Circulating Monocytes in HIV-1-Infected Viremic Subjects Exhibit an Antiapoptosis Gene Signature and Virus- and Host-Mediated Apoptosis Resistance

Mechanisms that may allow circulating monocytes to persist as CD4 T cells diminish in HIV-1 infection have not been investigated. We have characterized steady-state gene expression signatures in circulating monocytes from HIV-infected subjects and have identified a stable antiapoptosis gene signatur...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 182; no. 7; pp. 4459 - 4470
Main Authors Giri, Malavika S, Nebozyhn, Michael, Raymond, Andrea, Gekonge, Bethsebah, Hancock, Aidan, Creer, Shenoa, Nicols, Calen, Yousef, Malik, Foulkes, Andrea S, Mounzer, Karam, Shull, Jane, Silvestri, Guido, Kostman, Jay, Collman, Ronald G, Showe, Louise, Montaner, Luis J
Format Journal Article
LanguageEnglish
Published England Am Assoc Immnol 01.04.2009
Subjects
Online AccessGet full text
ISSN0022-1767
1550-6606
1550-6606
DOI10.4049/jimmunol.0801450

Cover

Loading…
Abstract Mechanisms that may allow circulating monocytes to persist as CD4 T cells diminish in HIV-1 infection have not been investigated. We have characterized steady-state gene expression signatures in circulating monocytes from HIV-infected subjects and have identified a stable antiapoptosis gene signature comprised of 38 genes associated with p53, CD40L, TNF, and MAPK signaling networks. The significance of this gene signature is indicated by our demonstration of cadmium chloride- or Fas ligand-induced apoptosis resistance in circulating monocytes in contrast to increasing apoptosis in CD4 T cells from the same infected subjects. As potential mechanisms in vivo, we show that monocyte CCR5 binding by HIV-1 virus or agonist chemokines serves as independent viral and host modulators resulting in increased monocyte apoptosis resistance in vitro. We also show evidence for concordance between circulating monocyte apoptosis-related gene expression in HIV-1 infection in vivo and available datasets following viral infection or envelope exposure in monocyte-derived macrophages in vitro. The identification of in vivo gene expression associated with monocyte resistance to apoptosis is of relevance to AIDS pathogenesis since it would contribute to: 1) maintaining viability of infection targets and long-term reservoirs of HIV-1 infection in the monocyte/macrophage populations, and 2) protecting a cell subset critical to host survival despite sustained high viral replication.
AbstractList Mechanisms that may allow circulating monocytes to persist as CD4 T cells diminish in HIV-1 infection have not been investigated. We have characterized steady-state gene expression signatures in circulating monocytes from HIV-infected subjects and have identified a stable antiapoptosis gene signature comprised of 38 genes associated with p53, CD40L, TNF, and MAPK signaling networks. The significance of this gene signature is indicated by our demonstration of cadmium chloride- or Fas ligand-induced apoptosis resistance in circulating monocytes in contrast to increasing apoptosis in CD4 T cells from the same infected subjects. As potential mechanisms in vivo, we show that monocyte CCR5 binding by HIV-1 virus or agonist chemokines serves as independent viral and host modulators resulting in increased monocyte apoptosis resistance in vitro. We also show evidence for concordance between circulating monocyte apoptosis-related gene expression in HIV-1 infection in vivo and available datasets following viral infection or envelope exposure in monocyte-derived macrophages in vitro. The identification of in vivo gene expression associated with monocyte resistance to apoptosis is of relevance to AIDS pathogenesis since it would contribute to: 1) maintaining viability of infection targets and long-term reservoirs of HIV-1 infection in the monocyte/macrophage populations, and 2) protecting a cell subset critical to host survival despite sustained high viral replication.Mechanisms that may allow circulating monocytes to persist as CD4 T cells diminish in HIV-1 infection have not been investigated. We have characterized steady-state gene expression signatures in circulating monocytes from HIV-infected subjects and have identified a stable antiapoptosis gene signature comprised of 38 genes associated with p53, CD40L, TNF, and MAPK signaling networks. The significance of this gene signature is indicated by our demonstration of cadmium chloride- or Fas ligand-induced apoptosis resistance in circulating monocytes in contrast to increasing apoptosis in CD4 T cells from the same infected subjects. As potential mechanisms in vivo, we show that monocyte CCR5 binding by HIV-1 virus or agonist chemokines serves as independent viral and host modulators resulting in increased monocyte apoptosis resistance in vitro. We also show evidence for concordance between circulating monocyte apoptosis-related gene expression in HIV-1 infection in vivo and available datasets following viral infection or envelope exposure in monocyte-derived macrophages in vitro. The identification of in vivo gene expression associated with monocyte resistance to apoptosis is of relevance to AIDS pathogenesis since it would contribute to: 1) maintaining viability of infection targets and long-term reservoirs of HIV-1 infection in the monocyte/macrophage populations, and 2) protecting a cell subset critical to host survival despite sustained high viral replication.
