Friend or Foe? Chloride Patterning in Halophytes

In this opinion article, we challenge the traditional view that breeding for reduced Cl− uptake would benefit plant salinity tolerance. A negative correlation between shoot Cl− concentration and plant biomass does not hold for halophytes – naturally salt tolerant species. We argue that, under physio...

Full description

Saved in:
Bibliographic Details
Published inTrends in plant science Vol. 24; no. 2; pp. 142 - 151
Main Authors Bazihizina, Nadia, Colmer, Timothy D., Cuin, Tracey Ann, Mancuso, Stefano, Shabala, Sergey
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this opinion article, we challenge the traditional view that breeding for reduced Cl− uptake would benefit plant salinity tolerance. A negative correlation between shoot Cl− concentration and plant biomass does not hold for halophytes – naturally salt tolerant species. We argue that, under physiologically relevant conditions, Cl− uptake requires plants to invest metabolic energy, and that the poor selectivity of Cl−-transporting proteins may explain the reported negative correlation between Cl− accumulation and crop salinity tolerance. We propose a new paradigm: salinity tolerance could be achieved by improving the selectivity of some of the broadly selective anion-transporting proteins (e.g., for NO3−>Cl−), alongside tight control of Cl− uptake, rather than targeting traits mediating its efflux from the root. Interest in the Cl− aspect of salinity tolerance has traditionally focused on non-halophytes. Knowledge of Cl− regulation in ‘salt-loving’ halophytes is limited, even though these plants thrive and survive at much higher external Cl− than non-halophytes and use Cl− for osmoregulation. Proteins catalysing root Cl− transport have recently been characterised in non-halophytes, but this knowledge needs to be extended to halophytes. Of interest is that single amino acid polymorphisms in halophytic transporters alter their function compared to their non-halophytic homologues. Our understanding of post-translational regulation of anion channels in stomata is fairly advanced, but that of root Cl− transport remains elusive. The calcineurin B-like protein (CBL)–CBL-interacting protein kinase (CIPK) network regulates several ion transport systems in plants. Does it also modulate Cl− transport?
AbstractList In this opinion article, we challenge the traditional view that breeding for reduced Cl- uptake would benefit plant salinity tolerance. A negative correlation between shoot Cl- concentration and plant biomass does not hold for halophytes - naturally salt tolerant species. We argue that, under physiologically relevant conditions, Cl- uptake requires plants to invest metabolic energy, and that the poor selectivity of Cl--transporting proteins may explain the reported negative correlation between Cl- accumulation and crop salinity tolerance. We propose a new paradigm: salinity tolerance could be achieved by improving the selectivity of some of the broadly selective anion-transporting proteins (e.g., for NO3->Cl-), alongside tight control of Cl- uptake, rather than targeting traits mediating its efflux from the root.In this opinion article, we challenge the traditional view that breeding for reduced Cl- uptake would benefit plant salinity tolerance. A negative correlation between shoot Cl- concentration and plant biomass does not hold for halophytes - naturally salt tolerant species. We argue that, under physiologically relevant conditions, Cl- uptake requires plants to invest metabolic energy, and that the poor selectivity of Cl--transporting proteins may explain the reported negative correlation between Cl- accumulation and crop salinity tolerance. We propose a new paradigm: salinity tolerance could be achieved by improving the selectivity of some of the broadly selective anion-transporting proteins (e.g., for NO3->Cl-), alongside tight control of Cl- uptake, rather than targeting traits mediating its efflux from the root.
In this opinion article, we challenge the traditional view that breeding for reduced Cl− uptake would benefit plant salinity tolerance. A negative correlation between shoot Cl− concentration and plant biomass does not hold for halophytes – naturally salt tolerant species. We argue that, under physiologically relevant conditions, Cl− uptake requires plants to invest metabolic energy, and that the poor selectivity of Cl−-transporting proteins may explain the reported negative correlation between Cl− accumulation and crop salinity tolerance. We propose a new paradigm: salinity tolerance could be achieved by improving the selectivity of some of the broadly selective anion-transporting proteins (e.g., for NO3−>Cl−), alongside tight control of Cl− uptake, rather than targeting traits mediating its efflux from the root.
In this opinion article, we challenge the traditional view that breeding for reduced Cl− uptake would benefit plant salinity tolerance. A negative correlation between shoot Cl− concentration and plant biomass does not hold for halophytes – naturally salt tolerant species. We argue that, under physiologically relevant conditions, Cl− uptake requires plants to invest metabolic energy, and that the poor selectivity of Cl−-transporting proteins may explain the reported negative correlation between Cl− accumulation and crop salinity tolerance. We propose a new paradigm: salinity tolerance could be achieved by improving the selectivity of some of the broadly selective anion-transporting proteins (e.g., for NO3−>Cl−), alongside tight control of Cl− uptake, rather than targeting traits mediating its efflux from the root. Interest in the Cl− aspect of salinity tolerance has traditionally focused on non-halophytes. Knowledge of Cl− regulation in ‘salt-loving’ halophytes is limited, even though these plants thrive and survive at much higher external Cl− than non-halophytes and use Cl− for osmoregulation. Proteins catalysing root Cl− transport have recently been characterised in non-halophytes, but this knowledge needs to be extended to halophytes. Of interest is that single amino acid polymorphisms in halophytic transporters alter their function compared to their non-halophytic homologues. Our understanding of post-translational regulation of anion channels in stomata is fairly advanced, but that of root Cl− transport remains elusive. The calcineurin B-like protein (CBL)–CBL-interacting protein kinase (CIPK) network regulates several ion transport systems in plants. Does it also modulate Cl− transport?
In this opinion article, we challenge the traditional view that breeding for reduced Cl uptake would benefit plant salinity tolerance. A negative correlation between shoot Cl concentration and plant biomass does not hold for halophytes - naturally salt tolerant species. We argue that, under physiologically relevant conditions, Cl uptake requires plants to invest metabolic energy, and that the poor selectivity of Cl -transporting proteins may explain the reported negative correlation between Cl accumulation and crop salinity tolerance. We propose a new paradigm: salinity tolerance could be achieved by improving the selectivity of some of the broadly selective anion-transporting proteins (e.g., for NO >Cl ), alongside tight control of Cl uptake, rather than targeting traits mediating its efflux from the root.
Interest in the Cl− aspect of salinity tolerance has traditionally focused on non-halophytes. Knowledge of Cl− regulation in ‘salt-loving’ halophytes is limited, even though these plants thrive and survive at much higher external Cl− than non-halophytes and use Cl− for osmoregulation. Proteins catalysing root Cl− transport have recently been characterised in non-halophytes, but this knowledge needs to be extended to halophytes. Of interest is that single amino acid polymorphisms in halophytic transporters alter their function compared to their non-halophytic homologues. Our understanding of post-translational regulation of anion channels in stomata is fairly advanced, but that of root Cl− transport remains elusive. The calcineurin B-like protein (CBL)–CBL-interacting protein kinase (CIPK) network regulates several ion transport systems in plants. Does it also modulate Cl− transport? In this opinion article, we challenge the traditional view that breeding for reduced Cl− uptake would benefit plant salinity tolerance. A negative correlation between shoot Cl− concentration and plant biomass does not hold for halophytes – naturally salt tolerant species. We argue that, under physiologically relevant conditions, Cl− uptake requires plants to invest metabolic energy, and that the poor selectivity of Cl−-transporting proteins may explain the reported negative correlation between Cl− accumulation and crop salinity tolerance. We propose a new paradigm: salinity tolerance could be achieved by improving the selectivity of some of the broadly selective anion-transporting proteins (e.g., for NO 3 −>Cl−), alongside tight control of Cl− uptake, rather than targeting traits mediating its efflux from the root.
Author Bazihizina, Nadia
Shabala, Sergey
Mancuso, Stefano
Cuin, Tracey Ann
Colmer, Timothy D.
Author_xml – sequence: 1
  givenname: Nadia
  surname: Bazihizina
  fullname: Bazihizina, Nadia
  email: nadia.bazihizina@unifi.it
  organization: Department of Agrifood Production and Environmental Sciences, Università degli Studi di Firenze, Viale delle Idee 30, 50019 Sesto Fiorentino, Florence, Italy
– sequence: 2
  givenname: Timothy D.
  surname: Colmer
  fullname: Colmer, Timothy D.
