On thermal gravitational contribution to particle production and dark matter
We investigate the particle production from thermal gravitational annihilation in the very early universe, which is an important contribution for particles that might not be in thermal equilibrium or/and might only have gravitational interaction, such as dark matter (DM). For particles with spin 0,1...
Saved in:
Published in | Physics letters. B Vol. 774; no. C; pp. 676 - 681 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
10.11.2017
Elsevier |
Online Access | Get full text |
Cover
Loading…
Abstract | We investigate the particle production from thermal gravitational annihilation in the very early universe, which is an important contribution for particles that might not be in thermal equilibrium or/and might only have gravitational interaction, such as dark matter (DM). For particles with spin 0,1/2 and 1 we calculate the relevant cross sections through gravitational annihilation and give the analytic formulas with full mass-dependent terms. We find that DM with mass between TeV and 1016 GeV could have the relic abundance that fits the observation, with small dependence on its spin. We also discuss the effects of gravitational annihilation from inflatons. Interestingly, contributions from inflatons could be dominant and have the same power dependence on Hubble parameter of inflation as that from vacuum fluctuation. Also, fermion production from inflaton, in comparison to boson, is suppressed by its mass due to helicity selection. |
---|---|
AbstractList | We investigate the particle production from thermal gravitational annihilation in the very early universe, which is an important contribution for particles that might not be in thermal equilibrium or/and might only have gravitational interaction, such as dark matter (DM). For particles with spin 0,1/2 and 1 we calculate the relevant cross sections through gravitational annihilation and give the analytic formulas with full mass-dependent terms. We find that DM with mass between TeV and 1016 GeV could have the relic abundance that fits the observation, with small dependence on its spin. We also discuss the effects of gravitational annihilation from inflatons. Interestingly, contributions from inflatons could be dominant and have the same power dependence on Hubble parameter of inflation as that from vacuum fluctuation. Also, fermion production from inflaton, in comparison to boson, is suppressed by its mass due to helicity selection. |
Author | Tang, Yong Wu, Yue-Liang |
Author_xml | – sequence: 1 givenname: Yong orcidid: 0000-0003-1100-2741 surname: Tang fullname: Tang, Yong email: ytang@hep-th.phys.s.u-tokyo.ac.jp organization: Department of Physics, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan – sequence: 2 givenname: Yue-Liang surname: Wu fullname: Wu, Yue-Liang organization: International Centre for Theoretical Physics Asia-Pacific, Beijing, China |
BookMark | eNqFkM1qwzAQhEVpoWnaVyh-AaeSJUs29NAS-geBXNqzWEvrRKljBVkJ9O2r_PTSS07LDMzs7ndDLnvfIyH3jE4YZfJhNdksf4YOYzMpKFPJnFAuLsiIVYrnhRDlJRlRrmheyJpfk5thWFFKWUnliMzmfRaXGNbQZYsAOxchOt8nZXwfg2u2e5lFn20gRGc6zDbB26052NDbzEL4ztYQI4ZbctVCN-DdaY7J1-vL5_Q9n83fPqbPs9yIQsbcUIFQGqFYIwqQtpZtgTW1FJuyqCrLJG14bZlAxk1ra9sqkLwxspCKCQt8TD6OvdbDSm-CW0P40R6cPhg-LPTpWM04NlhVyrCyEa0oqxJqVUnVImDayVPX47HLBD8MAVttTgxiANdpRvWesk57TpT1nvLeT5RTXP6L_51zNvh0DGICtXMY9GAc9gatC2hi-sSdq_gFhc2fhA |