Mechanisms that may allow circulating monocytes to persist as CD4 T cells diminish in HIV-1 infection have not been investigated. We have characterized steady-state gene expression signatures in circulating monocytes from HIV-infected subjects and have identified a stable antiapoptosis gene signature comprised of 38 genes associated with p53, CD40L, TNF, and MAPK signaling networks. The significance of this gene signature is indicated by our demonstration of cadmium chloride- or Fas ligand-induced apoptosis resistance in circulating monocytes in contrast to increasing apoptosis in CD4 T cells from the same infected subjects. As potential mechanisms in vivo, we show that monocyte CCR5 binding by HIV-1 virus or agonist chemokines serves as independent viral and host modulators resulting in increased monocyte apoptosis resistance in vitro. We also show evidence for concordance between circulating monocyte apoptosis-related gene expression in HIV-1 infection in vivo and available datasets following viral infection or envelope exposure in monocyte-derived macrophages in vitro. The identification of in vivo gene expression associated with monocyte resistance to apoptosis is of relevance to AIDS pathogenesis since it would contribute to: 1) maintaining viability of infection targets and long-term reservoirs of HIV-1 infection in the monocyte/macrophage populations, and 2) protecting a cell subset critical to host survival despite sustained high viral replication.
Author Nebozyhn, Michael
Collman, Ronald G
Hancock, Aidan
Silvestri, Guido
Montaner, Luis J
Raymond, Andrea
Gekonge, Bethsebah
Mounzer, Karam
Showe, Louise
Foulkes, Andrea S
Nicols, Calen
Yousef, Malik
Giri, Malavika S
Kostman, Jay
Creer, Shenoa
Shull, Jane
AuthorAffiliation Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, PA 19104
Department of Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104
School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003
Hospital of the University of Pennsylvania, Philadelphia, PA 19104
The Wistar Institute, Philadelphia, PA 19104
AuthorAffiliation_xml – name: The Wistar Institute, Philadelphia, PA 19104
– name: Department of Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104
– name: Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, PA 19104
– name: School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003
– name: Hospital of the University of Pennsylvania, Philadelphia, PA 19104
Author_xml – sequence: 1
  fullname: Giri, Malavika S
– sequence: 2
  fullname: Nebozyhn, Michael
– sequence: 3
  fullname: Raymond, Andrea
– sequence: 4
  fullname: Gekonge, Bethsebah
– sequence: 5
  fullname: Hancock, Aidan
– sequence: 6
  fullname: Creer, Shenoa
– sequence: 7
  fullname: Nicols, Calen
– sequence: 8
  fullname: Yousef, Malik
– sequence: 9
  fullname: Foulkes, Andrea S
– sequence: 10
  fullname: Mounzer, Karam
– sequence: 11
  fullname: Shull, Jane
– sequence: 12
  fullname: Silvestri, Guido
– sequence: 13
