Software Defect Prediction via Attention-Based Recurrent Neural Network
In order to improve software reliability, software defect prediction is applied to the process of software maintenance to identify potential bugs. Traditional methods of software defect prediction mainly focus on designing static code metrics, which are input into machine learning classifiers to pre...
Saved in:
Published in | Scientific programming Vol. 2019; no. 2019; pp. 1 - 14 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2019
Hindawi John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In order to improve software reliability, software defect prediction is applied to the process of software maintenance to identify potential bugs. Traditional methods of software defect prediction mainly focus on designing static code metrics, which are input into machine learning classifiers to predict defect probabilities of the code. However, the characteristics of these artificial metrics do not contain the syntactic structures and semantic information of programs. Such information is more significant than manual metrics and can provide a more accurate predictive model. In this paper, we propose a framework called defect prediction via attention-based recurrent neural network (DP-ARNN). More specifically, DP-ARNN first parses abstract syntax trees (ASTs) of programs and extracts them as vectors. Then it encodes vectors which are used as inputs of DP-ARNN by dictionary mapping and word embedding. After that, it can automatically learn syntactic and semantic features. Furthermore, it employs the attention mechanism to further generate significant features for accurate defect prediction. To validate our method, we choose seven open-source Java projects in Apache, using F1-measure and area under the curve (AUC) as evaluation criteria. The experimental results show that, in average, DP-ARNN improves the F1-measure by 14% and AUC by 7% compared with the state-of-the-art methods, respectively. |
---|---|
AbstractList | In order to improve software reliability, software defect prediction is applied to the process of software maintenance to identify potential bugs. Traditional methods of software defect prediction mainly focus on designing static code metrics, which are input into machine learning classifiers to predict defect probabilities of the code. However, the characteristics of these artificial metrics do not contain the syntactic structures and semantic information of programs. Such information is more significant than manual metrics and can provide a more accurate predictive model. In this paper, we propose a framework called defect prediction via attention-based recurrent neural network (DP-ARNN). More specifically, DP-ARNN first parses abstract syntax trees (ASTs) of programs and extracts them as vectors. Then it encodes vectors which are used as inputs of DP-ARNN by dictionary mapping and word embedding. After that, it can automatically learn syntactic and semantic features. Furthermore, it employs the attention mechanism to further generate significant features for accurate defect prediction. To validate our method, we choose seven open-source Java projects in Apache, using F1-measure and area under the curve (AUC) as evaluation criteria. The experimental results show that, in average, DP-ARNN improves the F1-measure by 14% and AUC by 7% compared with the state-of-the-art methods, respectively. |
Author | Yang, Kang Fan, Guisheng Diao, Xuyang Chen, Liqiong Yu, Huiqun |
Author_xml | – sequence: 1 fullname: Yang, Kang – sequence: 2 fullname: Yu, Huiqun – sequence: 3 fullname: Diao, Xuyang – sequence: 4 fullname: Fan, Guisheng – sequence: 5 fullname: Chen, Liqiong |