CitedBy_id | crossref_primary_10_1007_JHEP09_2020_142 crossref_primary_10_1007_JHEP02_2023_181 crossref_primary_10_1007_JHEP05_2021_010 crossref_primary_10_1016_j_physletb_2025_139379 crossref_primary_10_1088_1475_7516_2024_09_020 crossref_primary_10_1103_PhysRevD_109_063037 crossref_primary_10_1007_JHEP12_2022_072 crossref_primary_10_1007_JHEP08_2023_068 crossref_primary_10_1007_JHEP09_2022_231 crossref_primary_10_1088_1475_7516_2022_07_019 crossref_primary_10_1088_1475_7516_2023_07_014 crossref_primary_10_1088_1475_7516_2021_01_034 crossref_primary_10_1088_1475_7516_2022_08_068 crossref_primary_10_1007_JHEP12_2024_150 crossref_primary_10_1103_PhysRevD_99_061303 crossref_primary_10_1088_1475_7516_2021_06_011 crossref_primary_10_1088_1475_7516_2024_06_014 crossref_primary_10_1088_1475_7516_2024_04_007 crossref_primary_10_1103_PhysRevD_108_L081301 crossref_primary_10_1088_1475_7516_2020_06_019 crossref_primary_10_1007_JHEP12_2022_108 crossref_primary_10_1103_PhysRevD_106_023506 crossref_primary_10_1088_1475_7516_2022_09_018 crossref_primary_10_1103_PhysRevD_105_075005 crossref_primary_10_1103_PhysRevD_103_115009 crossref_primary_10_1088_1475_7516_2022_01_047 crossref_primary_10_1088_1475_7516_2023_07_048 crossref_primary_10_1103_PhysRevD_106_023502 crossref_primary_10_1140_epjc_s10052_023_11740_3 crossref_primary_10_1007_JHEP07_2019_060 crossref_primary_10_1007_JHEP02_2024_061 crossref_primary_10_1088_1475_7516_2024_08_014 crossref_primary_10_1088_1475_7516_2024_05_072 crossref_primary_10_1016_j_physletb_2023_138213 crossref_primary_10_1016_j_physletb_2024_138995 crossref_primary_10_1088_1475_7516_2018_02_027 crossref_primary_10_1103_PhysRevD_99_123011 crossref_primary_10_1088_1475_7516_2022_10_055 crossref_primary_10_1103_PhysRevD_102_023035 crossref_primary_10_1103_PhysRevD_105_095042 crossref_primary_10_1103_PhysRevD_107_095002 crossref_primary_10_1103_PhysRevD_110_083512 crossref_primary_10_1007_JHEP04_2021_061 crossref_primary_10_1007_JHEP04_2023_032 crossref_primary_10_1103_PhysRevD_108_115027 crossref_primary_10_1140_epjc_s10052_021_09694_5 crossref_primary_10_1007_JHEP05_2022_087 crossref_primary_10_1007_JHEP03_2021_174 crossref_primary_10_1007_JHEP05_2022_121 crossref_primary_10_1088_1475_7516_2024_08_002 crossref_primary_10_1007_JHEP11_2021_106 crossref_primary_10_1103_PhysRevD_106_075006 crossref_primary_10_1177_0734371X18816752 crossref_primary_10_1103_RevModPhys_96_045005 crossref_primary_10_1007_JHEP11_2021_146 crossref_primary_10_1016_j_physletb_2020_135716 crossref_primary_10_1088_1475_7516_2020_02_014 crossref_primary_10_1016_j_physletb_2021_136129 crossref_primary_10_1007_JHEP02_2023_196 crossref_primary_10_1103_PhysRevD_106_015020 crossref_primary_10_3390_sym14020306 crossref_primary_10_1088_1475_7516_2019_01_021 crossref_primary_10_1007_JHEP11_2022_067 crossref_primary_10_1088_1475_7516_2018_10_022 crossref_primary_10_1088_1475_7516_2024_11_007 crossref_primary_10_1007_JHEP09_2024_129 crossref_primary_10_1103_PhysRevD_109_083516 crossref_primary_10_1103_PhysRevD_97_115020 crossref_primary_10_1088_1475_7516_2020_06_047 crossref_primary_10_1088_1475_7516_2018_05_036 crossref_primary_10_1088_1475_7516_2023_08_058 crossref_primary_10_1016_j_physletb_2022_137201 crossref_primary_10_1007_JHEP09_2018_135 crossref_primary_10_1016_j_physletb_2019_134857 crossref_primary_10_1007_JHEP09_2023_012 crossref_primary_10_1016_j_nuclphysb_2024_116528 crossref_primary_10_1007_JHEP01_2019_034 crossref_primary_10_1088_1475_7516_2021_06_028 |