  fullname: Kostman, Jay
– sequence: 14
  fullname: Collman, Ronald G
– sequence: 15
  fullname: Showe, Louise
– sequence: 16
  fullname: Montaner, Luis J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19299747$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vEzEQxS1URNPCnRPaE5y2jB2vvXtBiqLSRGqFRKFXy-udTRzt2mHtJfRr8IlxmrT8OXCxLc97b0bzOyMnzjsk5DWFCw68er-xfT86311ACZQX8IxMaFFALgSIEzIBYCynUshTchbCBgAEMP6CnNKKVZXkckJ-zu1gxk5H61bZjXfe3EcMmXXZYnmX03zpWjQRm-zODthbk92O9Sb9hOzyx9rWNmbaZTMXrd76bfTBhuwKHWa3duV0HAdM9QfzGPKH58KHmN9gY_U-dfbk-ozpjNoZfEmet7oL-Op4n5OvHy-_zBf59aer5Xx2nRvORMwNm_J2qqumbEtsmWhKCgWUtWCa1w2t00JAlI1Ew0EyydqyNE1rDK1oQYVk03Py4ZC7HeseG4MuDrpT28H2erhXXlv1d8XZtVr574pJmfbLU8DbY8Dgv40YouptMNh12qEfgxISCgpTkYRv_uz01OIRQxLAQWAGH8KA7W8JqD1p9UhaHUkni_jHYmxMGP1-Vtv9z_juYFzb1XqXqKrQ665Lo1G12-1oyZRUnBfV9BdRSMC9
CitedBy_id crossref_primary_10_3389_fmicb_2019_02828
crossref_primary_10_1182_blood_2012_03_418681
crossref_primary_10_1089_aid_2018_0118
crossref_primary_10_1007_s12026_012_8297_3
crossref_primary_10_1189_jlb_0410231
crossref_primary_10_1373_clinchem_2012_197335
crossref_primary_10_1186_1742_4690_9_85
crossref_primary_10_1189_jlb_5A0714_347R
crossref_primary_10_1128_JVI_02382_14
crossref_primary_10_1189_jlb_1111552
crossref_primary_10_1371_journal_ppat_1000781
crossref_primary_10_1371_journal_ppat_1001033
crossref_primary_10_2217_fvl_10_93
crossref_primary_10_1002_JLB_4A0217_047R
crossref_primary_10_1097_COH_0000000000000910
crossref_primary_10_1371_journal_ppat_1002087
crossref_primary_10_1007_s11481_010_9253_4
crossref_primary_10_1038_s41467_018_05746_9
crossref_primary_10_1089_vim_2011_0057
crossref_primary_10_3390_tropicalmed10020045
crossref_primary_10_1016_j_apsb_2014_06_006
crossref_primary_10_2119_molmed_2012_00194
crossref_primary_10_1128_JVI_00252_11
crossref_primary_10_1038_cddis_2010_69
crossref_primary_10_1189_jlb_5AB0915_406R
crossref_primary_10_1016_j_jocit_2016_03_002
crossref_primary_10_1189_jlb_0409264
crossref_primary_10_1186_1742_4690_7_53
crossref_primary_10_1016_j_cyto_2016_04_007
crossref_primary_10_1371_journal_pone_0057343
crossref_primary_10_1016_j_ygeno_2018_02_007
crossref_primary_10_1186_1479_5876_9_S1_S8
crossref_primary_10_1016_j_virol_2012_10_026
crossref_primary_10_1128_JVI_02048_16
crossref_primary_10_3389_fcimb_2022_808098
crossref_primary_10_3390_v9060129
crossref_primary_10_1128_spectrum_02508_22
crossref_primary_10_1097_COH_0b013e32835ccae1
crossref_primary_10_1097_COH_0b013e32835fe6d2
crossref_primary_10_1097_JBR_0000000000000015
crossref_primary_10_1371_journal_ppat_1000842
crossref_primary_10_1164_rccm_201708_1755OC
crossref_primary_10_1128_mBio_01037_20
crossref_primary_10_1186_1743_422X_10_361
crossref_primary_10_1371_journal_pone_0074414
crossref_primary_10_1007_s00018_012_1239_3
crossref_primary_10_1016_j_jbc_2021_100618
crossref_primary_10_1016_j_imbio_2013_07_004
crossref_primary_10_1111_j_1365_2249_2011_04379_x
crossref_primary_10_4049_jimmunol_1800847
