteins, are key components of gap junction channels. These channels are critical intercellular pathways through which ions or small molecules are passed, regulating a variety of physiological and developmental processes. One of these processes is hearing. In the current study, a genetic survey was made on 380 Taiwanese individuals, 260 with nonsyndromic deafness and 120 with normal hearing. All the 380 Taiwanese were screened for the presence of mutations in 8 genes of the Cx gene family. These genes included Cx26 (GJB2), Cx29 (GJE1), Cx30 (GJB6), Cx30.3 (GJB4), Cx31 (GJB3), Cx32 (GJB1), Cx43 (GJA1) and pseudogene [rho] of Cx43 (rho GJA1). Mutations were identified in 7 out of the 8 screened genes of the Cx family from 62 of the 260 deaf subjects (23.85%). Of the 17 mutations observed in the Cx gene family, 11 were novel mutations. Fourteen polymorphisms that were not associated with hearing loss were identified in the Cx gene family. The first 2 most frequently occurring mutations were found in the Cx26 (28/62; 45.16%) and the rho Cx43 (17/62; 27.42%), respectively. Nine cases of mutations were found in the Cx30.3 (9/62; 14.52%). In the Cx30, 1 novel mutation was identified in 1 case (1/62; 1.61%). Two patients with mutations of each of Cx29 and Cx43 were found (2/62; 3.23%). One novel mutation of Cx31 was identified in 3 patients with nonsyndromic deafness (3/62; 4.84%). The Cx32 was the only gene without detecting any mutation or polymorphism.Our study provides information for understanding the importance of genetic factors in nonsyndromic deafness of the Taiwanese and may be of use in the improvement of genetic diagnosis of hearing loss in Taiwan.
Connexins (Cx), a large family of membrane proteins, are key components of gap junction channels. These channels are critical intercellular pathways through which ions or small molecules are passed, regulating a variety ofphysiological and developmental processes. One of these processes is hearing. In the current study, a genetic survey was made on 380 Taiwanese individuals, 260 with nonsyndromic deafness and 120 with normal hearing. All the 380 Taiwanese were screened for the presence of mutations in 8 genes of the Cx gene family. These genes included Cx26 (GJB2), Cx29 (GJE1), Cx30 (GJB6), Cx30.3 (GJB4), Cx31 (GJB3), Cx32 (GJB1), Cx43 (GJA1) and pseudogene [ρ] of Cx43 (ρ GJA1). Mutations were identified in 7 out of the 8 screened genes of the Cx family from 62 of the 260 deaf subjects (23.85%). Of the 17 mutations observed in the Cx gene family, 11 were novel mutations. Fourteen polymorphisms that were not associated with hearing loss were identified in the Cx gene family. The first 2 most frequently occurring mutations were found in the Cx26 (28/62; 45.16%) and the ρ Cx43 (17/62; 27.42%), respectively. Nine cases of mutations were found in the Cx30.3 (9/62; 14.52%). In the Cx30, 1 novel mutation was identified in 1 case (1/62; 1.61%). Two patients with mutations of each of Cx29 and Cx43 were found (2/62; 3.23%). One novel mutation of Cx31 was identified in 3 patients with nonsyndromic deafness (3/62; 4.84%). The Cx32 was the only gene without detecting any mutation or polymorphism.Our study provides information for understanding the importance of genetic factors in nonsyndromic deafness of the Taiwanese and may be of use in the improvement of genetic diagnosis of hearing loss in Taiwan.
Connexins (Cx), a large family of membrane proteins, are key components of gap junction channels. These channels are critical intercellular pathways through which ions or small molecules are passed, regulating a variety of physiological and developmental processes. One of these processes is hearing. In the current study, a genetic survey was made on 380 Taiwanese individuals, 260 with nonsyndromic deafness and 120 with normal hearing. All the 380 Taiwanese were screened for the presence of mutations in 8 genes of the Cx gene family. These genes included Cx26 (GJB2), Cx29 (GJE1), Cx30 (GJB6), Cx30.3 (GJB4), Cx31 (GJB3), Cx32 (GJB1), Cx43 (GJA1) and pseudogene [rho] of Cx43 (rho GJA1). Mutations were identified in 7 out of the 8 screened genes of the Cx family from 62 of the 260 deaf subjects (23.85%). Of the 17 mutations observed in the Cx gene family, 11 were novel mutations. Fourteen polymorphisms that were not associated with hearing loss were identified in the Cx gene family. The first 2 most frequently occurring mutations were found in the Cx26 (28/62; 45.16%) and the rho Cx43 (17/62; 27.42%), respectively. Nine cases of mutations were found in the Cx30.3 (9/62; 14.52%). In the Cx30, 1 novel mutation was identified in 1 case (1/62; 1.61%). Two patients with mutations of each of Cx29 and Cx43 were found (2/62; 3.23%). One novel mutation of Cx31 was identified in 3 patients with nonsyndromic deafness (3/62; 4.84%). The Cx32 was the only gene without detecting any mutation or polymorphism.Our study provides information for understanding the importance of genetic factors in nonsyndromic deafness of the Taiwanese and may be of use in the improvement of genetic diagnosis of hearing loss in Taiwan.Connexins (Cx), a large family of membrane proteins, are key components of gap junction channels. These channels are critical intercellular pathways through which ions or small molecules are passed, regulating a variety of physiological and developmental processes. One of these processes is hearing. In the current study, a genetic survey was made on 380 Taiwanese individuals, 260 with nonsyndromic deafness and 120 with normal hearing. All the 380 Taiwanese were screened for the presence of mutations in 8 genes of the Cx gene family. These genes included Cx26 (GJB2), Cx29 (GJE1), Cx30 (GJB6), Cx30.3 (GJB4), Cx31 (GJB3), Cx32 (GJB1), Cx43 (GJA1) and pseudogene [rho] of Cx43 (rho GJA1). Mutations were identified in 7 out of the 8 screened genes of the Cx family from 62 of the 260 deaf subjects (23.85%). Of the 17 mutations observed in the Cx gene family, 11 were novel mutations. Fourteen polymorphisms that were not associated with hearing loss were identified in the Cx gene family. The first 2 most frequently occurring mutations were found in the Cx26 (28/62; 45.16%) and the rho Cx43 (17/62; 27.42%), respectively. Nine cases of mutations were found in the Cx30.3 (9/62; 14.52%). In the Cx30, 1 novel mutation was identified in 1 case (1/62; 1.61%). Two patients with mutations of each of Cx29 and Cx43 were found (2/62; 3.23%). One novel mutation of Cx31 was identified in 3 patients with nonsyndromic deafness (3/62; 4.84%). The Cx32 was the only gene without detecting any mutation or polymorphism.Our study provides information for understanding the importance of genetic factors in nonsyndromic deafness of the Taiwanese and may be of use in the improvement of genetic diagnosis of hearing loss in Taiwan.