Cites_doi | 10.1103/PhysRevD.93.024012 10.1103/PhysRevD.94.063517 10.1016/j.physletb.2016.05.045 10.1103/PhysRevD.94.084055 10.1103/PhysRevLett.81.4048 10.1103/PhysRevLett.117.021302 10.12942/lrr-2004-5 10.1103/PhysRevD.50.3874 10.1103/PhysRevD.95.044040 10.1103/PhysRevD.57.7120 10.1103/PhysRevD.95.035011 10.1103/PhysRevD.51.5438 10.1016/j.nuclphysb.2017.02.019 10.1016/S0370-1573(99)00064-2 10.1016/0370-2693(93)91434-O 10.1016/j.physrep.2004.08.031 10.1103/PhysRevD.56.3258 10.1103/PhysRevLett.116.101302 10.1146/annurev-astro-082708-101659 10.1103/PhysRevD.35.2955 |
ContentType | Journal Article |
Copyright | 2017 The Author(s) |
Copyright_xml | – notice: 2017 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.physletb.2017.10.034 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-2445 |
EndPage | 681 |
ExternalDocumentID | oai_doaj_org_article_13ebe887c15b4f4585a97867feaee903 10_1016_j_physletb_2017_10_034 S0370269317308468 |
GroupedDBID | --K --M -~X .~1 0R~ 0SF 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABLJU ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIBLX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BCNDV BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 ER. FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HME IXB J1W KOM KQ8 LZ4 M41 MO0 N9A NCXOZ O-L O9- OAUVE OGIMB OK1 OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SPD SSQ SSZ T5K TN5 WH7 ~G- 186 29O 6TJ 8WZ A6W AAEDT AAFWJ AAQFI AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN ADXHL AEIPS AEUPX AFPKN AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ IHE IPNFZ MVM R2- SEW SHN SSH WUQ XJT ZCG EFKBS |
ID | FETCH-LOGICAL-c426t-c04ea5c471b42a6d96f2e90d0eb5288d160b39d14e13cfd9df7a63bc626714da3 |
IEDL.DBID | DOA |
ISSN | 0370-2693 |
IngestDate | Wed Aug 27 01:22:12 EDT 2025 Tue Jul 01 01:23:51 EDT 2025 Thu Apr 24 22:55:40 EDT 2025 Fri Feb 23 02:30:05 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-c04ea5c471b42a6d96f2e90d0eb5288d160b39d14e13cfd9df7a63bc626714da3 |
ORCID | 0000-0003-1100-2741 |
OpenAccessLink | https://doaj.org/article/13ebe887c15b4f4585a97867feaee903 |
PageCount | 6 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_13ebe887c15b4f4585a97867feaee903 crossref_citationtrail_10_1016_j_physletb_2017_10_034 crossref_primary_10_1016_j_physletb_2017_10_034 elsevier_sciencedirect_doi_10_1016_j_physletb_2017_10_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-10 |
PublicationDateYYYYMMDD | 2017-11-10 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-10 day: 10 |
PublicationDecade | 2010 |
PublicationTitle | Physics letters. B |
PublicationYear | 2017 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Wu (br0130) 2016; 93 Feng (br0020) 2010; 48 Tang, Wu (br0040) 2016; 758 Donoghue (br0110) 1994; 50 Kannike, Racioppi, Raidal (br0190) 2017; 918 Katsuragawa, Matsuzaki (br0080) 2017; 95 Kolb, Turner (br0150) 1990; 69 Ren, He (br0050) 2015; 1503 Kuzmin, Tkachev (br0250) 1999; 320 Wu (br0140) Chung, Kolb, Riotto (br0240) 1998; 81 Catà, Ibarra, Ingenhütt (br0060) 2016; 117 Garny, Sandora, Sloth (br0030) 2016; 116 Lyth, Roberts (br0230) 1998; 57 Ade (br0170) 2016; 594 Ema, Jinno, Mukaida, Nakayama (br0270) 2016; 94 Catà, Ibarra, Ingenhütt (br0070) 2017; 95 Shtanov, Traschen, Brandenberger (br0220) 1995; 51 Moroi, Murayama, Yamaguchi (br0180) 1993; 303 Babichev, Marzola, Raidal, Schmidt-May, Urban, Veermäe (br0090) 2016; 94 Kolb, Long (br0280) Bernal, Heikinheimo, Tenkanen, Tuominen, Vaskonen (br0160) Kofman, Linde, Starobinsky (br0200) 1997; 56 Ema, Jinno, Mukaida, Nakayama (br0260) 2015; 1505 Babichev, Marzola, Raidal, Schmidt-May, Urban, Veermäe (br0100) 2016; 1609 Bertone, Hooper, Silk (br0010) 2005; 405 Burgess (br0120) 2004; 7 Ford (br0210) 1987; 35 Lyth (10.1016/j.physletb.2017.10.034_br0230) 1998; 57 Moroi (10.1016/j.physletb.2017.10.034_br0180) 1993; 303 Shtanov (10.1016/j.physletb.2017.10.034_br0220) 1995; 51 Katsuragawa (10.1016/j.physletb.2017.10.034_br0080) 2017; 95 Feng (10.1016/j.physletb.2017.10.034_br0020) 2010; 48 Wu (10.1016/j.physletb.2017.10.034_br0130) 2016; 93 Tang (10.1016/j.physletb.2017.10.034_br0040) 2016; 758 Kolb (10.1016/j.physletb.2017.10.034_br0150) 1990; 69 Kannike (10.1016/j.physletb.2017.10.034_br0190) 2017; 918 Donoghue (10.1016/j.physletb.2017.10.034_br0110) 1994; 50 Bernal (10.1016/j.physletb.2017.10.034_br0160) Bertone (10.1016/j.physletb.2017.10.034_br0010) 2005; 405 Garny (10.1016/j.physletb.2017.10.034_br0030) 2016; 116 Catà (10.1016/j.physletb.2017.10.034_br0060) 2016; 117 Babichev (10.1016/j.physletb.2017.10.034_br0100) 2016; 1609 Ford (10.1016/j.physletb.2017.10.034_br0210) 1987; 35 Wu (10.1016/j.physletb.2017.10.034_br0140) Ema (10.1016/j.physletb.2017.10.034_br0260) 2015; 1505 Ema (10.1016/j.physletb.2017.10.034_br0270) 2016; 94 Burgess (10.1016/j.physletb.2017.10.034_br0120) 2004; 7 Kolb (10.1016/j.physletb.2017.10.034_br0280) Chung (10.1016/j.physletb.2017.10.034_br0240) 1998; 81 Kuzmin (10.1016/j.physletb.2017.10.034_br0250) 1999; 320 Catà (10.1016/j.physletb.2017.10.034_br0070) 2017; 95 Babichev (10.1016/j.physletb.2017.10.034_br0090) 2016; 94 Ade (10.1016/j.physletb.2017.10.034_br0170) 2016; 594 Ren (10.1016/j.physletb.2017.10.034_br0050) 2015; 1503 Kofman (10.1016/j.physletb.2017.10.034_br0200) 1997; 56 |
References_xml | – volume: 117 year: 2016 ident: br0060 article-title: Dark matter decays from nonminimal coupling to gravity publication-title: Phys. Rev. Lett. – volume: 94 year: 2016 ident: br0270 article-title: Gravitational particle production in oscillating backgrounds and its cosmological implications publication-title: Phys. Rev. D – volume: 1503 year: 2015 ident: br0050 article-title: Probing gravitational dark matter publication-title: J. Cosmol. Astropart. Phys. – volume: 56 start-page: 3258 year: 1997 end-page: 3295 ident: br0200 article-title: Towards the theory of reheating after inflation publication-title: Phys. Rev. D – volume: 116 year: 2016 ident: br0030 article-title: Planckian interacting massive particles as dark matter publication-title: Phys. Rev. Lett. – ident: br0160 article-title: The dawn of FIMP dark matter: a review of models and constraints – volume: 918 start-page: 162 year: 2017 ident: br0190 publication-title: Nucl. Phys. B – volume: 50 start-page: 3874 year: 1994 end-page: 3888 ident: br0110 article-title: General relativity as an effective field theory: The leading quantum corrections publication-title: Phys. Rev. D – volume: 405 start-page: 279 year: 2005 end-page: 390 ident: br0010 article-title: Particle dark matter: evidence, candidates and constraints publication-title: Phys. Rep. – volume: 1609 year: 2016 ident: br0100 article-title: Heavy spin-2 dark matter publication-title: J. Cosmol. Astropart. Phys. – ident: br0140 article-title: Unified field theory of basic forces and elementary particles with gravitational origin of gauge symmetry in hyper-spacetime – volume: 94 year: 2016 ident: br0090 article-title: Bigravitational origin of dark matter publication-title: Phys. Rev. D – volume: 7 start-page: 5 year: 2004 end-page: 56 ident: br0120 article-title: Quantum gravity in everyday life: General relativity as an effective field theory publication-title: Living Rev. Relativ. – volume: 69 start-page: 1 year: 1990 end-page: 547 ident: br0150 article-title: The Early Universe publication-title: Front. Phys. – volume: 95 year: 2017 ident: br0070 article-title: Dark matter decay through gravity portals publication-title: Phys. Rev. D – volume: 57 start-page: 7120 year: 1998 end-page: 7129 ident: br0230 article-title: Cosmological consequences of particle creation during inflation publication-title: Phys. Rev. D – volume: 303 start-page: 289 year: 1993 end-page: 294 ident: br0180 article-title: Cosmological constraints on the light stable gravitino publication-title: Phys. Lett. B – volume: 93 year: 2016 ident: br0130 article-title: Quantum field theory of gravity with spin and scaling gauge invariance and spacetime dynamics with quantum inflation publication-title: Phys. Rev. D – volume: 35 start-page: 2955 year: 1987 ident: br0210 article-title: Gravitational particle creation and inflation publication-title: Phys. Rev. D – volume: 51 start-page: 5438 year: 1995 end-page: 5455 ident: br0220 article-title: Universe reheating after inflation publication-title: Phys. Rev. D – volume: 594 year: 2016 ident: br0170 article-title: Planck 2015 results. XIII. Cosmological parameters publication-title: Astron. Astrophys. – ident: br0280 article-title: Superheavy dark matter through Higgs portal operators – volume: 758 start-page: 402 year: 2016 end-page: 406 ident: br0040 article-title: Pure gravitational dark matter, its mass and signatures publication-title: Phys. Lett. B – volume: 95 year: 2017 ident: br0080 article-title: Dark matter in modified gravity? publication-title: Phys. Rev. D – volume: 1505 year: 2015 ident: br0260 article-title: Gravitational Effects on Inflaton Decay publication-title: J. Cosmol. Astropart. Phys. – volume: 320 start-page: 199 year: 1999 end-page: 221 ident: br0250 article-title: Ultrahigh-energy cosmic rays and inflation relics publication-title: Phys. Rep. – volume: 48 start-page: 495 year: 2010 end-page: 545 ident: br0020 article-title: Dark matter candidates from particle physics and methods of detection publication-title: Annu. Rev. Astron. Astrophys. – volume: 81 start-page: 4048 year: 1998 end-page: 4051 ident: br0240 article-title: Nonthermal supermassive dark matter publication-title: Phys. Rev. Lett. – volume: 93 year: 2016 ident: 10.1016/j.physletb.2017.10.034_br0130 article-title: Quantum field theory of gravity with spin and scaling gauge invariance and spacetime dynamics with quantum inflation publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.024012 – volume: 94 year: 2016 ident: 10.1016/j.physletb.2017.10.034_br0270 article-title: Gravitational particle production in oscillating backgrounds and its cosmological implications publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.063517 – ident: 10.1016/j.physletb.2017.10.034_br0160 – volume: 758 start-page: 402 year: 2016 ident: 10.1016/j.physletb.2017.10.034_br0040 article-title: Pure gravitational dark matter, its mass and signatures publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2016.05.045 – volume: 1505 year: 2015 ident: 10.1016/j.physletb.2017.10.034_br0260 article-title: Gravitational Effects on Inflaton Decay publication-title: J. Cosmol. Astropart. Phys. – volume: 94 year: 2016 ident: 10.1016/j.physletb.2017.10.034_br0090 article-title: Bigravitational origin of dark matter publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.084055 – volume: 81 start-page: 4048 year: 1998 ident: 10.1016/j.physletb.2017.10.034_br0240 article-title: Nonthermal supermassive dark matter publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.4048 – volume: 117 year: 2016 ident: 10.1016/j.physletb.2017.10.034_br0060 article-title: Dark matter decays from nonminimal coupling to gravity publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.021302 – volume: 7 start-page: 5 year: 2004 ident: 10.1016/j.physletb.2017.10.034_br0120 article-title: Quantum gravity in everyday life: General relativity as an effective field theory publication-title: Living Rev. Relativ. doi: 10.12942/lrr-2004-5 – volume: 1503 year: 2015 ident: 10.1016/j.physletb.2017.10.034_br0050 article-title: Probing gravitational dark matter publication-title: J. Cosmol. Astropart. Phys. – volume: 50 start-page: 3874 year: 1994 ident: 10.1016/j.physletb.2017.10.034_br0110 article-title: General relativity as an effective field theory: The leading quantum corrections publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.50.3874 – volume: 1609 year: 2016 ident: 10.1016/j.physletb.2017.10.034_br0100 article-title: Heavy spin-2 dark matter publication-title: J. Cosmol. Astropart. Phys. – volume: 95 year: 2017 ident: 10.1016/j.physletb.2017.10.034_br0080 article-title: Dark matter in modified gravity? publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.044040 – volume: 57 start-page: 7120 year: 1998 ident: 10.1016/j.physletb.2017.10.034_br0230 article-title: Cosmological consequences of particle creation during inflation publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.57.7120 – volume: 95 year: 2017 ident: 10.1016/j.physletb.2017.10.034_br0070 article-title: Dark matter decay through gravity portals publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.035011 – volume: 51 start-page: 5438 year: 1995 ident: 10.1016/j.physletb.2017.10.034_br0220 article-title: Universe reheating after inflation publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.51.5438 – volume: 918 start-page: 162 year: 2017 ident: 10.1016/j.physletb.2017.10.034_br0190 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2017.02.019 – volume: 320 start-page: 199 year: 1999 ident: 10.1016/j.physletb.2017.10.034_br0250 article-title: Ultrahigh-energy cosmic rays and inflation relics publication-title: Phys. Rep. doi: 10.1016/S0370-1573(99)00064-2 – volume: 69 start-page: 1 year: 1990 ident: 10.1016/j.physletb.2017.10.034_br0150 article-title: The Early Universe publication-title: Front. Phys. – ident: 10.1016/j.physletb.2017.10.034_br0280 – volume: 303 start-page: 289 year: 1993 ident: 10.1016/j.physletb.2017.10.034_br0180 article-title: Cosmological constraints on the light stable gravitino publication-title: Phys. Lett. B doi: 10.1016/0370-2693(93)91434-O – ident: 10.1016/j.physletb.2017.10.034_br0140 – volume: 405 start-page: 279 year: 2005 ident: 10.1016/j.physletb.2017.10.034_br0010 article-title: Particle dark matter: evidence, candidates and constraints publication-title: Phys. Rep. doi: 10.1016/j.physrep.2004.08.031 – volume: 56 start-page: 3258 year: 1997 ident: 10.1016/j.physletb.2017.10.034_br0200 article-title: Towards the theory of reheating after inflation publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.56.3258 – volume: 116 year: 2016 ident: 10.1016/j.physletb.2017.10.034_br0030 article-title: Planckian interacting massive particles as dark matter publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.101302 – volume: 48 start-page: 495 year: 2010 ident: 10.1016/j.physletb.2017.10.034_br0020 article-title: Dark matter candidates from particle physics and methods of detection publication-title: Annu. Rev. Astron. Astrophys. doi: 10.1146/annurev-astro-082708-101659 – volume: 35 start-page: 2955 year: 1987 ident: 10.1016/j.physletb.2017.10.034_br0210 article-title: Gravitational particle creation and inflation publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.35.2955 – volume: 594 year: 2016 ident: 10.1016/j.physletb.2017.10.034_br0170 article-title: Planck 2015 results. XIII. Cosmological parameters publication-title: Astron. Astrophys. |
