Friend or Foe? Chloride Patterning in Halophytes
In this opinion article, we challenge the traditional view that breeding for reduced Cl− uptake would benefit plant salinity tolerance. A negative correlation between shoot Cl− concentration and plant biomass does not hold for halophytes – naturally salt tolerant species. We argue that, under physio...
Saved in:
Published in | Trends in plant science Vol. 24; no. 2; pp. 142 - 151 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this opinion article, we challenge the traditional view that breeding for reduced Cl− uptake would benefit plant salinity tolerance. A negative correlation between shoot Cl− concentration and plant biomass does not hold for halophytes – naturally salt tolerant species. We argue that, under physiologically relevant conditions, Cl− uptake requires plants to invest metabolic energy, and that the poor selectivity of Cl−-transporting proteins may explain the reported negative correlation between Cl− accumulation and crop salinity tolerance. We propose a new paradigm: salinity tolerance could be achieved by improving the selectivity of some of the broadly selective anion-transporting proteins (e.g., for NO3−>Cl−), alongside tight control of Cl− uptake, rather than targeting traits mediating its efflux from the root.
Interest in the Cl− aspect of salinity tolerance has traditionally focused on non-halophytes.
Knowledge of Cl− regulation in ‘salt-loving’ halophytes is limited, even though these plants thrive and survive at much higher external Cl− than non-halophytes and use Cl− for osmoregulation.
Proteins catalysing root Cl− transport have recently been characterised in non-halophytes, but this knowledge needs to be extended to halophytes. Of interest is that single amino acid polymorphisms in halophytic transporters alter their function compared to their non-halophytic homologues.
Our understanding of post-translational regulation of anion channels in stomata is fairly advanced, but that of root Cl− transport remains elusive.
The calcineurin B-like protein (CBL)–CBL-interacting protein kinase (CIPK) network regulates several ion transport systems in plants. Does it also modulate Cl− transport? |
---|---|
AbstractList | In this opinion article, we challenge the traditional view that breeding for reduced Cl- uptake would benefit plant salinity tolerance. A negative correlation between shoot Cl- concentration and plant biomass does not hold for halophytes - naturally salt tolerant species. We argue that, under physiologically relevant conditions, Cl- uptake requires plants to invest metabolic energy, and that the poor selectivity of Cl--transporting proteins may explain the reported negative correlation between Cl- accumulation and crop salinity tolerance. We propose a new paradigm: salinity tolerance could be achieved by improving the selectivity of some of the broadly selective anion-transporting proteins (e.g., for NO3->Cl-), alongside tight control of Cl- uptake, rather than targeting traits mediating its efflux from the root.In this opinion article, we challenge the traditional view that breeding for reduced Cl- uptake would benefit plant salinity tolerance. A negative correlation between shoot Cl- concentration and plant biomass does not hold for halophytes - naturally salt tolerant species. We argue that, under physiologically relevant conditions, Cl- uptake requires plants to invest metabolic energy, and that the poor selectivity of Cl--transporting proteins may explain the reported negative correlation between Cl- accumulation and crop salinity tolerance. We propose a new paradigm: salinity tolerance could be achieved by improving the selectivity of some of the broadly selective anion-transporting proteins (e.g., for NO3->Cl-), alongside tight control of Cl- uptake, rather than targeting traits mediating its efflux from the root. In this opinion article, we challenge the traditional view that breeding for reduced Cl− uptake would benefit plant salinity tolerance. A negative correlation between shoot Cl− concentration and plant biomass does not hold for halophytes – naturally salt tolerant species. We argue that, under physiologically relevant conditions, Cl− uptake requires plants to invest metabolic energy, and that the poor selectivity of Cl−-transporting proteins may explain the reported negative correlation between Cl− accumulation and crop salinity tolerance. We propose a new paradigm: salinity tolerance could be achieved by improving the selectivity of some of the broadly selective anion-transporting proteins (e.g., for NO3−>Cl−), alongside tight control of Cl− uptake, rather than targeting traits mediating its efflux from the root. In this opinion article, we challenge the traditional view that breeding for reduced Cl− uptake would benefit plant salinity tolerance. A negative correlation between shoot Cl− concentration and plant biomass does not hold for halophytes – naturally salt tolerant species. We argue that, under physiologically relevant conditions, Cl− uptake requires plants to invest metabolic energy, and that the poor selectivity of Cl−-transporting proteins may explain the reported negative correlation between Cl− accumulation and crop salinity tolerance. We propose a new paradigm: salinity tolerance could be achieved by improving the selectivity of some of the broadly selective anion-transporting proteins (e.g., for NO3−>Cl−), alongside tight control of Cl− uptake, rather than targeting traits mediating its efflux from the root. Interest in the Cl− aspect of salinity tolerance has traditionally focused on non-halophytes. Knowledge of Cl− regulation in ‘salt-loving’ halophytes is limited, even though these plants thrive and survive at much higher external Cl− than non-halophytes and use Cl− for osmoregulation. Proteins catalysing root Cl− transport have recently been characterised in non-halophytes, but this knowledge needs to be extended to halophytes. Of interest is that single amino acid polymorphisms in halophytic transporters alter their function compared to their non-halophytic homologues. Our understanding of post-translational regulation of anion channels in stomata is fairly advanced, but that of root Cl− transport remains elusive. The calcineurin B-like protein (CBL)–CBL-interacting protein kinase (CIPK) network regulates several ion transport systems in plants. Does it also modulate Cl− transport? In this opinion article, we challenge the traditional view that breeding for reduced Cl uptake would benefit plant salinity tolerance. A negative correlation between shoot Cl concentration and plant biomass does not hold for halophytes - naturally salt tolerant species. We argue that, under physiologically relevant conditions, Cl uptake requires plants to invest metabolic energy, and that the poor selectivity of Cl -transporting proteins may explain the reported negative correlation between Cl accumulation and crop salinity tolerance. We propose a new paradigm: salinity tolerance could be achieved by improving the selectivity of some of the broadly selective anion-transporting proteins (e.g., for NO >Cl ), alongside tight control of Cl uptake, rather than targeting traits mediating its efflux from the root. Interest in the Cl− aspect of salinity tolerance has traditionally focused on non-halophytes. Knowledge of Cl− regulation in ‘salt-loving’ halophytes is limited, even though these plants thrive and survive at much higher external Cl− than non-halophytes and use Cl− for osmoregulation. Proteins catalysing root Cl− transport have recently been characterised in non-halophytes, but this knowledge needs to be extended to halophytes. Of interest is that single amino acid polymorphisms in halophytic transporters alter their function compared to their non-halophytic homologues. Our understanding of post-translational regulation of anion channels in stomata is fairly advanced, but that of root Cl− transport remains elusive. The calcineurin B-like protein (CBL)–CBL-interacting protein kinase (CIPK) network regulates several ion transport systems in plants. Does it also modulate Cl− transport? In this opinion article, we challenge the traditional view that breeding for reduced Cl− uptake would benefit plant salinity tolerance. A negative correlation between shoot Cl− concentration and plant biomass does not hold for halophytes – naturally salt tolerant species. We argue that, under physiologically relevant conditions, Cl− uptake requires plants to invest metabolic energy, and that the poor selectivity of Cl−-transporting proteins may explain the reported negative correlation between Cl− accumulation and crop salinity tolerance. We propose a new paradigm: salinity tolerance could be achieved by improving the selectivity of some of the broadly selective anion-transporting proteins (e.g., for NO 3 −>Cl−), alongside tight control of Cl− uptake, rather than targeting traits mediating its efflux from the root. |