Connexins (Cx) , a large family of membrane proteins, are key components of gap junction channels. These channels are critical intercellular pathways through which ions or small molecules are passed, regulating a variety of physiological and developmental processes. One of these processes is hearing. In the current study, a genetic survey was made on 380 Taiwanese individuals, 260 with nonsyndromic deafness and 120 with normal hearing. All the 380 Taiwanese were screened for the presence of mutations in 8 genes of the Cx gene family. These genes included Cx26 (GJB2), Cx29 (GJE1), Cx30 (GJB6) , Cx30.3 (GJB4) , Cx31 (GJB3) , Cx32 (GJB1) , Cx43 (GJA1) and pseudogene [?] of Cx43 (? GJA1). Mutations were identified in 7 out of the 8 screened genes of the Cx family from 62 of the 260 deaf subjects (23.85%). Of the 17 mutations observed in the Cx gene family, 11 were novel mutations. Fourteen polymorphisms that were not associated with hearing loss were identified in the Cx gene family. The first 2 most frequently occurring mutations were found in the Cx26 (28/62; 45.16%) and the ? Cx43 (17/62; 27.42%), respectively. Nine cases of mutations were found in the Cx30.3 (9/62; 14.52%). In the Cx30 , 1 novel mutation was identified in 1 case (1/62; 1.61%). Two patients with mutations of each of Cx29 and Cx43 were found (2/62; 3.23%). One novel mutation of Cx31 was identified in 3 patients with nonsyndromic deafness (3/62; 4.84%). The Cx32 was the only gene without detecting any mutation or polymorphism. Our study provides information for understanding the importance of genetic factors in nonsyndromic deafness of the Taiwanese and may be of use in the improvement of genetic diagnosis of hearing loss in Taiwan. [PUBLICATION ABSTRACT]
Author Liao, Pei-Ju
Chou, Kvei-Hsiu
Su, Ching-Chyuan
Li, Shuan-Yow
Yang, Jiann-Jou
Huang, Shih-Hsin
Author_xml – sequence: 1
  givenname: Jiann-Jou
  surname: Yang
  fullname: Yang, Jiann-Jou
– sequence: 2
  givenname: Shih-Hsin
  surname: Huang
  fullname: Huang, Shih-Hsin
– sequence: 3
  givenname: Kvei-Hsiu
  surname: Chou
  fullname: Chou, Kvei-Hsiu
– sequence: 4
  givenname: Pei-Ju
  surname: Liao
  fullname: Liao, Pei-Ju
– sequence: 5
  givenname: Ching-Chyuan
  surname: Su
  fullname: Su, Ching-Chyuan
– sequence: 6
  givenname: Shuan-Yow
  surname: Li
  fullname: Li, Shuan-Yow
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18625832$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17259707$$D View this record in MEDLINE/PubMed
BookMark eNpt0Utv1DAQAGALFdEHHDgjIQupSD2k9XPjHNGWPqS2XMo5mjhjcEmcrZ0I9t_j3SytVOGLR-NvRrbnkOyFISAh7zk75VxXZyyvqmJCvSIHXAleVCVje9uYFZJJtk8OU3rISmut3pB9XgqdTXlAVtcthtE7b2H0Q6CDo7fTuI0T9YHeYt9gTJv8-BPpcggB_-T8JQakF9D7bk0hUaBLmBJu2F2uXIc2Dr239BzBBUzbVvfgf0N4S1476BK-2-1H5PvF1_vlVXHz7fJ6-eWmsEosxsIKtMYpprg1SjegULW6bRYVNMa2BoVtZaUkZ_kZjXVgpBPATCu1lUw4K4_I57nvKg6PE6ax7n2y2HUQcJhSXTKpDCt5hp9ewIdhiiHfrRaCGS2qUmT0cYempse2XkXfQ1zX_z4yg-MdgGShcxGC9enZmYXQRm4anczOxiGliO6ZsHozzPppmNmevbDWz6MZI_juvxUf5opfEH9gfOo9n_4F7Qmndw
CitedBy_id crossref_primary_10_1089_ars_2008_2128
crossref_primary_10_3390_v13040623
crossref_primary_10_1371_journal_pone_0021473
crossref_primary_10_1002_lary_24249
crossref_primary_10_1016_j_neuint_2020_104727
crossref_primary_10_1002_jcla_22592
crossref_primary_10_1016_j_ijporl_2015_01_033
crossref_primary_10_1089_omi_2013_0166
crossref_primary_10_3390_biomedicines10030589
crossref_primary_10_1007_s00424_010_0789_1
crossref_primary_10_3390_biom13040712
crossref_primary_10_1089_ars_2008_2138
crossref_primary_10_1016_j_heares_2010_02_008
crossref_primary_10_3390_ohbm1010003
crossref_primary_10_1016_j_bbamem_2011_08_015
crossref_primary_10_1089_gtmb_2010_0026
crossref_primary_10_1016_j_ijporl_2011_07_033
crossref_primary_10_2119_molmed_2010_00183
crossref_primary_10_3390_cells9051291
crossref_primary_10_1111_j_1365_2230_2010_03986_x
crossref_primary_10_3389_fncel_2015_00202
crossref_primary_10_1016_j_ijporl_2010_02_001
crossref_primary_10_3390_ijms23084255
crossref_primary_10_3390_ijms21072382
crossref_primary_10_1038_eye_2015_74
crossref_primary_10_1111_ahg_12141
crossref_primary_10_3390_biom13101521
crossref_primary_10_1007_s00441_014_2024_4
crossref_primary_10_1002_glia_21073
crossref_primary_10_3389_fgene_2022_797124
crossref_primary_10_3390_life10110258
crossref_primary_10_1002_ajmg_c_31485
crossref_primary_10_1002_lary_20621
crossref_primary_10_1016_j_ijporl_2009_02_009
crossref_primary_10_1007_s12013_011_9188_2
crossref_primary_10_1016_j_ijporl_2012_10_015
crossref_primary_10_1111_ahg_12213
crossref_primary_10_3892_mmr_2014_2725
crossref_primary_10_1016_j_bbrc_2010_10_021
crossref_primary_10_3389_fphys_2020_00974
crossref_primary_10_1016_j_brainres_2009_02_008
crossref_primary_10_1002_mgg3_1171
crossref_primary_10_18632_oncotarget_17325
crossref_primary_10_1007_s00439_010_0791_x
crossref_primary_10_1002_lary_24332
crossref_primary_10_1111_exd_14490
crossref_primary_10_1007_s00439_009_0758_y
crossref_primary_10_1007_s00439_010_0856_x
crossref_primary_10_15412_J_JBTW_01030502
crossref_primary_10_1016_j_febslet_2013_12_022
crossref_primary_10_17430_882155
crossref_primary_10_1016_j_ijporl_2011_11_018
crossref_primary_10_1016_j_bbamem_2012_06_024
crossref_primary_10_1242_jcs_214635
crossref_primary_10_1007_s12013_012_9481_8
crossref_primary_10_1038_ejhg_2010_50
crossref_primary_10_3389_fncel_2019_00529
crossref_primary_10_1139_bcb_2013_0126
crossref_primary_10_1016_j_pedneo_2015_04_002
crossref_primary_10_1080_14992020802249259
crossref_primary_10_1371_journal_pone_0240129
crossref_primary_10_1074_jbc_R700041200
crossref_primary_10_1007_s00439_008_0556_y
crossref_primary_10_1007_s00405_016_4229_5
crossref_primary_10_1016_j_heares_2014_04_010
crossref_primary_10_1111_j_1365_2362_2010_02378_x
Cites_doi 10.1126%2Fscience.7892609
10.1073%2Fpnas.88.9.3525
10.1016%2FS1471-4914%2802%2902327-4
10.1126%2Fscience.8266101
10.1080%2F09687680210139839
10.1097%2F01.GIM.0000066796.11916.94
10.1016%2FS1383-5742%2800%2900037-5
10.1002%2Fcne.10916
10.1038%2F3845
10.1086%2F302329
10.1038%2F30639
10.1056%2FNEJMoa012052
10.1038%2Fsj.ejhg.5200838
10.1016%2F0378-5955%2896%2900106-2
10.1074%2Fjbc.273.5.2808
10.1016%2Fj.jaad.2003.12.042
10.1073%2Fpnas.96.11.6495
10.1086%2F301807
10.1111%2Fj.1749-6632.1991.tb19572.x
10.1006%2Fnbdi.2002.0545
10.1016%2Fj.bbrc.2005.09.193
10.1136%2Fjmg.37.1.41
10.1093%2Fhmg%2F6.12.2173
10.1126%2Fscience.1063525
10.1056%2FNEJM199505183322002
10.1136%2Fjmg.2006.042051
10.1093%2Fhmg%2F9.1.63
10.1056%2FNEJM199811193392103
10.1016%2FS0006-3495%2897%2978840-4
10.1097%2F00001756-200008030-00022
10.1016%2FS0006-291X%2803%2901166-5
10.1078%2F0171-9335-00132
10.1038%2Fsj.onc.1207506
10.1126%2Fscience.8202715
10.1097%2F00005537-200009000-00023
10.1002%2F%28SICI%291098-1004%28200005%2915%3A5%3C481%3A%3AAID-HUMU15%3E3.0.CO%3B2-7
10.1152%2Fajpcell.00341.2004
10.1093%2Fhmg%2F11.10.1229
10.1002%2Fjnr.10255
10.1002%2Fhumu.9023
10.1007%2Fs00439-002-0811-6
10.1136%2Fjmg.2004.028324
10.1007%2Fs004390000273
10.1007%2FBF00186783
10.1097%2F00129492-200111000-00025
10.1002%2Fhumu.1156
10.1007%2Fs00441-004-0861-2
10.1074%2Fjbc.273.21.12725
10.1073%2Fpnas.93.3.1287
10.1016%2FS0960-9822%2807%2900375-2
10.1002%2Fhumu.1222
10.1002%2F%28SICI%291096-8628%2820000117%2990%3A2%3C141%3A%3AAID-AJMG10%3E3.0.CO%3B2-G
10.1093%2Fhmg%2F10.25.2945
10.1038%2Fsj.ejhg.5200762
10.1086%2F346090
ContentType Journal Article
Copyright 2007 S. Karger AG, Basel
2007 INIST-CNRS
Copyright 2007 S. Karger AG, Basel.