  organization: UWA School of Agriculture and Environment, Faculty of Science, University of Western Australia (UWA), 35 Stirling Highway, Crawley, WA 6009, Australia
– sequence: 3
  givenname: Tracey Ann
  surname: Cuin
  fullname: Cuin, Tracey Ann
  organization: Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
– sequence: 4
  givenname: Stefano
  surname: Mancuso
  fullname: Mancuso, Stefano
  organization: Department of Agrifood Production and Environmental Sciences, Università degli Studi di Firenze, Viale delle Idee 30, 50019 Sesto Fiorentino, Florence, Italy
– sequence: 5
  givenname: Sergey
  surname: Shabala
  fullname: Shabala, Sergey
  email: Sergey.Shabala@utas.edu.au
  organization: Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30558965$$D View this record in MEDLINE/PubMed
BookMark eNqNkT1vFDEQhi0URD7gJ4BWoqHZxeNdf6woInTiSKRIUEBtee1Z4tOefdg-pPx7fLpLkyapPMXzvtbMc0nOQgxIyHugHVAQnzdd2S0mlNwxCqoD6CjtX5ELUFK1Qy_ZWZ17QVvoFT8nlzlvKKUSlHhDznvKuRoFvyB0nTwG18TUrCNeN6v7JSbvsPlpSsEUfPjT-NDcmCXu7h8K5rfk9WyWjO9O7xX5vf72a3XT3v34frv6etfagYnSGiVcPzLpZoluHgdwdJJsdBPjOFmuFDg-SipmMQwT5zNSZ8ExZ1CqaZhEf0U-HXt3Kf7dYy5667PFpe6McZ81AzVyEJLTF6BcsUEJBhX9-ATdxH0KdZFDYe1iozxQH07Uftqi07vktyY96MezVeDLEbAp5pxw1tYXU3wMJRm_aKD6IElv9EmSPkjSALpKqmn-JP34wXO562MO693_eUw62yrPovMJbdEu-mca_gNYRqxV
CitedBy_id crossref_primary_10_1016_j_plaphy_2020_11_043
crossref_primary_10_1002_csc2_20949
crossref_primary_10_1016_j_flora_2022_152209
crossref_primary_10_1093_jxb_eraa158
crossref_primary_10_1371_journal_pone_0288985
crossref_primary_10_3390_plants13162322
crossref_primary_10_1016_j_stress_2021_100030
crossref_primary_10_17221_449_2024_PSE
crossref_primary_10_1038_s44318_024_00357_1
crossref_primary_10_3390_ijms25074088
crossref_primary_10_1186_s12870_021_03375_x
crossref_primary_10_1007_s10265_021_01285_5
crossref_primary_10_1111_nph_17176
crossref_primary_10_1016_j_cj_2021_02_010
crossref_primary_10_1080_11263504_2025_2452183
crossref_primary_10_3390_ijms241311045
crossref_primary_10_3389_fpls_2021_760863
crossref_primary_10_3390_ijms222312792
crossref_primary_10_3390_plants11192570
crossref_primary_10_1016_j_xinn_2020_100017
crossref_primary_10_1016_j_fcr_2025_109830
crossref_primary_10_1038_s41467_024_48234_z
crossref_primary_10_1016_j_plantsci_2024_112171
crossref_primary_10_1016_j_envexpbot_2021_104600
crossref_primary_10_1093_jxb_erab143
crossref_primary_10_1002_jpln_202000148
crossref_primary_10_1016_j_plaphy_2020_04_028
crossref_primary_10_1111_tpj_16549
crossref_primary_10_3390_plants12173030
crossref_primary_10_3390_biom11060788
crossref_primary_10_1007_s11104_022_05551_w
crossref_primary_10_1029_2022GB007372
crossref_primary_10_1080_10643389_2020_1735231
crossref_primary_10_3390_plants13060837
crossref_primary_10_1007_s10725_020_00662_9
crossref_primary_10_1016_j_plaphy_2019_03_005
crossref_primary_10_3390_ijpb14040083
crossref_primary_10_3390_life12101577
crossref_primary_10_3390_ijms20194686
crossref_primary_10_1016_j_scitotenv_2023_168449
crossref_primary_10_3389_fpls_2022_949541
crossref_primary_10_1186_s12575_019_0103_3
crossref_primary_10_3390_ijms252212349
crossref_primary_10_1590_1519_6984_271009
crossref_primary_10_1007_s00344_023_11033_9
crossref_primary_10_1016_j_scitotenv_2020_141244
crossref_primary_10_3389_fpls_2019_01418
crossref_primary_10_1111_ppl_14358
crossref_primary_10_1111_ppl_13502
crossref_primary_10_1016_j_stress_2023_100169
crossref_primary_10_1111_ppl_13702
crossref_primary_10_3390_plants10030436
crossref_primary_10_1016_j_aquabot_2020_103292
Cites_doi 10.1139/x03-066
10.1038/298483a0
10.1104/pp.16.00569
10.1093/jxb/ers302
10.1007/s002320010003
10.1007/s11104-009-0076-0
10.1093/aob/mcu219
10.1126/scisignal.aaa4829
10.1104/pp.106.3.1131
10.1111/j.1469-8137.2006.01748.x
10.1104/pp.78.1.100
10.1016/j.cub.2018.08.004
10.1007/s11032-013-9851-y
10.1104/pp.16.00017
10.1007/s12284-010-9053-8
10.1093/aob/mcp151
10.1111/j.1365-313X.2006.02876.x
10.1111/nph.13757
10.3390/ijms19020492
10.1016/0014-5793(84)80217-3
10.1111/nph.13507
10.1016/j.plaphy.2016.01.006
10.1111/j.1365-3040.2007.01726.x
10.1071/FP16025
10.1104/pp.61.3.361
10.1093/aob/mcu217
10.1038/nature05013
10.1038/ng1643
10.1007/s00425-003-1137-x
10.1104/pp.108.129494
10.1111/j.0960-7412.2004.02053.x
10.1093/jxb/38.12.1996
10.1093/jxb/erv502
10.1093/jxb/28.4.894
10.1016/j.cub.2016.06.045
10.1093/jxb/erq422
10.1093/jxb/44.3.653
10.1111/j.1365-3040.2012.02511.x
10.1016/j.plantsci.2018.02.014
10.1111/pce.12180
10.1111/j.1399-3054.1983.tb04172.x
10.1104/pp.104.041723
10.1105/tpc.16.00806
10.1111/j.1399-3054.2011.01450.x
10.1016/j.ceca.2014.10.013
10.1093/jxb/erx050
10.1111/j.1469-8137.1987.tb00874.x
10.1186/s12870-014-0273-8
10.1186/1471-2229-13-32
10.1093/jxb/34.9.1196
10.1093/aob/mcu194
10.1105/tpc.16.00724
10.1111/j.1365-313X.2007.03344.x
10.1016/j.plantsci.2015.02.011
10.1111/j.1469-8137.2006.01639.x
10.1038/cr.2017.124
10.1080/14620316.2002.11511456
10.1111/j.1365-3040.2009.02060.x
10.1104/pp.111.193110
10.1016/j.envexpbot.2012.09.006
10.1093/pcp/pcy071
10.1006/anbo.2001.1540
10.1016/j.tplants.2006.09.011
10.1016/j.envexpbot.2017.07.003
10.1186/gb4003
10.1016/j.tplants.2016.12.004
10.1007/BF00392163
10.1071/FP12285
10.1111/j.1399-3054.1989.tb06185.x
10.1007/s10725-015-0034-1
10.1111/j.1365-313X.2010.04288.x
10.1146/annurev-arplant-042110-103741
10.1016/j.tplants.2011.08.002
10.1104/pp.104.039909
10.1111/j.1438-8677.2009.00207.x
10.1073/pnas.1407610111
10.1104/pp.105.067850
10.1073/pnas.1209954109
10.1111/nph.13519
10.1038/ncomms3797
10.1093/jxb/erx142
10.1073/pnas.1507810112
10.1111/1365-3040.ep11616302
10.1071/FP12304
10.1093/aob/mct205
10.1016/S0304-4211(84)80015-2
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright Elsevier BV Feb 2019
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier BV Feb 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QR
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1016/j.tplants.2018.11.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

MEDLINE
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Botany
EISSN 1878-4372
EndPage 151
ExternalDocumentID 30558965
10_1016_j_tplants_2018_11_003
S1360138518302656
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
-DZ
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RCE
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
TWZ
VQA
XPP
Y6R
ZCA
~G-
~KM
AAHBH
AAMRU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QR
7T7
7TM
7U9
8FD
C1K
EFKBS
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c426t-a86d3927df7edf941d0b729db25ebc5881d59706f644b55fe0dc1d2dae78b4b63
IEDL.DBID .~1
ISSN 1360-1385
1878-4372
IngestDate Fri Jul 11 09:31:50 EDT 2025
Fri Jul 11 07:23:46 EDT 2025
Wed Aug 13 02:43:41 EDT 2025
Thu Apr 03 07:01:58 EDT 2025
Tue Jul 01 00:57:55 EDT 2025
Thu Apr 24 23:02:27 EDT 2025
Fri Feb 23 02:26:40 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords salinity tolerance
membrane transport proteins
halophytes
influx
Ca2+ signalling
efflux
Ca(2+) signalling
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-a86d3927df7edf941d0b729db25ebc5881d59706f644b55fe0dc1d2dae78b4b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 30558965
PQID 2185032971
PQPubID 2045386
PageCount 10
ParticipantIDs proquest_miscellaneous_2189516750
proquest_miscellaneous_2158248621
proquest_journals_2185032971
pubmed_primary_30558965
crossref_citationtrail_10_1016_j_tplants_2018_11_003
crossref_primary_10_1016_j_tplants_2018_11_003
elsevier_sciencedirect_doi_10_1016_j_tplants_2018_11_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2019
2019-02-00
20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Kidlington
PublicationTitle Trends in plant science
PublicationTitleAlternate Trends Plant Sci
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Li (bib0045) 2016; 7
Shabala (bib0030) 2013; 112
Tavakkoli (bib0055) 2011; 6
Wege (bib0245) 2010; 63