Author | Bazihizina, Nadia Shabala, Sergey Mancuso, Stefano Cuin, Tracey Ann Colmer, Timothy D. |
Author_xml | – sequence: 1 givenname: Nadia surname: Bazihizina fullname: Bazihizina, Nadia email: nadia.bazihizina@unifi.it organization: Department of Agrifood Production and Environmental Sciences, Università degli Studi di Firenze, Viale delle Idee 30, 50019 Sesto Fiorentino, Florence, Italy – sequence: 2 givenname: Timothy D. surname: Colmer fullname: Colmer, Timothy D. organization: UWA School of Agriculture and Environment, Faculty of Science, University of Western Australia (UWA), 35 Stirling Highway, Crawley, WA 6009, Australia – sequence: 3 givenname: Tracey Ann surname: Cuin fullname: Cuin, Tracey Ann organization: Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia – sequence: 4 givenname: Stefano surname: Mancuso fullname: Mancuso, Stefano organization: Department of Agrifood Production and Environmental Sciences, Università degli Studi di Firenze, Viale delle Idee 30, 50019 Sesto Fiorentino, Florence, Italy – sequence: 5 givenname: Sergey surname: Shabala fullname: Shabala, Sergey email: Sergey.Shabala@utas.edu.au organization: Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30558965$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkT1vFDEQhi0URD7gJ4BWoqHZxeNdf6woInTiSKRIUEBtee1Z4tOefdg-pPx7fLpLkyapPMXzvtbMc0nOQgxIyHugHVAQnzdd2S0mlNwxCqoD6CjtX5ELUFK1Qy_ZWZ17QVvoFT8nlzlvKKUSlHhDznvKuRoFvyB0nTwG18TUrCNeN6v7JSbvsPlpSsEUfPjT-NDcmCXu7h8K5rfk9WyWjO9O7xX5vf72a3XT3v34frv6etfagYnSGiVcPzLpZoluHgdwdJJsdBPjOFmuFDg-SipmMQwT5zNSZ8ExZ1CqaZhEf0U-HXt3Kf7dYy5667PFpe6McZ81AzVyEJLTF6BcsUEJBhX9-ATdxH0KdZFDYe1iozxQH07Uftqi07vktyY96MezVeDLEbAp5pxw1tYXU3wMJRm_aKD6IElv9EmSPkjSALpKqmn-JP34wXO562MO693_eUw62yrPovMJbdEu-mca_gNYRqxV |
CitedBy_id | crossref_primary_10_1016_j_plaphy_2020_11_043 crossref_primary_10_1002_csc2_20949 crossref_primary_10_1016_j_flora_2022_152209 crossref_primary_10_1093_jxb_eraa158 crossref_primary_10_1371_journal_pone_0288985 crossref_primary_10_3390_plants13162322 crossref_primary_10_1016_j_stress_2021_100030 crossref_primary_10_17221_449_2024_PSE crossref_primary_10_1038_s44318_024_00357_1 crossref_primary_10_3390_ijms25074088 crossref_primary_10_1186_s12870_021_03375_x crossref_primary_10_1007_s10265_021_01285_5 crossref_primary_10_1111_nph_17176 crossref_primary_10_1016_j_cj_2021_02_010 crossref_primary_10_1080_11263504_2025_2452183 crossref_primary_10_3390_ijms241311045 crossref_primary_10_3389_fpls_2021_760863 crossref_primary_10_3390_ijms222312792 crossref_primary_10_3390_plants11192570 crossref_primary_10_1016_j_xinn_2020_100017 crossref_primary_10_1016_j_fcr_2025_109830 crossref_primary_10_1038_s41467_024_48234_z crossref_primary_10_1016_j_plantsci_2024_112171 crossref_primary_10_1016_j_envexpbot_2021_104600 crossref_primary_10_1093_jxb_erab143 crossref_primary_10_1002_jpln_202000148 crossref_primary_10_1016_j_plaphy_2020_04_028 crossref_primary_10_1111_tpj_16549 crossref_primary_10_3390_plants12173030 crossref_primary_10_3390_biom11060788 crossref_primary_10_1007_s11104_022_05551_w crossref_primary_10_1029_2022GB007372 crossref_primary_10_1080_10643389_2020_1735231 crossref_primary_10_3390_plants13060837 crossref_primary_10_1007_s10725_020_00662_9 crossref_primary_10_1016_j_plaphy_2019_03_005 crossref_primary_10_3390_ijpb14040083 crossref_primary_10_3390_life12101577 crossref_primary_10_3390_ijms20194686 crossref_primary_10_1016_j_scitotenv_2023_168449 crossref_primary_10_3389_fpls_2022_949541 crossref_primary_10_1186_s12575_019_0103_3 crossref_primary_10_3390_ijms252212349 crossref_primary_10_1590_1519_6984_271009 crossref_primary_10_1007_s00344_023_11033_9 crossref_primary_10_1016_j_scitotenv_2020_141244 crossref_primary_10_3389_fpls_2019_01418 crossref_primary_10_1111_ppl_14358 crossref_primary_10_1111_ppl_13502 crossref_primary_10_1016_j_stress_2023_100169 crossref_primary_10_1111_ppl_13702 crossref_primary_10_3390_plants10030436 crossref_primary_10_1016_j_aquabot_2020_103292 |
Cites_doi | 10.1139/x03-066 10.1038/298483a0 10.1104/pp.16.00569 10.1093/jxb/ers302 10.1007/s002320010003 10.1007/s11104-009-0076-0 10.1093/aob/mcu219 10.1126/scisignal.aaa4829 10.1104/pp.106.3.1131 10.1111/j.1469-8137.2006.01748.x 10.1104/pp.78.1.100 10.1016/j.cub.2018.08.004 10.1007/s11032-013-9851-y 10.1104/pp.16.00017 10.1007/s12284-010-9053-8 10.1093/aob/mcp151 10.1111/j.1365-313X.2006.02876.x 10.1111/nph.13757 10.3390/ijms19020492 10.1016/0014-5793(84)80217-3 10.1111/nph.13507 10.1016/j.plaphy.2016.01.006 10.1111/j.1365-3040.2007.01726.x 10.1071/FP16025 10.1104/pp.61.3.361 10.1093/aob/mcu217 10.1038/nature05013 10.1038/ng1643 10.1007/s00425-003-1137-x 10.1104/pp.108.129494 10.1111/j.0960-7412.2004.02053.x 10.1093/jxb/38.12.1996 10.1093/jxb/erv502 10.1093/jxb/28.4.894 10.1016/j.cub.2016.06.045 10.1093/jxb/erq422 10.1093/jxb/44.3.653 10.1111/j.1365-3040.2012.02511.x 10.1016/j.plantsci.2018.02.014 10.1111/pce.12180 10.1111/j.1399-3054.1983.tb04172.x 10.1104/pp.104.041723 10.1105/tpc.16.00806 10.1111/j.1399-3054.2011.01450.x 10.1016/j.ceca.2014.10.013 10.1093/jxb/erx050 10.1111/j.1469-8137.1987.tb00874.x 10.1186/s12870-014-0273-8 10.1186/1471-2229-13-32 10.1093/jxb/34.9.1196 10.1093/aob/mcu194 10.1105/tpc.16.00724 10.1111/j.1365-313X.2007.03344.x 10.1016/j.plantsci.2015.02.011 10.1111/j.1469-8137.2006.01639.x 10.1038/cr.2017.124 10.1080/14620316.2002.11511456 10.1111/j.1365-3040.2009.02060.x 10.1104/pp.111.193110 10.1016/j.envexpbot.2012.09.006 10.1093/pcp/pcy071 10.1006/anbo.2001.1540 10.1016/j.tplants.2006.09.011 10.1016/j.envexpbot.2017.07.003 10.1186/gb4003 10.1016/j.tplants.2016.12.004 10.1007/BF00392163 10.1071/FP12285 10.1111/j.1399-3054.1989.tb06185.x 10.1007/s10725-015-0034-1 10.1111/j.1365-313X.2010.04288.x 10.1146/annurev-arplant-042110-103741 10.1016/j.tplants.2011.08.002 10.1104/pp.104.039909 10.1111/j.1438-8677.2009.00207.x 10.1073/pnas.1407610111 10.1104/pp.105.067850 10.1073/pnas.1209954109 10.1111/nph.13519 10.1038/ncomms3797 10.1093/jxb/erx142 10.1073/pnas.1507810112 10.1111/1365-3040.ep11616302 10.1071/FP12304 10.1093/aob/mct205 10.1016/S0304-4211(84)80015-2 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. Copyright Elsevier BV Feb 2019 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier BV Feb 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QR 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1016/j.tplants.2018.11.003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Botany |
EISSN | 1878-4372 |
EndPage | 151 |
ExternalDocumentID | 30558965 10_1016_j_tplants_2018_11_003 S1360138518302656 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M -DZ .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFRAH AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RCE RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K TWZ VQA XPP Y6R ZCA ~G- ~KM AAHBH AAMRU AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7QL 7QO 7QR 7T7 7TM 7U9 8FD C1K EFKBS FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c426t-a86d3927df7edf941d0b729db25ebc5881d59706f644b55fe0dc1d2dae78b4b63 |
IEDL.DBID | .~1 |
ISSN | 1360-1385 1878-4372 |
IngestDate | Fri Jul 11 09:31:50 EDT 2025 Fri Jul 11 07:23:46 EDT 2025 Wed Aug 13 02:43:41 EDT 2025 Thu Apr 03 07:01:58 EDT 2025 Tue Jul 01 00:57:55 EDT 2025 Thu Apr 24 23:02:27 EDT 2025 Fri Feb 23 02:26:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | salinity tolerance membrane transport proteins halophytes influx Ca2+ signalling efflux Ca(2+) signalling |
Language | English |
License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-a86d3927df7edf941d0b729db25ebc5881d59706f644b55fe0dc1d2dae78b4b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 30558965 |
