Circulating Monocytes in HIV-1-Infected Viremic Subjects Exhibit an Antiapoptosis Gene Signature and Virus- and Host-Mediated Apoptosis Resistance
Mechanisms that may allow circulating monocytes to persist as CD4 T cells diminish in HIV-1 infection have not been investigated. We have characterized steady-state gene expression signatures in circulating monocytes from HIV-infected subjects and have identified a stable antiapoptosis gene signatur...
Saved in:
Published in | The Journal of immunology (1950) Vol. 182; no. 7; pp. 4459 - 4470 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Am Assoc Immnol
01.04.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-1767 1550-6606 1550-6606 |
DOI | 10.4049/jimmunol.0801450 |
Cover
Loading…
Abstract | Mechanisms that may allow circulating monocytes to persist as CD4 T cells diminish in HIV-1 infection have not been investigated. We have characterized steady-state gene expression signatures in circulating monocytes from HIV-infected subjects and have identified a stable antiapoptosis gene signature comprised of 38 genes associated with p53, CD40L, TNF, and MAPK signaling networks. The significance of this gene signature is indicated by our demonstration of cadmium chloride- or Fas ligand-induced apoptosis resistance in circulating monocytes in contrast to increasing apoptosis in CD4 T cells from the same infected subjects. As potential mechanisms in vivo, we show that monocyte CCR5 binding by HIV-1 virus or agonist chemokines serves as independent viral and host modulators resulting in increased monocyte apoptosis resistance in vitro. We also show evidence for concordance between circulating monocyte apoptosis-related gene expression in HIV-1 infection in vivo and available datasets following viral infection or envelope exposure in monocyte-derived macrophages in vitro. The identification of in vivo gene expression associated with monocyte resistance to apoptosis is of relevance to AIDS pathogenesis since it would contribute to: 1) maintaining viability of infection targets and long-term reservoirs of HIV-1 infection in the monocyte/macrophage populations, and 2) protecting a cell subset critical to host survival despite sustained high viral replication. |
---|---|
AbstractList | Mechanisms that may allow circulating monocytes to persist as CD4 T cells diminish in HIV-1 infection have not been investigated. We have characterized steady-state gene expression signatures in circulating monocytes from HIV-infected subjects and have identified a stable antiapoptosis gene signature comprised of 38 genes associated with p53, CD40L, TNF, and MAPK signaling networks. The significance of this gene signature is indicated by our demonstration of cadmium chloride- or Fas ligand-induced apoptosis resistance in circulating monocytes in contrast to increasing apoptosis in CD4 T cells from the same infected subjects. As potential mechanisms in vivo, we show that monocyte CCR5 binding by HIV-1 virus or agonist chemokines serves as independent viral and host modulators resulting in increased monocyte apoptosis resistance in vitro. We also show evidence for concordance between circulating monocyte apoptosis-related gene expression in HIV-1 infection in vivo