Copyright (c) 2007 S. Karger AG, Basel
Copyright_xml – notice: 2007 S. Karger AG, Basel
– notice: 2007 INIST-CNRS
– notice: Copyright 2007 S. Karger AG, Basel.
– notice: Copyright (c) 2007 S. Karger AG, Basel
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
88G
8AO
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
K9.
KB0
M0S
M1P
M2M
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PSYQQ
Q9U
7X8
DOI 10.1159/000099024
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1421-9700
EndPage 208
ExternalDocumentID 1252188391
17259707
18625832
10_1159_000099024
99024
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Asia
Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID ---
0R~
0~5
0~B
23N
30W
329
36B
3O.
3V.
4.4
53G
5GY
6PF
7RV
7X7
88E
8AO
8FI
8FJ
8UI
AALGM
AAWTL
AAYIC
ABIVO
ABJNI
ABPAZ
ABUWG
ACGFO
ACGFS
ACPSR
ADAGL
ADBBV
AENEX
AEYAO
AFJJK
AFKRA
AFOSN
AHMBA
ALDHI
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AZPMC
AZQEC
BENPR
BKEYQ
BPHCQ
BVXVI
C45
CAG
CCPQU
COF
CS3
CYUIP
DWQXO
E0A
EBS
EJD
EMB
EMOBN
EX3
F5P
FB.
FYUFA
GNUQQ
HMCUK
HZ~
IY7
KUZGX
M1P
M2M
N9A
NAPCQ
O1H
O9-
OVD
P2P
PQQKQ
PROAC
PSQYO
PSYQQ
RIG
RKO
RXVBD
SV3
TEORI
UJ6
UKHRP
WOW
AAYXX
ABBTS
ABWCG
ACQXL
AFSIO
AHFRZ
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c426t-c2ec8f4041c845ba4e4d5db69ab8cd8e2cd394310970bcfa83f2a08d35c302fc3
IEDL.DBID 7X7
ISSN 1420-3030
1421-9700
IngestDate Thu Sep 04 19:52:06 EDT 2025
Sat Aug 23 13:29:26 EDT 2025
Wed Feb 19 02:09:35 EST 2025
Mon Jul 21 09:11:38 EDT 2025
Tue Aug 05 12:06:41 EDT 2025
Thu Apr 24 23:11:19 EDT 2025
Thu Aug 29 12:04:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Connexin, mutation
Deafness, nonsyndromic
Gap junction
Connexin
Gene
Family study
Auditory disorder
Family environment
ENT disease
Identification
Mutation
Connexin, mutation, Deafness, nonsyndromic
Hearing loss
Language English
License Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
https://www.karger.com/Services/SiteLicenses
CC BY 4.0
Copyright 2007 S. Karger AG, Basel.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-c2ec8f4041c845ba4e4d5db69ab8cd8e2cd394310970bcfa83f2a08d35c302fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 17259707
PQID 220852972
PQPubID 33658
PageCount 11
ParticipantIDs pubmed_primary_17259707
crossref_citationtrail_10_1159_000099024
crossref_primary_10_1159_000099024
pascalfrancis_primary_18625832
proquest_miscellaneous_70348071
karger_primary_99024
proquest_journals_220852972
PublicationCentury 2000
PublicationDate 2007-01-01
PublicationDateYYYYMMDD 2007-01-01
PublicationDate_xml – month: 01
  year: 2007
  text: 2007-01-01
  day: 01
PublicationDecade 2000
PublicationPlace Basel, Switzerland
PublicationPlace_xml – name: Basel, Switzerland
– name: Basel
– name: Switzerland
PublicationTitle Audiology & neurotology
PublicationTitleAlternate Audiol Neurotol
PublicationYear 2007
Publisher Karger
S. Karger AG
Publisher_xml – name: Karger
– name: S. Karger AG
References Paznekas WA, Boyadjiev SA, Shapiro RE, Daniels O, Wollnik B, Keegan CE, Innis JW, Dinulos MB, Christian C, Hannibal MC, Jabs EW: Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 2003;72:408-418.1245734010.1086%2F346090
Zhou XW, Pfahnl A, Werner R, Hudder A, Llanes A, Lubeke A, Dahl G: Identification of a pore lining segment in gap junction hemichannels. Biophys J 1997;72:1946-1953.912979910.1016%2FS0006-3495%2897%2978840-4
Harris AL: Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 2001;34:325-472.11838236
Park HJ, Hahn SH, Chun YM, Park K, Kim HN: Connexin26 mutations associated with nonsyndromic hearing loss. Laryngoscope 2000;110:1535-1538.1098395610.1097%2F00005537-200009000-00023
Hamelmann C, Amedofu GK, Albrecht K, Muntau B, Gelhaus A, Brobby GW, Horstmann RD: Pattern of connexin 26 (GJB2) mutations causing sensorineural hearing impairment in Ghana. Hum Mutat 2001;18:84-85.1143900010.1002%2Fhumu.1156
Kandouz M, Bier A, Carystinos GD, Alaoui-Jamali MA, Batist G: Connexin43 pseudogene is expressed in tumor cells and inhibits growth. Oncogene 2004;23:4763-4770.1512232910.1038%2Fsj.onc.1207506
Yum SW, Kleopa KA, Shumas S, Scherer SS: Diverse trafficking abnormalities of connexin32 mutants causing CMTX. Neurobiol Dis 2002;11:43-52.1246054510.1006%2Fnbdi.2002.0545
Abe S, Usami SI, Shinkawa H, Kelley PM, Kimberling WJ: Prevalent connexin 26 gene (GJB2) mutations in Japanese. J Med Genet 2000;37:41-43.1063313310.1136%2Fjmg.37.1.41
Del Castillo I, Villamar M, Moreno-Pelayo MA, del Castillo FJ, Alvarez A, Telleria D, Menendez I, Moreno F: A deletion involving the Connexin 30 gene in non-syndromic hearing impairment. N Engl J Med 2002;346:243-249.1180714810.1056%2FNEJMoa012052
Bevans CG, Kordel M, Rhee SK, Harris AL: Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J Biol Chem 1998;273:2808-2816.944658910.1074%2Fjbc.273.5.2808
Denoyelle F, Lina-Granade G, Plauchu H, Bruzzone R, Chaib H, Levi-Acobas F, Weil D, Petit C: Connexin 26 gene linked to a dominant deafness. Nature 1998;393:319-320.962079610.1038%2F30639
Liu XZ, Xia XJ, Ke XM, Ouyang XM, Du LL, Liu YH, Angeli S, Telischi FF, Nance WE, Balkany T, Xu LR: The prevalence of connexin 26 (GJB2) mutations in the Chinese population. Hum Genet 2002;111:394-397.1238478110.1007%2Fs00439-002-0811-6