PQID | 2185032971 |
PQPubID | 2045386 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2189516750 proquest_miscellaneous_2158248621 proquest_journals_2185032971 pubmed_primary_30558965 crossref_citationtrail_10_1016_j_tplants_2018_11_003 crossref_primary_10_1016_j_tplants_2018_11_003 elsevier_sciencedirect_doi_10_1016_j_tplants_2018_11_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2019 2019-02-00 20190201 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Kidlington |
PublicationTitle | Trends in plant science |
PublicationTitleAlternate | Trends Plant Sci |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Li (bib0045) 2016; 7 Shabala (bib0030) 2013; 112 Tavakkoli (bib0055) 2011; 6 Wege (bib0245) 2010; 63 Van Kirk, Raschke (bib0100) 1978; 61 Roberts Stephen (bib0305) 2006; 169 Teakle (bib0205) 2013; 87 Wu (bib0340) 2012; 109 Galloway, Davidson (bib0380) 1993; 44 Ma (bib0295) 2013; 4 Ren (bib0265) 2005; 37 Flowers (bib0395) 2015; 115 Ali (bib0260) 2012; 158 Teakle, Tyerman (bib0040) 2010; 33 Genc (bib0140) 2013; 32 Wen (bib0155) 2017; 29 Chen (bib0435) 2016; 171 Jeschke (bib0390) 1986; 9 Chaves-Sanjuan (bib0420) 2014; 111 Jacoby (bib0230) 2011; 16 Taji (bib0290) 2004; 135 Besada (bib0070) 2016; 100 Hajibagheri (bib0120) 1984; 34 Raven (bib0025) 2017; 68 Geilfus (bib0015) 2018; 59 Burchett (bib0235) 2006; 75 Moir-Barnetson (bib0085) 2016; 4 Volkov, Amtmann (bib0200) 2006; 4 Bose (bib0125) 2017; 68 Navarro (bib0065) 2002; 7 Chen (bib0365) 2003; 33 Redondo-Gómez (bib0115) 2009; 12 Geilfus (bib0160) 2015; 208 Britto, Kronzucker (bib0225) 2006; 11 Andersson (bib0105) 1984; 168 Song (bib0360) 2006; 171 White, Broadley (bib0180) 2001; 8 Genc (bib0135) 2016; 210 Li (bib0005) 2017; 22 Wege (bib0010) 2017; 68 English, Colmer (bib0090) 2013; 40 Critchley (bib0110) 1982; 298 Henderson (bib0050) 2014; 1 Inan (bib0280) 2004; 135 Zhang (bib0440) 2010; 326 Oh (bib0285) 2012; 13 Storey (bib0400) 1983; 34 Britto (bib0220) 2004; 218 Henderson (bib0450) 2015; 169 Franco-Navarro (bib0130) 2016; 67 Piñeros Miguel (bib0430) 2007; 53 Ali (bib0255) 2016; 171 Sun (bib0035) 2009; 149 Ellouzi (bib0315) 2011; 142 Bazihizina (bib0080) 2009; 10 Bose (bib0195) 2015; 115 Yeo (bib0240) 1983; 58 Vera-Estrella (bib0275) 2005; 139 Henderson (bib0445) 2018; 19 Clipson (bib0375) 1987; 38 Straub (bib0335) 2017; 29 Sun (bib0415) 2017; 141 Felle (bib0185) 1994; 106 Ragel (bib0330) 2015; 169 Thoday-Kennedy (bib0425) 2015; 76 Scherzer (bib0325) 2015; 112 Anderson (bib0405) 1977; 28 Léran (bib0350) 2015; 8 Katschnig (bib0175) 2015; 234 Hajibagheri, Flowers (bib0385) 1989; 177 Bazihizina (bib0075) 2012; 6 Thomson (bib0270) 2010 Li (bib0345) 2012; 35 McNulty (bib0370) 1985; 78 Lorenzen (bib0060) 2004; 38 Platten (bib0150) 2013; 13 Böhm (bib0165) 2018; 28 Edel, Kudla (bib0320) 2015; 57 Wissing, Smith (bib0170) 2000; 17 Geilfus (bib0020) 2018; 270 Munns, Gilliham (bib0095) 2015; 208 Zou (bib0300) 2017; 27 De Angeli (bib0250) 2006; 442 Bose (bib0210) 2014; 37 Cheeseman (bib0215) 2013; 40 Cubero-Font (bib0355) 2016; 26 Barbier-Brygoo (bib0310) 2011; 62 Song, Wang (bib0190) 2015; 115 Genc (bib0145) 2007; 30 Hajibagheri (bib0410) 1987; 105 Taji (10.1016/j.tplants.2018.11.003_bib0290) 2004; 135 Bose (10.1016/j.tplants.2018.11.003_bib0210) 2014; 37 Bazihizina (10.1016/j.tplants.2018.11.003_bib0075) 2012; 6 Sun (10.1016/j.tplants.2018.11.003_bib0415) 2017; 141 Hajibagheri (10.1016/j.tplants.2018.11.003_bib0120) 1984; 34 Barbier-Brygoo (10.1016/j.tplants.2018.11.003_bib0310) 2011; 62 Scherzer (10.1016/j.tplants.2018.11.003_bib0325) 2015; 112 Britto (10.1016/j.tplants.2018.11.003_bib0220) 2004; 218 Léran (10.1016/j.tplants.2018.11.003_bib0350) 2015; 8 Andersson (10.1016/j.tplants.2018.11.003_bib0105) 1984; 168 Ellouzi (10.1016/j.tplants.2018.11.003_bib0315) 2011; 142 Franco-Navarro (10.1016/j.tplants.2018.11.003_bib0130) 2016; 67 Ren (10.1016/j.tplants.2018.11.003_bib0265) 2005; 37 Anderson (10.1016/j.tplants.2018.11.003_bib0405) 1977; 28 De Angeli (10.1016/j.tplants.2018.11.003_bib0250) 2006; 442 Straub (10.1016/j.tplants.2018.11.003_bib0335) 2017; 29 Thomson (10.1016/j.tplants.2018.11.003_bib0270) 2010 Li (10.1016/j.tplants.2018.11.003_bib0005) 2017; 22 Sun (10.1016/j.tplants.2018.11.003_bib0035) 2009; 149 Böhm (10.1016/j.tplants.2018.11.003_bib0165) 2018; 28 Flowers (10.1016/j.tplants.2018.11.003_bib0395) 2015; 115 Piñeros Miguel (10.1016/j.tplants.2018.11.003_bib0430) 2007; 53 Cubero-Font (10.1016/j.tplants.2018.11.003_bib0355) 2016; 26 Bazihizina (10.1016/j.tplants.2018.11.003_bib0080) 2009; 10 English (10.1016/j.tplants.2018.11.003_bib0090) 2013; 40 Critchley (10.1016/j.tplants.2018.11.003_bib0110) 1982; 298 Yeo (10.1016/j.tplants.2018.11.003_bib0240) 1983; 58 Chen (10.1016/j.tplants.2018.11.003_bib0365) 2003; 33 Felle (10.1016/j.tplants.2018.11.003_bib0185) 1994; 106 Ragel (10.1016/j.tplants.2018.11.003_bib0330) 2015; 169 Van Kirk (10.1016/j.tplants.2018.11.003_bib0100) 1978; 61 Geilfus (10.1016/j.tplants.2018.11.003_bib0160) 2015; 208 Zou (10.1016/j.tplants.2018.11.003_bib0300) 2017; 27 Henderson (10.1016/j.tplants.2018.11.003_bib0050) 2014; 1 Henderson (10.1016/j.tplants.2018.11.003_bib0450) 2015; 169 Song (10.1016/j.tplants.2018.11.003_bib0360) 2006; 171 Geilfus (10.1016/j.tplants.2018.11.003_bib0015) 2018; 59 Platten (10.1016/j.tplants.2018.11.003_bib0150) 2013; 13 Volkov (10.1016/j.tplants.2018.11.003_bib0200) 2006; 4 Galloway (10.1016/j.tplants.2018.11.003_bib0380) 1993; 44 Ali (10.1016/j.tplants.2018.11.003_bib0255) 2016; 171 Storey (10.1016/j.tplants.2018.11.003_bib0400) 1983; 34 Thoday-Kennedy (10.1016/j.tplants.2018.11.003_bib0425) 2015; 76 Shabala (10.1016/j.tplants.2018.11.003_bib0030) 2013; 112 Bose (10.1016/j.tplants.2018.11.003_bib0125) 2017; 68 Jeschke (10.1016/j.tplants.2018.11.003_bib0390) 1986; 9 Wen (10.1016/j.tplants.2018.11.003_bib0155) 2017; 29 Li (10.1016/j.tplants.2018.11.003_bib0345) 2012; 35 Jacoby (10.1016/j.tplants.2018.11.003_bib0230) 2011; 16 Redondo-Gómez (10.1016/j.tplants.2018.11.003_bib0115) 2009; 12 Inan (10.1016/j.tplants.2018.11.003_bib0280) 2004; 135 Besada (10.1016/j.tplants.2018.11.003_bib0070) 2016; 100 Clipson (10.1016/j.tplants.2018.11.003_bib0375) 1987; 38 Hajibagheri (10.1016/j.tplants.2018.11.003_bib0410) 1987; 105 Tavakkoli (10.1016/j.tplants.2018.11.003_bib0055) 2011; 6 White (10.1016/j.tplants.2018.11.003_bib0180) 2001; 8 Teakle (10.1016/j.tplants.2018.11.003_bib0205) 2013; 87 McNulty (10.1016/j.tplants.2018.11.003_bib0370) 1985; 78 Teakle (10.1016/j.tplants.2018.11.003_bib0040) 2010; 33 Chen (10.1016/j.tplants.2018.11.003_bib0435) 2016; 171 Zhang (10.1016/j.tplants.2018.11.003_bib0440) 2010; 326 Genc (10.1016/j.tplants.2018.11.003_bib0140) 2013; 32 Wissing (10.1016/j.tplants.2018.11.003_bib0170) 2000; 17 Henderson (10.1016/j.tplants.2018.11.003_bib0445) 2018; 19 Wege (10.1016/j.tplants.2018.11.003_bib0010) 2017; 68 Ma (10.1016/j.tplants.2018.11.003_bib0295) 2013; 4 Raven (10.1016/j.tplants.2018.11.003_bib0025) 2017; 68 Navarro (10.1016/j.tplants.2018.11.003_bib0065) 2002; 7 Cheeseman (10.1016/j.tplants.2018.11.003_bib0215) 2013; 40 Edel (10.1016/j.tplants.2018.11.003_bib0320) 2015; 57 Oh (10.1016/j.tplants.2018.11.003_bib0285) 2012; 13 Wu (10.1016/j.tplants.2018.11.003_bib0340) 2012; 109 Moir-Barnetson (10.1016/j.tplants.2018.11.003_bib0085) 2016; 4 Genc (10.1016/j.tplants.2018.11.003_bib0135) 2016; 210 Wege (10.1016/j.tplants.2018.11.003_bib0245) 2010; 63 Genc (10.1016/j.tplants.2018.11.003_bib0145) 2007; 30 Britto (10.1016/j.tplants.2018.11.003_bib0225) 2006; 11 Ali (10.1016/j.tplants.2018.11.003_bib0260) 2012; 158 Roberts Stephen (10.1016/j.tplants.2018.11.003_bib0305) 2006; 169 Burchett (10.1016/j.tplants.2018.11.003_bib0235) 2006; 75 Bose (10.1016/j.tplants.2018.11.003_bib0195) 2015; 115 Geilfus (10.1016/j.tplants.2018.11.003_bib0020) 2018; 270 Katschnig (10.1016/j.tplants.2018.11.003_bib0175) 2015; 234 Lorenzen (10.1016/j.tplants.2018.11.003_bib0060) 2004; 38 Song (10.1016/j.tplants.2018.11.003_bib0190) 2015; 115 Chaves-Sanjuan (10.1016/j.tplants.2018.11.003_bib0420) 2014; 111 Hajibagheri (10.1016/j.tplants.2018.11.003_bib0385) 1989; 177 Vera-Estrella (10.1016/j.tplants.2018.11.003_bib0275) 2005; 139 Li (10.1016/j.tplants.2018.11.003_bib0045) 2016; 7 Munns (10.1016/j.tplants.2018.11.003_bib0095) 2015; 208 |
References_xml | – volume: 100 start-page: 105 year: 2016 end-page: 112 ident: bib0070 article-title: Chloride stress triggers maturation and negatively affects the postharvest quality of persimmon fruit. Involvement of calyx ethylene production publication-title: Plant Physiol. Biochem. – volume: 135 start-page: 1718 year: 2004 end-page: 1737 ident: bib0280 article-title: Salt cress. A halophyte and cryophyte publication-title: Plant Physiol. – volume: 4 start-page: 2797 year: 2013 ident: bib0295 article-title: Genomic insights into salt adaptation in a desert poplar publication-title: Nat. Commun. – volume: 27 start-page: 1327 year: 2017 end-page: 1340 ident: bib0300 article-title: A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value publication-title: Cell Res. – volume: 63 start-page: 861 year: 2010 end-page: 869 ident: bib0245 article-title: The proline 160 in the selectivity filter of the publication-title: Plant J. – volume: 169 start-page: 647 year: 2006 end-page: 666 ident: bib0305 article-title: Plasma membrane anion channels in higher plants and their putative functions in roots publication-title: New Phytol. – volume: 22 start-page: 236 year: 2017 end-page: 248 ident: bib0005 article-title: Chloride on the move publication-title: Trends Plant Sci. – volume: 141 start-page: 154 year: 2017 end-page: 160 ident: bib0415 article-title: A comparative analysis of cytosolic Na publication-title: Environ. Exp. Bot. – volume: 30 start-page: 1486 year: 2007 end-page: 1498 ident: bib0145 article-title: Reassessment of tissue Na publication-title: Plant Cell Environ. – volume: 149 start-page: 1141 year: 2009 end-page: 1153 ident: bib0035 article-title: NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species publication-title: Plant Physiol. – volume: 6 start-page: 2189 year: 2011 end-page: 2203 ident: bib0055 article-title: Additive effects of Na publication-title: J. Exp. Bot. – volume: 13 start-page: 241 year: 2012 ident: bib0285 article-title: Life at the extreme: lessons from the genome publication-title: Genome Biol. – volume: 115 start-page: 481 year: 2015 end-page: 494 ident: bib0195 article-title: Rapid regulation of the plasma membrane H publication-title: Ann. Bot. – volume: 35 start-page: 1582 year: 2012 end-page: 1600 ident: bib0345 article-title: HbCIPK2, a novel CBL-interacting protein kinase from halophyte publication-title: Plant Cell Environ. – volume: 112 start-page: 1209 year: 2013 end-page: 1221 ident: bib0030 article-title: Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops publication-title: Ann. Bot. – start-page: 148 year: 2010 end-page: 160 ident: bib0270 article-title: Characterizing the saltol quantitative trait locus for salinity tolerance in rice publication-title: Rice – volume: 139 start-page: 1507 year: 2005 end-page: 1517 ident: bib0275 article-title: Salt stress in publication-title: Plant Physiol. – volume: 112 start-page: 7309 year: 2015 ident: bib0325 article-title: Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 58 start-page: 214 year: 1983 end-page: 222 ident: bib0240 article-title: Salinity resistance: physiologies and prices publication-title: Physiol. Plant. – volume: 34 start-page: 1196 year: 1983 end-page: 1206 ident: bib0400 article-title: X-Ray micro-analysis of cells and cell compartments of publication-title: J. Exp. Bot. – volume: 171 start-page: 494 year: 2016 end-page: 507 ident: bib0435 article-title: A cation–chloride cotransporter gene is required for cell elongation and osmoregulation in rice publication-title: Plant Physiol. – volume: 169 start-page: 2863 year: 2015 end-page: 2873 ident: bib0330 article-title: The CBL-interacting protein kinase CIPK23 regulates HAK5-mediated high-affinity K publication-title: Plant Physiol. – volume: 26 start-page: 2213 year: 2016 end-page: 2220 ident: bib0355 article-title: Silent S-type anion channel subunit SLAH1 gates SLAH3 open for chloride root-to-shoot translocation publication-title: Curr. Biol. – volume: 1 start-page: 273 year: 2014 ident: bib0050 article-title: Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots publication-title: BMC Plant Biol. – volume: 106 start-page: 1131 year: 1994 end-page: 1136 ident: bib0185 article-title: The H publication-title: Plant Physiol. – volume: 4 start-page: 739 year: 2016 end-page: 750 ident: bib0085 article-title: Salinity tolerances of three succulent halophytes publication-title: Funct. Plant Biol. – volume: 298 start-page: 483 year: 1982 end-page: 485 ident: bib0110 article-title: Stimulation of photosynthetic electron transport in a salt-tolerant plant by high chloride concentrations publication-title: Nature – volume: 68 start-page: 3129 year: 2017 end-page: 3143 ident: bib0125 article-title: Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes publication-title: J. Exp. Bot. – volume: 59 start-page: 877 year: 2018 end-page: 886 ident: bib0015 article-title: Chloride: from nutrient to toxicant publication-title: Plant Cell Physiol. – volume: 442 start-page: 939 year: 2006 ident: bib0250 article-title: The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles publication-title: Nature – volume: 28 start-page: 894 year: 1977 end-page: 901 ident: bib0405 article-title: Electrophysiological measurements on the root of publication-title: J. Exp. Bot. – volume: 61 start-page: 361 year: 1978 end-page: 364 ident: bib0100 article-title: Presence of chloride reduces malate production in epidermis during stomatal opening publication-title: Plant Physiol. – volume: 11 start-page: 529 year: 2006 end-page: 534 ident: bib0225 article-title: Futile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport publication-title: Trends Plant Sci. – volume: 28 start-page: 3075 year: 2018 end-page: 3085 ident: bib0165 article-title: Understanding the molecular basis of salt sequestration in epidermal bladder cells of publication-title: Curr. Biol. – volume: 37 start-page: 1141 year: 2005 ident: bib0265 article-title: A rice quantitative trait locus for salt tolerance encodes a sodium transporter publication-title: Nat. Genet. – volume: 29 start-page: 409 year: 2017 end-page: 422 ident: bib0335 article-title: The kinase CIPK23 inhibits ammonium transport in publication-title: Plant Cell – volume: 109 start-page: 12219 year: 2012 end-page: 12224 ident: bib0340 article-title: Insights into salt tolerance from the genome of publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 87 start-page: 69 year: 2013 end-page: 78 ident: bib0205 article-title: Differential tolerance to combined salinity and O publication-title: Environ. Exp. Bot. – volume: 135 start-page: 1697 year: 2004 end-page: 1709 ident: bib0290 article-title: Comparative genomics in salt tolerance between publication-title: Plant Physiol. – volume: 17 start-page: 199 year: 2000 end-page: 208 ident: bib0170 article-title: Vacuolar chloride transport in publication-title: J. Membr. Biol. – volume: 169 start-page: 2215 year: 2015 end-page: 2219 ident: bib0450 article-title: Grapevine and publication-title: Plant Physiol. – volume: 57 start-page: 231 year: 2015 end-page: 246 ident: bib0320 article-title: Increasing complexity and versatility: how the calcium signaling toolkit was shaped during plant land colonization publication-title: Cell Calcium – volume: 67 start-page: 873 year: 2016 end-page: 891 ident: bib0130 article-title: Chloride regulates leaf cell size and water relations in tobacco plants publication-title: J. Exp. Bot. – volume: 32 start-page: 39 year: 2013 end-page: 59 ident: bib0140 article-title: Quantitative trait loci for agronomic and physiological traits for a bread wheat population grown in environments with a range of salinity levels publication-title: Mol. Breed. – volume: 40 start-page: 759 year: 2013 end-page: 774 ident: bib0215 article-title: The integration of activity in saline environments: problems and perspectives publication-title: Funct. Plant Biol. – volume: 7 start-page: 52 year: 2002 end-page: 57 ident: bib0065 article-title: Yield and fruit quality of pepper plants under sulphate and chloride salinity publication-title: J. Hortic. Sci. Biotechnol. – volume: 76 start-page: 3 year: 2015 end-page: 12 ident: bib0425 article-title: The role of the CBL–CIPK calcium signalling network in regulating ion transport in response to abiotic stress publication-title: Plant