and available datasets following viral infection or envelope exposure in monocyte-derived macrophages in vitro. The identification of in vivo gene expression associated with monocyte resistance to apoptosis is of relevance to AIDS pathogenesis since it would contribute to: 1) maintaining viability of infection targets and long-term reservoirs of HIV-1 infection in the monocyte/macrophage populations, and 2) protecting a cell subset critical to host survival despite sustained high viral replication.Mechanisms that may allow circulating monocytes to persist as CD4 T cells diminish in HIV-1 infection have not been investigated. We have characterized steady-state gene expression signatures in circulating monocytes from HIV-infected subjects and have identified a stable antiapoptosis gene signature comprised of 38 genes associated with p53, CD40L, TNF, and MAPK signaling networks. The significance of this gene signature is indicated by our demonstration of cadmium chloride- or Fas ligand-induced apoptosis resistance in circulating monocytes in contrast to increasing apoptosis in CD4 T cells from the same infected subjects. As potential mechanisms in vivo, we show that monocyte CCR5 binding by HIV-1 virus or agonist chemokines serves as independent viral and host modulators resulting in increased monocyte apoptosis resistance in vitro. We also show evidence for concordance between circulating monocyte apoptosis-related gene expression in HIV-1 infection in vivo and available datasets following viral infection or envelope exposure in monocyte-derived macrophages in vitro. The identification of in vivo gene expression associated with monocyte resistance to apoptosis is of relevance to AIDS pathogenesis since it would contribute to: 1) maintaining viability of infection targets and long-term reservoirs of HIV-1 infection in the monocyte/macrophage populations, and 2) protecting a cell subset critical to host survival despite sustained high viral replication. Mechanisms that may allow circulating monocytes to persist as CD4 T cells diminish in HIV-1 infection have not been investigated. We have characterized steady-state gene expression signatures in circulating monocytes from HIV-infected subjects and have identified a stable antiapoptosis gene signature comprised of 38 genes associated with p53, CD40L, TNF, and MAPK signaling networks. The significance of this gene signature is indicated by our demonstration of cadmium chloride- or Fas ligand-induced apoptosis resistance in circulating monocytes in contrast to increasing apoptosis in CD4 T cells from the same infected subjects. As potential mechanisms in vivo, we show that monocyte CCR5 binding by HIV-1 virus or agonist chemokines serves as independent viral and host modulators resulting in increased monocyte apoptosis resistance in vitro. We also show evidence for concordance between circulating monocyte apoptosis-related gene expression in HIV-1 infection in vivo and available datasets following viral infection or envelope exposure in monocyte-derived macrophages in vitro. The identification of in vivo gene expression associated with monocyte resistance to apoptosis is of relevance to AIDS pathogenesis since it would contribute to: 1) maintaining viability of infection targets and long-term reservoirs of HIV-1 infection in the monocyte/macrophage populations, and 2) protecting a cell subset critical to host survival despite sustained high viral replication. |