Spicer SS, Schulte BA: The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear Res 1996;100:80-100.892298210.1016%2F0378-5955%2896%2900106-2
Brink PR, Cronin K, Banach K, Peterson E, Westphale EM, Seul KH, Ramanan SV, Beyer EC: Evidence for heteromeric gap junction channels formed from rat connexin43 and human connexin37. Am J Physiol 1997;273:C1386-C1396.9357785
Britz-Cunningham SH, Shah MM, Zuppan CW, Fletcher WH: Mutations of the connexin43 gap-junction gene in patients with heart malformations and defects of laterality. N Engl J Med1995;332:1323-1329.771564010.1056%2FNEJM199505183322002
Lerer I, Sagi M, Ben-Neriah Z, Wang T, Levi H, Abeliovich D: A deletion mutation in GJB6 cooperating with a GJB2 mutation in trans in non-syndromic deafness: a novel founder mutation in Ashkenazi Jews. Hum Mutat 2001;18:460.1166864410.1002%2Fhumu.1222
Huculak C, Bruyere H, Nelson TN, Kozak FK, Langlois S: V37I connexin 26 allele in patients with sensorineural hearing loss: evidence of its pathogenicity. Am J Med Genet A 2006;140:2394-2400.
Jiang JX, Goodenough DA: Heteromeric connexons in lens gap junction channels. Proc Natl Acad Sci USA 1996;93:1287-1291.857775610.1073%2Fpnas.93.3.1287
Morton CC: Genetics, genomics and gene discovery in the auditory system. Hum Mol Genet 2002;11:1229-1240.1201528310.1093%2Fhmg%2F11.10.1229
Spicer SS, Schulte BA: Evidence for a medial K+ recycling pathway from inner hair cells.Hear Res 1998;118:1-12.
Morell R, Kim H, Hood L, Goforth L, Friderici K, Fisher R, Van Camp G, Berlin C, Oddoux C, Ostrer H, Keats B, Friedman T: Mutations in the connexin 26 gene (GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness. N Engl J Med 1998;339:1500-1505.981944810.1056%2FNEJM199811193392103
López-Bigas N, Rabionet R, Martinez E, Banchs I, Volpini V, Vance J, Arbones M, Estivill X: Identification of seven novel SNPS (five nucleotide and two amino acid substitutions) in the connexin31 (GJB3) gene. Hum Mutat 2000;15:481-482.1079021510.1002%2F%28SICI%291098-1004%28200005%2915%3A5%3C481%3A%3AAID-HUMU15%3E3.0.CO%3B2-7
Bergoffen J, Scherer SS, Wang S, Scott MO, Bone LJ, Paul DL, Chen K, Lensch MW, Chance PF, Fischbeck KH: Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science 1993;262:2039-2042.826610110.1126%2Fscience.8266101
Del Castillo FJ, Rodriguez-Ballesteros M, Alvarez A, Hutchin T, Leonardi E, de Oliveira CA, Azaiez H, Brownstein Z, Avenarius MR, Marlin S, Pandya A, Shahin H: A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment (letter). J Med Genet 2005;42:588-594.1599488110.1136%2Fjmg.2004.028324
Wang YC, Kung CY, Su MC, Su CC, Hsu HM, Tsai CC, Lin CC, Li SY: Mutations of Cx26 gene (GJB2) for prelingual deafness in Taiwan. Eur J Hum Genet 2002;10:495-498.1211164610.1038%2Fsj.ejhg.5200838
Liu XZ, Xia XJ, Xu LR, Pandya A, Liang CY, Blanton SH, Brown SD, Steel KP, Nance WE: Mutations in connexin31 underlie recessive as well as dominant non-syndromic hearing loss. Hum Mol Genet 2000;9:63-67.1058757910.1093%2Fhmg%2F9.1.63
Hereditary Hearing Loss Homepage. http://www.uia.ac.be/dnalab/hhh/hhhgenes.html.
Katsanis N, Beales PL, Woods MO, Lewis RA, Green JS, Parfrey PS, Ansley SJ, Davidson WS, Lupski JR: Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science 2001;293:2256-2259.1156713910.1126%2Fscience.1063525
Kelley PM, Harris DJ, Comer BC, Askew JW, Fowler T, Smith SD, Kimberling WJ: Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet 1998;62:792-799.952936510.1086%2F301807
Rabionet R, López-Bigas N, Arbones ML, Estivill X: Connexin mutations in hearing loss, dermatological and neurological disorders. Trends Mol Med 2002;8:205-212.1206762910.1016%2FS1471-4914%2802%2902327-4
Dahl HH, Tobin SE, Poulakis Z, Rickards FW, Xu X, Gillam L, Williams J, Saunders K, Cone-Wesson B, Wake M: The contribution of GJB2 mutations to slight/mild hearing loss in Australian elementary school children. J Med Genet 2006;43:850-855.1684057110.1136%2Fjmg.2006.042051
Berthoud VM, Montegna EA, Atal N, Aithal NH, Brink PR, Beyer EC: Heteromeric connexons formed by the lens connexins, connexin43 and connexin56. Eur J Cell Biol 2001;80:11-19.1121193010.1078%2F0171-9335-00132
Leube RE: The topogenic fate of the polytopic transmembrane proteins, synaptophysin and connexin, is determined by their membrane-spanning domains. J Cell Sci 1995;108:883-894.7622617
Auricchio A, Griseri P, Carpentieri ML, Betsos N, Staiano A, Tozzi A, Priolo M, Thompson H, Bocciardi R, Romeo G, Ballabio A, Ceccherini I: Double heterozygosity for a RET substitution interfering with splicing and an EDNRB missense mutation in Hirschsprung disease. Am J Hum Genet 1999;64:1216-1221.1009090810.1086%2F302329
Ahmad S, Chen S, Sun J, Lin X, Connexins 26 and 30 are co-assembled to form gap junctions in the cochlea of mouse. Biochem Biophys Res Commun 2003;307:362-368.1285996510.1016%2FS0006-291X%2803%2901166-5
Cohen-Salmon M, Maxeiner S, Kruger O, Theis M, Willecke K, Petit C: Expression of the connexin43- and connexin45-encoding genes in the developing and mature mouse inner ear. Cell Tissue Res 2004;316:15-22.1498610210.1007%2Fs00441-004-0861-2
Fishman GI, Moreno AP, Spray DC, Leinwand LA: Functional analysis of human cardiac junction channel mutants. Proc Natl Acad Sci USA 1991;88:3525-3529.185083110.1073%2Fpnas.88.9.3525