BookMark | eNqFkM1Lw0AQxRepYFu9eZaAR43d7-0ea9UqFBU_wFvYbmZxa03qZmPxvzchBUEQT29m-L0Z5g1QrygLQOiQ4DNChBhRTPRIUoa1YDuoT8ZKpJrol15TYzFONeV8Dw2qaokxGROM-2j2WLq4MQGSC3BgY3IfIPc2-rJIPr1JJjFC0XbpuakgTx7A1iE0o-QW6mBWjcRNGd720a4zqwoOtjpEz1eXT9PrdH43u5lO5qnlVMZUS2edNFYIZRlhucSKOYYpszklwI3DUo2tyuWCL9yCUG5yzSkIRh3ljgMbouNu7zqUHzVUMVuWdSiakxmlRCostKINRTvKhrKqArjM-mjaN2IwfpURnLWBZW1g2TawxnT6y7QO_t2Er7_wkw5_9UVuNv4_-qijoWHAmR-aEqy4YN9wCYOy |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3488904 crossref_primary_10_1109_TR_2022_3161581 crossref_primary_10_1007_s00521_024_10902_y crossref_primary_10_1155_2020_7426461 crossref_primary_10_1016_j_procs_2023_01_159 crossref_primary_10_3390_electronics13203976 crossref_primary_10_1002_smr_2731 crossref_primary_10_1007_s00500_022_06830_5 crossref_primary_10_1002_cpe_7240 crossref_primary_10_1007_s10489_022_04078_y crossref_primary_10_3233_IDT_230427 crossref_primary_10_1007_s10844_023_00793_1 crossref_primary_10_1109_ACCESS_2024_3362896 crossref_primary_10_1109_TR_2020_3040191 crossref_primary_10_1108_EC_11_2023_0799 crossref_primary_10_1038_s41598_024_65639_4 crossref_primary_10_1109_ACCESS_2024_3388489 crossref_primary_10_1007_s00500_022_07365_5 crossref_primary_10_1109_ACCESS_2021_3054948 crossref_primary_10_1109_ACCESS_2024_3517419 crossref_primary_10_1016_j_eswa_2023_121251 crossref_primary_10_1007_s10115_023_01932_4 crossref_primary_10_1007_s10586_023_04170_z crossref_primary_10_1007_s11334_023_00542_1 crossref_primary_10_1109_ACCESS_2020_2985780 crossref_primary_10_1109_TIFS_2024_3392536 crossref_primary_10_1109_TR_2024_3356515 crossref_primary_10_1007_s11219_023_09642_4 crossref_primary_10_1109_ACCESS_2022_3144598 crossref_primary_10_1007_s00521_024_10937_1 crossref_primary_10_1007_s12530_022_09423_7 crossref_primary_10_1109_ACCESS_2022_3166628 crossref_primary_10_1109_ACCESS_2022_3219589 crossref_primary_10_1007_s00521_022_08046_y crossref_primary_10_2174_0126662558243958231207094823 crossref_primary_10_35784_iapgos_4569 crossref_primary_10_36930_40310219 crossref_primary_10_7717_peerj_cs_739 crossref_primary_10_1049_2024_8027037 crossref_primary_10_1016_j_eswa_2023_121764 crossref_primary_10_1109_ACCESS_2020_3034766 crossref_primary_10_1109_TETCI_2023_3336920 crossref_primary_10_1109_JPROC_2020_2993293 |
Cites_doi | 10.1109/tse.1976.233837 10.1016/j.asoc.2017.05.043 10.1109/tii.2018.2821768 10.1049/iet-sen.2017.0148 10.4249/scholarpedia.5947 10.1007/s10664-008-9103-7 10.1016/j.infsof.2015.01.014 10.1007/s10515-010-0069-5 10.1016/j.knosys.2018.01.033 10.1142/s0218213018500240 10.1016/j.infsof.2011.09.007 10.1111/j.1466-8238.2007.00358.x 10.1007/s13748-016-0092-2 10.1016/j.jss.2018.06.025 10.1214/aoms/1177731944 10.1145/3183339 10.1021/ci034160g 10.1109/tse.2007.256941 10.1049/iet-sen.2017.0111 10.1016/j.eswa.2008.10.027 10.1109/tr.2018.2804922 10.1016/j.ins.2008.11.007 10.1162/neco.1997.9.8.1735 |
ContentType | Journal Article |
Copyright | Copyright © 2019 Guisheng Fan et al. Copyright © 2019 Guisheng Fan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2019 Guisheng Fan et al. – notice: Copyright © 2019 Guisheng Fan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | ADJCN AHFXO RHU RHW RHX AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1155/2019/6230953 |
DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1875-919X |
Editor | Vitiello, Autilia |
Editor_xml | – sequence: 1 givenname: Autilia surname: Vitiello fullname: Vitiello, Autilia |
EndPage | 14 |
ExternalDocumentID | 10_1155_2019_6230953 1210745 |
GrantInformation_xml | – fundername: Educational Research Fund of ECUST grantid: ZH1726108 – fundername: National Natural Science Foundation of China grantid: 61772200; 61702334 – fundername: Shanghai Municipal Natural Science Foundation grantid: 17ZR1406900; 17ZR1429700 – fundername: Shanghai Pujiang Talent Program grantid: 17PJ1401900 – fundername: Shanghai Institute of Technology grantid: XTCX2016-20 |
GroupedDBID | .4S .DC 0R~ 24P 4.4 5VS AAFNC AAFWJ AAJEY ABDBF ABEFU ABJNI ABUBZ ACGFS ACPQW ADBBV ADJCN ADZMO AENEX AFRHK AGIAB AHFXO ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF BCNDV CAG COF DU5 EAD EAP EBS EDO EJD EMK EPL EST ESX FEDTE GROUPED_DOAJ H13 HZ~ I-F IAO IHR IL9 IOS IPNFZ KQ8 MET MIO MK~ ML~ MV1 NGNOM O9- OK1 RHX RIG TUS VOH RHU RHW AAYXX ACCMX CITATION 7SC 7SP 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c426t-96fcf6ac557c313d6073f3023cd21e4af0678c7d6b4bfb124ad942e532f24f4e3 |
IEDL.DBID | RHX |
ISSN | 1058-9244 |
IngestDate | Fri Jul 25 09:29:53 EDT 2025 Tue Jul 01 02:50:03 EDT 2025 Thu Apr 24 22:58:02 EDT 2025 Sun Jun 02 19:16:56 EDT 2024 Tue Nov 26 16:44:40 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2019 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-96fcf6ac557c313d6073f3023cd21e4af0678c7d6b4bfb124ad942e532f24f4e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8377-3484 0000-0002-5863-1003 0000-0002-2702-0242 0000-0002-1899-1135 0000-0003-1927-2148 |