Author | Nebozyhn, Michael Collman, Ronald G Hancock, Aidan Silvestri, Guido Montaner, Luis J Raymond, Andrea Gekonge, Bethsebah Mounzer, Karam Showe, Louise Foulkes, Andrea S Nicols, Calen Yousef, Malik Giri, Malavika S Kostman, Jay Creer, Shenoa Shull, Jane |
AuthorAffiliation | Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, PA 19104 Department of Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104 School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003 Hospital of the University of Pennsylvania, Philadelphia, PA 19104 The Wistar Institute, Philadelphia, PA 19104 |
AuthorAffiliation_xml | – name: The Wistar Institute, Philadelphia, PA 19104 – name: Department of Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104 – name: Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, PA 19104 – name: School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003 – name: Hospital of the University of Pennsylvania, Philadelphia, PA 19104 |
Author_xml | – sequence: 1 fullname: Giri, Malavika S – sequence: 2 fullname: Nebozyhn, Michael – sequence: 3 fullname: Raymond, Andrea – sequence: 4 fullname: Gekonge, Bethsebah – sequence: 5 fullname: Hancock, Aidan – sequence: 6 fullname: Creer, Shenoa – sequence: 7 fullname: Nicols, Calen – sequence: 8 fullname: Yousef, Malik – sequence: 9 fullname: Foulkes, Andrea S – sequence: 10 fullname: Mounzer, Karam – sequence: 11 fullname: Shull, Jane – sequence: 12 fullname: Silvestri, Guido – sequence: 13 fullname: Kostman, Jay – sequence: 14 fullname: Collman, Ronald G – sequence: 15 fullname: Showe, Louise – sequence: 16 fullname: Montaner, Luis J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19299747$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9vEzEQxS1URNPCnRPaE5y2jB2vvXtBiqLSRGqFRKFXy-udTRzt2mHtJfRr8IlxmrT8OXCxLc97b0bzOyMnzjsk5DWFCw68er-xfT86311ACZQX8IxMaFFALgSIEzIBYCynUshTchbCBgAEMP6CnNKKVZXkckJ-zu1gxk5H61bZjXfe3EcMmXXZYnmX03zpWjQRm-zODthbk92O9Sb9hOzyx9rWNmbaZTMXrd76bfTBhuwKHWa3duV0HAdM9QfzGPKH58KHmN9gY_U-dfbk-ozpjNoZfEmet7oL-Op4n5OvHy-_zBf59aer5Xx2nRvORMwNm_J2qqumbEtsmWhKCgWUtWCa1w2t00JAlI1Ew0EyydqyNE1rDK1oQYVk03Py4ZC7HeseG4MuDrpT28H2erhXXlv1d8XZtVr574pJmfbLU8DbY8Dgv40YouptMNh12qEfgxISCgpTkYRv_uz01OIRQxLAQWAGH8KA7W8JqD1p9UhaHUkni_jHYmxMGP1-Vtv9z_juYFzb1XqXqKrQ665Lo1G12-1oyZRUnBfV9BdRSMC9 |
CitedBy_id | crossref_primary_10_3389_fmicb_2019_02828 crossref_primary_10_1182_blood_2012_03_418681 crossref_primary_10_1089_aid_2018_0118 crossref_primary_10_1007_s12026_012_8297_3 crossref_primary_10_1189_jlb_0410231 crossref_primary_10_1373_clinchem_2012_197335 crossref_primary_10_1186_1742_4690_9_85 crossref_primary_10_1189_jlb_5A0714_347R crossref_primary_10_1128_JVI_02382_14 crossref_primary_10_1189_jlb_1111552 crossref_primary_10_1371_journal_ppat_1000781 crossref_primary_10_1371_journal_ppat_1001033 crossref_primary_10_2217_fvl_10_93 crossref_primary_10_1002_JLB_4A0217_047R crossref_primary_10_1097_COH_0000000000000910 crossref_primary_10_1371_journal_ppat_1002087 crossref_primary_10_1007_s11481_010_9253_4 crossref_primary_10_1038_s41467_018_05746_9 crossref_primary_10_1089_vim_2011_0057 crossref_primary_10_3390_tropicalmed10020045 crossref_primary_10_1016_j_apsb_2014_06_006 crossref_primary_10_2119_molmed_2012_00194 crossref_primary_10_1128_JVI_00252_11 crossref_primary_10_1038_cddis_2010_69 crossref_primary_10_1189_jlb_5AB0915_406R crossref_primary_10_1016_j_jocit_2016_03_002 crossref_primary_10_1189_jlb_0409264 crossref_primary_10_1186_1742_4690_7_53 crossref_primary_10_1016_j_cyto_2016_04_007 crossref_primary_10_1371_journal_pone_0057343 crossref_primary_10_1016_j_ygeno_2018_02_007 crossref_primary_10_1186_1479_5876_9_S1_S8 crossref_primary_10_1016_j_virol_2012_10_026 crossref_primary_10_1128_JVI_02048_16 crossref_primary_10_3389_fcimb_2022_808098 crossref_primary_10_3390_v9060129 crossref_primary_10_1128_spectrum_02508_22 crossref_primary_10_1097_COH_0b013e32835ccae1 crossref_primary_10_1097_COH_0b013e32835fe6d2 crossref_primary_10_1097_JBR_0000000000000015 crossref_primary_10_1371_journal_ppat_1000842 crossref_primary_10_1164_rccm_201708_1755OC crossref_primary_10_1128_mBio_01037_20 crossref_primary_10_1186_1743_422X_10_361 crossref_primary_10_1371_journal_pone_0074414 crossref_primary_10_1007_s00018_012_1239_3 crossref_primary_10_1016_j_jbc_2021_100618 crossref_primary_10_1016_j_imbio_2013_07_004 crossref_primary_10_1111_j_1365_2249_2011_04379_x crossref_primary_10_4049_jimmunol_1800847 crossref_primary_10_1371_journal_pone_0041153 crossref_primary_10_1002_JLB_5VMR0122_046RRR crossref_primary_10_1007_s10571_018_0603_8 crossref_primary_10_1016_j_nbd_2009_12_015 crossref_primary_10_1111_jcmm_17046 crossref_primary_10_1016_j_addr_2009_11_019 crossref_primary_10_1097_QAD_0000000000002537 crossref_primary_10_1128_JVI_01495_12 crossref_primary_10_1007_s11904_011_0100_x crossref_primary_10_1186_1742_4690_7_32 crossref_primary_10_1038_cti_2015_31 crossref_primary_10_1074_jbc_M111_274639 crossref_primary_10_3390_v6041837 crossref_primary_10_1128_MMBR_00080_19 crossref_primary_10_1097_QAD_0b013e328339e228 crossref_primary_10_1371_journal_pone_0019681 |
Cites_doi | 10.1073/pnas.86.2.675 10.1074/jbc.271.29.17161 10.1074/jbc.M007369200 10.1128/JVI.79.7.4479-4491.2005 10.1038/sj.cdd.4402006 10.1084/jem.187.5.711 10.1074/jbc.M403875200 10.1074/jbc.275.15.11418 10.1128/JVI.77.21.11708-11717.2003 10.1182/blood.V96.9.2951.h8002951_2951_2964 10.1089/aid.1991.7.381 10.1159/000100565 10.1038/nm1511 10.1128/JVI.72.6.4962-4969.1998 10.4049/jimmunol.166.9.5381 10.1126/science.270.5243.1811 10.1128/jvi.70.2.697-704.1996 10.1073/pnas.142287999 10.1084/jem.175.2.331 10.1172/JCI11109 10.1073/pnas.98.2.658 10.1089/aid.2004.20.1210 10.1016/S0960-894X(01)00654-0 10.1182/blood-2005-12-4818 10.1023/A:1014467112463 10.1371/journal.ppat.0030134 10.1093/emboj/18.5.1223 10.1097/QAD.0b013e3282f4196c 10.1007/s10495-006-5879-3 10.1097/QAI.0b013e3180dc9909 10.1128/JVI.73.12.9741-9755.1999 10.1038/373123a0 10.1086/314660 10.1006/taap.1999.8907 10.1038/nm1303 10.1002/jlb.65.5.552 10.1080/15287390600631144 10.1128/JVI.00324-06 10.1182/blood-2005-12-012815 10.1016/j.bbrc.2004.06.039 10.1189/jlb.0306157 10.1182/blood.V90.2.896 10.1016/j.yexcr.2005.12.003 10.1182/blood.V68.1.281.bloodjournal681281 10.1128/JVI.78.21.11477-11486.2004 10.1084/jem.20021726 10.1128/JVI.78.3.1160-1168.2004 10.1016/j.virol.2004.08.030 10.1073/pnas.1530509100 10.1093/infdis/169.2.420 10.1182/blood-2004-08-3058 10.1128/jvi.66.3.1354-1360.1992 10.1126/science.3014648 10.1126/science.276.5320.1857 10.1128/JVI.75.21.10073-10089.2001 10.1084/jem.194.9.1277 10.1086/517402 10.1038/sj.onc.1200897 10.1038/nm1319 10.1016/j.jneuroim.2004.08.039 10.1016/j.bbamcr.2004.10.011 10.1086/591624 10.1097/01.aids.0000183125.93958.26 10.1097/QAD.0b013e3280117204 10.1084/jem.194.12.1731 10.1086/524847 10.1101/gad.10.15.1945 10.1189/jlb.0503204 10.1016/j.freeradbiomed.2004.03.020 10.1006/viro.1999.0151 10.1086/514192 10.1016/S0165-5728(00)00424-0 10.1016/j.febslet.2006.01.036 10.1007/BF02256024 10.1136/jcp.45.7.638 10.1016/j.taap.2005.07.018 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.4049/jimmunol.0801450 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1550-6606 |
EndPage | 4470 |
ExternalDocumentID | PMC2776064 19299747 10_4049_jimmunol_0801450 www182_7_4459 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P30 CA010815 – fundername: NIAID NIH HHS grantid: AI047760 – fundername: NIAID NIH HHS grantid: P30 AI045008 – fundername: NCRR NIH HHS grantid: S10 RR024693 – fundername: NIAID NIH HHS grantid: R01 AI047760 |
GroupedDBID | - 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS 79B 85S 8RP AALRV AARDX ABEFU ABFLS ABOCM ABPPZ ABPTK ACGFS ACIWK ACNCT ACPRK ADACO ADBBV ADKFC AENEX AETEA AFFNX AFRAH AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL D0L DIK DU5 E3Z EBS EJD F5P FH7 FRP GX1 H13 IH2 K-O K78 KQ8 L7B MVM O0- OK1 P0W P2P PQEST PQQKQ R.V RHF RHI RZQ SJN TWZ WH7 WOQ X X7M XJT ZA5 ZE2 ZGI --- -~X .55 0R~ 18M 5WD AAYXX ABCQX ABDFA ABEJV ABGNP ABJNI ABXVV ACGFO ADIPN ADNWM AFHIN AFOSN AGORE AHMMS AHWXS AIZAD ARBBW BCRHZ BTFSW CITATION OCZFY OWPYF ROX TR2 W8F XSW XTH YHG CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c426t-c234f3a9d8f8ef26d810508b62a4bd1b014068d7ec407272f88cdfcc191516723 |
ISSN | 0022-1767 1550-6606 |
IngestDate | Thu Aug 21 18:02:07 EDT 2025 Fri Jul 11 16:01:34 EDT 2025 Mon Jul 21 05:29:10 EDT 2025 Tue Jul 01 04:32:47 EDT 2025 Thu Apr 24 22:53:34 EDT 2025 Tue Nov 10 19:22:57 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c426t-c234f3a9d8f8ef26d810508b62a4bd1b014068d7ec407272f88cdfcc191516723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://journals.aai.org/jimmunol/article-pdf/182/7/4459/1278684/zim00709004459.pdf |
PMID | 19299747 |
PQID | 67051036 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2776064 proquest_miscellaneous_67051036 pubmed_primary_19299747 crossref_primary_10_4049_jimmunol_0801450 crossref_citationtrail_10_4049_jimmunol_0801450 highwire_smallpub1_www182_7_4459 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20090401 2009-04-01 2009-Apr-01 |
PublicationDateYYYYMMDD | 2009-04-01 |
PublicationDate_xml | – month: 04 year: 2009 text: 20090401 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | The Journal of immunology (1950) |
PublicationTitleAlternate | J Immunol |
PublicationYear | 2009 |
Publisher | Am Assoc Immnol |
Publisher_xml | – name: Am Assoc Immnol |
References | 2023010201264362100_R42 2023010201264362100_R43 2023010201264362100_R44 2023010201264362100_R45 2023010201264362100_R1 2023010201264362100_R46 2023010201264362100_R47 2023010201264362100_R48 2023010201264362100_R49 2023010201264362100_R5 2023010201264362100_R4 2023010201264362100_R3 2023010201264362100_R2 2023010201264362100_R9 2023010201264362100_R8 2023010201264362100_R50 2023010201264362100_R7 2023010201264362100_R51 2023010201264362100_R6 2023010201264362100_R52 2023010201264362100_R17 2023010201264362100_R18 2023010201264362100_R19 2023010201264362100_R53 2023010201264362100_R10 2023010201264362100_R54 2023010201264362100_R11 2023010201264362100_R55 2023010201264362100_R12 2023010201264362100_R56 2023010201264362100_R13 2023010201264362100_R57 2023010201264362100_R14 2023010201264362100_R58 2023010201264362100_R15 2023010201264362100_R59 2023010201264362100_R16 2023010201264362100_R60 2023010201264362100_R61 2023010201264362100_R62 2023010201264362100_R63 2023010201264362100_R28 2023010201264362100_R29 2023010201264362100_R20 2023010201264362100_R64 2023010201264362100_R21 2023010201264362100_R65 2023010201264362100_R22 2023010201264362100_R66 2023010201264362100_R23 2023010201264362100_R67 2023010201264362100_R24 2023010201264362100_R68 2023010201264362100_R25 2023010201264362100_R69 2023010201264362100_R26 2023010201264362100_R27 2023010201264362100_R70 2023010201264362100_R71 2023010201264362100_R72 2023010201264362100_R73 2023010201264362100_R30 2023010201264362100_R74 2023010201264362100_R39 2023010201264362100_R31 2023010201264362100_R75 2023010201264362100_R32 2023010201264362100_R76 2023010201264362100_R33 2023010201264362100_R77 2023010201264362100_R34 2023010201264362100_R35 2023010201264362100_R36 2023010201264362100_R37 2023010201264362100_R38 2023010201264362100_R40 2023010201264362100_R41 |
References_xml | – ident: 2023010201264362100_R8 doi: 10.1073/pnas.86.2.675 – ident: 2023010201264362100_R36 doi: 10.1074/jbc.271.29.17161 – ident: 2023010201264362100_R29 doi: 10.1074/jbc.M007369200 – ident: 2023010201264362100_R39 doi: 10.1128/JVI.79.7.4479-4491.2005 – ident: 2023010201264362100_R47 doi: 10.1038/sj.cdd.4402006 – ident: 2023010201264362100_R54 doi: 10.1084/jem.187.5.711 – ident: 2023010201264362100_R42 doi: 10.1074/jbc.M403875200 – ident: 2023010201264362100_R33 doi: 10.1074/jbc.275.15.11418 – ident: 2023010201264362100_R5 doi: 10.1128/JVI.77.21.11708-11717.2003 – ident: 2023010201264362100_R7 doi: 10.1182/blood.V96.9.2951.h8002951_2951_2964 – ident: 2023010201264362100_R56 doi: 10.1089/aid.1991.7.381 – ident: 2023010201264362100_R13 doi: 10.1159/000100565 – ident: 2023010201264362100_R22 doi: 10.1038/nm1511 – ident: 2023010201264362100_R50 doi: 10.1128/JVI.72.6.4962-4969.1998 – ident: 2023010201264362100_R65 doi: 10.4049/jimmunol.166.9.5381 – ident: 2023010201264362100_R61 doi: 10.1126/science.270.5243.1811 – ident: 2023010201264362100_R41 doi: 10.1128/jvi.70.2.697-704.1996 – ident: 2023010201264362100_R37 doi: 10.1073/pnas.142287999 – ident: 2023010201264362100_R43 doi: 10.1084/jem.175.2.331 – ident: 2023010201264362100_R55 doi: 10.1172/JCI11109 – ident: 2023010201264362100_R74 doi: 10.1073/pnas.98.2.658 – ident: 2023010201264362100_R77 doi: 10.1089/aid.2004.20.1210 – ident: 2023010201264362100_R19 – ident: 2023010201264362100_R23 