Xia JH, Liu CY, Tang BS, Pan Q, Huang L, Dai HP, Zhang BR, Xie W, Hu DX, Zheng D, Shi XL, Wang DA, Xia K, Yu KP, Liao XD, Feng Y, Yang YF, Xiao JY, Xie DH, Huang JZ: Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat Genet 1998;20:370-373.984321010.1038%2F3845
López-Bigas N, Melchionda S, Gasparini P, Borragán A, Arbonés ML, Estivill X: A common frameshift mutation and other variants in GJB4 (connexin 30.3): analysis of hearing impairment families. Hum Mutat 2002;19:458.1193320110.1002%2Fhumu.9023
Sun J, Ahmad S, Chen S, Tang W, Zhang Y, Chen P, Lin X: Cochlear gap junctions coassembled from Cx26 and 30 show faster intercellular Ca2+ signaling than homomeric counterparts. Am J Physiol Cell Physiol 2005;288:613-623.10.1152%2Fajpcell.00341.2004
Liu XZ, Xia XJ, Adams J, Chen ZY, Welch KO, Tekin M, Ouyang XM, Kristiansen A, Pandya A, Balkany T, Arnos KS, Nance WE: Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal recessive deafness. Hum Mol Genet 2001;10:2945-2951.1174183710.1093%2Fhmg%2F10.25.2945
Krutovskikh V, Yamasaki H: Connexin gene mutations in human genetic diseases. Mutat Res 2000;462:197-207.1076763110.1016%2FS1383-5742%2800%2900037-5
He DS, Jiang JX, Taffet SM, Burt JM: Formation of heteromeric gap junction channels by connexins 40 and 43 in vascular smooth muscle cells. Proc Natl Acad Sci USA1999;96:6495-6500.1033961610.1073%2Fpnas.96.11.6495
Pallares-Ruiz N, Blanchet P, Mondain M, Claustres M, Roux AF: A large deletion including most of GJB6 in recessive nonsyndromic deafness: a digenic effect? Eur J Hum Genet 2002;10:72-76.1189645810.1038%2Fsj.ejhg.5200762
Kudo T, Ikeda K, Kure S, Matsubara Y, Oshima T, Watanabe K, Kawase T, Narisawa K, Takasaka T: Novel mutations in the connexin 26 gene (GJB2) responsible for childhood deafness in the Japanese population. Am J Med Genet 2000;90:141-145.1060795310.1002%2F%28SICI%291096-8628%2820000117%2990%3A2%3C141%3A%3AAID-AJMG10%3E3.0.CO%3B2-G
Kikuchi T, Kimura RS, Pau
ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Audiol Neurootol. 2007;12(5):344
References_xml – reference: Denoyelle F, Lina-Granade G, Plauchu H, Bruzzone R, Chaib H, Levi-Acobas F, Weil D, Petit C: Connexin 26 gene linked to a dominant deafness. Nature 1998;393:319-320.962079610.1038%2F30639
– reference: Grifa A, Wagner CA, D'Ambrosio L, Melchionda S, Bernardi F, López-Bigas N, Rabionet R, Arbones M, Monica MD, Estivill X, Zelante L, Lang F, Gasparini P: Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat Genet 1999;23:16-18.10471490
– reference: Berthoud VM, Montegna EA, Atal N, Aithal NH, Brink PR, Beyer EC: Heteromeric connexons formed by the lens connexins, connexin43 and connexin56. Eur J Cell Biol 2001;80:11-19.1121193010.1078%2F0171-9335-00132
– reference: Abe S, Usami SI, Shinkawa H, Kelley PM, Kimberling WJ: Prevalent connexin 26 gene (GJB2) mutations in Japanese. J Med Genet 2000;37:41-43.1063313310.1136%2Fjmg.37.1.41
– reference: Kikuchi T, Kimura RS, Paul DL, Adams JC: Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol 1995;191:101-118.772638910.1007%2FBF00186783
– reference: Britz-Cunningham SH, Shah MM, Zuppan CW, Fletcher WH: Mutations of the connexin43 gap-junction gene in patients with heart malformations and defects of laterality. N Engl J Med1995;332:1323-1329.771564010.1056%2FNEJM199505183322002
– reference: Park HJ, Hahn SH, Chun YM, Park K, Kim HN: Connexin26 mutations associated with nonsyndromic hearing loss. Laryngoscope 2000;110:1535-1538.1098395610.1097%2F00005537-200009000-00023
– reference: Lerer I, Sagi M, Ben-Neriah Z, Wang T, Levi H, Abeliovich D: A deletion mutation in GJB6 cooperating with a GJB2 mutation in trans in non-syndromic deafness: a novel founder mutation in Ashkenazi Jews. Hum Mutat 2001;18:460.1166864410.1002%2Fhumu.1222
– reference: Liu XZ, Xia XJ, Ke XM, Ouyang XM, Du LL, Liu YH, Angeli S, Telischi FF, Nance WE, Balkany T, Xu LR: The prevalence of connexin 26 (GJB2) mutations in the Chinese population. Hum Genet 2002;111:394-397.1238478110.1007%2Fs00439-002-0811-6
– reference: Wang YC, Kung CY, Su MC, Su CC, Hsu HM, Tsai CC, Lin CC, Li SY: Mutations of Cx26 gene (GJB2) for prelingual deafness in Taiwan. Eur J Hum Genet 2002;10:495-498.1211164610.1038%2Fsj.ejhg.5200838
– reference: Auricchio A, Griseri P, Carpentieri ML, Betsos N, Staiano A, Tozzi A, Priolo M, Thompson H, Bocciardi R, Romeo G, Ballabio A, Ceccherini I: Double heterozygosity for a RET substitution interfering with splicing and an EDNRB missense mutation in Hirschsprung disease. Am J Hum Genet 1999;64:1216-1221.1009090810.1086%2F302329
– reference: Toyofuku T, Yabuki M, Otsu K, Kuzuya T, Hori M, Tada M: Direct association of the gap junction protein connexin43 with ZO-1 in cardiac myocytes. J Biol Chem 1998;172:12725-12731.10.1074%2Fjbc.273.21.12725
– reference: Forge A, Becker D, Casalotti S, Edwards J, Marziano N, Nevill G: Gap junctions in the inner ear: comparison of distribution patterns in different vertebrates and assessment of connexin composition in mammals. J Comp Neurol 2003;467:207-231.1459576910.1002%2Fcne.10916
– reference: Hereditary Hearing Loss Homepage. http://www.uia.ac.be/dnalab/hhh/hhhgenes.html.