crossref_primary_10_1371_journal_pone_0041153
crossref_primary_10_1002_JLB_5VMR0122_046RRR
crossref_primary_10_1007_s10571_018_0603_8
crossref_primary_10_1016_j_nbd_2009_12_015
crossref_primary_10_1111_jcmm_17046
crossref_primary_10_1016_j_addr_2009_11_019
crossref_primary_10_1097_QAD_0000000000002537
crossref_primary_10_1128_JVI_01495_12
crossref_primary_10_1007_s11904_011_0100_x
crossref_primary_10_1186_1742_4690_7_32
crossref_primary_10_1038_cti_2015_31
crossref_primary_10_1074_jbc_M111_274639
crossref_primary_10_3390_v6041837
crossref_primary_10_1128_MMBR_00080_19
crossref_primary_10_1097_QAD_0b013e328339e228
crossref_primary_10_1371_journal_pone_0019681
Cites_doi 10.1073/pnas.86.2.675
10.1074/jbc.271.29.17161
10.1074/jbc.M007369200
10.1128/JVI.79.7.4479-4491.2005
10.1038/sj.cdd.4402006
10.1084/jem.187.5.711
10.1074/jbc.M403875200
10.1074/jbc.275.15.11418
10.1128/JVI.77.21.11708-11717.2003
10.1182/blood.V96.9.2951.h8002951_2951_2964
10.1089/aid.1991.7.381
10.1159/000100565
10.1038/nm1511
10.1128/JVI.72.6.4962-4969.1998
10.4049/jimmunol.166.9.5381
10.1126/science.270.5243.1811
10.1128/jvi.70.2.697-704.1996
10.1073/pnas.142287999
10.1084/jem.175.2.331
10.1172/JCI11109
10.1073/pnas.98.2.658
10.1089/aid.2004.20.1210
10.1016/S0960-894X(01)00654-0
10.1182/blood-2005-12-4818
10.1023/A:1014467112463
10.1371/journal.ppat.0030134
10.1093/emboj/18.5.1223
10.1097/QAD.0b013e3282f4196c
10.1007/s10495-006-5879-3
10.1097/QAI.0b013e3180dc9909
10.1128/JVI.73.12.9741-9755.1999
10.1038/373123a0
10.1086/314660
10.1006/taap.1999.8907
10.1038/nm1303
10.1002/jlb.65.5.552
10.1080/15287390600631144
10.1128/JVI.00324-06
10.1182/blood-2005-12-012815
10.1016/j.bbrc.2004.06.039
10.1189/jlb.0306157
10.1182/blood.V90.2.896
10.1016/j.yexcr.2005.12.003
10.1182/blood.V68.1.281.bloodjournal681281
10.1128/JVI.78.21.11477-11486.2004
10.1084/jem.20021726
10.1128/JVI.78.3.1160-1168.2004
10.1016/j.virol.2004.08.030
10.1073/pnas.1530509100
10.1093/infdis/169.2.420
10.1182/blood-2004-08-3058
10.1128/jvi.66.3.1354-1360.1992
10.1126/science.3014648
10.1126/science.276.5320.1857
10.1128/JVI.75.21.10073-10089.2001
10.1084/jem.194.9.1277
10.1086/517402
10.1038/sj.onc.1200897
10.1038/nm1319
10.1016/j.jneuroim.2004.08.039
10.1016/j.bbamcr.2004.10.011
10.1086/591624
10.1097/01.aids.0000183125.93958.26
10.1097/QAD.0b013e3280117204
10.1084/jem.194.12.1731
10.1086/524847
10.1101/gad.10.15.1945
10.1189/jlb.0503204
10.1016/j.freeradbiomed.2004.03.020
10.1006/viro.1999.0151
10.1086/514192
10.1016/S0165-5728(00)00424-0
10.1016/j.febslet.2006.01.036
10.1007/BF02256024
10.1136/jcp.45.7.638
10.1016/j.taap.2005.07.018
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.4049/jimmunol.0801450
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1550-6606
EndPage 4470
ExternalDocumentID PMC2776064
19299747
10_4049_jimmunol_0801450
www182_7_4459
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA010815
– fundername: NIAID NIH HHS
  grantid: AI047760
– fundername: NIAID NIH HHS