Growth Regul. – volume: 78 start-page: 100 year: 1985 end-page: 103 ident: bib0370 article-title: Rapid osmotic adjustment by a succulent halophyte to saline shock publication-title: Plant Physiol. – volume: 326 start-page: 45 year: 2010 end-page: 60 ident: bib0440 article-title: Mechanisms of sodium uptake by roots of higher plants publication-title: Plant Soil – volume: 177 start-page: 131 year: 1989 end-page: 134 ident: bib0385 article-title: X-ray microanalysis of ion distribution within root cortical cells of the halophyte publication-title: Planta – volume: 4 start-page: 342 year: 2006 end-page: 353 ident: bib0200 article-title: , a salt-tolerant relative of publication-title: Plant J. – volume: 142 start-page: 128 year: 2011 end-page: 143 ident: bib0315 article-title: Early effects of salt stress on the physiological and oxidative status of publication-title: Physiol. Plant. – volume: 208 start-page: 803 year: 2015 end-page: 816 ident: bib0160 article-title: Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed publication-title: New Phytol. – volume: 37 start-page: 589 year: 2014 end-page: 600 ident: bib0210 article-title: Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K publication-title: Plant Cell Environ. – volume: 62 start-page: 25 year: 2011 end-page: 51 ident: bib0310 article-title: Anion channels/transporters in plants: from molecular bases to regulatory networks publication-title: Annu. Rev. Plant Biol. – volume: 105 start-page: 367 year: 1987 end-page: 379 ident: bib0410 article-title: Quantitative ion distribution within root cells of salt-sensitive and salt-tolerant maize varieties publication-title: New Phytol. – volume: 12 start-page: 79 year: 2009 end-page: 87 ident: bib0115 article-title: Salt stimulation of growth and photosynthesis in an extreme halophyte, publication-title: Plant Biol. – volume: 208 start-page: 668 year: 2015 end-page: 673 ident: bib0095 article-title: Salinity tolerance of crops – what is the cost? publication-title: New Phytol. – volume: 34 start-page: 353 year: 1984 end-page: 362 ident: bib0120 article-title: Photosynthetic oxygen evolution in relation to ion contents in the chloroplasts of publication-title: Plant Sci. Lett. – volume: 68 start-page: 359 year: 2017 end-page: 367 ident: bib0025 article-title: Chloride: essential micronutrient and multifunctional beneficial ion publication-title: J. Exp. Bot. – volume: 33 start-page: 967 year: 2003 end-page: 975 ident: bib0365 article-title: Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerated plants of publication-title: Can. J. For. Res. – volume: 8 year: 2015 ident: bib0350 article-title: Nitrate sensing and uptake in publication-title: Sci. Signal. – volume: 16 start-page: 614 year: 2011 end-page: 623 ident: bib0230 article-title: The role of mitochondrial respiration in salinity tolerance publication-title: Trends Plant Sci. – volume: 168 start-page: 113 year: 1984 end-page: 117 ident: bib0105 article-title: Modification of the chloride requirement for photosynthetic O publication-title: FEBS Lett. – volume: 38 start-page: 1996 year: 1987 end-page: 2004 ident: bib0375 article-title: Salt tolerance in the halophyte publication-title: J. Exp. Bot. – volume: 111 start-page: E4532 year: 2014 end-page: E4541 ident: bib0420 article-title: Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 38 start-page: 539 year: 2004 end-page: 544 ident: bib0060 article-title: Salt stress-induced chloride flux: a study using transgenic publication-title: Plant J. – volume: 13 start-page: 32 year: 2013 ident: bib0150 article-title: Salinity tolerance, Na publication-title: BMC Plant Biol. – volume: 19 start-page: E492 year: 2018 ident: bib0445 article-title: Plant cation–chloride cotransporters (CCC): evolutionary origins and functional insights publication-title: Int. J. Mol. Sci. – volume: 171 start-page: 357 year: 2006 end-page: 365 ident: bib0360 article-title: Nutritional and osmotic roles of nitrate in a euhalophyte and a xerophyte in saline conditions publication-title: New Phytol. – volume: 8 start-page: 967 year: 2001 end-page: 988 ident: bib0180 article-title: Chloride in soils and its uptake and movement within the plant: a review publication-title: Ann. Bot. – volume: 75 start-page: 299 year: 2006 end-page: 303 ident: bib0235 article-title: Growth and respiration in two mangrove species at a range of salinities publication-title: Physiol. Plant. – volume: 53 start-page: 352 year: 2007 end-page: 367 ident: bib0430 article-title: Not all ALMT1-type transporters mediate aluminum – activated organic acid responses: the case of ZmALMT1 – an anion-selective transporter publication-title: Plant J. – volume: 6 start-page: 6347 year: 2012 end-page: 6358 ident: bib0075 article-title: Plant responses to heterogeneous salinity: growth of the halophyte publication-title: J. Exp. Bot. – volume: 33 start-page: 566 year: 2010 end-page: 589 ident: bib0040 article-title: Mechanisms of Cl publication-title: Plant Cell Environ. – volume: 115 start-page: 541 year: 2015 end-page: 553 ident: bib0190 article-title: Using euhalophytes to understand salt tolerance and to develop saline agriculture: publication-title: Ann. Bot. – volume: 218 start-page: 615 year: 2004 end-page: 622 ident: bib0220 article-title: Cellular and whole-plant chloride dynamics in barley: insights into chloride–nitrogen interactions and salinity responses publication-title: Planta – volume: 270 start-page: 114 year: 2018 end-page: 122 ident: bib0020 article-title: Review on the significance of chlorine for crop yield and quality publication-title: Plant Sci. – volume: 68 start-page: 3057 year: 2017 end-page: 3069 ident: bib0010 article-title: Chloride: not simply a ‘cheap osmoticum’, but a beneficial plant macronutrient publication-title: J. Exp. Bot. – volume: 7 start-page: 2013 year: 2016 ident: bib0045 article-title: AtNPF2.5 modulates chloride (Cl publication-title: Front. Plant Sci. – volume: 210 start-page: 145 year: 2016 end-page: 156 ident: bib0135 article-title: Uncoupling of sodium and chloride to assist breeding for salinity tolerance in crops publication-title: New Phytol. – volume: 10 start-page: 737 year: 2009 end-page: 745 ident: bib0080 article-title: Response to non-uniform salinity in the root zone of the halophyte publication-title: Ann. Bot. – volume: 9 start-page: 559 year: 1986 end-page: 569 ident: bib0390 article-title: Effects of NaCl on ion relations and carbohydrate status of roots and on osmotic regulation of roots and shoots of publication-title: Plant Cell Environ. – volume: 40 start-page: 897 year: 2013 end-page: 912 ident: bib0090 article-title: Tolerance of extreme salinity in two stem-succulent halophytes ( publication-title: Funct. Plant Biol. – volume: 44 start-page: 653 year: 1993 end-page: 663 ident: bib0380 article-title: The response of publication-title: J. Exp. Bot. – volume: 171 start-page: 2112 year: 2016 end-page: 2126 ident: bib0255 article-title: A single amino-acid substitution in the sodium transporter HKT1 associated with plant salt tolerance publication-title: Plant Physiol. – volume: 115 start-page: 419 year: 2015 end-page: 431 ident: bib0395 article-title: Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes publication-title: Ann. Bot. – volume: 29 start-page: 2581 year: 2017 end-page: 2596 ident: bib0155 article-title: Maize NPF6 proteins are homologs of publication-title: Plant Cell – volume: 158 start-page: 1463 year: 2012 end-page: 1474 ident: bib0260 article-title: TsHKT1;2, a HKT1 homolog from the extremophile publication-title: Plant Physiol. – volume: 234 start-page: 144 year: 2015 end-page: 154 ident: bib0175 article-title: Constitutive high-level SOS1 expression and absence of HKT1;1 expression in the salt-accumulating halophyte publication-title: Plant Sci. – volume: 33 start-page: 967 year: 2003 ident: 10.1016/j.tplants.2018.11.003_bib0365 article-title: Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerated plants of Populus euphratica and Populus tomentosa publication-title: Can. J. For. Res. doi: 10.1139/x03-066 – volume: 298 start-page: 483 year: 1982 ident: 10.1016/j.tplants.2018.11.003_bib0110 article-title: Stimulation of photosynthetic electron transport in a salt-tolerant plant by high chloride concentrations publication-title: Nature doi: 10.1038/298483a0 – volume: 171 start-page: 2112 year: 2016 ident: 10.1016/j.tplants.2018.11.003_bib0255 article-title: A single amino-acid substitution in the sodium transporter HKT1 associated with plant salt tolerance publication-title: Plant Physiol. doi: 10.1104/pp.16.00569 – volume: 6 start-page: 6347 year: 2012 ident: 10.1016/j.tplants.2018.11.003_bib0075 article-title: Plant responses to heterogeneous salinity: growth of the halophyte Atriplex nummularia is determined by the root-weighted mean salinity of the root zone publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers302 – volume: 17 start-page: 199 year: 2000 ident: 10.1016/j.tplants.2018.11.003_bib0170 article-title: Vacuolar chloride transport in Mesembryanthemum crystallinum L. measured using the fluorescent dye lucigenin publication-title: J. Membr. Biol. doi: 10.1007/s002320010003 – volume: 326 start-page: 45 year: 2010 ident: 10.1016/j.tplants.2018.11.003_bib0440 article-title: Mechanisms of sodium uptake by roots of higher plants publication-title: Plant Soil doi: 10.1007/s11104-009-0076-0 – volume: 115 start-page: 481 year: 2015 ident: 10.1016/j.tplants.2018.11.003_bib0195 article-title: Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa publication-title: Ann. Bot. doi: 10.1093/aob/mcu219 – volume: 8 year: 2015 ident: 10.1016/j.tplants.2018.11.003_bib0350 article-title: Nitrate sensing and uptake in Arabidopsis are enhanced by ABI2, a phosphatase inactivated by the stress hormone abscisic acid publication-title: Sci. Signal. doi: 10.1126/scisignal.aaa4829 – volume: 106 start-page: 1131 year: 1994 ident: 10.1016/j.tplants.2018.11.003_bib0185 article-title: The H+/Cl− symporter in root-hair cells of Sinapis alba: an electrophysiological study using ion-selective microelectrodes publication-title: Plant Physiol. doi: 10.1104/pp.106.3.1131 – volume: 171 start-page: 357 year: 2006 ident: 10.1016/j.tplants.2018.11.003_bib0360 article-title: Nutritional and osmotic roles of nitrate in a euhalophyte and a xerophyte in saline conditions publication-title: New Phytol. doi: 10.1111/j.1469-8137.2006.01748.x – volume: 78 start-page: 100 year: 1985 ident: 10.1016/j.tplants.2018.11.003_bib0370 article-title: Rapid osmotic adjustment by a succulent halophyte to saline shock publication-title: Plant Physiol. doi: 10.1104/pp.78.1.100 – volume: 28 start-page: 3075 year: 2018 ident: 10.1016/j.tplants.2018.11.003_bib0165 article-title: Understanding the molecular basis of salt sequestration in epidermal bladder cells of Chenopodium quinoa publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.08.004 – volume: 32 start-page: 39 year: 2013 ident: 10.1016/j.tplants.2018.11.003_bib0140 article-title: Quantitative trait loci for agronomic and physiological traits for a bread wheat population grown in environments with a range of salinity levels publication-title: Mol. Breed. doi: 10.1007/s11032-013-9851-y – volume: 171 start-page: 494 year: 2016 ident: 10.1016/j.tplants.2018.11.003_bib0435 article-title: A cation–chloride cotransporter gene is required for cell elongation and osmoregulation in rice publication-title: Plant Physiol. doi: 10.1104/pp.16.00017 – start-page: 148 year: 2010 ident: 10.1016/j.tplants.2018.11.003_bib0270 article-title: Characterizing the saltol quantitative trait locus for salinity tolerance in rice publication-title: Rice doi: 10.1007/s12284-010-9053-8 – volume: 10 start-page: 737 year: 2009 ident: 10.1016/j.tplants.2018.11.003_bib0080 article-title: Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations publication-title: Ann. Bot. doi: 10.1093/aob/mcp151 – volume: 169 start-page: 2863 year: 2015 ident: 10.1016/j.tplants.2018.11.003_bib0330 article-title: The CBL-interacting protein kinase CIPK23 regulates HAK5-mediated high-affinity K+ uptake in arabidopsis roots publication-title: Plant Physiol. – volume: 4 start-page: 342 year: 2006 ident: 10.1016/j.tplants.2018.11.003_bib0200 article-title: Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specific root ion-channel features supporting K+/Na+ homeostasis under salinity stress publication-title: Plant J. doi: 10.1111/j.1365-313X.2006.02876.x – volume: 210 start-page: 145 year: 2016 ident: 10.1016/j.tplants.2018.11.003_bib0135 article-title: Uncoupling of sodium and chloride to assist breeding for salinity tolerance in crops publication-title: New Phytol. doi: 10.1111/nph.13757 – volume: 19 start-page: E492 year: 2018 ident: 10.1016/j.tplants.2018.11.003_bib0445 article-title: Plant cation–chloride cotransporters (CCC): evolutionary origins and functional insights publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19020492 – volume: 168 start-page: 113 year: 1984 ident: 10.1016/j.tplants.2018.11.003_bib0105 article-title: Modification of the chloride requirement for photosynthetic O2 evolution publication-title: FEBS Lett. doi: 10.1016/0014-5793(84)80217-3 – volume: 208 start-page: 803 year: 2015 ident: 10.1016/j.tplants.2018.11.003_bib0160 article-title: Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba publication-title: New Phytol. doi: 10.1111/nph.13507 – volume: 169 start-page: 2215 year: 2015 ident: 10.1016/j.tplants.2018.11.003_bib0450 article-title: Grapevine and Arabidopsis cation–chloride cotransporters localize to the Golgi and trans-Golgi network and indirectly influence long-distance ion transport and plant salt tolerance publication-title: Plant Physiol. – volume: 100 start-page: 105 year: 2016 ident: 10.1016/j.tplants.2018.11.003_bib0070 article-title: Chloride stress triggers maturation and negatively affects the postharvest quality of persimmon fruit. Involvement of calyx ethylene production publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.01.006 – volume: 30 start-page: 1486 year: 2007 ident: 10.1016/j.tplants.2018.11.003_bib0145 article-title: Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2007.01726.x – volume: 4 start-page: 739 year: 2016 ident: 10.1016/j.tplants.2018.11.003_bib0085 article-title: Salinity tolerances of three succulent halophytes Tecticornia spp. differentially distributed along a salinity gradient publication-title: Funct. Plant Biol. doi: 10.1071/FP16025 – volume: 61 start-page: 361 year: 1978 ident: 10.1016/j.tplants.2018.11.003_bib0100 article-title: Presence of chloride reduces malate production in epidermis during stomatal opening publication-title: Plant Physiol. doi: 10.1104/pp.61.3.361 – volume: 115 start-page: 419 year: 2015 ident: 10.1016/j.tplants.2018.11.003_bib0395 article-title: Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes publication-title: Ann. Bot. doi: 10.1093/aob/mcu217 – volume: 442 start-page: 939 year: 2006 ident: 10.1016/j.tplants.2018.11.003_bib0250 article-title: The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles publication-title: Nature doi: 10.1038/nature05013 – volume: 37 start-page: 1141 year: 2005 ident: 10.1016/j.tplants.2018.11.003_bib0265 article-title: A rice quantitative trait locus for salt tolerance encodes a sodium transporter publication-title: Nat. Genet. doi: 10.1038/ng1643 – volume: 218 start-page: 615 year: 2004 ident: 10.1016/j.tplants.2018.11.003_bib0220 article-title: Cellular and whole-plant chloride dynamics in barley: insights into chloride–nitrogen interactions and salinity responses publication-title: Planta doi: 10.1007/s00425-003-1137-x – volume: 149 start-page: 1141 year: 2009 ident: 10.1016/j.tplants.2018.11.003_bib0035 article-title: NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species publication-title: Plant Physiol. doi: 10.1104/pp.108.129494 – volume: 38 start-page: 539 year: 2004 ident: 10.1016/j.tplants.2018.11.003_bib0060 article-title: Salt stress-induced chloride flux: a study using transgenic Arabidopsis expressing a fluorescent anion probe publication-title: Plant J. doi: 10.1111/j.0960-7412.2004.02053.x – volume: 38 start-page: 1996 year: 1987 ident: 10.1016/j.tplants.2018.11.003_bib0375 article-title: Salt tolerance in the halophyte Suaeda maritima L. Dum. Growth, ion and water relations and gas exchange in response to altered salinity publication-title: J. Exp. Bot. doi: 10.1093/jxb/38.12.1996 – volume: 67 start-page: 873 year: 2016 ident: 10.1016/j.tplants.2018.11.003_bib0130 article-title: Chloride regulates leaf cell size and water relations in tobacco plants publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv502 – volume: 28 start-page: 894 year: 1977 ident: 10.1016/j.tplants.2018.11.003_bib0405 article-title: Electrophysiological measurements on the root of Atriplex hastata publication-title: J. Exp. Bot. doi: 10.1093/jxb/28.4.894 – volume: 26 start-page: 2213 year: 2016 ident: 10.1016/j.tplants.2018.11.003_bib0355 article-title: Silent S-type anion channel subunit SLAH1 gates SLAH3 open for chloride root-to-shoot translocation publication-title: Curr. Biol. doi: 10.1016/j.cub.2016.06.045 – volume: 6 start-page: 2189 year: 2011 ident: 10.1016/j.tplants.2018.11.003_bib0055 article-title: Additive effects of Na+ and Cl− ions on barley growth under salinity stress publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq422 – volume: 44 start-page: 653 year: 1993 ident: 10.1016/j.tplants.2018.11.003_bib0380 article-title: The response of Atriplex amnicola to the interactive effects of salinity and hypoxia publication-title: J. Exp. Bot. doi: 10.1093/jxb/44.3.653 – volume: 35 start-page: 1582 year: 2012 ident: 10.1016/j.tplants.2018.11.003_bib0345 article-title: HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2012.02511.x – volume: 270 start-page: 114 year: 2018 ident: 10.1016/j.tplants.2018.11.003_bib0020 article-title: Review on the significance of chlorine for crop yield and quality publication-title: Plant Sci. doi: 10.1016/j.plantsci.2018.02.014 – volume: 37 start-page: 589 year: 2014 ident: 10.1016/j.tplants.2018.11.003_bib0210 article-title: Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+-permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley publication-title: Plant Cell Environ. doi: 10.1111/pce.12180 – volume: 58 start-page: 214 year: 1983 ident: 10.1016/j.tplants.2018.11.003_bib0240 article-title: Salinity resistance: physiologies and prices publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1983.tb04172.x – volume: 135 start-page: 1718 year: 2004 ident: 10.1016/j.tplants.2018.11.003_bib0280 article-title: Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles publication-title: Plant Physiol. doi: 10.1104/pp.104.041723 – volume: 29 start-page: 409 year: 2017 ident: 10.1016/j.tplants.2018.11.003_bib0335 article-title: The kinase CIPK23 inhibits ammonium transport in Arabidopsis thaliana publication-title: Plant Cell doi: 10.1105/tpc.16.00806 – volume: 142 start-page: 128 year: 2011 ident: 10.1016/j.tplants.2018.11.003_bib0315 article-title: Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte) publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2011.01450.x – volume: 57 start-page: 231 year: 2015 ident: 10.1016/j.tplants.2018.11.003_bib0320 article-title: Increasing complexity and versatility: how the calcium signaling toolkit was shaped during plant land colonization publication-title: Cell Calcium doi: 10.1016/j.ceca.2014.10.013 – volume: 68 start-page: 3057 year: 2017 ident: 10.1016/j.tplants.2018.11.003_bib0010 article-title: Chloride: not simply a ‘cheap osmoticum’, but a beneficial plant macronutrient publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx050 – volume: 105 start-page: 367 year: 1987 ident: 10.1016/j.tplants.2018.11.003_bib0410 article-title: Quantitative ion distribution within root cells of salt-sensitive and salt-tolerant maize varieties publication-title: New Phytol. doi: 10.1111/j.1469-8137.1987.tb00874.x – volume: 1 start-page: 273 year: 2014 ident: 10.1016/j.tplants.2018.11.003_bib0050 article-title: Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots publication-title: BMC Plant Biol. doi: 10.1186/s12870-014-0273-8 – volume: 13 start-page: 32 year: 2013 ident: 10.1016/j.tplants.2018.11.003_bib0150 article-title: Salinity tolerance, Na+ exclusion and allele mining of HKT1;5 in Oryza sativa and O. glaberrima: many sources, many genes, one mechanism? publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-13-32 – volume: 34 start-page: 1196 year: 1983 ident: 10.1016/j.tplants.2018.11.003_bib0400 article-title: X-Ray micro-analysis of cells and cell compartments of Atripiex spongiosa. II. Roots publication-title: J. Exp. Bot. doi: 10.1093/jxb/34.9.1196 – volume: 115 start-page: 541 year: 2015 ident: 10.1016/j.tplants.2018.11.003_bib0190 article-title: Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model publication-title: Ann. Bot. doi: 10.1093/aob/mcu194 – volume: 29 start-page: 2581 year: 2017 ident: 10.1016/j.tplants.2018.11.003_bib0155 article-title: Maize NPF6 proteins are homologs of Arabidopsis CHL1 that are selective for both nitrate and chloride publication-title: Plant Cell doi: 10.1105/tpc.16.00724 – volume: 53 start-page: 352 year: 2007 ident: 10.1016/j.tplants.2018.11.003_bib0430 article-title: Not all ALMT1-type transporters mediate aluminum – activated organic acid responses: the case of ZmALMT1 – an anion-selective transporter publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03344.x – volume: 234 start-page: 144 year: 2015 ident: 10.1016/j.tplants.2018.11.003_bib0175 article-title: Constitutive high-level SOS1 expression and absence of HKT1;1 expression in the salt-accumulating halophyte Salicornia dolichostachya publication-title: Plant Sci. doi: 10.1016/j.plantsci.2015.02.011 – volume: 169 start-page: 647 year: 2006 ident: 10.1016/j.tplants.2018.11.003_bib0305 article-title: Plasma membrane anion channels in higher plants and their putative functions in roots publication-title: New Phytol. doi: 10.1111/j.1469-8137.2006.01639.x – volume: 27 start-page: 1327 year: 2017 ident: 10.1016/j.tplants.2018.11.003_bib0300 article-title: A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value publication-title: Cell Res. doi: 10.1038/cr.2017.124 – volume: 68 start-page: 359 year: 2017 ident: 10.1016/j.tplants.2018.11.003_bib0025 article-title: Chloride: essential micronutrient and multifunctional beneficial ion publication-title: J. Exp. Bot. – volume: 7 start-page: 52 year: 2002 ident: 10.1016/j.tplants.2018.11.003_bib0065 article-title: Yield and fruit quality of pepper plants under sulphate and chloride salinity publication-title: J. Hortic. Sci. Biotechnol. doi: 10.1080/14620316.2002.11511456 – volume: 33 start-page: 566 year: 2010 ident: 10.1016/j.tplants.2018.11.003_bib0040 article-title: Mechanisms of Cl− transport contributing to salt tolerance publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2009.02060.x – volume: 158 start-page: 1463 year: 2012 ident: 10.1016/j.tplants.2018.11.003_bib0260 article-title: TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K+ specificity in the presence of NaCl publication-title: Plant Physiol. doi: 10.1104/pp.111.193110 – volume: 87 start-page: 69 year: 2013 ident: 10.1016/j.tplants.2018.11.003_bib0205 article-title: Differential tolerance to combined salinity and O2 deficiency in the halophytic grasses Puccinellia ciliata and Thinopyrum ponticum: the importance of K+ retention in roots publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2012.09.006 – volume: 59 start-page: 877 year: 2018 ident: 10.1016/j.tplants.2018.11.003_bib0015 article-title: Chloride: from nutrient to toxicant publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcy071 – volume: 8 start-page: 967 year: 2001 ident: 10.1016/j.tplants.2018.11.003_bib0180 article-title: Chloride in soils and its uptake and movement within the plant: a review publication-title: Ann. Bot. doi: 10.1006/anbo.2001.1540 – volume: 11 start-page: 529 year: 2006 ident: 10.1016/j.tplants.2018.11.003_bib0225 article-title: Futile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2006.09.011 – volume: 141 start-page: 154 year: 2017 ident: 10.1016/j.tplants.2018.11.003_bib0415 article-title: A comparative analysis of cytosolic Na+ changes under salinity between halophyte quinoa (Chenopodium quinoa) and glycophyte pea (Pisum sativum) publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2017.07.003 – volume: 13 start-page: 241 year: 2012 ident: 10.1016/j.tplants.2018.11.003_bib0285 article-title: Life at the extreme: lessons from the genome publication-title: Genome Biol. doi: 10.1186/gb4003 – volume: 22 start-page: 236 year: 2017 ident: 10.1016/j.tplants.2018.11.003_bib0005 article-title: Chloride on the move publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.12.004 – volume: 177 start-page: 131 