– reference: Kajiwara K, Berson EL, Dryja TP: Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science 1994;264:1604-1608.820271510.1126%2Fscience.8202715
– reference: Leube RE: The topogenic fate of the polytopic transmembrane proteins, synaptophysin and connexin, is determined by their membrane-spanning domains. J Cell Sci 1995;108:883-894.7622617
– reference: Giepmans BNG, Moolenaar WH: The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Curr Biol 1998;8:931-934.970740710.1016%2FS0960-9822%2807%2900375-2
– reference: Xia AP, Ikeda K, Katori Y, Oshima T, Kikuchi T, Takasaka T: Expression of connexin 31 in the developing mouse cochlea. Neuroreport 2000;11:2449-2453.1094370210.1097%2F00001756-200008030-00022
– reference: Hamelmann C, Amedofu GK, Albrecht K, Muntau B, Gelhaus A, Brobby GW, Horstmann RD: Pattern of connexin 26 (GJB2) mutations causing sensorineural hearing impairment in Ghana. Hum Mutat 2001;18:84-85.1143900010.1002%2Fhumu.1156
– reference: Kudo T, Ikeda K, Oshima T, Kure S, Tammasaeng M, Prasansuk S, Matsubara Y: GJB2 (connexin 26) mutations and childhood deafness in Thailand. Otol Neurotol 2001;22:858-861.1169880910.1097%2F00129492-200111000-00025
– reference: Del Castillo FJ, Rodriguez-Ballesteros M, Alvarez A, Hutchin T, Leonardi E, de Oliveira CA, Azaiez H, Brownstein Z, Avenarius MR, Marlin S, Pandya A, Shahin H: A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment (letter). J Med Genet 2005;42:588-594.1599488110.1136%2Fjmg.2004.028324
– reference: Spicer SS, Schulte BA: Evidence for a medial K+ recycling pathway from inner hair cells.Hear Res 1998;118:1-12.
– reference: Valiunas V, Gemel J, Brink PR, Beyer EC: Gap junction channels formed by coexpressed connexin40 and connexin43. Am J PhysiolHeart Circ Physiol 2001;281:H1675-H1689.11557558
– reference: Evans WH, Martin PE: Gap junctions: structure and function (review). Mol Membr Biol 2002;19:121-136.1212623010.1080%2F09687680210139839
– reference: Yang JJ, Liao PJ, Su CC, Li SY: Expression patterns of connexin 29 (GJE1) in mouse and rat cochlea. Biochem Biophys Res Commun 2005;338:723-728.1623625010.1016%2Fj.bbrc.2005.09.193
– reference: Kleopa KA, Yum SW, Scherer SS: Cellular mechanisms of connexin32 mutations associated with CNS manifestations. J Neurosci Res 2002;68:522-534.1211184210.1002%2Fjnr.10255
– reference: Liu XZ, Xia XJ, Xu LR, Pandya A, Liang CY, Blanton SH, Brown SD, Steel KP, Nance WE: Mutations in connexin31 underlie recessive as well as dominant non-syndromic hearing loss. Hum Mol Genet 2000;9:63-67.1058757910.1093%2Fhmg%2F9.1.63
– reference: Spicer SS, Schulte BA: The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear Res 1996;100:80-100.892298210.1016%2F0378-5955%2896%2900106-2
– reference: Bevans CG, Kordel M, Rhee SK, Harris AL: Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J Biol Chem 1998;273:2808-2816.944658910.1074%2Fjbc.273.5.2808
– reference: Kelley PM, Harris DJ, Comer BC, Askew JW, Fowler T, Smith SD, Kimberling WJ: Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet 1998;62:792-799.952936510.1086%2F301807
– reference: Kandouz M, Bier A, Carystinos GD, Alaoui-Jamali MA, Batist G: Connexin43 pseudogene is expressed in tumor cells and inhibits growth. Oncogene 2004;23:4763-4770.1512232910.1038%2Fsj.onc.1207506
– reference: Fishman GI, Moreno AP, Spray DC, Leinwand LA: Functional analysis of human cardiac junction channel mutants. Proc Natl Acad Sci USA 1991;88:3525-3529.185083110.1073%2Fpnas.88.9.3525
– reference: Brink PR, Cronin K, Banach K, Peterson E, Westphale EM, Seul KH, Ramanan SV, Beyer EC: Evidence for heteromeric gap junction channels formed from rat connexin43 and human connexin37. Am J Physiol 1997;273:C1386-C1396.9357785
– reference: Kudo T, Ikeda K, Kure S, Matsubara Y, Oshima T, Watanabe K, Kawase T, Narisawa K, Takasaka T: Novel mutations in the connexin 26 gene (GJB2) responsible for childhood deafness in the Japanese population. Am J Med Genet 2000;90:141-145.1060795310.1002%2F%28SICI%291096-8628%2820000117%2990%3A2%3C141%3A%3AAID-AJMG10%3E3.0.CO%3B2-G
– reference: Zhou XW, Pfahnl A, Werner R, Hudder A, Llanes A, Lubeke A, Dahl G: Identification of a pore lining segment in gap junction hemichannels. Biophys J 1997;72:1946-1953.912979910.1016%2FS0006-3495%2897%2978840-4
– reference: Wilcox SA, Saunders K, Osborn AH, Arnold A, Wunderlich J, Kelly T, Collins V, Wilcox LJ, Gardner RJM, Kamarinos M, Cone-Wesson B, Williamson R, Dahl HHM: High frequency hearing loss correlated with mutations in the GJB2 gene. Hum Genet 2000;106:399-405.1083090610.1007%2Fs004390000273
– reference: Dahl HH, Tobin SE, Poulakis Z, Rickards FW, Xu X, Gillam L, Williams J, Saunders K, Cone-Wesson B, Wake M: The contribution of GJB2 mutations to slight/mild hearing loss in Australian elementary school children. J Med Genet 2006;43:850-855.1684057110.1136%2Fjmg.2006.042051
– reference: Ahmad S, Chen S, Sun J, Lin X, Connexins 26 and 30 are co-assembled to form gap junctions in the cochlea of mouse. Biochem Biophys Res Commun 2003;307:362-368.1285996510.1016%2FS0006-291X%2803%2901166-5
– reference: Harris AL: Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 2001;34:325-472.11838236
– reference: He DS, Jiang JX, Taffet SM, Burt JM: Formation of heteromeric gap junction channels by connexins 40 and 43 in vascular smooth muscle cells. Proc Natl Acad Sci USA1999;96:6495-6500.1033961610.1073%2Fpnas.96.11.6495
– reference: Denoyelle F, Weil D, Maw MA, Wilcox SA, Lench NJ, Allen-Powell DR, Osborn AH, Dahl HH, Middleton A, Houseman MJ, Dode C, Marlin S, Boulila-ElGaied A, Grati M, Ayadi H, Benarab S, Bitoun P, Lina-Granade G, Godet J, Mustapha M, Loiselet J, El Zir E, Aubois A, Joannard A, Petit C: Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene. Hum Mol Genet 1997;6:2173-2177.933644210.1093%2Fhmg%2F6.12.2173