  grantid: P30 AI045008
– fundername: NCRR NIH HHS
  grantid: S10 RR024693
– fundername: NIAID NIH HHS
  grantid: R01 AI047760
GroupedDBID -
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
79B
85S
8RP
AALRV
AARDX
ABEFU
ABFLS
ABOCM
ABPPZ
ABPTK
ACGFS
ACIWK
ACNCT
ACPRK
ADACO
ADBBV
ADKFC
AENEX
AETEA
AFFNX
AFRAH
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FH7
FRP
GX1
H13
IH2
K-O
K78
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
PQEST
PQQKQ
R.V
RHF
RHI
RZQ
SJN
TWZ
WH7
WOQ
X
X7M
XJT
ZA5
ZE2
ZGI
---
-~X
.55
0R~
18M
5WD
AAYXX
ABCQX
ABDFA
ABEJV
ABGNP
ABJNI
ABXVV
ACGFO
ADIPN
ADNWM
AFHIN
AFOSN
AGORE
AHMMS
AHWXS
AIZAD
ARBBW
BCRHZ
BTFSW
CITATION
OCZFY
OWPYF
ROX
TR2
W8F
XSW
XTH
YHG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c426t-c234f3a9d8f8ef26d810508b62a4bd1b014068d7ec407272f88cdfcc191516723
ISSN 0022-1767
1550-6606
IngestDate Thu Aug 21 18:02:07 EDT 2025
Fri Jul 11 16:01:34 EDT 2025
Mon Jul 21 05:29:10 EDT 2025
Tue Jul 01 04:32:47 EDT 2025
Thu Apr 24 22:53:34 EDT 2025
Tue Nov 10 19:22:57 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c426t-c234f3a9d8f8ef26d810508b62a4bd1b014068d7ec407272f88cdfcc191516723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://journals.aai.org/jimmunol/article-pdf/182/7/4459/1278684/zim00709004459.pdf
PMID 19299747
PQID 67051036
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2776064
proquest_miscellaneous_67051036
pubmed_primary_19299747
crossref_primary_10_4049_jimmunol_0801450
crossref_citationtrail_10_4049_jimmunol_0801450
highwire_smallpub1_www182_7_4459
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20090401
2009-04-01
2009-Apr-01
PublicationDateYYYYMMDD 2009-04-01
PublicationDate_xml – month: 04
  year: 2009
  text: 20090401
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle The Journal of immunology (1950)
PublicationTitleAlternate J Immunol
PublicationYear 2009
Publisher Am Assoc Immnol
Publisher_xml – name: Am Assoc Immnol
References 2023010201264362100_R42
2023010201264362100_R43
2023010201264362100_R44
2023010201264362100_R45
2023010201264362100_R1
2023010201264362100_R46
2023010201264362100_R47
2023010201264362100_R48
2023010201264362100_R49
2023010201264362100_R5
2023010201264362100_R4
2023010201264362100_R3
2023010201264362100_R2
2023010201264362100_R9
2023010201264362100_R8
2023010201264362100_R50
2023010201264362100_R7
2023010201264362100_R51
2023010201264362100_R6
2023010201264362100_R52
2023010201264362100_R17
2023010201264362100_R18
2023010201264362100_R19
2023010201264362100_R53
2023010201264362100_R10
2023010201264362100_R54
2023010201264362100_R11
2023010201264362100_R55
2023010201264362100_R12
2023010201264362100_R56
2023010201264362100_R13
2023010201264362100_R57
2023010201264362100_R14
2023010201264362100_R58
2023010201264362100_R15
2023010201264362100_R59
2023010201264362100_R16
2023010201264362100_R60
2023010201264362100_R61
2023010201264362100_R62
2023010201264362100_R63
2023010201264362100_R28