year: 1989 ident: 10.1016/j.tplants.2018.11.003_bib0385 article-title: X-ray microanalysis of ion distribution within root cortical cells of the halophyte Suaeda maritima (L.) Dum publication-title: Planta doi: 10.1007/BF00392163 – volume: 40 start-page: 759 year: 2013 ident: 10.1016/j.tplants.2018.11.003_bib0215 article-title: The integration of activity in saline environments: problems and perspectives publication-title: Funct. Plant Biol. doi: 10.1071/FP12285 – volume: 75 start-page: 299 year: 2006 ident: 10.1016/j.tplants.2018.11.003_bib0235 article-title: Growth and respiration in two mangrove species at a range of salinities publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1989.tb06185.x – volume: 76 start-page: 3 year: 2015 ident: 10.1016/j.tplants.2018.11.003_bib0425 article-title: The role of the CBL–CIPK calcium signalling network in regulating ion transport in response to abiotic stress publication-title: Plant Growth Regul. doi: 10.1007/s10725-015-0034-1 – volume: 7 start-page: 2013 year: 2016 ident: 10.1016/j.tplants.2018.11.003_bib0045 article-title: AtNPF2.5 modulates chloride (Cl−) efflux from roots of Arabidopsis thaliana publication-title: Front. Plant Sci. – volume: 63 start-page: 861 year: 2010 ident: 10.1016/j.tplants.2018.11.003_bib0245 article-title: The proline 160 in the selectivity filter of the Arabidopsis NO3−/H+ exchanger AtCLCa is essential for nitrate accumulation in planta publication-title: Plant J. doi: 10.1111/j.1365-313X.2010.04288.x – volume: 62 start-page: 25 year: 2011 ident: 10.1016/j.tplants.2018.11.003_bib0310 article-title: Anion channels/transporters in plants: from molecular bases to regulatory networks publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042110-103741 – volume: 16 start-page: 614 year: 2011 ident: 10.1016/j.tplants.2018.11.003_bib0230 article-title: The role of mitochondrial respiration in salinity tolerance publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2011.08.002 – volume: 135 start-page: 1697 year: 2004 ident: 10.1016/j.tplants.2018.11.003_bib0290 article-title: Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray publication-title: Plant Physiol. doi: 10.1104/pp.104.039909 – volume: 12 start-page: 79 year: 2009 ident: 10.1016/j.tplants.2018.11.003_bib0115 article-title: Salt stimulation of growth and photosynthesis in an extreme halophyte, Arthrocnemum macrostachyum publication-title: Plant Biol. doi: 10.1111/j.1438-8677.2009.00207.x – volume: 111 start-page: E4532 year: 2014 ident: 10.1016/j.tplants.2018.11.003_bib0420 article-title: Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1407610111 – volume: 139 start-page: 1507 year: 2005 ident: 10.1016/j.tplants.2018.11.003_bib0275 article-title: Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance publication-title: Plant Physiol. doi: 10.1104/pp.105.067850 – volume: 109 start-page: 12219 year: 2012 ident: 10.1016/j.tplants.2018.11.003_bib0340 article-title: Insights into salt tolerance from the genome of Thellungiella salsuginea publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1209954109 – volume: 208 start-page: 668 year: 2015 ident: 10.1016/j.tplants.2018.11.003_bib0095 article-title: Salinity tolerance of crops – what is the cost? publication-title: New Phytol. doi: 10.1111/nph.13519 – volume: 4 start-page: 2797 year: 2013 ident: 10.1016/j.tplants.2018.11.003_bib0295 article-title: Genomic insights into salt adaptation in a desert poplar publication-title: Nat. Commun. doi: 10.1038/ncomms3797 – volume: 68 start-page: 3129 year: 2017 ident: 10.1016/j.tplants.2018.11.003_bib0125 article-title: Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx142 – volume: 112 start-page: 7309 year: 2015 ident: 10.1016/j.tplants.2018.11.003_bib0325 article-title: Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1507810112 – volume: 9 start-page: 559 year: 1986 ident: 10.1016/j.tplants.2018.11.003_bib0390 article-title: Effects of NaCl on ion relations and carbohydrate status of roots and on osmotic regulation of roots and shoots of Atriplex amnicola publication-title: Plant Cell Environ. doi: 10.1111/1365-3040.ep11616302 – volume: 40 start-page: 897 year: 2013 ident: 10.1016/j.tplants.2018.11.003_bib0090 article-title: Tolerance of extreme salinity in two stem-succulent halophytes (Tecticornia species) publication-title: Funct. Plant Biol. doi: 10.1071/FP12304 – volume: 112 start-page: 1209 year: 2013 ident: 10.1016/j.tplants.2018.11.003_bib0030 article-title: Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops publication-title: Ann. Bot. doi: 10.1093/aob/mct205 – volume: 34 start-page: 353 year: 1984 ident: 10.1016/j.tplants.2018.11.003_bib0120 article-title: Photosynthetic oxygen evolution in relation to ion contents in the chloroplasts of Suaeda maritima publication-title: Plant Sci. Lett. doi: 10.1016/S0304-4211(84)80015-2 |
SSID | ssj0007186 |
Score | 2.506192 |
SecondaryResourceType | review_article |
Snippet | In this opinion article, we challenge the traditional view that breeding for reduced Cl− uptake would benefit plant salinity tolerance. A negative correlation... In this opinion article, we challenge the traditional view that breeding for reduced Cl uptake would benefit plant salinity tolerance. A negative correlation... Interest in the Cl− aspect of salinity tolerance has traditionally focused on non-halophytes. Knowledge of Cl− regulation in ‘salt-loving’ halophytes is... In this opinion article, we challenge the traditional view that breeding for reduced Cl- uptake would benefit plant salinity tolerance. A negative correlation... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 142 |
SubjectTerms | Amino acids Anion channels Anions breeding Ca2+ signalling Calcineurin Cbl protein Chlorides Efflux energy Energy metabolism Halophytes Homology influx Ion channels Ion transport Kinases membrane transport proteins nitrates Osmoregulation phytomass Plant biomass Plant Roots Post-translation Protein kinase Proteins Salinity Salinity effects Salinity tolerance Salt Tolerance Salt-Tolerant Plants Selectivity Stomata |
Title | Friend or Foe? Chloride Patterning in Halophytes |
URI | https://dx.doi.org/10.1016/j.tplants.2018.11.003 https://www.ncbi.nlm.nih.gov/pubmed/30558965 https://www.proquest.com/docview/2185032971 https://www.proquest.com/docview/2158248621 https://www.proquest.com/docview/2189516750 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_I9KAH8dv5RQWv3dI2SdOTzOGYCiKosFtplhQnox2yHbz4t_tePzZFdOCxTVLal-Tl95rf-wXgIkIMit1u3UDpxOVhwt1EWwxVpFWpDFJ0iAXL9172n_ntQAxWoFvnwhCtsvL9pU8vvHV1p11Zsz0ZjdqPXiBpm014JGGFsIQy2HlIo7z1saB5oO-VZe4VI709scjiab-2ppMxsU2I4aVaJOZZn531c336DX8W61BvCzYrAOl0ynfchhWb7cDaVY4g730HNr7oC-4C65GKsXHyN6eX20un-0J8O2Odh0JVk36JOKPM6SfjHK2NoHMPnnvXT92-Wx2R4A5xaZ26iZIGEU5o0tCaNOKeYRrhstG-sHooFKJRjBiYTBH2aCFSy8zQM75JbKg01zLYh0aWZ_YQHI0PCnTIlSdTLjXTnmWJlKnvowmZjJrAa8PEw0o_nI6xGMc1Uew1ruwZkz0xtiDh0Sa05s0mpYDGsgaqtnr8bSTE6OSXNT2peymupiKWIyJhgR-FXhPO58U4iWhnJMlsPqM6Qvkcg7s_6yhEoxhfsSYclCNg_kEkm6YiKY7-_-7HsI5XUUkIP4HG9G1mTxHvTPVZMaDPYLVzc9e__wRen_zx |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gXoQ367PCl67m7ZJmp5EF5f1iaCCt9JsUtxlaRdZD1787c70sSqigtcmKekkmXzTfPkG4ChCDIrDbt1A6cTlYcLdRFsMVaRVqQxSdIgFy_dGdh_4xaN4nIJ2fReGaJWV7y99euGtqyetypqtUb_fuvMCScdswiMJK4Ql0zDLcflSGoPm2wfPA52vLC9fMRLcEx_XeFqD5ng0JLoJUbxUk9Q86-RZ3zeonwBosRF1lmGpQpDOSdnJFZiy2SrMneaI8l5XYfGTwOAasA7JGBsnf3Y6uT122k9EuDPWuS1kNemfiNPPnG4yzNHciDrX4aFzdt_uulWOBLeHe-vYTZQ0CHFCk4bWpBH3DNOIl432hdU9oRCOYsjAZIq4RwuRWmZ6nvFNYkOluZbBBsxkeWa3wNH4okCHXHky5VIz7VmWSJn6PpqQyagBvDZM3KsExCmPxTCumWKDuLJnTPbE4IKURxvQnDQblQoafzVQtdXjL1MhRi__V9PdepTiai1iOUISFvhR6DXgcFKMq4iORpLM5i9URyifY3T3ax2FcBQDLNaAzXIGTD6IdNNUJMX2__t-APPd--ur-Or85nIHFrAkKtnhuzAzfn6xewh-xnq_mNzvHFv-fw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Friend+or+Foe%3F+Chloride+Patterning+in+Halophytes&rft.jtitle=Trends+in+plant+science&rft.au=Bazihizina%2C+Nadia&rft.au=Colmer%2C+Timothy+D&rft.au=Cuin%2C+Tracey+Ann&rft.au=Mancuso%2C+Stefano&rft.date=2019-02-01&rft.issn=1878-4372&rft.eissn=1878-4372&rft.volume=24&rft.issue=2&rft.spage=142&rft_id=info:doi/10.1016%2Fj.tplants.2018.11.003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-1385&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-1385&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-1385&client=summon |