OpenAccessLink | https://dx.doi.org/10.1155/2019/6230953 |
PQID | 2216705972 |
PQPubID | 2046410 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2216705972 crossref_citationtrail_10_1155_2019_6230953 crossref_primary_10_1155_2019_6230953 hindawi_primary_10_1155_2019_6230953 emarefa_primary_1210745 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cairo, Egypt |
PublicationPlace_xml | – name: Cairo, Egypt – name: New York |
PublicationTitle | Scientific programming |
PublicationYear | 2019 |
Publisher | Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi – name: John Wiley & Sons, Inc |
References | 22 44 23 (43) 2006; 7 24 47 26 (9) 2010 29 (7) 1977; 2 30 13 16 17 (12) 2011; 2 1 2 3 4 (45) 2003; 43 5 6 8 40 41 20 42 |
References_xml | – ident: 8 doi: 10.1109/tse.1976.233837 – ident: 16 doi: 10.1016/j.asoc.2017.05.043 – ident: 29 doi: 10.1109/tii.2018.2821768 – ident: 2 doi: 10.1049/iet-sen.2017.0148 – ident: 47 doi: 10.4249/scholarpedia.5947 – ident: 20 doi: 10.1007/s10664-008-9103-7 – ident: 24 doi: 10.1016/j.infsof.2015.01.014 – volume: 2 volume-title: Elements of software science year: 1977 ident: 7 – ident: 41 doi: 10.1007/s10515-010-0069-5 – volume: 2 start-page: 37 issue: 1 year: 2011 ident: 12 publication-title: Journal of Machine Learning Technologies – volume-title: Using object-oriented design metrics to predict software defects year: 2010 ident: 9 – ident: 44 doi: 10.1016/j.knosys.2018.01.033 – volume: 7 start-page: 1 year: 2006 ident: 43 publication-title: Journal of Machine Learning Research – ident: 17 doi: 10.1142/s0218213018500240 – ident: 22 doi: 10.1016/j.infsof.2011.09.007 – ident: 13 doi: 10.1111/j.1466-8238.2007.00358.x – ident: 1 doi: 10.1007/s13748-016-0092-2 – ident: 3 doi: 10.1016/j.jss.2018.06.025 – ident: 42 doi: 10.1214/aoms/1177731944 – ident: 6 doi: 10.1145/3183339 – volume: 43 start-page: 1947 issue: 6 year: 2003 ident: 45 publication-title: Journal of Chemical Information and Computer Sciences doi: 10.1021/ci034160g – ident: 40 doi: 10.1109/tse.2007.256941 – ident: 26 doi: 10.1049/iet-sen.2017.0111 – ident: 4 doi: 10.1016/j.eswa.2008.10.027 – ident: 5 doi: 10.1109/tr.2018.2804922 – ident: 23 doi: 10.1016/j.ins.2008.11.007 – ident: 30 doi: 10.1162/neco.1997.9.8.1735 |
SSID | ssj0018100 |
Score | 2.439431 |
Snippet | In order to improve software reliability, software defect prediction is applied to the process of software maintenance to identify potential bugs. Traditional... |
SourceID | proquest crossref hindawi emarefa |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial intelligence Classification Data mining Defects Dictionaries Identification methods Machine learning Mapping Network reliability Neural networks Prediction models Recurrent neural networks Semantics Software engineering Software reliability Source code |
Title | Software Defect Prediction via Attention-Based Recurrent Neural Network |
URI | https://search.emarefa.net/detail/BIM-1210745 https://dx.doi.org/10.1155/2019/6230953 https://www.proquest.com/docview/2216705972 |
Volume | 2019 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5soeDF96Nayx7qSYLNvpIc66MWD6Wohd7C7mYXBa3SRvv3nU02FS2itwQ2E5jZ2W9mZ_gGoY6bbU8ysEBMYxkwaqNACmUCppVRXZ3QWBcNskMxGLPbCZ94kqT5agkf0A7S8zA5B5R2zGg1VIMN5pLywWRZLIjDbkk6wMF3Aa6q_vYf335DnoZ5kfAAcNR4dMnv4mnlMC4Qpr-FNnxoiHulLbfRmpnuoM1q7AL2XriLbu7h6FyAXHxlXDMGHs1ctcVpGH88SdzL87KHMbgAiMrwnbtSdyRM2DFxwB-GZev3Hhr3rx8uB4GfhxBowNE8SITVVkjNeaRpSDMB7mnd0B-dkdAwaR3y6CgTiimrALhlljBiOCWWMMsM3Uf16evUHCIsDA0NBNZECQE5TxTLjLLYJFyD4SxTTXRW6SrVnizczax4ToukgfPUaTb1mm2i0-Xqt5Ik45d1B17tX8uI6wjlTdTxZvhDQKuyUep9bZ4SEooIosSIHP1PyjFad6_lRUoL1fPZuzmB0CJXbVQjbNQuttcn11zD4w |
linkProvider | Hindawi Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Software+Defect+Prediction+via+Attention-Based+Recurrent+Neural+Network&rft.jtitle=Scientific+programming&rft.au=Fan%2C+Guisheng&rft.au=Diao%2C+Xuyang&rft.au=Yu%2C+Huiqun&rft.au=Kang%2C+Yang&rft.date=2019-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1058-9244&rft.eissn=1875-919X&rft.volume=2019&rft_id=info:doi/10.1155%2F2019%2F6230953&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-9244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-9244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-9244&client=summon |