2023010201264362100_R29
2023010201264362100_R20
2023010201264362100_R64
2023010201264362100_R21
2023010201264362100_R65
2023010201264362100_R22
2023010201264362100_R66
2023010201264362100_R23
2023010201264362100_R67
2023010201264362100_R24
2023010201264362100_R68
2023010201264362100_R25
2023010201264362100_R69
2023010201264362100_R26
2023010201264362100_R27
2023010201264362100_R70
2023010201264362100_R71
2023010201264362100_R72
2023010201264362100_R73
2023010201264362100_R30
2023010201264362100_R74
2023010201264362100_R39
2023010201264362100_R31
2023010201264362100_R75
2023010201264362100_R32
2023010201264362100_R76
2023010201264362100_R33
2023010201264362100_R77
2023010201264362100_R34
2023010201264362100_R35
2023010201264362100_R36
2023010201264362100_R37
2023010201264362100_R38
2023010201264362100_R40
2023010201264362100_R41
References_xml – ident: 2023010201264362100_R8
  doi: 10.1073/pnas.86.2.675
– ident: 2023010201264362100_R36
  doi: 10.1074/jbc.271.29.17161
– ident: 2023010201264362100_R29
  doi: 10.1074/jbc.M007369200
– ident: 2023010201264362100_R39
  doi: 10.1128/JVI.79.7.4479-4491.2005
– ident: 2023010201264362100_R47
  doi: 10.1038/sj.cdd.4402006
– ident: 2023010201264362100_R54
  doi: 10.1084/jem.187.5.711
– ident: 2023010201264362100_R42
  doi: 10.1074/jbc.M403875200
– ident: 2023010201264362100_R33
  doi: 10.1074/jbc.275.15.11418
– ident: 2023010201264362100_R5
  doi: 10.1128/JVI.77.21.11708-11717.2003
– ident: 2023010201264362100_R7
  doi: 10.1182/blood.V96.9.2951.h8002951_2951_2964
– ident: 2023010201264362100_R56
  doi: 10.1089/aid.1991.7.381
– ident: 2023010201264362100_R13
  doi: 10.1159/000100565
– ident: 2023010201264362100_R22
  doi: 10.1038/nm1511
– ident: 2023010201264362100_R50
  doi: 10.1128/JVI.72.6.4962-4969.1998
– ident: 2023010201264362100_R65
  doi: 10.4049/jimmunol.166.9.5381
– ident: 2023010201264362100_R61
  doi: 10.1126/science.270.5243.1811
– ident: 2023010201264362100_R41
  doi: 10.1128/jvi.70.2.697-704.1996
– ident: 2023010201264362100_R37
  doi: 10.1073/pnas.142287999
– ident: 2023010201264362100_R43
  doi: 10.1084/jem.175.2.331
– ident: 2023010201264362100_R55
  doi: 10.1172/JCI11109
– ident: 2023010201264362100_R74
  doi: 10.1073/pnas.98.2.658
– ident: 2023010201264362100_R77
  doi: 10.1089/aid.2004.20.1210
– ident: 2023010201264362100_R19
– ident: 2023010201264362100_R23
  doi: 10.1016/S0960-894X(01)00654-0
– ident: 2023010201264362100_R59
  doi: 10.1182/blood-2005-12-4818
– ident: 2023010201264362100_R31
  doi: 10.1023/A:1014467112463
– ident: 2023010201264362100_R51
  doi: 10.1371/journal.ppat.0030134
– ident: 2023010201264362100_R66
  doi: 10.1093/emboj/18.5.1223
– ident: 2023010201264362100_R73
  doi: 10.1097/QAD.0b013e3282f4196c
– ident: 2023010201264362100_R35
  doi: 10.1007/s10495-006-5879-3
– ident: 2023010201264362100_R45
  doi: 10.1097/QAI.0b013e3180dc9909
– ident: 2023010201264362100_R75
  doi: 10.1128/JVI.73.12.9741-9755.1999
– ident: 2023010201264362100_R6