Van Kirk, Raschke (bib0100) 1978; 61
Roberts Stephen (bib0305) 2006; 169
Teakle (bib0205) 2013; 87
Wu (bib0340) 2012; 109
Galloway, Davidson (bib0380) 1993; 44
Ma (bib0295) 2013; 4
Ren (bib0265) 2005; 37
Flowers (bib0395) 2015; 115
Ali (bib0260) 2012; 158
Teakle, Tyerman (bib0040) 2010; 33
Genc (bib0140) 2013; 32
Wen (bib0155) 2017; 29
Chen (bib0435) 2016; 171
Jeschke (bib0390) 1986; 9
Chaves-Sanjuan (bib0420) 2014; 111
Jacoby (bib0230) 2011; 16
Taji (bib0290) 2004; 135
Besada (bib0070) 2016; 100
Hajibagheri (bib0120) 1984; 34
Raven (bib0025) 2017; 68
Geilfus (bib0015) 2018; 59
Burchett (bib0235) 2006; 75
Moir-Barnetson (bib0085) 2016; 4
Volkov, Amtmann (bib0200) 2006; 4
Bose (bib0125) 2017; 68
Navarro (bib0065) 2002; 7
Chen (bib0365) 2003; 33
Redondo-Gómez (bib0115) 2009; 12
Geilfus (bib0160) 2015; 208
Britto, Kronzucker (bib0225) 2006; 11
Andersson (bib0105) 1984; 168
Song (bib0360) 2006; 171
White, Broadley (bib0180) 2001; 8
Genc (bib0135) 2016; 210
Li (bib0005) 2017; 22
Wege (bib0010) 2017; 68
English, Colmer (bib0090) 2013; 40
Critchley (bib0110) 1982; 298
Henderson (bib0050) 2014; 1
Inan (bib0280) 2004; 135
Zhang (bib0440) 2010; 326
Oh (bib0285) 2012; 13
Storey (bib0400) 1983; 34
Britto (bib0220) 2004; 218
Henderson (bib0450) 2015; 169
Franco-Navarro (bib0130) 2016; 67
Piñeros Miguel (bib0430) 2007; 53
Ali (bib0255) 2016; 171
Sun (bib0035) 2009; 149
Ellouzi (bib0315) 2011; 142
Bazihizina (bib0080) 2009; 10
Bose (bib0195) 2015; 115
Yeo (bib0240) 1983; 58
Vera-Estrella (bib0275) 2005; 139
Henderson (bib0445) 2018; 19
Clipson (bib0375) 1987; 38
Straub (bib0335) 2017; 29
Sun (bib0415) 2017; 141
Felle (bib0185) 1994; 106
Ragel (bib0330) 2015; 169
Thoday-Kennedy (bib0425) 2015; 76
Scherzer (bib0325) 2015; 112
Anderson (bib0405) 1977; 28
Léran (bib0350) 2015; 8
Katschnig (bib0175) 2015; 234
Hajibagheri, Flowers (bib0385) 1989; 177
Bazihizina (bib0075) 2012; 6
Thomson (bib0270) 2010
Li (bib0345) 2012; 35
McNulty (bib0370) 1985; 78
Lorenzen (bib0060) 2004; 38
Platten (bib0150) 2013; 13
Böhm (bib0165) 2018; 28
Edel, Kudla (bib0320) 2015; 57
Wissing, Smith (bib0170) 2000; 17
Geilfus (bib0020) 2018; 270
Munns, Gilliham (bib0095) 2015; 208
Zou (bib0300) 2017; 27
De Angeli (bib0250) 2006; 442
Bose (bib0210) 2014; 37
Cheeseman (bib0215) 2013; 40
Cubero-Font (bib0355) 2016; 26
Barbier-Brygoo (bib0310) 2011; 62
Song, Wang (bib0190) 2015; 115
Genc (bib0145) 2007; 30
Hajibagheri (bib0410) 1987; 105
Taji (10.1016/j.tplants.2018.11.003_bib0290) 2004; 135
Bose (10.1016/j.tplants.2018.11.003_bib0210) 2014; 37
Bazihizina (10.1016/j.tplants.2018.11.003_bib0075) 2012; 6
Sun (10.1016/j.tplants.2018.11.003_bib0415) 2017; 141
Hajibagheri (10.1016/j.tplants.2018.11.003_bib0120) 1984; 34
Barbier-Brygoo (10.1016/j.tplants.2018.11.003_bib0310) 2011; 62
Scherzer (10.1016/j.tplants.2018.11.003_bib0325) 2015; 112
Britto (10.1016/j.tplants.2018.11.003_bib0220) 2004; 218
Léran (10.1016/j.tplants.2018.11.003_bib0350) 2015; 8
Andersson (10.1016/j.tplants.2018.11.003_bib0105) 1984; 168
Ellouzi (10.1016/j.tplants.2018.11.003_bib0315) 2011; 142
Franco-Navarro (10.1016/j.tplants.2018.11.003_bib0130) 2016; 67
Ren (10.1016/j.tplants.2018.11.003_bib0265) 2005; 37
Anderson (10.1016/j.tplants.2018.11.003_bib0405) 1977; 28
De Angeli (10.1016/j.tplants.2018.11.003_bib0250) 2006; 442
Straub (10.1016/j.tplants.2018.11.003_bib0335) 2017; 29
Thomson (10.1016/j.tplants.2018.11.003_bib0270) 2010
Li (10.1016/j.tplants.2018.11.003_bib0005) 2017; 22
Sun (10.1016/j.tplants.2018.11.003_bib0035) 2009; 149
Böhm (10.1016/j.tplants.2018.11.003_bib0165) 2018; 28
Flowers (10.1016/j.tplants.2018.11.003_bib0395) 2015; 115
Piñeros Miguel (10.1016/j.tplants.2018.11.003_bib0430) 2007; 53
Cubero-Font (10.1016/j.tplants.2018.11.003_bib0355) 2016; 26
Bazihizina (10.1016/j.tplants.2018.11.003_bib0080) 2009; 10
English (10.1016/j.tplants.2018.11.003_bib0090) 2013; 40
Critchley (10.1016/j.tplants.2018.11.003_bib0110) 1982; 298
Yeo (10.1016/j.tplants.2018.11.003_bib0240) 1983; 58
Chen (10.1016/j.tplants.2018.11.003_bib0365) 2003; 33
Felle (10.1016/j.tplants.2018.11.003_bib0185) 1994; 106
Ragel (10.1016/j.tplants.2018.11.003_bib0330) 2015; 169
Van Kirk (10.1016/j.tplants.2018.11.003_bib0100) 1978; 61
Geilfus (10.1016/j.tplants.2018.11.003_bib0160) 2015; 208
Zou (10.1016/j.tplants.2018.11.003_bib0300) 2017; 27
Henderson (10.1016/j.tplants.2018.11.003_bib0050) 2014; 1
Henderson (10.1016/j.tplants.2018.11.003_bib0450) 2015; 169
Song (10.1016/j.tplants.2018.11.003_bib0360) 2006; 171
Geilfus (10.1016/j.tplants.2018.11.003_bib0015) 2018; 59
Platten (10.1016/j.tplants.2018.11.003_bib0150) 2013; 13
Volkov (10.1016/j.tplants.2018.11.003_bib0200) 2006; 4
Galloway (10.1016/j.tplants.2018.11.003_bib0380) 1993; 44
Ali (10.1016/j.tplants.2018.11.003_bib0255) 2016; 171
Storey (10.1016/j.tplants.2018.11.003_bib0400) 1983; 34
Thoday-Kennedy (10.1016/j.tplants.2018.11.003_bib0425) 2015; 76
Shabala (10.1016/j.tplants.2018.11.003_bib0030) 2013; 112
Bose (10.1016/j.tplants.2018.11.003_bib0125) 2017; 68
Jeschke (10.1016/j.tplants.2018.11.003_bib0390) 1986; 9
Wen (10.1016/j.tplants.2018.11.003_bib0155) 2017; 29
Li (10.1016/j.tplants.2018.11.003_bib0345) 2012; 35
Jacoby (10.1016/j.tplants.2018.11.003_bib0230) 2011; 16
Redondo-Gómez (10.1016/j.tplants.2018.11.003_bib0115) 2009; 12
Inan (10.1016/j.tplants.2018.11.003_bib0280) 2004; 135
Besada (10.1016/j.tplants.2018.11.003_bib0070) 2016; 100
Clipson (10.1016/j.tplants.2018.11.003_bib0375) 1987; 38
Hajibagheri (10.1016/j.tplants.2018.11.003_bib0410) 1987; 105
Tavakkoli (10.1016/j.tplants.2018.11.003_bib0055) 2011; 6
White (10.1016/j.tplants.2018.11.003_bib0180) 2001; 8
Teakle (10.1016/j.tplants.2018.11.003_bib0205) 2013; 87
McNulty (10.1016/j.tplants.2018.11.003_bib0370) 1985; 78
Teakle (10.1016/j.tplants.2018.11.003_bib0040) 2010; 33
Chen (10.1016/j.tplants.2018.11.003_bib0435) 2016; 171
Zhang (10.1016/j.tplants.2018.11.003_bib0440) 2010; 326
Genc (10.1016/j.tplants.2018.11.003_bib0140) 2013; 32
Wissing (10.1016/j.tplants.2018.11.003_bib0170) 2000; 17
Henderson (10.1016/j.tplants.2018.11.003_bib0445) 2018; 19
Wege (10.1016/j.tplants.2018.11.003_bib0010) 2017; 68
Ma (10.1016/j.tplants.2018.11.003_bib0295) 2013; 4
Raven (10.1016/j.tplants.2018.11.003_bib0025) 2017; 68
Navarro (10.1016/j.tplants.2018.11.003_bib0065) 2002; 7
Cheeseman (10.1016/j.tplants.2018.11.003_bib0215) 2013; 40
Edel (10.1016/j.tplants.2018.11.003_bib0320) 2015; 57
Oh (10.1016/j.tplants.2018.11.003_bib0285) 2012; 13
Wu (10.1016/j.tplants.2018.11.003_bib0340) 2012; 109
Moir-Barnetson (10.1016/j.tplants.2018.11.003_bib0085) 2016; 4
Genc (10.1016/j.tplants.2018.11.003_bib0135) 2016; 210
Wege (10.1016/j.tplants.2018.11.003_bib0245) 2010; 63
Genc (10.1016/j.tplants.2018.11.003_bib0145) 2007; 30
Britto (10.1016/j.tplants.2018.11.003_bib0225) 2006; 11
Ali (10.1016/j.tplants.2018.11.003_bib0260) 2012; 158
Roberts Stephen (10.1016/j.tplants.2018.11.003_bib0305) 2006; 169
Burchett (10.1016/j.tplants.2018.11.003_bib0235) 2006; 75
Bose (10.1016/j.tplants.2018.11.003_bib0195) 2015; 115
Geilfus (10.1016/j.tplants.2018.11.003_bib0020) 2018; 270
Katschnig (10.1016/j.tplants.2018.11.003_bib0175) 2015; 234
Lorenzen (10.1016/j.tplants.2018.11.003_bib0060) 2004; 38
Song (10.1016/j.tplants.2018.11.003_bib0190) 2015; 115
Chaves-Sanjuan (10.1016/j.tplants.2018.11.003_bib0420) 2014; 111
Hajibagheri (10.1016/j.tplants.2018.11.003_bib0385) 1989; 177
Vera-Estrella (10.1016/j.tplants.2018.11.003_bib0275) 2005; 139
Li (10.1016/j.tplants.2018.11.003_bib0045) 2016; 7
Munns (10.1016/j.tplants.2018.11.003_bib0095) 2015; 208
References_xml – volume: 100
  start-page: 105
  year: 2016
  end-page: 112
  ident: bib0070
  article-title: Chloride stress triggers maturation and negatively affects the postharvest quality of persimmon fruit. Involvement of calyx ethylene production
  publication-title: Plant Physiol. Biochem.
