Software Defect Prediction via Attention-Based Recurrent Neural Network

In order to improve software reliability, software defect prediction is applied to the process of software maintenance to identify potential bugs. Traditional methods of software defect prediction mainly focus on designing static code metrics, which are input into machine learning classifiers to pre...

Full description

Saved in:
Bibliographic Details
Published inScientific programming Vol. 2019; no. 2019; pp. 1 - 14
Main Authors Yang, Kang, Yu, Huiqun, Diao, Xuyang, Fan, Guisheng, Chen, Liqiong
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2019
Hindawi
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to improve software reliability, software defect prediction is applied to the process of software maintenance to identify potential bugs. Traditional methods of software defect prediction mainly focus on designing static code metrics, which are input into machine learning classifiers to predict defect probabilities of the code. However, the characteristics of these artificial metrics do not contain the syntactic structures and semantic information of programs. Such information is more significant than manual metrics and can provide a more accurate predictive model. In this paper, we propose a framework called defect prediction via attention-based recurrent neural network (DP-ARNN). More specifically, DP-ARNN first parses abstract syntax trees (ASTs) of programs and extracts them as vectors. Then it encodes vectors which are used as inputs of DP-ARNN by dictionary mapping and word embedding. After that, it can automatically learn syntactic and semantic features. Furthermore, it employs the attention mechanism to further generate significant features for accurate defect prediction. To validate our method, we choose seven open-source Java projects in Apache, using F1-measure and area under the curve (AUC) as evaluation criteria. The experimental results show that, in average, DP-ARNN improves the F1-measure by 14% and AUC by 7% compared with the state-of-the-art methods, respectively.
AbstractList In order to improve software reliability, software defect prediction is applied to the process of software maintenance to identify potential bugs. Traditional methods of software defect prediction mainly focus on designing static code metrics, which are input into machine learning classifiers to predict defect probabilities of the code. However, the characteristics of these artificial metrics do not contain the syntactic structures and semantic information of programs. Such information is more significant than manual metrics and can provide a more accurate predictive model. In this paper, we propose a framework called defect prediction via attention-based recurrent neural network (DP-ARNN). More specifically, DP-ARNN first parses abstract syntax trees (ASTs) of programs and extracts them as vectors. Then it encodes vectors which are used as inputs of DP-ARNN by dictionary mapping and word embedding. After that, it can automatically learn syntactic and semantic features. Furthermore, it employs the attention mechanism to further generate significant features for accurate defect prediction. To validate our method, we choose seven open-source Java projects in Apache, using F1-measure and area under the curve (AUC) as evaluation criteria. The experimental results show that, in average, DP-ARNN improves the F1-measure by 14% and AUC by 7% compared with the state-of-the-art methods, respectively.