  doi: 10.1038/373123a0
– ident: 2023010201264362100_R52
  doi: 10.1086/314660
– ident: 2023010201264362100_R32
  doi: 10.1006/taap.1999.8907
– ident: 2023010201264362100_R48
  doi: 10.1038/nm1303
– ident: 2023010201264362100_R62
  doi: 10.1002/jlb.65.5.552
– ident: 2023010201264362100_R27
  doi: 10.1080/15287390600631144
– ident: 2023010201264362100_R21
  doi: 10.1128/JVI.00324-06
– ident: 2023010201264362100_R24
  doi: 10.1182/blood-2005-12-012815
– ident: 2023010201264362100_R49
  doi: 10.1016/j.bbrc.2004.06.039
– ident: 2023010201264362100_R16
  doi: 10.1189/jlb.0306157
– ident: 2023010201264362100_R44
  doi: 10.1182/blood.V90.2.896
– ident: 2023010201264362100_R14
  doi: 10.1016/j.yexcr.2005.12.003
– ident: 2023010201264362100_R11
  doi: 10.1182/blood.V68.1.281.bloodjournal681281
– ident: 2023010201264362100_R38
  doi: 10.1128/JVI.78.21.11477-11486.2004
– ident: 2023010201264362100_R25
  doi: 10.1084/jem.20021726
– ident: 2023010201264362100_R4
  doi: 10.1128/JVI.78.3.1160-1168.2004
– ident: 2023010201264362100_R12
  doi: 10.1016/j.virol.2004.08.030
– ident: 2023010201264362100_R26
  doi: 10.1073/pnas.1530509100
– ident: 2023010201264362100_R57
  doi: 10.1093/infdis/169.2.420
– ident: 2023010201264362100_R58
  doi: 10.1182/blood-2004-08-3058
– ident: 2023010201264362100_R71
  doi: 10.1128/jvi.66.3.1354-1360.1992
– ident: 2023010201264362100_R1
  doi: 10.1126/science.3014648
– ident: 2023010201264362100_R3
  doi: 10.1126/science.276.5320.1857
– ident: 2023010201264362100_R70
  doi: 10.1128/JVI.75.21.10073-10089.2001
– ident: 2023010201264362100_R10
  doi: 10.1084/jem.194.9.1277
– ident: 2023010201264362100_R60
  doi: 10.1086/517402
– ident: 2023010201264362100_R67
  doi: 10.1038/sj.onc.1200897
– ident: 2023010201264362100_R76
  doi: 10.1038/nm1319
– ident: 2023010201264362100_R18
  doi: 10.1016/j.jneuroim.2004.08.039
– ident: 2023010201264362100_R28
  doi: 10.1016/j.bbamcr.2004.10.011
– ident: 2023010201264362100_R72
  doi: 10.1086/591624
– ident: 2023010201264362100_R2
  doi: 10.1097/01.aids.0000183125.93958.26
– ident: 2023010201264362100_R63
  doi: 10.1097/QAD.0b013e3280117204
– ident: 2023010201264362100_R9
  doi: 10.1084/jem.194.12.1731
– ident: 2023010201264362100_R20
  doi: 10.1086/524847
– ident: 2023010201264362100_R68
  doi: 10.1101/gad.10.15.1945
– ident: 2023010201264362100_R17
  doi: 10.1189/jlb.0503204
– ident: 2023010201264362100_R34
  doi: 10.1016/j.freeradbiomed.2004.03.020
– ident: 2023010201264362100_R53
  doi: 10.1006/viro.1999.0151
– ident: 2023010201264362100_R64
  doi: 10.1086/514192
– ident: 2023010201264362100_R46
  doi: 10.1016/S0165-5728(00)00424-0
– ident: 2023010201264362100_R69
  doi: 10.1016/j.febslet.2006.01.036
– ident: 2023010201264362100_R15
  doi: 10.1007/BF02256024
– ident: 2023010201264362100_R40
  doi: 10.1136/jcp.45.7.638
– ident: 2023010201264362100_R30
  doi: 10.1016/j.taap.2005.07.018
SSID ssj0006024
Score 2.2410438