– volume: 135
  start-page: 1718
  year: 2004
  end-page: 1737
  ident: bib0280
  article-title: Salt cress. A halophyte and cryophyte
  publication-title: Plant Physiol.
– volume: 4
  start-page: 2797
  year: 2013
  ident: bib0295
  article-title: Genomic insights into salt adaptation in a desert poplar
  publication-title: Nat. Commun.
– volume: 27
  start-page: 1327
  year: 2017
  end-page: 1340
  ident: bib0300
  article-title: A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value
  publication-title: Cell Res.
– volume: 63
  start-page: 861
  year: 2010
  end-page: 869
  ident: bib0245
  article-title: The proline 160 in the selectivity filter of the
  publication-title: Plant J.
– volume: 169
  start-page: 647
  year: 2006
  end-page: 666
  ident: bib0305
  article-title: Plasma membrane anion channels in higher plants and their putative functions in roots
  publication-title: New Phytol.
– volume: 22
  start-page: 236
  year: 2017
  end-page: 248
  ident: bib0005
  article-title: Chloride on the move
  publication-title: Trends Plant Sci.
– volume: 141
  start-page: 154
  year: 2017
  end-page: 160
  ident: bib0415
  article-title: A comparative analysis of cytosolic Na
  publication-title: Environ. Exp. Bot.
– volume: 30
  start-page: 1486
  year: 2007
  end-page: 1498
  ident: bib0145
  article-title: Reassessment of tissue Na
  publication-title: Plant Cell Environ.
– volume: 149
  start-page: 1141
  year: 2009
  end-page: 1153
  ident: bib0035
  article-title: NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species
  publication-title: Plant Physiol.
– volume: 6
  start-page: 2189
  year: 2011
  end-page: 2203
  ident: bib0055
  article-title: Additive effects of Na
  publication-title: J. Exp. Bot.
– volume: 13
  start-page: 241
  year: 2012
  ident: bib0285
  article-title: Life at the extreme: lessons from the genome
  publication-title: Genome Biol.
– volume: 115
  start-page: 481
  year: 2015
  end-page: 494
  ident: bib0195
  article-title: Rapid regulation of the plasma membrane H
  publication-title: Ann. Bot.
– volume: 35
  start-page: 1582
  year: 2012
  end-page: 1600
  ident: bib0345
  article-title: HbCIPK2, a novel CBL-interacting protein kinase from halophyte
  publication-title: Plant Cell Environ.
– volume: 112
  start-page: 1209
  year: 2013
  end-page: 1221
  ident: bib0030
  article-title: Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops
  publication-title: Ann. Bot.
– start-page: 148
  year: 2010
  end-page: 160
  ident: bib0270
  article-title: Characterizing the saltol quantitative trait locus for salinity tolerance in rice
  publication-title: Rice
– volume: 139
  start-page: 1507
  year: 2005
  end-page: 1517
  ident: bib0275
  article-title: Salt stress in
  publication-title: Plant Physiol.
– volume: 112
  start-page: 7309
  year: 2015
  ident: bib0325
  article-title: Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 58
  start-page: 214
  year: 1983
  end-page: 222
  ident: bib0240
  article-title: Salinity resistance: physiologies and prices
  publication-title: Physiol. Plant.
– volume: 34
  start-page: 1196
  year: 1983
  end-page: 1206
  ident: bib0400
  article-title: X-Ray micro-analysis of cells and cell compartments of
  publication-title: J. Exp. Bot.
– volume: 171
  start-page: 494
  year: 2016
  end-page: 507
  ident: bib0435
  article-title: A cation–chloride cotransporter gene is required for cell elongation and osmoregulation in rice
  publication-title: Plant Physiol.
– volume: 169
  start-page: 2863
  year: 2015
  end-page: 2873
  ident: bib0330
  article-title: The CBL-interacting protein kinase CIPK23 regulates HAK5-mediated high-affinity K
  publication-title: Plant Physiol.
– volume: 26
  start-page: 2213
  year: 2016
  end-page: 2220
  ident: bib0355
  article-title: Silent S-type anion channel subunit SLAH1 gates SLAH3 open for chloride root-to-shoot translocation
  publication-title: Curr. Biol.
– volume: 1
  start-page: 273
  year: 2014
  ident: bib0050
  article-title: Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots
  publication-title: BMC Plant Biol.
– volume: 106
  start-page: 1131
  year: 1994
  end-page: 1136
  ident: bib0185
  article-title: The H
  publication-title: Plant Physiol.
– volume: 4
  start-page: 739
  year: 2016
  end-page: 750
  ident: bib0085
  article-title: Salinity tolerances of three succulent halophytes
  publication-title: Funct. Plant Biol.
– volume: 298
  start-page: 483
  year: 1982
  end-page: 485
  ident: bib0110
  article-title: Stimulation of photosynthetic electron transport in a salt-tolerant plant by high chloride concentrations
  publication-title: Nature
– volume: 68
  start-page: 3129
  year: 2017
  end-page: 3143
  ident: bib0125
  article-title: Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes
  publication-title: J. Exp. Bot.
– volume: 59
  start-page: 877
  year: 2018
  end-page: 886
  ident: bib0015
  article-title: Chloride: from nutrient to toxicant
  publication-title: Plant Cell Physiol.
– volume: 442
  start-page: 939
  year: 2006
  ident: bib0250
  article-title: The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles
  publication-title: Nature
– volume: 28
  start-page: 894
  year: 1977
  end-page: 901
  ident: bib0405
  article-title: Electrophysiological measurements on the root of
  publication-title: J. Exp. Bot.
– volume: 61
  start-page: 361
  year: 1978
  end-page: 364
  ident: bib0100
  article-title: Presence of chloride reduces malate production in epidermis during stomatal opening
  publication-title: Plant Physiol.
– volume: 11
  start-page: 529
  year: 2006
  end-page: 534
  ident: bib0225
  article-title: Futile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport
  publication-title: Trends Plant Sci.
– volume: 28
  start-page: 3075
  year: 2018
  end-page: 3085
  ident: bib0165
  article-title: Understanding the molecular basis of salt sequestration in epidermal bladder cells of
  publication-title: Curr. Biol.
– volume: 37
  start-page: 1141
  year: 2005
  ident: bib0265
  article-title: A rice quantitative trait locus for salt tolerance encodes a sodium transporter
  publication-title: Nat. Genet.
– volume: 29
  start-page: 409
  year: 2017
  end-page: 422
  ident: bib0335
  article-title: The kinase CIPK23 inhibits ammonium transport in
  publication-title: Plant Cell
– volume: 109
  start-page: 12219
  year: 2012
  end-page: 12224
  ident: bib0340
  article-title: Insights into salt tolerance from the genome of
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 87
  start-page: 69
  year: 2013
  end-page: 78
  ident: bib0205
  article-title: Differential tolerance to combined salinity and O
  publication-title: Environ. Exp. Bot.
– volume: 135
  start-page: 1697
  year: 2004
  end-page: 1709
  ident: bib0290
  article-title: Comparative genomics in salt tolerance between
  publication-title: Plant Physiol.
– volume: 17
  start-page: 199
  year: 2000
  end-page: 208
  ident: bib0170
  article-title: Vacuolar chloride transport in
  publication-title: J. Membr. Biol.
– volume: 169
  start-page: 2215
  year: 2015
  end-page: 2219
  ident: bib0450
  article-title: Grapevine and
  publication-title: Plant Physiol.
– volume: 57
  start-page: 231
  year: 2015
  end-page: 246
  ident: bib0320
  article-title: Increasing complexity and versatility: how the calcium signaling toolkit was shaped during plant land colonization
  publication-title: Cell Calcium
– volume: 67
  start-page: 873
  year: 2016
  end-page: 891
  ident: bib0130
  article-title: Chloride regulates leaf cell size and water relations in tobacco plants
  publication-title: J. Exp. Bot.
– volume: 32
  start-page: 39
  year: 2013
  end-page: 59
  ident: bib0140
  article-title: Quantitative trait loci for agronomic and physiological traits for a bread wheat population grown in environments with a range of salinity levels
  publication-title: Mol. Breed.
– volume: 40
  start-page: 759
  year: 2013
  end-page: 774
  ident: bib0215
  article-title: The integration of activity in saline environments: problems and perspectives
  publication-title: Funct. Plant Biol.
– volume: 7
  start-page: 52
  year: 2002
  end-page: 57
  ident: bib0065
  article-title: Yield and fruit quality of pepper plants under sulphate and chloride salinity
  publication-title: J. Hortic. Sci. Biotechnol.
– volume: 76
  start-page: 3
  year: 2015
  end-page: 12
  ident: bib0425
  article-title: The role of the CBL–CIPK calcium signalling network in regulating ion transport in response to abiotic stress
  publication-title: Plant Growth Regul.
– volume: 78
  start-page: 100
  year: 1985
  end-page: 103
  ident: bib0370
  article-title: Rapid osmotic adjustment by a succulent halophyte to saline shock
  publication-title: Plant Physiol.
– volume: 326
  start-page: 45
  year: 2010
  end-page: 60
  ident: bib0440
  article-title: Mechanisms of sodium uptake by roots of higher plants
  publication-title: Plant Soil
– volume: 177
  start-page: 131
  year: 1989
  end-page: 134
  ident: bib0385
  article-title: X-ray microanalysis of ion distribution within root cortical cells of the halophyte
  publication-title: Planta
– volume: 4
  start-page: 342
  year: 2006
  end-page: 353
  ident: bib0200
  article-title: , a salt-tolerant relative of
  publication-title: Plant J.
– volume: 142
  start-page: 128
  year: 2011
  end-page: 143
  ident: bib0315
  article-title: Early effects of salt stress on the physiological and oxidative status of
  publication-title: Physiol. Plant.
– volume: 208
  start-page: 803
  year: 2015
  end-page: 816
  ident: bib0160
  article-title: Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed
  publication-title: New Phytol.
– volume: 37
  start-page: 589
  year: 2014
  end-page: 600
  ident: bib0210
  article-title: Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K
  publication-title: Plant Cell Environ.
– volume: 62
  start-page: 25
  year: 2011
  end-page: 51
  ident: bib0310
  article-title: Anion channels/transporters in plants: from molecular bases to regulatory networks
  publication-title: Annu. Rev. Plant Biol.
– volume: 105
  start-page: 367
  year: 1987
  end-page: 379
  ident: bib0410
  article-title: Quantitative ion distribution within root cells of salt-sensitive and salt-tolerant maize varieties
  publication-title: New Phytol.
– volume: 12
  start-page: 79
  year: 2009
  end-page: 87
  ident: bib0115
  article-title: Salt stimulation of growth and photosynthesis in an extreme halophyte,
  publication-title: Plant Biol.
– volume: 208
  start-page: 668
  year: 2015
  end-page: 673
  ident: bib0095
  article-title: Salinity tolerance of crops – what is the cost?
  publication-title: New Phytol.
– volume: 34
  start-page: 353
  year: 1984
  end-page: 362
  ident: bib0120
  article-title: Photosynthetic oxygen evolution in relation to ion contents in the chloroplasts of
  publication-title: Plant Sci. Lett.
– volume: 68
  start-page: 359
  year: 2017
  end-page: 367
  ident: bib0025
  article-title: Chloride: essential micronutrient and multifunctional beneficial ion
  publication-title: J. Exp. Bot.
– volume: 33
  start-page: 967
  year: 2003
  end-page: 975
  ident: bib0365
  article-title: Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerated plants of
  publication-title: Can. J. For. Res.
– volume: 8
  year: 2015
  ident: bib0350
  article-title: Nitrate sensing and uptake in
  publication-title: Sci. Signal.
– volume: 16
  start-page: 614
  year: 2011
  end-page: 623
  ident: bib0230
  article-title: The role of mitochondrial respiration in salinity tolerance
  publication-title: Trends Plant Sci.
– volume: 168
  start-page: 113
  year: 1984
  end-page: 117
  ident: bib0105
  article-title: Modification of the chloride requirement for photosynthetic O
  publication-title: FEBS Lett.
– volume: 38
  start-page: 1996
  year: 1987
  end-page: 2004
  ident: bib0375
  article-title: Salt tolerance in the halophyte
  publication-title: J. Exp. Bot.
– volume: 111
  start-page: E4532
  year: 2014
  end-page: E4541
  ident: bib0420
  article-title: Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 38
  start-page: 539
  year: 2004
  end-page: 544
  ident: bib0060
  article-title: Salt stress-induced chloride flux: a study using transgenic
  publication-title: Plant J.
– volume: 13
  start-page: 32
  year: 2013
  ident: bib0150
  article-title: Salinity tolerance, Na
  publication-title: BMC Plant Biol.
– volume: 19
  start-page: E492
  year: 2018
  ident: bib0445
  article-title: Plant cation–chloride cotransporters (CCC): evolutionary origins and functional insights
  publication-title: Int. J. Mol. Sci.
– volume: 171
  start-page: 357
  year: 2006
  end-page: 365
  ident: bib0360
  article-title: Nutritional and osmotic roles of nitrate in a euhalophyte and a xerophyte in saline conditions
  publication-title: New Phytol.
– volume: 8
  start-page: 967
  year: 2001
  end-page: 988
  ident: bib0180
  article-title: Chloride in soils and its uptake and movement within the plant: a review
  publication-title: Ann. Bot.
– volume: 75
  start-page: 299
  year: 2006
  end-page: 303
  ident: bib0235
  article-title: Growth and respiration in two mangrove species at a range of salinities
  publication-title: Physiol. Plant.
– volume: 53
  start-page: 352
  year: 2007
  end-page: 367
  ident: bib0430
  article-title: Not all ALMT1-type transporters mediate aluminum – activated organic acid responses: the case of ZmALMT1 – an anion-selective transporter
  publication-title: Plant J.
– volume: 6
  start-page: 6347
  year: 2012
  end-page: 6358
  ident: bib0075
  article-title: Plant responses to heterogeneous salinity: growth of the halophyte
  publication-title: J. Exp. Bot.
– volume: 33
  start-page: 566
  year: 2010
  end-page: 589
  ident: bib0040
  article-title: Mechanisms of Cl
  publication-title: Plant Cell Environ.
– volume: 115
  start-page: 541
  year: 2015
  end-page: 553
  ident: bib0190
  article-title: Using euhalophytes to understand salt tolerance and to develop saline agriculture:
  publication-title: Ann. Bot.
– volume: 218
  start-page: 615
  year: 2004
  end-page: 622
  ident: bib0220
  article-title: Cellular and whole-plant chloride dynamics in barley: insights into chloride–nitrogen interactions and salinity responses
  publication-title: Planta
– volume: 270
  start-page: 114
  year: 2018
  end-page: 122
  ident: bib0020
  article-title: Review on the significance of chlorine for crop yield and quality
  publication-title: Plant Sci.
– volume: 68
  start-page: 3057
  year: 2017
  end-page: 3069
  ident: bib0010
  article-title: Chloride: not simply a ‘cheap osmoticum’, but a beneficial plant macronutrient
  publication-title: J. Exp. Bot.
– volume: 7
  start-page: 2013
  year: 2016
  ident: bib0045
  article-title: AtNPF2.5 modulates chloride (Cl
  publication-title: Front. Plant Sci.
– volume: 210
  start-page: 145
  year: 2016
  end-page: 156
  ident: bib0135
  article-title: Uncoupling of sodium and chloride to assist breeding for salinity tolerance in crops
  publication-title: New Phytol.
– volume: 10
  start-page: 737
  year: 2009
  end-page: 745
  ident: bib0080
  article-title: Response to non-uniform salinity in the root zone of the halophyte
  publication-title: Ann. Bot.
– volume: 9
  start-page: 559
  year: 1986
  end-page: 569
  ident: bib0390
  article-title: Effects of NaCl on ion relations and carbohydrate status of roots and on osmotic regulation of roots and shoots of
  publication-title: Plant Cell Environ.
– volume: 40
  start-page: 897
  year: 2013
  end-page: 912
  ident: bib0090
  article-title: Tolerance of extreme salinity in two stem-succulent halophytes (
  publication-title: Funct. Plant Biol.
– volume: 44
  start-page: 653
  year: 1993
  end-page: 663
  ident: bib0380
  article-title: The response of
  publication-title: J. Exp. Bot.
– volume: 171
  start-page: 2112
  year: 2016
  end-page: 2126
  ident: bib0255
  article-title: A single amino-acid substitution in the sodium transporter HKT1 associated with plant salt tolerance
  publication-title: Plant Physiol.
– volume: 115
  start-page: 419
  year: 2015
  end-page: 431
  ident: bib0395
  article-title: Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes
  publication-title: Ann. Bot.
– volume: 29
  start-page: 2581
  year: 2017
  end-page: 2596
  ident: bib0155
  article-title: Maize NPF6 proteins are homologs of
  publication-title: Plant Cell
– volume: 158
  start-page: 1463
  year: 2012
  end-page: 1474
  ident: bib0260
  article-title: TsHKT1;2, a HKT1 homolog from the extremophile
  publication-title: Plant Physiol.
– volume: 234
  start-page: 144
  year: 2015
  end-page: 154
  ident: bib0175
  article-title: Constitutive high-level SOS1 expression and absence of HKT1;1 expression in the salt-accumulating halophyte
  publication-title: Plant Sci.
– volume: 33
  start-page: 967
  year: 2003
  ident: 10.1016/j.tplants.2018.11.003_bib0365
  article-title: Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerated plants of Populus euphratica and Populus tomentosa
  publication-title: Can. J. For. Res.
  doi: 10.1139/x03-066
– volume: 298
  start-page: 483
  year: 1982
  ident: 10.1016/j.tplants.2018.11.003_bib0110
  article-title: Stimulation of photosynthetic electron transport in a salt-tolerant plant by high chloride concentrations
  publication-title: Nature
  doi: 10.1038/298483a0
– volume: 171
  start-page: 2112
  year: 2016
  ident: 10.1016/j.tplants.2018.11.003_bib0255
  article-title: A single amino-acid substitution in the sodium transporter HKT1 associated with plant salt tolerance
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.00569
– volume: 6
  start-page: 6347
  year: 2012
  ident: 10.1016/j.tplants.2018.11.003_bib0075
  article-title: Plant responses to heterogeneous salinity: growth of the halophyte Atriplex nummularia is determined by the root-weighted mean salinity of the root zone
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers302
– volume: 17
  start-page: 199
  year: 2000
  ident: 10.1016/j.tplants.2018.11.003_bib0170
  article-title: Vacuolar chloride transport in Mesembryanthemum crystallinum L. measured using the fluorescent dye lucigenin
  publication-title: J. Membr. Biol.
  doi: 10.1007/s002320010003
– volume: 326
  start-page: 45
  year: 2010
  ident: 10.1016/j.tplants.2018.11.003_bib0440
  article-title: Mechanisms of sodium uptake by roots of higher plants
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-0076-0
– volume: 115
  start-page: 481
  year: 2015
  ident: 10.1016/j.tplants.2018.11.003_bib0195
  article-title: Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcu219
– volume: 8
  year: 2015
  ident: 10.1016/j.tplants.2018.11.003_bib0350
  article-title: Nitrate sensing and uptake in Arabidopsis are enhanced by ABI2, a phosphatase inactivated by the stress hormone abscisic acid
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.aaa4829
– volume: 106
  start-page: 1131
  year: 1994
  ident: 10.1016/j.tplants.2018.11.003_bib0185
  article-title: The H+/Cl− symporter in root-hair cells of Sinapis alba: an electrophysiological study using ion-selective microelectrodes
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.3.1131
– volume: 171
  start-page: 357
  year: 2006
  ident: 10.1016/j.tplants.2018.11.003_bib0360
  article-title: Nutritional and osmotic roles of nitrate in a euhalophyte and a xerophyte in saline conditions
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2006.01748.x
– volume: 78
  start-page: 100
  year: 1985
  ident: 10.1016/j.tplants.2018.11.003_bib0370
  article-title: Rapid osmotic adjustment by a succulent halophyte to saline shock
  publication-title: Plant Physiol.
  doi: 10.1104/pp.78.1.100
– volume: 28
  start-page: 3075
  year: 2018
  ident: 10.1016/j.tplants.2018.11.003_bib0165
  article-title: Understanding the molecular basis of salt sequestration in epidermal bladder cells of Chenopodium quinoa
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.08.004
– volume: 32
  start-page: 39
  year: 2013
  ident: 10.1016/j.tplants.2018.11.003_bib0140
  article-title: Quantitative trait loci for agronomic and physiological traits for a bread wheat population grown in environments with a range of salinity levels
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-013-9851-y
– volume: 171
  start-page: 494
  year: 2016
  ident: 10.1016/j.tplants.2018.11.003_bib0435
  article-title: A cation–chloride cotransporter gene is required for cell elongation and osmoregulation in rice
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.00017
– start-page: 148
  year: 2010
  ident: 10.1016/j.tplants.2018.11.003_bib0270
  article-title: Characterizing the saltol quantitative trait locus for salinity tolerance in rice
  publication-title: Rice
  doi: 10.1007/s12284-010-9053-8
– volume: 10
  start-page: 737
  year: 2009
  ident: 10.1016/j.tplants.2018.11.003_bib0080
  article-title: Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcp151
– volume: 169
  start-page: 2863
  year: 2015
  ident: 10.1016/j.tplants.2018.11.003_bib0330
  article-title: The CBL-interacting protein kinase CIPK23 regulates HAK5-mediated high-affinity K+ uptake in arabidopsis roots
  publication-title: Plant Physiol.
– volume: 4
  start-page: 342
  year: 2006
  ident: 10.1016/j.tplants.2018.11.003_bib0200
  article-title: Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specific root ion-channel features supporting K+/Na+ homeostasis under salinity stress
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2006.02876.x
– volume: 210
  start-page: 145
  year: 2016
  ident: 10.1016/j.tplants.2018.11.003_bib0135
  article-title: Uncoupling of sodium and chloride to assist breeding for salinity tolerance in crops
  publication-title: New Phytol.
  doi: 10.1111/nph.13757
– volume: 19
  start-page: E492
  year: 2018
  ident: 10.1016/j.tplants.2018.11.003_bib0445
  article-title: Plant cation–chloride cotransporters (CCC): evolutionary origins and functional insights
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19020492
– volume: 168
  start-page: 113
  year: 1984
  ident: 10.1016/j.tplants.2018.11.003_bib0105
  article-title: Modification of the chloride requirement for photosynthetic O2 evolution
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(84)80217-3
– volume: 208
  start-page: 803
  year: 2015
  ident: 10.1016/j.tplants.2018.11.003_bib0160
  article-title: Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba
  publication-title: New Phytol.
  doi: 10.1111/nph.13507
– volume: 169
  start-page: 2215
  year: 2015
  ident: 10.1016/j.tplants.2018.11.003_bib0450
  article-title: Grapevine and Arabidopsis cation–chloride cotransporters localize to the Golgi and trans-Golgi network and indirectly influence long-distance ion transport and plant salt tolerance
  publication-title: Plant Physiol.
– volume: 100
  start-page: 105
  year: 2016
  ident: 10.1016/j.tplants.2018.11.003_bib0070
  article-title: Chloride stress triggers maturation and negatively affects the postharvest quality of persimmon fruit. Involvement of calyx ethylene production
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2016.01.006
– volume: 30
  start-page: 1486
  year: 2007
  ident: 10.1016/j.tplants.2018.11.003_bib0145
  article-title: Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2007.01726.x
– volume: 4
  start-page: 739
  year: 2016
  ident: 10.1016/j.tplants.2018.11.003_bib0085
  article-title: Salinity tolerances of three succulent halophytes Tecticornia spp. differentially distributed along a salinity gradient
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP16025
– volume: 61
  start-page: 361
  year: 1978
  ident: 10.1016/j.tplants.2018.11.003_bib0100
  article-title: Presence of chloride reduces malate production in epidermis during stomatal opening
  publication-title: Plant Physiol.
  doi: 10.1104/pp.61.3.361
– volume: 115
  start-page: 419
  year: 2015
  ident: 10.1016/j.tplants.2018.11.003_bib0395
  article-title: Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcu217
– volume: 442
  start-page: 939
  year: 2006
  ident: 10.1016/j.tplants.2018.11.003_bib0250
  article-title: The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles
  publication-title: Nature
  doi: 10.1038/nature05013
– volume: 37
  start-page: 1141
  year: 2005
  ident: 10.1016/j.tplants.2018.11.003_bib0265
  article-title: A rice quantitative trait locus for salt tolerance encodes a sodium transporter
  publication-title: Nat. Genet.
  doi: 10.1038/ng1643
– volume: 218
  start-page: 615
  year: 2004
  ident: 10.1016/j.tplants.2018.11.003_bib0220
  article-title: Cellular and whole-plant chloride dynamics in barley: insights into chloride–nitrogen interactions and salinity responses
  publication-title: Planta
  doi: 10.1007/s00425-003-1137-x
– volume: 149
  start-page: 1141
  year: 2009
  ident: 10.1016/j.tplants.2018.11.003_bib0035
  article-title: NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.129494
– volume: 38
  start-page: 539
  year: 2004
  ident: 10.1016/j.tplants.2018.11.003_bib0060
  article-title: Salt stress-induced chloride flux: a study using transgenic Arabidopsis expressing a fluorescent anion probe
  publication-title: Plant J.
  doi: 10.1111/j.0960-7412.2004.02053.x
– volume: 38
  start-page: 1996
  year: 1987
  ident: 10.1016/j.tplants.2018.11.003_bib0375
  article-title: Salt tolerance in the halophyte Suaeda maritima L. Dum. Growth, ion and water relations and gas exchange in response to altered salinity
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/38.12.1996
– volume: 67
  start-page: 873
  year: 2016
  ident: 10.1016/j.tplants.2018.11.003_bib0130
  article-title: Chloride regulates leaf cell size and water relations in tobacco plants
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv502
– volume: 28
  start-page: 894
  year: 1977
  ident: 10.1016/j.tplants.2018.11.003_bib0405
  article-title: Electrophysiological measurements on the root of Atriplex hastata
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/28.4.894
– volume: 26
  start-page: 2213
  year: 2016
  ident: 10.1016/j.tplants.2018.11.003_bib0355
  article-title: Silent S-type anion channel subunit SLAH1 gates SLAH3 open for chloride root-to-shoot translocation
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2016.06.045
– volume: 6
  start-page: 2189
  year: 2011
  ident: 10.1016/j.tplants.2018.11.003_bib0055
  article-title: Additive effects of Na+ and Cl− ions on barley growth under salinity stress
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq422
– volume: 44
  start-page: 653
  year: 1993
  ident: 10.1016/j.tplants.2018.11.003_bib0380
  article-title: The response of Atriplex amnicola to the interactive effects of salinity and hypoxia
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/44.3.653
– volume: 35
  start-page: 1582
  year: 2012
  ident: 10.1016/j.tplants.2018.11.003_bib0345
  article-title: HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2012.02511.x
– volume: 270
  start-page: 114
  year: 2018
  ident: 10.1016/j.tplants.2018.11.003_bib0020
  article-title: Review on the significance of chlorine for crop yield and quality
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2018.02.014
– volume: 37
  start-page: 589
  year: 2014
  ident: 10.1016/j.tplants.2018.11.003_bib0210
  article-title: Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+-permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12180
– volume: 58
  start-page: 214
  year: 1983
  ident: 10.1016/j.tplants.2018.11.003_bib0240
  article-title: Salinity resistance: physiologies and prices
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1983.tb04172.x
– volume: 135
  start-page: 1718
  year: 2004
  ident: 10.1016/j.tplants.2018.11.003_bib0280
  article-title: Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.041723
– volume: 29
  start-page: 409
  year: 2017
  ident: 10.1016/j.tplants.2018.11.003_bib0335
  article-title: The kinase CIPK23 inhibits ammonium transport in Arabidopsis thaliana
  publication-title: Plant Cell
  doi: 10.1105/tpc.16.00806
– volume: 142
  start-page: 128
  year: 2011
  ident: 10.1016/j.tplants.2018.11.003_bib0315
  article-title: Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte)
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2011.01450.x
– volume: 57
  start-page: 231
  year: 2015
  ident: 10.1016/j.tplants.2018.11.003_bib0320
  article-title: Increasing complexity and versatility: how the calcium signaling toolkit was shaped during plant land colonization
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2014.10.013
– volume: 68
  start-page: 3057
  year: 2017
  ident: 10.1016/j.tplants.2018.11.003_bib0010
  article-title: Chloride: not simply a ‘cheap osmoticum’, but a beneficial plant macronutrient
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx050
– volume: 105
  start-page: 367
  year: 1987
  ident: 10.1016/j.tplants.2018.11.003_bib0410
  article-title: Quantitative ion distribution within root cells of salt-sensitive and salt-tolerant maize varieties
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1987.tb00874.x
– volume: 1
  start-page: 273
  year: 2014
  ident: 10.1016/j.tplants.2018.11.003_bib0050
  article-title: Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-014-0273-8
– volume: 13
  start-page: 32
  year: 2013
  ident: 10.1016/j.tplants.2018.11.003_bib0150
  article-title: Salinity tolerance, Na+ exclusion and allele mining of HKT1;5 in Oryza sativa and O. glaberrima: many sources, many genes, one mechanism?
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-13-32
– volume: 34
  start-page: 1196
  year: 1983
  ident: 10.1016/j.tplants.2018.11.003_bib0400
  article-title: X-Ray micro-analysis of cells and cell compartments of Atripiex spongiosa. II. Roots
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/34.9.1196
– volume: 115
  start-page: 541
  year: 2015
  ident: 10.1016/j.tplants.2018.11.003_bib0190
  article-title: Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcu194
– volume: 29
  start-page: 2581
  year: 2017
  ident: 10.1016/j.tplants.2018.11.003_bib0155
  article-title: Maize NPF6 proteins are homologs of Arabidopsis CHL1 that are selective for both nitrate and chloride
  publication-title: Plant Cell
  doi: 10.1105/tpc.16.00724
– volume: 53
  start-page: 352
  year: 2007
  ident: 10.1016/j.tplants.2018.11.003_bib0430
  article-title: Not all ALMT1-type transporters mediate aluminum – activated organic acid responses: the case of ZmALMT1 – an anion-selective transporter
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03344.x
– volume: 234
  start-page: 144
  year: 2015
  ident: 10.1016/j.tplants.2018.11.003_bib0175
  article-title: Constitutive high-level SOS1 expression and absence of HKT1;1 expression in the salt-accumulating halophyte Salicornia dolichostachya
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2015.02.011
– volume: 169
  start-page: 647
  year: 2006
  ident: 10.1016/j.tplants.2018.11.003_bib0305
  article-title: Plasma membrane anion channels in higher plants and their putative functions in roots
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2006.01639.x
– volume: 27
  start-page: 1327
  year: 2017
  ident: 10.1016/j.tplants.2018.11.003_bib0300
  article-title: A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value
  publication-title: Cell Res.
  doi: 10.1038/cr.2017.124
– volume: 68
  start-page: 359
  year: 2017
  ident: 10.1016/j.tplants.2018.11.003_bib0025
  article-title: Chloride: essential micronutrient and multifunctional beneficial ion
  publication-title: J. Exp. Bot.
– volume: 7
  start-page: 52
  year: 2002
  ident: 10.1016/j.tplants.2018.11.003_bib0065
  article-title: Yield and fruit quality of pepper plants under sulphate and chloride salinity
  publication-title: J. Hortic. Sci. Biotechnol.
  doi: 10.1080/14620316.2002.11511456
– volume: 33
  start-page: 566
  year: 2010
  ident: 10.1016/j.tplants.2018.11.003_bib0040
  article-title: Mechanisms of Cl− transport contributing to salt tolerance
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2009.02060.x
– volume: 158
  start-page: 1463
  year: 2012
  ident: 10.1016/j.tplants.2018.11.003_bib0260
  article-title: TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K+ specificity in the presence of NaCl
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.193110
– volume: 87
  start-page: 69
  year: 2013
  ident: 10.1016/j.tplants.2018.11.003_bib0205
  article-title: Differential tolerance to combined salinity and O2 deficiency in the halophytic grasses Puccinellia ciliata and Thinopyrum ponticum: the importance of K+ retention in roots
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2012.09.006
– volume: 59
  start-page: 877
  year: 2018
  ident: 10.1016/j.tplants.2018.11.003_bib0015
  article-title: Chloride: from nutrient to toxicant
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcy071
– volume: 8
  start-page: 967
  year: 2001
  ident: 10.1016/j.tplants.2018.11.003_bib0180
  article-title: Chloride in soils and its uptake and movement within the plant: a review
  publication-title: Ann. Bot.
  doi: 10.1006/anbo.2001.1540
– volume: 11
  start-page: 529
  year: 2006
  ident: 10.1016/j.tplants.2018.11.003_bib0225
  article-title: Futile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2006.09.011
– volume: 141
  start-page: 154
  year: 2017
  ident: 10.1016/j.tplants.2018.11.003_bib0415
  article-title: A comparative analysis of cytosolic Na+ changes under salinity between halophyte quinoa (Chenopodium quinoa) and glycophyte pea (Pisum sativum)
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2017.07.003
– volume: 13
  start-page: 241
  year: 2012
  ident: 10.1016/j.tplants.2018.11.003_bib0285
  article-title: Life at the extreme: lessons from the genome
  publication-title: Genome Biol.
  doi: 10.1186/gb4003
– volume: 22
  start-page: 236
  year: 2017
  ident: 10.1016/j.tplants.2018.11.003_bib0005
  article-title: Chloride on the move
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2016.12.004
– volume: 177
  start-page: 131
  year: 1989
  ident: 10.1016/j.tplants.2018.11.003_bib0385
  article-title: X-ray microanalysis of ion distribution within root cortical cells of the halophyte Suaeda maritima (L.) Dum
  publication-title: Planta
  doi: 10.1007/BF00392163
– volume: 40
  start-page: 759
  year: 2013
  ident: 10.1016/j.tplants.2018.11.003_bib0215
  article-title: The integration of activity in saline environments: problems and perspectives
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP12285
– volume: 75
  start-page: 299
  year: 2006
  ident: 10.1016/j.tplants.2018.11.003_bib0235
  article-title: Growth and respiration in two mangrove species at a range of salinities
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1989.tb06185.x
– volume: 76
  start-page: 3
  year: 2015
  ident: 10.1016/j.tplants.2018.11.003_bib0425
  article-title: The role of the CBL–CIPK calcium signalling network in regulating ion transport in response to abiotic stress
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-015-0034-1
– volume: 7
  start-page: 2013
  year: 2016
  ident: 10.1016/j.tplants.2018.11.003_bib0045
  article-title: AtNPF2.5 modulates chloride (Cl−) efflux from roots of Arabidopsis thaliana
  publication-title: Front. Plant Sci.
– volume: 63
  start-page: 861
  year: 2010
  ident: 10.1016/j.tplants.2018.11.003_bib0245
  article-title: The proline 160 in the selectivity filter of the Arabidopsis NO3−/H+ exchanger AtCLCa is essential for nitrate accumulation in planta
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2010.04288.x
– volume: 62
  start-page: 25
  year: 2011
  ident: 10.1016/j.tplants.2018.11.003_bib0310
  article-title: Anion channels/transporters in plants: from molecular bases to regulatory networks
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042110-103741
– volume: 16
  start-page: 614
  year: 2011
  ident: 10.1016/j.tplants.2018.11.003_bib0230
  article-title: The role of mitochondrial respiration in salinity tolerance
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2011.08.002
– volume: 135
  start-page: 1697
  year: 2004
  ident: 10.1016/j.tplants.2018.11.003_bib0290
  article-title: Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.039909
– volume: 12
  start-page: 79
  year: 2009
  ident: 10.1016/j.tplants.2018.11.003_bib0115
  article-title: Salt stimulation of growth and photosynthesis in an extreme halophyte, Arthrocnemum macrostachyum
  publication-title: Plant Biol.
  doi: 10.1111/j.1438-8677.2009.00207.x
– volume: 111
  start-page: E4532
  year: 2014
  ident: 10.1016/j.tplants.2018.11.003_bib0420
  article-title: Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1407610111
– volume: 139
  start-page: 1507
  year: 2005
  ident: 10.1016/j.tplants.2018.11.003_bib0275
  article-title: Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance
  publication-title: Plant Physiol.
  doi: 10.1104/pp.105.067850
– volume: 109
  start-page: 12219
  year: 2012
  ident: 10.1016/j.tplants.2018.11.003_bib0340
  article-title: Insights into salt tolerance from the genome of Thellungiella salsuginea
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1209954109
– volume: 208
  start-page: 668
  year: 2015
  ident: 10.1016/j.tplants.2018.11.003_bib0095
  article-title: Salinity tolerance of crops – what is the cost?
  publication-title: New Phytol.
  doi: 10.1111/nph.13519
– volume: 4
  start-page: 2797
  year: 2013
  ident: 10.1016/j.tplants.2018.11.003_bib0295
  article-title: Genomic insights into salt adaptation in a desert poplar
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3797
– volume: 68
  start-page: 3129
  year: 2017
  ident: 10.1016/j.tplants.2018.11.003_bib0125
  article-title: Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx142
– volume: 112
  start-page: 7309
  year: 2015
  ident: 10.1016/j.tplants.2018.11.003_bib0325
  article-title: Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1507810112
– volume: 9
  start-page: 559
  year: 1986
  ident: 10.1016/j.tplants.2018.11.003_bib0390
  article-title: Effects of NaCl on ion relations and carbohydrate status of roots and on osmotic regulation of roots and shoots of Atriplex amnicola
  publication-title: Plant Cell Environ.
  doi: 10.1111/1365-3040.ep11616302
– volume: 40
  start-page: 897
  year: 2013
  ident: 10.1016/j.tplants.2018.11.003_bib0090
  article-title: Tolerance of extreme salinity in two stem-succulent halophytes (Tecticornia species)
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP12304
– volume: 112
  start-page: 1209
  year: 2013
  ident: 10.1016/j.tplants.2018.11.003_bib0030
  article-title: Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mct205
– volume: 34
  start-page: 353
  year: 1984
  ident: 10.1016/j.tplants.2018.11.003_bib0120
  article-title: Photosynthetic oxygen evolution in relation to ion contents in the chloroplasts of Suaeda maritima
  publication-title: Plant Sci. Lett.
  doi: 10.1016/S0304-4211(84)80015-2
SSID ssj0007186
Score 2.506192
SecondaryResourceType review_article
Snippet In this opinion article, we challenge the traditional view that breeding for reduced Cl− uptake would benefit plant salinity tolerance. A negative correlation...
In this opinion article, we challenge the traditional view that breeding for reduced Cl uptake would benefit plant salinity tolerance. A negative correlation...
Interest in the Cl− aspect of salinity tolerance has traditionally focused on non-halophytes. Knowledge of Cl− regulation in ‘salt-loving’ halophytes is...
In this opinion article, we challenge the traditional view that breeding for reduced Cl- uptake would benefit plant salinity tolerance. A negative correlation...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 142
SubjectTerms Amino acids
Anion channels
Anions
breeding
Ca2+ signalling
Calcineurin
Cbl protein
Chlorides
Efflux
energy
Energy metabolism
Halophytes
Homology
influx
Ion channels
Ion transport
Kinases
membrane transport proteins
nitrates
Osmoregulation
phytomass
Plant biomass
Plant Roots
Post-translation
Protein kinase
Proteins
Salinity
Salinity effects
Salinity tolerance
Salt Tolerance
Salt-Tolerant Plants
Selectivity
Stomata
Title Friend or Foe? Chloride Patterning in Halophytes
URI https://dx.doi.org/10.1016/j.tplants.2018.11.003
https://www.ncbi.nlm.nih.gov/pubmed/30558965
https://www.proquest.com/docview/2185032971
https://www.proquest.com/docview/2158248621
https://www.proquest.com/docview/2189516750
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_I9KAH8dv5RQWv3dI2SdOTzOGYCiKosFtplhQnox2yHbz4t_tePzZFdOCxTVLal-Tl95rf-wXgIkIMit1u3UDpxOVhwt1EWwxVpFWpDFJ0iAXL9172n_ntQAxWoFvnwhCtsvL9pU8vvHV1p11Zsz0ZjdqPXiBpm014JGGFsIQy2HlIo7z1saB5oO-VZe4VI709scjiab-2ppMxsU2I4aVaJOZZn531c336DX8W61BvCzYrAOl0ynfchhWb7cDaVY4g730HNr7oC-4C65GKsXHyN6eX20un-0J8O2Odh0JVk36JOKPM6SfjHK2NoHMPnnvXT92-Wx2R4A5xaZ26iZIGEU5o0tCaNOKeYRrhstG-sHooFKJRjBiYTBH2aCFSy8zQM75JbKg01zLYh0aWZ_YQHI0PCnTIlSdTLjXTnmWJlKnvowmZjJrAa8PEw0o_nI6xGMc1Uew1ruwZkz0xtiDh0Sa05s0mpYDGsgaqtnr8bSTE6OSXNT2peymupiKWIyJhgR-FXhPO58U4iWhnJMlsPqM6Qvkcg7s_6yhEoxhfsSYclCNg_kEkm6YiKY7-_-7HsI5XUUkIP4HG9G1mTxHvTPVZMaDPYLVzc9e__wRen_zx
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gXoQ367PCl67m7ZJmp5EF5f1iaCCt9JsUtxlaRdZD1787c70sSqigtcmKekkmXzTfPkG4ChCDIrDbt1A6cTlYcLdRFsMVaRVqQxSdIgFy_dGdh_4xaN4nIJ2fReGaJWV7y99euGtqyetypqtUb_fuvMCScdswiMJK4Ql0zDLcflSGoPm2wfPA52vLC9fMRLcEx_XeFqD5ng0JLoJUbxUk9Q86-RZ3zeonwBosRF1lmGpQpDOSdnJFZiy2SrMneaI8l5XYfGTwOAasA7JGBsnf3Y6uT122k9EuDPWuS1kNemfiNPPnG4yzNHciDrX4aFzdt_uulWOBLeHe-vYTZQ0CHFCk4bWpBH3DNOIl432hdU9oRCOYsjAZIq4RwuRWmZ6nvFNYkOluZbBBsxkeWa3wNH4okCHXHky5VIz7VmWSJn6PpqQyagBvDZM3KsExCmPxTCumWKDuLJnTPbE4IKURxvQnDQblQoafzVQtdXjL1MhRi__V9PdepTiai1iOUISFvhR6DXgcFKMq4iORpLM5i9URyifY3T3ax2FcBQDLNaAzXIGTD6IdNNUJMX2__t-APPd--ur-Or85nIHFrAkKtnhuzAzfn6xewh-xnq_mNzvHFv-fw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Friend+or+Foe%3F+Chloride+Patterning+in+Halophytes&rft.jtitle=Trends+in+plant+science&rft.au=Bazihizina%2C+Nadia&rft.au=Colmer%2C+Timothy+D&rft.au=Cuin%2C+Tracey+Ann&rft.au=Mancuso%2C+Stefano&rft.date=2019-02-01&rft.issn=1878-4372&rft.eissn=1878-4372&rft.volume=24&rft.issue=2&rft.spage=142&rft_id=info:doi/10.1016%2Fj.tplants.2018.11.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-1385&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-1385&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-1385&client=summon