doi: 10.1016/S0960-894X(01)00654-0 – ident: 2023010201264362100_R59 doi: 10.1182/blood-2005-12-4818 – ident: 2023010201264362100_R31 doi: 10.1023/A:1014467112463 – ident: 2023010201264362100_R51 doi: 10.1371/journal.ppat.0030134 – ident: 2023010201264362100_R66 doi: 10.1093/emboj/18.5.1223 – ident: 2023010201264362100_R73 doi: 10.1097/QAD.0b013e3282f4196c – ident: 2023010201264362100_R35 doi: 10.1007/s10495-006-5879-3 – ident: 2023010201264362100_R45 doi: 10.1097/QAI.0b013e3180dc9909 – ident: 2023010201264362100_R75 doi: 10.1128/JVI.73.12.9741-9755.1999 – ident: 2023010201264362100_R6 doi: 10.1038/373123a0 – ident: 2023010201264362100_R52 doi: 10.1086/314660 – ident: 2023010201264362100_R32 doi: 10.1006/taap.1999.8907 – ident: 2023010201264362100_R48 doi: 10.1038/nm1303 – ident: 2023010201264362100_R62 doi: 10.1002/jlb.65.5.552 – ident: 2023010201264362100_R27 doi: 10.1080/15287390600631144 – ident: 2023010201264362100_R21 doi: 10.1128/JVI.00324-06 – ident: 2023010201264362100_R24 doi: 10.1182/blood-2005-12-012815 – ident: 2023010201264362100_R49 doi: 10.1016/j.bbrc.2004.06.039 – ident: 2023010201264362100_R16 doi: 10.1189/jlb.0306157 – ident: 2023010201264362100_R44 doi: 10.1182/blood.V90.2.896 – ident: 2023010201264362100_R14 doi: 10.1016/j.yexcr.2005.12.003 – ident: 2023010201264362100_R11 doi: 10.1182/blood.V68.1.281.bloodjournal681281 – ident: 2023010201264362100_R38 doi: 10.1128/JVI.78.21.11477-11486.2004 – ident: 2023010201264362100_R25 doi: 10.1084/jem.20021726 – ident: 2023010201264362100_R4 doi: 10.1128/JVI.78.3.1160-1168.2004 – ident: 2023010201264362100_R12 doi: 10.1016/j.virol.2004.08.030 – ident: 2023010201264362100_R26 doi: 10.1073/pnas.1530509100 – ident: 2023010201264362100_R57 doi: 10.1093/infdis/169.2.420 – ident: 2023010201264362100_R58 doi: 10.1182/blood-2004-08-3058 – ident: 2023010201264362100_R71 doi: 10.1128/jvi.66.3.1354-1360.1992 – ident: 2023010201264362100_R1 doi: 10.1126/science.3014648 – ident: 2023010201264362100_R3 doi: 10.1126/science.276.5320.1857 – ident: 2023010201264362100_R70 doi: 10.1128/JVI.75.21.10073-10089.2001 – ident: 2023010201264362100_R10 doi: 10.1084/jem.194.9.1277 – ident: 2023010201264362100_R60 doi: 10.1086/517402 – ident: 2023010201264362100_R67 doi: 10.1038/sj.onc.1200897 – ident: 2023010201264362100_R76 doi: 10.1038/nm1319 – ident: 2023010201264362100_R18 doi: 10.1016/j.jneuroim.2004.08.039 – ident: 2023010201264362100_R28 doi: 10.1016/j.bbamcr.2004.10.011 – ident: 2023010201264362100_R72 doi: 10.1086/591624 – ident: 2023010201264362100_R2 doi: 10.1097/01.aids.0000183125.93958.26 – ident: 2023010201264362100_R63 doi: 10.1097/QAD.0b013e3280117204 – ident: 2023010201264362100_R9 doi: 10.1084/jem.194.12.1731 – ident: 2023010201264362100_R20 doi: 10.1086/524847 – ident: 2023010201264362100_R68 doi: 10.1101/gad.10.15.1945 – ident: 2023010201264362100_R17 doi: 10.1189/jlb.0503204 – ident: 2023010201264362100_R34 doi: 10.1016/j.freeradbiomed.2004.03.020 – ident: 2023010201264362100_R53 doi: 10.1006/viro.1999.0151 – ident: 2023010201264362100_R64 doi: 10.1086/514192 – ident: 2023010201264362100_R46 doi: 10.1016/S0165-5728(00)00424-0 – ident: 2023010201264362100_R69 doi: 10.1016/j.febslet.2006.01.036 – ident: 2023010201264362100_R15 doi: 10.1007/BF02256024 – ident: 2023010201264362100_R40 doi: 10.1136/jcp.45.7.638 – ident: 2023010201264362100_R30 doi: 10.1016/j.taap.2005.07.018 |