Snippet Mechanisms that may allow circulating monocytes to persist as CD4 T cells diminish in HIV-1 infection have not been investigated. We have characterized...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4459
SubjectTerms Adult
Apoptosis - genetics
Caspase 3 - metabolism
CD4-Positive T-Lymphocytes - immunology
CD4-Positive T-Lymphocytes - pathology
CD4-Positive T-Lymphocytes - virology
CD40 Ligand - genetics
Cluster Analysis
Extracellular Signal-Regulated MAP Kinases - genetics
Female
Gene Expression Profiling
HIV Infections - genetics
HIV Infections - immunology
HIV Infections - pathology
HIV-1 - immunology
Humans
Male
Middle Aged
Monocytes - immunology
Monocytes - pathology
Monocytes - virology
Oligonucleotide Array Sequence Analysis
Receptors, CCR5 - immunology
Reverse Transcriptase Polymerase Chain Reaction
Signal Transduction - genetics
Tumor Necrosis Factor-alpha - genetics
Tumor Suppressor Protein p53 - genetics
Viremia - genetics
Viremia - immunology
Title Circulating Monocytes in HIV-1-Infected Viremic Subjects Exhibit an Antiapoptosis Gene Signature and Virus- and Host-Mediated Apoptosis Resistance
URI http://www.jimmunol.org/cgi/content/abstract/182/7/4459
https://www.ncbi.nlm.nih.gov/pubmed/19299747
https://www.proquest.com/docview/67051036
https://pubmed.ncbi.nlm.nih.gov/PMC2776064
Volume 182
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIhAXBOUVnnuAA4qcOo7jdY6lKkmQ0gO0VW7Wer1uXBI7qh2i9Gfwazkys-tnqHhdLMv22pvMt_PYnf2GkLc-WMVAsp7BmWsa9lBIgzvSN1gYhP1haHLp497h6YkzPrM_zQazVutHLWtpnfldcX3jvpL_kSpcA7niLtl_kGz5UrgA5yBfOIKE4fhXMj6KroQqvwXhPgzORGwzlV_VGU_OIWibqEQr8CjPQa9hDjxoiUuVvXGMZbEjTC5H9oCIr5JVliA1CbJQd75EF5rvU60sQON1aqjTcZJmxlQV94C3HpatPssU3dACP5cVAmv-boQ7UTTj0zu1rmbWZiFGkd7xPuUL_i36yqsZ2RNQiNfb-S85_mptartManmZpYUZSXB7dc34DzKbp4CEeWN6Y1jLitE7CjROO5PlMk4WdVUOUXSP6VoeXZlr7wHEwo7pNNW7VcMxqylr29Zk5LtWxIaoCa1I_r90TWTY0fS4NVCtlgpV4CEPMSar7GmRQ7BjZsvkx81mA33ymIffv0VuWxDgoEkZzarkJMe07ILnHn-kXmDHjh3sdkvR3uo-NH2rgu_6pthpNwW45lOdPiD3c3DQQ43sh6Ql431yR5dH3e6Tu9M88eMR-V6DOi2hTqOYNqFOc6jTAuo0hzrlMW1AnSLUaQl1uK8aA9TVaQPqtIQ6raD-mJx9PD49Ght5ORFDgBuaGcLq22GfDwM3dGVoOYELsYXp-o7FbT_o-TjX4LgBkwJJA5kVuq4IQiF6Q_CKHWb1n5C9OInlM0L9QPihC55_ACLxB5KHAmmvwkHIpLTFoE0OCkF4Iufax5IvCw9ibpSiV0jRy6XYJu_LFivNM_ObZ2khWy9d8sUCRNnzGrBqkzeFzD2wF7gIyGOZrFPPYYpE02mTpxoB1edyFLUJa2CjfACZ6Jt34miuGOkBwjDq7Od_7tgLcq8a5S_JXna1lq_Arc_812oE_ATVbf-g
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circulating+Monocytes+in+HIV-1-Infected+Viremic+Subjects+Exhibit+an+Antiapoptosis+Gene+Signature+and+Virus-+and+Host-Mediated+Apoptosis+Resistance&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Giri%2C+Malavika+S&rft.au=Nebozyhn%2C+Michael&rft.au=Raymond%2C+Andrea&rft.au=Gekonge%2C+Bethsebah&rft.date=2009-04-01&rft.pub=Am+Assoc+Immnol&rft.issn=0022-1767&rft.eissn=1550-6606&rft.volume=182&rft.issue=7&rft.spage=4459&rft_id=info:doi/10.4049%2Fjimmunol.0801450&rft_id=info%3Apmid%2F19299747&rft.externalDBID=n%2Fa&rft.externalDocID=www182_7_4459
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon