Error Correction of Quantum Reference Frame Information

The existence of quantum error-correcting codes is one of the most counterintuitive and potentially technologically important discoveries of quantum-information theory. In this paper, we study a problem called “covariant quantum error correction”, in which the encoding is required to be group covari...

Full description

Saved in:
Bibliographic Details
Published inPRX quantum Vol. 2; no. 1; p. 010326
Main Authors Hayden, Patrick, Nezami, Sepehr, Popescu, Sandu, Salton, Grant
Format Journal Article
LanguageEnglish
Published American Physical Society 18.02.2021
Online AccessGet full text

Cover

Loading…
Abstract The existence of quantum error-correcting codes is one of the most counterintuitive and potentially technologically important discoveries of quantum-information theory. In this paper, we study a problem called “covariant quantum error correction”, in which the encoding is required to be group covariant. This problem is intimately tied to fault-tolerant quantum computation and the well-known Eastin-Knill theorem. We show that this problem is equivalent to the problem of encoding reference-frame information. In standard quantum error correction, one seeks to protect abstract quantum information, i.e., information that is independent of the physical incarnation of the systems used for storing the information. There are, however, other forms of information that are physical—one of the most ubiquitous being reference-frame information. The basic question we seek to answer is whether or not error correction of physical information is possible and, if so, what limitations govern the process. The main challenge is that the systems used for transmitting physical information, in addition to any actions applied to them, must necessarily obey these limitations. Encoding and decoding operations that obey a restrictive set of limitations need not exist a priori. Equivalently, there may not exist covariant quantum error-correcting codes. Indeed, we prove a no-go theorem showing that no finite-dimensional, group-covariant quantum codes exist for Lie groups with an infinitesimal generator [e.g., U(1), SU(2), and SO(3)]. We then explain how one can circumvent this no-go theorem using infinite-dimensional codes, and we give an explicit example of a covariant quantum error-correcting code using continuous variables for the group U(1). Finally, we demonstrate that all finite groups have finite-dimensional codes, giving both an explicit construction and a randomized approximate construction with exponentially better parameters. Our results imply that one can, in principle, circumvent the Eastin-Knill theorem.
AbstractList The existence of quantum error-correcting codes is one of the most counterintuitive and potentially technologically important discoveries of quantum-information theory. In this paper, we study a problem called “covariant quantum error correction”, in which the encoding is required to be group covariant. This problem is intimately tied to fault-tolerant quantum computation and the well-known Eastin-Knill theorem. We show that this problem is equivalent to the problem of encoding reference-frame information. In standard quantum error correction, one seeks to protect abstract quantum information, i.e., information that is independent of the physical incarnation of the systems used for storing the information. There are, however, other forms of information that are physical—one of the most ubiquitous being reference-frame information. The basic question we seek to answer is whether or not error correction of physical information is possible and, if so, what limitations govern the process. The main challenge is that the systems used for transmitting physical information, in addition to any actions applied to them, must necessarily obey these limitations. Encoding and decoding operations that obey a restrictive set of limitations need not exist a priori. Equivalently, there may not exist covariant quantum error-correcting codes. Indeed, we prove a no-go theorem showing that no finite-dimensional, group-covariant quantum codes exist for Lie groups with an infinitesimal generator [e.g., U(1), SU(2), and SO(3)]. We then explain how one can circumvent this no-go theorem using infinite-dimensional codes, and we give an explicit example of a covariant quantum error-correcting code using continuous variables for the group U(1). Finally, we demonstrate that all finite groups have finite-dimensional codes, giving both an explicit construction and a randomized approximate construction with exponentially better parameters. Our results imply that one can, in principle, circumvent the Eastin-Knill theorem.
ArticleNumber 010326
Author Popescu, Sandu
Nezami, Sepehr
Hayden, Patrick
Salton, Grant
Author_xml – sequence: 1
  givenname: Patrick
  surname: Hayden
  fullname: Hayden, Patrick
– sequence: 2
  givenname: Sepehr
  surname: Nezami
  fullname: Nezami, Sepehr
– sequence: 3
  givenname: Sandu
  surname: Popescu
  fullname: Popescu, Sandu
– sequence: 4
  givenname: Grant
  orcidid: 0000-0003-3191-0325
  surname: Salton
  fullname: Salton, Grant
BookMark eNp9kE1Lw0AQhhepYK39BV7yB1JnP7LJHqW0WiioRcHbMtnOSkqTlU168N-bflDFg6cZXuZ9Bp5rNmhCQ4zdcphwDvLuefX-ssOm29UTMYE-EfqCDYU2PJXSmMGv_YqN23YDACLjkiszZPksxhCTaYiRXFeFJgk-OeGSFXmK1DhK5hFrShaND7HG_dkNu_S4bWl8miP2Np-9Th_T5dPDYnq_TJ0SuksRiZQz0mMGRFpoLZUuMCsLYwx5k5eEUAKW2uVemXytjO-fGocoSZRKjtjiyF0H3NjPWNUYv2zAyh6CED8sxq5yW7IgeG4K0CCdVx5c4TR3ZV4AZetCed6z5JHlYmjbSP7M42D3Ku2PSivsUWXfMn9aruoODrqI1fbf7jc7iX8g
CitedBy_id crossref_primary_10_1109_TIT_2024_3487964
crossref_primary_10_1007_s44214_025_00077_5
crossref_primary_10_1103_PhysRevLett_132_130201
crossref_primary_10_1103_PhysRevA_108_012427
crossref_primary_10_1103_PhysRevLett_126_150503
crossref_primary_10_1103_PRXQuantum_4_020342
crossref_primary_10_1103_PhysRevLett_126_150501
crossref_primary_10_1103_PhysRevResearch_6_043292
crossref_primary_10_1088_2058_9565_ad53fa
crossref_primary_10_1103_PRXQuantum_4_040336
crossref_primary_10_1007_JHEP05_2021_127
crossref_primary_10_1038_s41567_024_02621_x
crossref_primary_10_1007_s00220_023_04905_4
crossref_primary_10_22331_q_2024_08_14_1439
crossref_primary_10_1103_PhysRevA_107_032422
crossref_primary_10_3390_math13071056
crossref_primary_10_1038_s41567_021_01464_0
crossref_primary_10_1088_1572_9494_ac68d8
crossref_primary_10_1103_PhysRevResearch_4_023107
crossref_primary_10_1103_PRXQuantum_3_010337
crossref_primary_10_1088_1402_4896_ad7a2b
crossref_primary_10_1007_s00220_024_05108_1
crossref_primary_10_22331_q_2023_02_21_928
crossref_primary_10_1002_que2_85
crossref_primary_10_1088_1674_1056_acd8a9
crossref_primary_10_1103_PRXQuantum_5_040349
crossref_primary_10_1103_PRXQuantum_3_020314
crossref_primary_10_1038_s41534_023_00788_4
Cites_doi 10.1109/TIT.2008.928980
10.1038/ncomms4821
10.1109/TIT.2005.860824
10.1103/PhysRevLett.92.187901
10.1088/1367-2630/15/3/033001
10.1103/PhysRevA.90.014102
10.1088/1367-2630/8/4/058
10.1103/PhysRevLett.86.4160
10.1103/PhysRevLett.85.2010
10.1103/PhysRevLett.74.1259
10.1103/PhysRevA.55.1613
10.1088/1367-2630/10/3/033023
10.1142/S1230161208000043
10.1103/PhysRevLett.111.250404
10.1109/TIT.2004.839476
10.1103/PhysRevA.77.032345
10.1088/1367-2630/16/1/013009
10.1103/PhysRevLett.83.432
10.1103/PhysRevLett.102.110502
10.1103/RevModPhys.79.555
10.1007/s00220-006-1535-6
10.1103/PhysRevA.63.052309
10.1103/PhysRevA.90.062110
10.1103/PhysRevResearch.2.033116
10.1103/PhysRevLett.91.027901
10.1109/TIT.2004.839515
10.1007/s00220-004-1087-6
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1103/PRXQuantum.2.010326
DatabaseName CrossRef
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2691-3399
ExternalDocumentID oai_doaj_org_article_0217980603cf4f0c8c61cb780e5d84f1
10_1103_PRXQuantum_2_010326
GroupedDBID 3MX
AAYXX
AFGMR
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
GROUPED_DOAJ
M~E
OK1
ROL
ID FETCH-LOGICAL-c426t-aaee4c93fa50ee62663468a5b8999ef97bea0b0ab6c7f497d49fefe9caa3e2b43
IEDL.DBID DOA
ISSN 2691-3399
IngestDate Wed Aug 27 01:29:40 EDT 2025
Tue Jul 01 03:18:21 EDT 2025
Thu Apr 24 22:58:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-aaee4c93fa50ee62663468a5b8999ef97bea0b0ab6c7f497d49fefe9caa3e2b43
ORCID 0000-0003-3191-0325
OpenAccessLink https://doaj.org/article/0217980603cf4f0c8c61cb780e5d84f1
ParticipantIDs doaj_primary_oai_doaj_org_article_0217980603cf4f0c8c61cb780e5d84f1
crossref_primary_10_1103_PRXQuantum_2_010326
crossref_citationtrail_10_1103_PRXQuantum_2_010326
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-18
PublicationDateYYYYMMDD 2021-02-18
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-18
  day: 18
PublicationDecade 2020
PublicationTitle PRX quantum
PublicationYear 2021
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PRXQuantum.2.010326Cc12R1
PRXQuantum.2.010326Cc11R1
PRXQuantum.2.010326Cc14R1
PRXQuantum.2.010326Cc13R1
PRXQuantum.2.010326Cc31R1
PRXQuantum.2.010326Cc32R1
PRXQuantum.2.010326Cc10R1
PRXQuantum.2.010326Cc30R1
PRXQuantum.2.010326Cc19R1
PRXQuantum.2.010326Cc16R1
PRXQuantum.2.010326Cc39R1
PRXQuantum.2.010326Cc15R1
PRXQuantum.2.010326Cc18R1
PRXQuantum.2.010326Cc17R1
PRXQuantum.2.010326Cc44R1
PRXQuantum.2.010326Cc20R1
PRXQuantum.2.010326Cc43R1
PRXQuantum.2.010326Cc42R1
PRXQuantum.2.010326Cc41R1
PRXQuantum.2.010326Cc9R1
PRXQuantum.2.010326Cc8R1
PRXQuantum.2.010326Cc7R1
PRXQuantum.2.010326Cc6R1
PRXQuantum.2.010326Cc1R1
PRXQuantum.2.010326Cc5R1
PRXQuantum.2.010326Cc4R1
PRXQuantum.2.010326Cc29R1
References_xml – ident: PRXQuantum.2.010326Cc19R1
  doi: 10.1109/TIT.2008.928980
– ident: PRXQuantum.2.010326Cc16R1
  doi: 10.1038/ncomms4821
– ident: PRXQuantum.2.010326Cc32R1
  doi: 10.1109/TIT.2005.860824
– ident: PRXQuantum.2.010326Cc42R1
  doi: 10.1103/PhysRevLett.92.187901
– ident: PRXQuantum.2.010326Cc14R1
  doi: 10.1088/1367-2630/15/3/033001
– ident: PRXQuantum.2.010326Cc15R1
  doi: 10.1103/PhysRevA.90.014102
– ident: PRXQuantum.2.010326Cc8R1
  doi: 10.1088/1367-2630/8/4/058
– ident: PRXQuantum.2.010326Cc10R1
  doi: 10.1103/PhysRevLett.86.4160
– ident: PRXQuantum.2.010326Cc6R1
  doi: 10.1103/PhysRevLett.85.2010
– ident: PRXQuantum.2.010326Cc4R1
  doi: 10.1103/PhysRevLett.74.1259
– ident: PRXQuantum.2.010326Cc30R1
  doi: 10.1103/PhysRevA.55.1613
– ident: PRXQuantum.2.010326Cc12R1
  doi: 10.1088/1367-2630/10/3/033023
– ident: PRXQuantum.2.010326Cc31R1
  doi: 10.1142/S1230161208000043
– ident: PRXQuantum.2.010326Cc17R1
  doi: 10.1103/PhysRevLett.111.250404
– ident: PRXQuantum.2.010326Cc44R1
  doi: 10.1109/TIT.2004.839476
– ident: PRXQuantum.2.010326Cc7R1
  doi: 10.1103/PhysRevA.77.032345
– ident: PRXQuantum.2.010326Cc18R1
  doi: 10.1088/1367-2630/16/1/013009
– ident: PRXQuantum.2.010326Cc1R1
  doi: 10.1103/PhysRevLett.83.432
– ident: PRXQuantum.2.010326Cc20R1
  doi: 10.1103/PhysRevLett.102.110502
– ident: PRXQuantum.2.010326Cc11R1
  doi: 10.1103/RevModPhys.79.555
– ident: PRXQuantum.2.010326Cc41R1
  doi: 10.1007/s00220-006-1535-6
– ident: PRXQuantum.2.010326Cc5R1
  doi: 10.1103/PhysRevA.63.052309
– ident: PRXQuantum.2.010326Cc13R1
  doi: 10.1103/PhysRevA.90.062110
– ident: PRXQuantum.2.010326Cc39R1
  doi: 10.1103/PhysRevResearch.2.033116
– ident: PRXQuantum.2.010326Cc9R1
  doi: 10.1103/PhysRevLett.91.027901
– ident: PRXQuantum.2.010326Cc29R1
  doi: 10.1109/TIT.2004.839515
– ident: PRXQuantum.2.010326Cc43R1
  doi: 10.1007/s00220-004-1087-6
SSID ssj0002513149
Score 2.381217
Snippet The existence of quantum error-correcting codes is one of the most counterintuitive and potentially technologically important discoveries of...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 010326
Title Error Correction of Quantum Reference Frame Information
URI https://doaj.org/article/0217980603cf4f0c8c61cb780e5d84f1
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJSQWxKcoX_LASFo3dhJ7BNSqQioCRKVulu36JmhRaFd-O3dJKJlgYckQXWL7Lsp7J929Y-zKIwkujDcJpBATJQUkiIqQzBFbimgAAlC_8-QhH0_V_SybtUZ9UU1YLQ9cO65PnNlokQsZQIEIOuSD4AstYjbXCqrEBzGvlUzRPxhRWyL3b2SGBkL2H59nT2vc7Pqtl_ZouAHJKbSgqKXYX0HLaI_tNpyQ39R72WdbcXHAtqvazPBxyIphWS5LfkdzNKouBL4E3qzCN0KxfERlVrxpLyKzIzYdDV_uxkkz7yAJiJOrxLkYVUBPuUzEiJlGLlWuXeYxJzIRTOGjE144n4cClCnmygAuYoJzMqZeyWPWWSwX8YRxDIxEbmc8CbrlGryWSkfMbUIIwmeDLku_j25DIwZOMylebZUUCGl__GVTW_ury643D73XWhi_m9-STzemJGRd3cDw2ia89q_wnv7HS87YTkqlKDTHRZ-zzqpcxwvkEit_WX02eJ18Dr8AK7nJGg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Error+Correction+of+Quantum+Reference+Frame+Information&rft.jtitle=PRX+quantum&rft.au=Patrick+Hayden&rft.au=Sepehr+Nezami&rft.au=Sandu+Popescu&rft.au=Grant+Salton&rft.date=2021-02-18&rft.pub=American+Physical+Society&rft.eissn=2691-3399&rft.volume=2&rft.issue=1&rft.spage=010326&rft_id=info:doi/10.1103%2FPRXQuantum.2.010326&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0217980603cf4f0c8c61cb780e5d84f1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-3399&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-3399&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-3399&client=summon