SSID | ssj0006024 |
Score | 2.2410438 |
Snippet | Mechanisms that may allow circulating monocytes to persist as CD4 T cells diminish in HIV-1 infection have not been investigated. We have characterized... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4459 |
SubjectTerms | Adult Apoptosis - genetics Caspase 3 - metabolism CD4-Positive T-Lymphocytes - immunology CD4-Positive T-Lymphocytes - pathology CD4-Positive T-Lymphocytes - virology CD40 Ligand - genetics Cluster Analysis Extracellular Signal-Regulated MAP Kinases - genetics Female Gene Expression Profiling HIV Infections - genetics HIV Infections - immunology HIV Infections - pathology HIV-1 - immunology Humans Male Middle Aged Monocytes - immunology Monocytes - pathology Monocytes - virology Oligonucleotide Array Sequence Analysis Receptors, CCR5 - immunology Reverse Transcriptase Polymerase Chain Reaction Signal Transduction - genetics Tumor Necrosis Factor-alpha - genetics Tumor Suppressor Protein p53 - genetics Viremia - genetics Viremia - immunology |
Title | Circulating Monocytes in HIV-1-Infected Viremic Subjects Exhibit an Antiapoptosis Gene Signature and Virus- and Host-Mediated Apoptosis Resistance |
URI | http://www.jimmunol.org/cgi/content/abstract/182/7/4459 https://www.ncbi.nlm.nih.gov/pubmed/19299747 https://www.proquest.com/docview/67051036 https://pubmed.ncbi.nlm.nih.gov/PMC2776064 |
Volume | 182 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIhAXBOUVnnuAA4qcOo7jdY6lKkmQ0gO0VW7Wer1uXBI7qh2i9Gfwazkys-tnqHhdLMv22pvMt_PYnf2GkLc-WMVAsp7BmWsa9lBIgzvSN1gYhP1haHLp497h6YkzPrM_zQazVutHLWtpnfldcX3jvpL_kSpcA7niLtl_kGz5UrgA5yBfOIKE4fhXMj6KroQqvwXhPgzORGwzlV_VGU_OIWibqEQr8CjPQa9hDjxoiUuVvXGMZbEjTC5H9oCIr5JVliA1CbJQd75EF5rvU60sQON1aqjTcZJmxlQV94C3HpatPssU3dACP5cVAmv-boQ7UTTj0zu1rmbWZiFGkd7xPuUL_i36yqsZ2RNQiNfb-S85_mptartManmZpYUZSXB7dc34DzKbp4CEeWN6Y1jLitE7CjROO5PlMk4WdVUOUXSP6VoeXZlr7wHEwo7pNNW7VcMxqylr29Zk5LtWxIaoCa1I_r90TWTY0fS4NVCtlgpV4CEPMSar7GmRQ7BjZsvkx81mA33ymIffv0VuWxDgoEkZzarkJMe07ILnHn-kXmDHjh3sdkvR3uo-NH2rgu_6pthpNwW45lOdPiD3c3DQQ43sh6Ql431yR5dH3e6Tu9M88eMR-V6DOi2hTqOYNqFOc6jTAuo0hzrlMW1AnSLUaQl1uK8aA9TVaQPqtIQ6raD-mJx9PD49Ght5ORFDgBuaGcLq22GfDwM3dGVoOYELsYXp-o7FbT_o-TjX4LgBkwJJA5kVuq4IQiF6Q_CKHWb1n5C9OInlM0L9QPihC55_ACLxB5KHAmmvwkHIpLTFoE0OCkF4Iufax5IvCw9ibpSiV0jRy6XYJu_LFivNM_ObZ2khWy9d8sUCRNnzGrBqkzeFzD2wF7gIyGOZrFPPYYpE02mTpxoB1edyFLUJa2CjfACZ6Jt34miuGOkBwjDq7Od_7tgLcq8a5S_JXna1lq_Arc_812oE_ATVbf-g |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circulating+Monocytes+in+HIV-1-Infected+Viremic+Subjects+Exhibit+an+Antiapoptosis+Gene+Signature+and+Virus-+and+Host-Mediated+Apoptosis+Resistance&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Giri%2C+Malavika+S&rft.au=Nebozyhn%2C+Michael&rft.au=Raymond%2C+Andrea&rft.au=Gekonge%2C+Bethsebah&rft.date=2009-04-01&rft.pub=Am+Assoc+Immnol&rft.issn=0022-1767&rft.eissn=1550-6606&rft.volume=182&rft.issue=7&rft.spage=4459&rft_id=info:doi/10.4049%2Fjimmunol.0801450&rft_id=info%3Apmid%2F19299747&rft.externalDBID=n%2Fa&rft.externalDocID=www182_7_4459 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon |