Error Correction of Quantum Reference Frame Information
The existence of quantum error-correcting codes is one of the most counterintuitive and potentially technologically important discoveries of quantum-information theory. In this paper, we study a problem called “covariant quantum error correction”, in which the encoding is required to be group covari...
Saved in:
Published in | PRX quantum Vol. 2; no. 1; p. 010326 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Physical Society
18.02.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | The existence of quantum error-correcting codes is one of the most counterintuitive and potentially technologically important discoveries of quantum-information theory. In this paper, we study a problem called “covariant quantum error correction”, in which the encoding is required to be group covariant. This problem is intimately tied to fault-tolerant quantum computation and the well-known Eastin-Knill theorem. We show that this problem is equivalent to the problem of encoding reference-frame information. In standard quantum error correction, one seeks to protect abstract quantum information, i.e., information that is independent of the physical incarnation of the systems used for storing the information. There are, however, other forms of information that are physical—one of the most ubiquitous being reference-frame information. The basic question we seek to answer is whether or not error correction of physical information is possible and, if so, what limitations govern the process. The main challenge is that the systems used for transmitting physical information, in addition to any actions applied to them, must necessarily obey these limitations. Encoding and decoding operations that obey a restrictive set of limitations need not exist a priori. Equivalently, there may not exist covariant quantum error-correcting codes. Indeed, we prove a no-go theorem showing that no finite-dimensional, group-covariant quantum codes exist for Lie groups with an infinitesimal generator [e.g., U(1), SU(2), and SO(3)]. We then explain how one can circumvent this no-go theorem using infinite-dimensional codes, and we give an explicit example of a covariant quantum error-correcting code using continuous variables for the group U(1). Finally, we demonstrate that all finite groups have finite-dimensional codes, giving both an explicit construction and a randomized approximate construction with exponentially better parameters. Our results imply that one can, in principle, circumvent the Eastin-Knill theorem. |
---|---|
AbstractList | The existence of quantum error-correcting codes is one of the most counterintuitive and potentially technologically important discoveries of quantum-information theory. In this paper, we study a problem called “covariant quantum error correction”, in which the encoding is required to be group covariant. This problem is intimately tied to fault-tolerant quantum computation and the well-known Eastin-Knill theorem. We show that this problem is equivalent to the problem of encoding reference-frame information. In standard quantum error correction, one seeks to protect abstract quantum information, i.e., information that is independent of the physical incarnation of the systems used for storing the information. There are, however, other forms of information that are physical—one of the most ubiquitous being reference-frame information. The basic question we seek to answer is whether or not error correction of physical information is possible and, if so, what limitations govern the process. The main challenge is that the systems used for transmitting physical information, in addition to any actions applied to them, must necessarily obey these limitations. Encoding and decoding operations that obey a restrictive set of limitations need not exist a priori. Equivalently, there may not exist covariant quantum error-correcting codes. Indeed, we prove a no-go theorem showing that no finite-dimensional, group-covariant quantum codes exist for Lie groups with an infinitesimal generator [e.g., U(1), SU(2), and SO(3)]. We then explain how one can circumvent this no-go theorem using infinite-dimensional codes, and we give an explicit example of a covariant quantum error-correcting code using continuous variables for the group U(1). Finally, we demonstrate that all finite groups have finite-dimensional codes, giving both an explicit construction and a randomized approximate construction with exponentially better parameters. Our results imply that one can, in principle, circumvent the Eastin-Knill theorem. |
ArticleNumber | 010326 |
Author | Popescu, Sandu Nezami, Sepehr Hayden, Patrick Salton, Grant |
Author_xml | – sequence: 1 givenname: Patrick surname: Hayden fullname: Hayden, Patrick – sequence: 2 givenname: Sepehr surname: Nezami fullname: Nezami, Sepehr – sequence: 3 givenname: Sandu surname: Popescu fullname: Popescu, Sandu – sequence: 4 givenname: Grant orcidid: 0000-0003-3191-0325 surname: Salton fullname: Salton, Grant |
BookMark | eNp9kE1Lw0AQhhepYK39BV7yB1JnP7LJHqW0WiioRcHbMtnOSkqTlU168N-bflDFg6cZXuZ9Bp5rNmhCQ4zdcphwDvLuefX-ssOm29UTMYE-EfqCDYU2PJXSmMGv_YqN23YDACLjkiszZPksxhCTaYiRXFeFJgk-OeGSFXmK1DhK5hFrShaND7HG_dkNu_S4bWl8miP2Np-9Th_T5dPDYnq_TJ0SuksRiZQz0mMGRFpoLZUuMCsLYwx5k5eEUAKW2uVemXytjO-fGocoSZRKjtjiyF0H3NjPWNUYv2zAyh6CED8sxq5yW7IgeG4K0CCdVx5c4TR3ZV4AZetCed6z5JHlYmjbSP7M42D3Ku2PSivsUWXfMn9aruoODrqI1fbf7jc7iX8g |
CitedBy_id | crossref_primary_10_1109_TIT_2024_3487964 crossref_primary_10_1007_s44214_025_00077_5 crossref_primary_10_1103_PhysRevLett_132_130201 crossref_primary_10_1103_PhysRevA_108_012427 crossref_primary_10_1103_PhysRevLett_126_150503 crossref_primary_10_1103_PRXQuantum_4_020342 crossref_primary_10_1103_PhysRevLett_126_150501 crossref_primary_10_1103_PhysRevResearch_6_043292 crossref_primary_10_1088_2058_9565_ad53fa crossref_primary_10_1103_PRXQuantum_4_040336 crossref_primary_10_1007_JHEP05_2021_127 crossref_primary_10_1038_s41567_024_02621_x crossref_primary_10_1007_s00220_023_04905_4 crossref_primary_10_22331_q_2024_08_14_1439 crossref_primary_10_1103_PhysRevA_107_032422 crossref_primary_10_3390_math13071056 crossref_primary_10_1038_s41567_021_01464_0 crossref_primary_10_1088_1572_9494_ac68d8 crossref_primary_10_1103_PhysRevResearch_4_023107 crossref_primary_10_1103_PRXQuantum_3_010337 crossref_primary_10_1088_1402_4896_ad7a2b crossref_primary_10_1007_s00220_024_05108_1 crossref_primary_10_22331_q_2023_02_21_928 crossref_primary_10_1002_que2_85 crossref_primary_10_1088_1674_1056_acd8a9 crossref_primary_10_1103_PRXQuantum_5_040349 crossref_primary_10_1103_PRXQuantum_3_020314 crossref_primary_10_1038_s41534_023_00788_4 |
Cites_doi | 10.1109/TIT.2008.928980 10.1038/ncomms4821 10.1109/TIT.2005.860824 10.1103/PhysRevLett.92.187901 10.1088/1367-2630/15/3/033001 10.1103/PhysRevA.90.014102 10.1088/1367-2630/8/4/058 10.1103/PhysRevLett.86.4160 10.1103/PhysRevLett.85.2010 10.1103/PhysRevLett.74.1259 10.1103/PhysRevA.55.1613 10.1088/1367-2630/10/3/033023 10.1142/S1230161208000043 10.1103/PhysRevLett.111.250404 10.1109/TIT.2004.839476 10.1103/PhysRevA.77.032345 10.1088/1367-2630/16/1/013009 10.1103/PhysRevLett.83.432 10.1103/PhysRevLett.102.110502 10.1103/RevModPhys.79.555 10.1007/s00220-006-1535-6 10.1103/PhysRevA.63.052309 10.1103/PhysRevA.90.062110 10.1103/PhysRevResearch.2.033116 10.1103/PhysRevLett.91.027901 10.1109/TIT.2004.839515 10.1007/s00220-004-1087-6 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1103/PRXQuantum.2.010326 |
DatabaseName | CrossRef Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2691-3399 |
ExternalDocumentID | oai_doaj_org_article_0217980603cf4f0c8c61cb780e5d84f1 10_1103_PRXQuantum_2_010326 |
GroupedDBID | 3MX AAYXX AFGMR ALMA_UNASSIGNED_HOLDINGS CITATION EBS GROUPED_DOAJ M~E OK1 ROL |
ID | FETCH-LOGICAL-c426t-aaee4c93fa50ee62663468a5b8999ef97bea0b0ab6c7f497d49fefe9caa3e2b43 |
IEDL.DBID | DOA |
ISSN | 2691-3399 |
IngestDate | Wed Aug 27 01:29:40 EDT 2025 Tue Jul 01 03:18:21 EDT 2025 Thu Apr 24 22:58:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-aaee4c93fa50ee62663468a5b8999ef97bea0b0ab6c7f497d49fefe9caa3e2b43 |
ORCID | 0000-0003-3191-0325 |
OpenAccessLink | https://doaj.org/article/0217980603cf4f0c8c61cb780e5d84f1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0217980603cf4f0c8c61cb780e5d84f1 crossref_primary_10_1103_PRXQuantum_2_010326 crossref_citationtrail_10_1103_PRXQuantum_2_010326 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-18 |
PublicationDateYYYYMMDD | 2021-02-18 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-18 day: 18 |
PublicationDecade | 2020 |
PublicationTitle | PRX quantum |
PublicationYear | 2021 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PRXQuantum.2.010326Cc12R1 PRXQuantum.2.010326Cc11R1 PRXQuantum.2.010326Cc14R1 PRXQuantum.2.010326Cc13R1 PRXQuantum.2.010326Cc31R1 PRXQuantum.2.010326Cc32R1 PRXQuantum.2.010326Cc10R1 PRXQuantum.2.010326Cc30R1 PRXQuantum.2.010326Cc19R1 PRXQuantum.2.010326Cc16R1 PRXQuantum.2.010326Cc39R1 PRXQuantum.2.010326Cc15R1 PRXQuantum.2.010326Cc18R1 PRXQuantum.2.010326Cc17R1 PRXQuantum.2.010326Cc44R1 PRXQuantum.2.010326Cc20R1 PRXQuantum.2.010326Cc43R1 PRXQuantum.2.010326Cc42R1 PRXQuantum.2.010326Cc41R1 PRXQuantum.2.010326Cc9R1 PRXQuantum.2.010326Cc8R1 PRXQuantum.2.010326Cc7R1 PRXQuantum.2.010326Cc6R1 PRXQuantum.2.010326Cc1R1 PRXQuantum.2.010326Cc5R1 PRXQuantum.2.010326Cc4R1 PRXQuantum.2.010326Cc29R1 |
References_xml | – ident: PRXQuantum.2.010326Cc19R1 doi: 10.1109/TIT.2008.928980 – ident: PRXQuantum.2.010326Cc16R1 doi: 10.1038/ncomms4821 – ident: PRXQuantum.2.010326Cc32R1 doi: 10.1109/TIT.2005.860824 – ident: PRXQuantum.2.010326Cc42R1 doi: 10.1103/PhysRevLett.92.187901 – ident: PRXQuantum.2.010326Cc14R1 doi: 10.1088/1367-2630/15/3/033001 – ident: PRXQuantum.2.010326Cc15R1 doi: 10.1103/PhysRevA.90.014102 – ident: PRXQuantum.2.010326Cc8R1 doi: 10.1088/1367-2630/8/4/058 – ident: PRXQuantum.2.010326Cc10R1 doi: 10.1103/PhysRevLett.86.4160 – ident: PRXQuantum.2.010326Cc6R1 doi: 10.1103/PhysRevLett.85.2010 – ident: PRXQuantum.2.010326Cc4R1 doi: 10.1103/PhysRevLett.74.1259 – ident: PRXQuantum.2.010326Cc30R1 doi: 10.1103/PhysRevA.55.1613 – ident: PRXQuantum.2.010326Cc12R1 doi: 10.1088/1367-2630/10/3/033023 – ident: PRXQuantum.2.010326Cc31R1 doi: 10.1142/S1230161208000043 – ident: PRXQuantum.2.010326Cc17R1 doi: 10.1103/PhysRevLett.111.250404 – ident: PRXQuantum.2.010326Cc44R1 doi: 10.1109/TIT.2004.839476 – ident: PRXQuantum.2.010326Cc7R1 doi: 10.1103/PhysRevA.77.032345 – ident: PRXQuantum.2.010326Cc18R1 doi: 10.1088/1367-2630/16/1/013009 – ident: PRXQuantum.2.010326Cc1R1 doi: 10.1103/PhysRevLett.83.432 – ident: PRXQuantum.2.010326Cc20R1 doi: 10.1103/PhysRevLett.102.110502 – ident: PRXQuantum.2.010326Cc11R1 doi: 10.1103/RevModPhys.79.555 – ident: PRXQuantum.2.010326Cc41R1 doi: 10.1007/s00220-006-1535-6 – ident: PRXQuantum.2.010326Cc5R1 doi: 10.1103/PhysRevA.63.052309 – ident: PRXQuantum.2.010326Cc13R1 doi: 10.1103/PhysRevA.90.062110 – ident: PRXQuantum.2.010326Cc39R1 doi: 10.1103/PhysRevResearch.2.033116 – ident: PRXQuantum.2.010326Cc9R1 doi: 10.1103/PhysRevLett.91.027901 – ident: PRXQuantum.2.010326Cc29R1 doi: 10.1109/TIT.2004.839515 – ident: PRXQuantum.2.010326Cc43R1 doi: 10.1007/s00220-004-1087-6 |
SSID | ssj0002513149 |
Score | 2.381217 |
Snippet | The existence of quantum error-correcting codes is one of the most counterintuitive and potentially technologically important discoveries of... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 010326 |
Title | Error Correction of Quantum Reference Frame Information |
URI | https://doaj.org/article/0217980603cf4f0c8c61cb780e5d84f1 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJSQWxKcoX_LASFo3dhJ7BNSqQioCRKVulu36JmhRaFd-O3dJKJlgYckQXWL7Lsp7J929Y-zKIwkujDcJpBATJQUkiIqQzBFbimgAAlC_8-QhH0_V_SybtUZ9UU1YLQ9cO65PnNlokQsZQIEIOuSD4AstYjbXCqrEBzGvlUzRPxhRWyL3b2SGBkL2H59nT2vc7Pqtl_ZouAHJKbSgqKXYX0HLaI_tNpyQ39R72WdbcXHAtqvazPBxyIphWS5LfkdzNKouBL4E3qzCN0KxfERlVrxpLyKzIzYdDV_uxkkz7yAJiJOrxLkYVUBPuUzEiJlGLlWuXeYxJzIRTOGjE144n4cClCnmygAuYoJzMqZeyWPWWSwX8YRxDIxEbmc8CbrlGryWSkfMbUIIwmeDLku_j25DIwZOMylebZUUCGl__GVTW_ury643D73XWhi_m9-STzemJGRd3cDw2ia89q_wnv7HS87YTkqlKDTHRZ-zzqpcxwvkEit_WX02eJ18Dr8AK7nJGg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Error+Correction+of+Quantum+Reference+Frame+Information&rft.jtitle=PRX+quantum&rft.au=Patrick+Hayden&rft.au=Sepehr+Nezami&rft.au=Sandu+Popescu&rft.au=Grant+Salton&rft.date=2021-02-18&rft.pub=American+Physical+Society&rft.eissn=2691-3399&rft.volume=2&rft.issue=1&rft.spage=010326&rft_id=info:doi/10.1103%2FPRXQuantum.2.010326&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0217980603cf4f0c8c61cb780e5d84f1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-3399&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-3399&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-3399&client=summon |