Author Yang, Kang
Fan, Guisheng
Diao, Xuyang
Chen, Liqiong
Yu, Huiqun
Author_xml – sequence: 1
  fullname: Yang, Kang
– sequence: 2
  fullname: Yu, Huiqun
– sequence: 3
  fullname: Diao, Xuyang
– sequence: 4
  fullname: Fan, Guisheng
– sequence: 5
  fullname: Chen, Liqiong
BookMark eNqFkM1Lw0AQxRepYFu9eZaAR43d7-0ea9UqFBU_wFvYbmZxa03qZmPxvzchBUEQT29m-L0Z5g1QrygLQOiQ4DNChBhRTPRIUoa1YDuoT8ZKpJrol15TYzFONeV8Dw2qaokxGROM-2j2WLq4MQGSC3BgY3IfIPc2-rJIPr1JJjFC0XbpuakgTx7A1iE0o-QW6mBWjcRNGd720a4zqwoOtjpEz1eXT9PrdH43u5lO5qnlVMZUS2edNFYIZRlhucSKOYYpszklwI3DUo2tyuWCL9yCUG5yzSkIRh3ljgMbouNu7zqUHzVUMVuWdSiakxmlRCostKINRTvKhrKqArjM-mjaN2IwfpURnLWBZW1g2TawxnT6y7QO_t2Er7_wkw5_9UVuNv4_-qijoWHAmR-aEqy4YN9wCYOy
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3488904
crossref_primary_10_1109_TR_2022_3161581
crossref_primary_10_1007_s00521_024_10902_y
crossref_primary_10_1155_2020_7426461
crossref_primary_10_1016_j_procs_2023_01_159
crossref_primary_10_3390_electronics13203976
crossref_primary_10_1002_smr_2731
crossref_primary_10_1007_s00500_022_06830_5
crossref_primary_10_1002_cpe_7240
crossref_primary_10_1007_s10489_022_04078_y
crossref_primary_10_3233_IDT_230427
crossref_primary_10_1007_s10844_023_00793_1
crossref_primary_10_1109_ACCESS_2024_3362896
crossref_primary_10_1109_TR_2020_3040191
crossref_primary_10_1108_EC_11_2023_0799
crossref_primary_10_1038_s41598_024_65639_4
crossref_primary_10_1109_ACCESS_2024_3388489
crossref_primary_10_1007_s00500_022_07365_5
crossref_primary_10_1109_ACCESS_2021_3054948
crossref_primary_10_1109_ACCESS_2024_3517419
crossref_primary_10_1016_j_eswa_2023_121251
crossref_primary_10_1007_s10115_023_01932_4
crossref_primary_10_1007_s10586_023_04170_z
crossref_primary_10_1007_s11334_023_00542_1
crossref_primary_10_1109_ACCESS_2020_2985780
crossref_primary_10_1109_TIFS_2024_3392536
crossref_primary_10_1109_TR_2024_3356515
crossref_primary_10_1007_s11219_023_09642_4
crossref_primary_10_1109_ACCESS_2022_3144598
crossref_primary_10_1007_s00521_024_10937_1
crossref_primary_10_1007_s12530_022_09423_7
crossref_primary_10_1109_ACCESS_2022_3166628
crossref_primary_10_1109_ACCESS_2022_3219589
crossref_primary_10_1007_s00521_022_08046_y
crossref_primary_10_2174_0126662558243958231207094823
crossref_primary_10_35784_iapgos_4569
crossref_primary_10_36930_40310219
crossref_primary_10_7717_peerj_cs_739
crossref_primary_10_1049_2024_8027037
crossref_primary_10_1016_j_eswa_2023_121764
crossref_primary_10_1109_ACCESS_2020_3034766
crossref_primary_10_1109_TETCI_2023_3336920
crossref_primary_10_1109_JPROC_2020_2993293
Cites_doi 10.1109/tse.1976.233837
10.1016/j.asoc.2017.05.043
10.1109/tii.2018.2821768
10.1049/iet-sen.2017.0148
10.4249/scholarpedia.5947
10.1007/s10664-008-9103-7
10.1016/j.infsof.2015.01.014
10.1007/s10515-010-0069-5
10.1016/j.knosys.2018.01.033
10.1142/s0218213018500240
10.1016/j.infsof.2011.09.007
10.1111/j.1466-8238.2007.00358.x
10.1007/s13748-016-0092-2
10.1016/j.jss.2018.06.025
10.1214/aoms/1177731944
10.1145/3183339
10.1021/ci034160g
10.1109/tse.2007.256941
10.1049/iet-sen.2017.0111
10.1016/j.eswa.2008.10.027
10.1109/tr.2018.2804922
10.1016/j.ins.2008.11.007
10.1162/neco.1997.9.8.1735
ContentType Journal Article
Copyright Copyright © 2019 Guisheng Fan et al.
Copyright © 2019 Guisheng Fan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2019 Guisheng Fan et al.
– notice: Copyright © 2019 Guisheng Fan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1155/2019/6230953
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

CrossRef

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1875-919X
Editor Vitiello, Autilia
Editor_xml – sequence: 1
  givenname: Autilia
  surname: Vitiello
  fullname: Vitiello, Autilia
EndPage 14
ExternalDocumentID 10_1155_2019_6230953
1210745
GrantInformation_xml – fundername: Educational Research Fund of ECUST
  grantid: ZH1726108
– fundername: National Natural Science Foundation of China
  grantid: 61772200; 61702334
– fundername: Shanghai Municipal Natural Science Foundation
  grantid: 17ZR1406900; 17ZR1429700
– fundername: Shanghai Pujiang Talent Program
  grantid: 17PJ1401900
– fundername: Shanghai Institute of Technology
  grantid: XTCX2016-20
GroupedDBID .4S
.DC
0R~
24P
4.4
5VS
AAFNC
AAFWJ
AAJEY
ABDBF
ABEFU
ABJNI
ABUBZ
ACGFS
ACPQW
ADBBV
ADJCN
ADZMO
AENEX
AFRHK
AGIAB
AHFXO
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BCNDV
CAG
COF
DU5
EAD
EAP
EBS
EDO
EJD
EMK
EPL
EST
ESX
FEDTE
GROUPED_DOAJ
H13
HZ~
I-F
IAO
IHR
IL9
IOS
IPNFZ
KQ8
MET
MIO
MK~
ML~
MV1
NGNOM
O9-
OK1
RHX
RIG
TUS
VOH
RHU
RHW
AAYXX
ACCMX
CITATION
7SC
7SP
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c426t-96fcf6ac557c313d6073f3023cd21e4af0678c7d6b4bfb124ad942e532f24f4e3
IEDL.DBID RHX
ISSN 1058-9244
IngestDate Fri Jul 25 09:29:53 EDT 2025
Tue Jul 01 02:50:03 EDT 2025
Thu Apr 24 22:58:02 EDT 2025
Sun Jun 02 19:16:56 EDT 2024
Tue Nov 26 16:44:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2019
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-96fcf6ac557c313d6073f3023cd21e4af0678c7d6b4bfb124ad942e532f24f4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8377-3484
0000-0002-5863-1003
0000-0002-2702-0242
0000-0002-1899-1135
0000-0003-1927-2148
OpenAccessLink https://dx.doi.org/10.1155/2019/6230953
PQID 2216705972
PQPubID 2046410
PageCount 14
ParticipantIDs proquest_journals_2216705972
crossref_citationtrail_10_1155_2019_6230953
crossref_primary_10_1155_2019_6230953
hindawi_primary_10_1155_2019_6230953
emarefa_primary_1210745
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: New York
PublicationTitle Scientific programming
PublicationYear 2019
Publisher Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
– name: John Wiley & Sons, Inc
References 22
44
23
(43) 2006; 7
24
47
26
(9) 2010
29
(7) 1977; 2
30
13
16
17
(12) 2011; 2
1
2
3
4
(45) 2003; 43
5
6
8
40
41
20
42
References_xml – ident: 8
  doi: 10.1109/tse.1976.233837
– ident: 16
  doi: 10.1016/j.asoc.2017.05.043
– ident: 29
  doi: 10.1109/tii.2018.2821768
– ident: 2
  doi: 10.1049/iet-sen.2017.0148
– ident: 47
  doi: 10.4249/scholarpedia.5947
– ident: 20
  doi: 10.1007/s10664-008-9103-7
– ident: 24
  doi: 10.1016/j.infsof.2015.01.014
– volume: 2
  volume-title: Elements of software science
  year: 1977
  ident: 7
– ident: 41
  doi: 10.1007/s10515-010-0069-5
– volume: 2
  start-page: 37
  issue: 1
  year: 2011
  ident: 12