SSID | ssj0001506 |
Score | 2.564829 |
Snippet | We investigate the particle production from thermal gravitational annihilation in the very early universe, which is an important contribution for particles... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 676 |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4iCF7EJ64vevCabZukTXvURRHxcVDBW8mrsqt2y7pe_e3OpKnunjx47JCE5Oswj_bLDCGnTBSCMaepAd9DhdQF1YZr6mSpeclTo307oNu7_OpJXD9nzytk1N-FQVplsP2dTffWOkjigGbcjsfxQ8IlJBCwHigpeFG88CuERC0ffv3SPLCCnv-TIBOKoxduCU-G-PUA4NFI8ZJDZHlxseSgfB3_BT-14HsuN8lGCBqjs25fW2TFNdtkzZM3zccOublvIozj3mEMthMKZbfhyRPRQ0eraD6N2nC0qO0KvaJYNTayavYavftSm7vk6fLicXRFQ5cEasC7zqlJhFOZASejBVO5LfOauTKxidMZKwqb5gmgblPhUm5qW9paqpxrA5mMTIVVfI-sNtPG7ZMo40wxZ51WMhelVYVwEGAZiTVTNSuSAcl6aCoTzoKdLN6qnis2qXpIK4QU5QDpgMQ_89quiMafM84R-Z_RWATbC6azlypAVaUcNBCMpEkzLWoBiY-CnDiXtVMOEOADUvbvrVrSKVhq_McGDv4x95Cs4xP1ZMEjsjqffbpjCF3m-sTr5jdhuO3p priority: 102 providerName: Elsevier |
Title | On thermal gravitational contribution to particle production and dark matter |
URI | https://dx.doi.org/10.1016/j.physletb.2017.10.034 https://doaj.org/article/13ebe887c15b4f4585a97867feaee903 |
Volume | 774 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT4MwGG50xsSL8TPOj4WD127QFgrHzWg2P-bFJbuRfpE4HVsmXv3tvi1lmaddvJDQtNA-FJ6n8PK8CN0SljJCjMQKuAczLlMsFZXY8EzSjEZKunRAL-NkOGGP03i6kerLxoTV9sA1cL2IwmngTlBRLFnBQN0KWPgkvDDCmKz2-QTOaxZT_hlsffPc9wMeYpJkdOPf4FnXvjMAUKQN7OJdG9tF2R9acu79G-y0wTgPR-jQS8WgX3fxGO2Y8gTtu5BN9XWKnl_LwKq3OdSxSYS82TbsufBzn8cqqBbB0o8yWNb2rrZYlDrQYvURzJ3B5hmaPNy_3Q2xz42AFXBqhVXIjIgVUItkRCQ6SwoCcOjQyJikqY6SELDWETMRVYXOdMFFQqWC9QuPmBb0HLXKRWkuUBBTIojRRgqesEyLlBmQVYpbp1RJ0rCN4gaaXPmx2PwVn3kTITbLG0hzC6ktB0jbqLdut6ytM7a2GFjk17Wt9bUrgAmRe6jybROijbLmuuVeRdTqAA71vqUDl__RgSt0YA-JXazgNWpVq29zA8qlkh202_2JOmivP3oajjtuysJ2NB38Ap1Q75g |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMsTx_g6N3EduLk0AOvaku35UAr9Rb8Cto-sqvtItQLf4o_yIzXKdtTD6jHTGzL-ezMI_k8A_BWqEoJESx3aHu40rbi1knLg66trGXubCwHtLdfjg_Vl6PiaAP-9GdhiFaZdP9Kp0dtnSSjhOZoPp2OvmVSYwCB4-EmRStaJWblbrj4hXHb-dbOJ1zkd0Jsfz74OOaptAB3aJKW3GUqmMKhZrZKmNLXZStCnfks2EJUlc_LDKfqcxVy6Vpf-1abUlqH7r_OlTcSx70FtxWqCyqbMPz9j1dCKfvirwudcZre2rHk4yF9rsD1sMQp00OilUl1xSLGwgFrhnHN2G0_gPvJS2XvV0A8hI3QPYI7kS3qzh_D5GvHyHE8wzZUvyjl-caryHxPJbTYcsbmCUs2X2WWJbHpPPNmccLOYm7PJ3B4I9g9hc1u1oVnwAopjAg-WKNLVXtTqYAendOUpNWKKhtA0UPTuPQsVDrjtOnJacdND2lDkJIcIR3A6LLffJW149oeHwj5y9aUdTsKZosfTYKqySVuedTKLi-sahVGWgaD8FK3wQREQA6g7tetubKJcajpNRN4_h9938Dd8cHepJns7O--gHt0h0em4kvYXC5-hlfoNy3t67hPGXy_6RfjL9blK5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+thermal+gravitational+contribution+to+particle+production+and+dark+matter&rft.jtitle=Physics+letters.+B&rft.au=Tang%2C+Yong&rft.au=Wu%2C+Yue-Liang&rft.date=2017-11-10&rft.issn=0370-2693&rft.volume=774&rft.spage=676&rft.epage=681&rft_id=info:doi/10.1016%2Fj.physletb.2017.10.034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physletb_2017_10_034 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-2693&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-2693&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-2693&client=summon |