– reference: Sun J, Ahmad S, Chen S, Tang W, Zhang Y, Chen P, Lin X: Cochlear gap junctions coassembled from Cx26 and 30 show faster intercellular Ca2+ signaling than homomeric counterparts. Am J Physiol Cell Physiol 2005;288:613-623.10.1152%2Fajpcell.00341.2004
– reference: Montgomery JR, White TW, Martin BL, Turner ML, Holland SM: A novel connexin 26 gene mutation associated with features of the keratitisichthyosis-deafness syndrome and the follicular occlusion triad. J Am Acad Dermatol 2004;51:377-382.1533798010.1016%2Fj.jaad.2003.12.042
– reference: Maw MA, Allen-Powell DR, Goodey RJ, Stewart IA, Nancarrow DJ, Hayward NK, Gardner RJ: The contribution of the DFNB1 locus to neurosensory deafness in a Caucasian population. Am J Hum Genet 1995;57:629-635.7668291
– reference: Morell R, Kim H, Hood L, Goforth L, Friderici K, Fisher R, Van Camp G, Berlin C, Oddoux C, Ostrer H, Keats B, Friedman T: Mutations in the connexin 26 gene (GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness. N Engl J Med 1998;339:1500-1505.981944810.1056%2FNEJM199811193392103
– reference: Bergoffen J, Scherer SS, Wang S, Scott MO, Bone LJ, Paul DL, Chen K, Lensch MW, Chance PF, Fischbeck KH: Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science 1993;262:2039-2042.826610110.1126%2Fscience.8266101
– reference: Pallares-Ruiz N, Blanchet P, Mondain M, Claustres M, Roux AF: A large deletion including most of GJB6 in recessive nonsyndromic deafness: a digenic effect? Eur J Hum Genet 2002;10:72-76.1189645810.1038%2Fsj.ejhg.5200762
– reference: López-Bigas N, Melchionda S, Gasparini P, Borragán A, Arbonés ML, Estivill X: A common frameshift mutation and other variants in GJB4 (connexin 30.3): analysis of hearing impairment families. Hum Mutat 2002;19:458.1193320110.1002%2Fhumu.9023
– reference: Morton NE: Genetic epidemiogy of hearing impairment. Ann NY Acad Sci 1991;630:16-31.195258710.1111%2Fj.1749-6632.1991.tb19572.x
– reference: Paznekas WA, Boyadjiev SA, Shapiro RE, Daniels O, Wollnik B, Keegan CE, Innis JW, Dinulos MB, Christian C, Hannibal MC, Jabs EW: Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 2003;72:408-418.1245734010.1086%2F346090
– reference: Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J: Cardiac malformation in neonatal mice lacking connexin43. Science 1995;267:1831-1834.789260910.1126%2Fscience.7892609
– reference: Xia JH, Liu CY, Tang BS, Pan Q, Huang L, Dai HP, Zhang BR, Xie W, Hu DX, Zheng D, Shi XL, Wang DA, Xia K, Yu KP, Liao XD, Feng Y, Yang YF, Xiao JY, Xie DH, Huang JZ: Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat Genet 1998;20:370-373.984321010.1038%2F3845
– reference: Morton CC: Genetics, genomics and gene discovery in the auditory system. Hum Mol Genet 2002;11:1229-1240.1201528310.1093%2Fhmg%2F11.10.1229
– reference: Krutovskikh V, Yamasaki H: Connexin gene mutations in human genetic diseases. Mutat Res 2000;462:197-207.1076763110.1016%2FS1383-5742%2800%2900037-5
– reference: Huculak C, Bruyere H, Nelson TN, Kozak FK, Langlois S: V37I connexin 26 allele in patients with sensorineural hearing loss: evidence of its pathogenicity. Am J Med Genet A 2006;140:2394-2400.
– reference: Hwa HL, Ko TM, Hsu CJ, Huang CH, Chiang YL, Oong JL, Chen CC, Hsu CK: Mutation spectrum of the connexin 26 (GJB2) gene in Taiwanese patients with prelingual deafness. Genet Med2003;5:161-165.1279242310.1097%2F01.GIM.0000066796.11916.94
– reference: Katsanis N, Beales PL, Woods MO, Lewis RA, Green JS, Parfrey PS, Ansley SJ, Davidson WS, Lupski JR: Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science 2001;293:2256-2259.1156713910.1126%2Fscience.1063525
– reference: Jiang JX, Goodenough DA: Heteromeric connexons in lens gap junction channels. Proc Natl Acad Sci USA 1996;93:1287-1291.857775610.1073%2Fpnas.93.3.1287
– reference: Yum SW, Kleopa KA, Shumas S, Scherer SS: Diverse trafficking abnormalities of connexin32 mutants causing CMTX. Neurobiol Dis 2002;11:43-52.1246054510.1006%2Fnbdi.2002.0545
– reference: Cohen-Salmon M, Maxeiner S, Kruger O, Theis M, Willecke K, Petit C: Expression of the connexin43- and connexin45-encoding genes in the developing and mature mouse inner ear. Cell Tissue Res 2004;316:15-22.1498610210.1007%2Fs00441-004-0861-2
– reference: Del Castillo I, Villamar M, Moreno-Pelayo MA, del Castillo FJ, Alvarez A, Telleria D, Menendez I, Moreno F: A deletion involving the Connexin 30 gene in non-syndromic hearing impairment. N Engl J Med 2002;346:243-249.1180714810.1056%2FNEJMoa012052
– reference: López-Bigas N, Rabionet R, Martinez E, Banchs I, Volpini V, Vance J, Arbones M, Estivill X: Identification of seven novel SNPS (five nucleotide and two amino acid substitutions) in the connexin31 (GJB3) gene. Hum Mutat 2000;15:481-482.1079021510.1002%2F%28SICI%291098-1004%28200005%2915%3A5%3C481%3A%3AAID-HUMU15%3E3.0.CO%3B2-7
– reference: Liu XZ, Xia XJ, Adams J, Chen ZY, Welch KO, Tekin M, Ouyang XM, Kristiansen A, Pandya A, Balkany T, Arnos KS, Nance WE: Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal recessive deafness. Hum Mol Genet 2001;10:2945-2951.1174183710.1093%2Fhmg%2F10.25.2945
– reference: Rabionet R, López-Bigas N, Arbones ML, Estivill X: Connexin mutations in hearing loss, dermatological and neurological disorders. Trends Mol Med 2002;8:205-212.1206762910.1016%2FS1471-4914%2802%2902327-4
– ident: ref45
  doi: 10.1126%2Fscience.7892609
– ident: ref15
  doi: 10.1073%2Fpnas.88.9.3525
– ident: ref44
  doi: 10.1016%2FS1471-4914%2802%2902327-4
– ident: ref4
  doi: 10.1126%2Fscience.8266101
– ident: ref14
  doi: 10.1080%2F09687680210139839
– ident: ref20
  doi: 10.1097%2F01.GIM.0000066796.11916.94
– ident: ref28
  doi: 10.1016%2FS1383-5742%2800%2900037-5
– ident: ref16
  doi: 10.1002%2Fcne.10916
– ident: ref52
  doi: 10.1038%2F3845
– ident: ref3
  doi: 10.1086%2F302329
– ident: ref12
  doi: 10.1038%2F30639
– ident: ref11