  publication-title: Journal of Machine Learning Technologies
– volume-title: Using object-oriented design metrics to predict software defects
  year: 2010
  ident: 9
– ident: 44
  doi: 10.1016/j.knosys.2018.01.033
– volume: 7
  start-page: 1
  year: 2006
  ident: 43
  publication-title: Journal of Machine Learning Research
– ident: 17
  doi: 10.1142/s0218213018500240
– ident: 22
  doi: 10.1016/j.infsof.2011.09.007
– ident: 13
  doi: 10.1111/j.1466-8238.2007.00358.x
– ident: 1
  doi: 10.1007/s13748-016-0092-2
– ident: 3
  doi: 10.1016/j.jss.2018.06.025
– ident: 42
  doi: 10.1214/aoms/1177731944
– ident: 6
  doi: 10.1145/3183339
– volume: 43
  start-page: 1947
  issue: 6
  year: 2003
  ident: 45
  publication-title: Journal of Chemical Information and Computer Sciences
  doi: 10.1021/ci034160g
– ident: 40
  doi: 10.1109/tse.2007.256941
– ident: 26
  doi: 10.1049/iet-sen.2017.0111
– ident: 4
  doi: 10.1016/j.eswa.2008.10.027
– ident: 5
  doi: 10.1109/tr.2018.2804922
– ident: 23
  doi: 10.1016/j.ins.2008.11.007
– ident: 30
  doi: 10.1162/neco.1997.9.8.1735
SSID ssj0018100
Score 2.439431
Snippet In order to improve software reliability, software defect prediction is applied to the process of software maintenance to identify potential bugs. Traditional...
SourceID proquest
crossref
hindawi
emarefa
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial intelligence
Classification
Data mining
Defects
Dictionaries
Identification methods
Machine learning
Mapping
Network reliability
Neural networks
Prediction models
Recurrent neural networks
Semantics
Software engineering
Software reliability
Source code
Title Software Defect Prediction via Attention-Based Recurrent Neural Network
URI https://search.emarefa.net/detail/BIM-1210745
https://dx.doi.org/10.1155/2019/6230953
https://www.proquest.com/docview/2216705972
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5soeDF96Nayx7qSYLNvpIc66MWD6Wohd7C7mYXBa3SRvv3nU02FS2itwQ2E5jZ2W9mZ_gGoY6bbU8ysEBMYxkwaqNACmUCppVRXZ3QWBcNskMxGLPbCZ94kqT5agkf0A7S8zA5B5R2zGg1VIMN5pLywWRZLIjDbkk6wMF3Aa6q_vYf335DnoZ5kfAAcNR4dMnv4mnlMC4Qpr-FNnxoiHulLbfRmpnuoM1q7AL2XriLbu7h6FyAXHxlXDMGHs1ctcVpGH88SdzL87KHMbgAiMrwnbtSdyRM2DFxwB-GZev3Hhr3rx8uB4GfhxBowNE8SITVVkjNeaRpSDMB7mnd0B-dkdAwaR3y6CgTiimrALhlljBiOCWWMMsM3Uf16evUHCIsDA0NBNZECQE5TxTLjLLYJFyD4SxTTXRW6SrVnizczax4ToukgfPUaTb1mm2i0-Xqt5Ik45d1B17tX8uI6wjlTdTxZvhDQKuyUep9bZ4SEooIosSIHP1PyjFad6_lRUoL1fPZuzmB0CJXbVQjbNQuttcn11zD4w
linkProvider Hindawi Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Software+Defect+Prediction+via+Attention-Based+Recurrent+Neural+Network&rft.jtitle=Scientific+programming&rft.au=Fan%2C+Guisheng&rft.au=Diao%2C+Xuyang&rft.au=Yu%2C+Huiqun&rft.au=Kang%2C+Yang&rft.date=2019-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1058-9244&rft.eissn=1875-919X&rft.volume=2019&rft_id=info:doi/10.1155%2F2019%2F6230953&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-9244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-9244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-9244&client=summon