  doi: 10.1056%2FNEJMoa012052
– ident: ref49
  doi: 10.1038%2Fsj.ejhg.5200838
– ident: ref46
  doi: 10.1016%2F0378-5955%2896%2900106-2
– ident: ref6
  doi: 10.1074%2Fjbc.273.5.2808
– ident: ref37
  doi: 10.1016%2Fj.jaad.2003.12.042
– ident: ref19
  doi: 10.1073%2Fpnas.96.11.6495
– ident: ref25
  doi: 10.1086%2F301807
– ident: ref40
  doi: 10.1111%2Fj.1749-6632.1991.tb19572.x
– ident: ref54
  doi: 10.1006%2Fnbdi.2002.0545
– ident: ref53
  doi: 10.1016%2Fj.bbrc.2005.09.193
– ident: ref1
  doi: 10.1136%2Fjmg.37.1.41
– ident: ref13
  doi: 10.1093%2Fhmg%2F6.12.2173
– ident: ref24
  doi: 10.1126%2Fscience.1063525
– ident: ref7
  doi: 10.1056%2FNEJM199505183322002
– ident: ref9
  doi: 10.1136%2Fjmg.2006.042051
– ident: ref34
  doi: 10.1093%2Fhmg%2F9.1.63
– ident: ref38
  doi: 10.1056%2FNEJM199811193392103
– ident: ref55
  doi: 10.1016%2FS0006-3495%2897%2978840-4
– ident: ref51
  doi: 10.1097%2F00001756-200008030-00022
– ident: ref2
  doi: 10.1016%2FS0006-291X%2803%2901166-5
– ident: ref5
  doi: 10.1078%2F0171-9335-00132
– ident: ref23
  doi: 10.1038%2Fsj.onc.1207506
– ident: ref22
  doi: 10.1126%2Fscience.8202715
– ident: ref42
  doi: 10.1097%2F00005537-200009000-00023
– ident: ref36
  doi: 10.1002%2F%28SICI%291098-1004%28200005%2915%3A5%3C481%3A%3AAID-HUMU15%3E3.0.CO%3B2-7
– ident: ref47
  doi: 10.1152%2Fajpcell.00341.2004
– ident: ref39
  doi: 10.1093%2Fhmg%2F11.10.1229
– ident: ref27
  doi: 10.1002%2Fjnr.10255
– ident: ref35
  doi: 10.1002%2Fhumu.9023
– ident: ref33
  doi: 10.1007%2Fs00439-002-0811-6
– ident: ref10
  doi: 10.1136%2Fjmg.2004.028324
– ident: ref50
  doi: 10.1007%2Fs004390000273
– ident: ref26
  doi: 10.1007%2FBF00186783
– ident: ref30
  doi: 10.1097%2F00129492-200111000-00025
– ident: ref18
  doi: 10.1002%2Fhumu.1156
– ident: ref8
  doi: 10.1007%2Fs00441-004-0861-2
– ident: ref48
  doi: 10.1074%2Fjbc.273.21.12725
– ident: ref21
  doi: 10.1073%2Fpnas.93.3.1287
– ident: ref17
  doi: 10.1016%2FS0960-9822%2807%2900375-2
– ident: ref31
  doi: 10.1002%2Fhumu.1222
– ident: ref29
  doi: 10.1002%2F%28SICI%291096-8628%2820000117%2990%3A2%3C141%3A%3AAID-AJMG10%3E3.0.CO%3B2-G
– ident: ref32
  doi: 10.1093%2Fhmg%2F10.25.2945
– ident: ref41
  doi: 10.1038%2Fsj.ejhg.5200762
– ident: ref43
  doi: 10.1086%2F346090
– reference: - Audiol Neurootol. 2007;12(5):344
SSID ssj0005554
Score 2.07044
Snippet Connexins (Cx), a large family of membrane proteins, are key components of gap junction channels. These channels are critical intercellular pathways through...
Connexins (Cx) , a large family of membrane proteins, are key components of gap junction channels. These channels are critical intercellular pathways through...
SourceID proquest
pubmed
pascalfrancis
crossref
karger
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 198
SubjectTerms Adult
Audiology
Biological and medical sciences
Cellular biology
Child
Connexin 26
Connexin 30
Connexin 43 - genetics
Connexins - genetics
Deafness - ethnology
Deafness - genetics
Ear, auditive nerve, cochleovestibular tract, facial nerve: diseases, semeiology
Ears & hearing
Family Health
Female
Frameshift Mutation
Gap Junction beta-1 Protein
Gap Junctions
Genes
Genetic Predisposition to Disease - epidemiology
Genotype
Hearing loss
Humans
Male
Medical sciences
Membranes
Multigene Family - genetics
Mutation
Mutation, Missense
Nerve Tissue Proteins - genetics
Non tumoral diseases
Original Paper
Otorhinolaryngology. Stomatology
Polymorphism
Proteins
Taiwan - epidemiology
Title Identification of Mutations in Members of the Connexin Gene Family as a Cause of Nonsyndromic Deafness in Taiwan
URI https://karger.com/doi/10.1159/000099024
https://www.ncbi.nlm.nih.gov/pubmed/17259707
https://www.proquest.com/docview/220852972
https://www.proquest.com/docview/70348071
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB-0FfFF1PpxVs9FfPAlNN3sZpMn0dpShDtEWri3MNkPOJTc2dyhf74z2b0cBfV1sxlIZna-d34A78ijDljqkGmvkAIUXWdIajDTtdZWlaWzQ0J_Ni8vr9WXhV6k3pw-tVXudOKgqN3Kco78RDKYpKyN_LD-mTFoFBdXE4LGXTgcJpeROJuF2Xd46AEE7VTxJWES5jRYiAz4SXSNcqlumaN737n7-ob7I7GnXxQitsW_nc_BCF08gofJexQfI7sfwx3fPYH7s1QfP4J1vHcbUiJOrIKYbWOxvRfLTsw843_0vE6Onxi6XH7TOg-fFhEDQ2AvUJzhtve8bU5vxqEGSys-ewysGpnUFS5_YfcUri_Or84us4SpkFmyxZvMSm-roHJ1aiulW1ReOe3assa2sq7y0rqiVjwu1OStDVgVQWJeuULbIpfBFs_goFt1_gWItnLemRZ1KCiIKSjSsqXBwle1li05KhN4v_u1jU0Dxxn34kczBB66bkYuTODtuHUdp2z8bdNR5M-4JS1Pb3FrT4CCNU0KawLHO_Y16YD2zShOE3gzPqWTxeUS7Pxq2zekC_m-PX3H88jzPWVDIm5y8_K_lI_hQUwEc77mFRxsbrb-NXkwm3Y6yOkUDj-dz79--wPvIu5n
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbKFlEuFVAoS6EdIZC4RE0nM3kcKgR9aEubFUJbqbcwmYe0AmWXZleFH8V_xM4kWVUCbr1OHEuJxx7bY_sDeIMetVOxdIG0QmGAIrNAoRkMZCalFnFsdJPQz8fx6FJ8upJXa_C764WhssrOJjaG2sw05cj3OYFJ8izh7-c_AgKNosvVDkHD74pz--sGI7b68OwYxfuW89OTydEoaEEFAo2H0SLQ3OrUiVAc6FTIUgkrjDRlnKky1Sa1XJsoEzQvMwlL7VQaOa7C1ERSRyF3OkK-92BdUEPrANY_now_f1nVlMgGdu1AUFsyqk87yghdhn3vjIVc3DoA73-jeu9rqshUNQrFeTSNf7u7zbF3-gg2W3-VffAb7DGs2eoJPMjbG_ktmPtOX9em_tjMsXzpr_drNq1YbglxpKZ1dDVZU1fzE9dp3DXzqBtM1UyxI7WsLZGN8U0_RmGq2bFVjowxsZqo6Y2qnsLlnfzwZzCoZpV9DqxMjTVJqaSLMGyKMLbTcaIim2aSl-gaDeFd92sL3Y44J6SN70UT6sis6KUwhNc96dzP9fgb0ZaXT0_SLu_ektaKAYaHEk3kEHY68RWtSaiLfgMPYa9_irpMFzSqsrNlXaD1pQ5__I5tL_MV5wSVKgmTF__lvAcbo0l-UVycjc934KFPQ1O26CUMFtdL-wr9p0W52-5aBl_vWlH-AAl7LFU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+mutations+in+members+of+the+connexin+gene+family+as+a+cause+of+nonsyndromic+deafness+in+Taiwan&rft.jtitle=Audiology+%26+neurotology&rft.au=Yang%2C+Jiann-Jou&rft.au=Huang%2C+Shih-Hsin&rft.au=Chou%2C+Kvei-Hsiu&rft.au=Liao%2C+Pei-Ju&rft.date=2007-01-01&rft.eissn=1421-9700&rft.volume=12&rft.issue=3&rft.spage=198&rft_id=info:doi/10.1159%2F000099024&rft_id=info%3Apmid%2F17259707&rft.externalDocID=17259707
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3030&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3030&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3030&client=summon