Activity Recognition Using Complex Network Analysis
In this paper, we perform complex network analysis on a connectivity dataset retrieved from a monitoring system in order to classify simple daily activities. The monitoring system is composed of a set of wearable sensing modules positioned on the subject's body and the connectivity data consist...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 22; no. 4; pp. 989 - 1000 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2194 2168-2208 2168-2208 |
DOI | 10.1109/JBHI.2017.2762404 |
Cover
Loading…
Abstract | In this paper, we perform complex network analysis on a connectivity dataset retrieved from a monitoring system in order to classify simple daily activities. The monitoring system is composed of a set of wearable sensing modules positioned on the subject's body and the connectivity data consists of the correlation between each pair of modules. A number of network measures are then computed followed by the application of statistical significance and feature selection methods. These methods were implemented for the purpose of reducing the total number of modules in the monitoring system required to provide accurate activity classification. The obtained results show that an overall accuracy of 84.6% for activity classification is achieved, using a random forest classifier, and when considering a monitoring system composed of only two modules positioned at the neck and thigh of the subject's body. |
---|---|
AbstractList | In this paper, we perform complex network analysis on a connectivity dataset retrieved from a monitoring system in order to classify simple daily activities. The monitoring system is composed of a set of wearable sensing modules positioned on the subject's body and the connectivity data consists of the correlation between each pair of modules. A number of network measures are then computed followed by the application of statistical significance and feature selection methods. These methods were implemented for the purpose of reducing the total number of modules in the monitoring system required to provide accurate activity classification. The obtained results show that an overall accuracy of 84.6% for activity classification is achieved, using a random forest classifier, and when considering a monitoring system composed of only two modules positioned at the neck and thigh of the subject's body. In this paper, we perform complex network analysis on a connectivity dataset retrieved from a monitoring system in order to classify simple daily activities. The monitoring system is composed of a set of wearable sensing modules positioned on the subject's body and the connectivity data consists of the correlation between each pair of modules. A number of network measures are then computed followed by the application of statistical significance and feature selection methods. These methods were implemented for the purpose of reducing the total number of modules in the monitoring system required to provide accurate activity classification. The obtained results show that an overall accuracy of 84.6% for activity classification is achieved, using a Random Forest (RF) classifier, and when considering a monitoring system composed of only two modules positioned at the Neck and Thigh of the subject's body. In this paper, we perform complex network analysis on a connectivity dataset retrieved from a monitoring system in order to classify simple daily activities. The monitoring system is composed of a set of wearable sensing modules positioned on the subject's body and the connectivity data consists of the correlation between each pair of modules. A number of network measures are then computed followed by the application of statistical significance and feature selection methods. These methods were implemented for the purpose of reducing the total number of modules in the monitoring system required to provide accurate activity classification. The obtained results show that an overall accuracy of 84.6% for activity classification is achieved, using a random forest classifier, and when considering a monitoring system composed of only two modules positioned at the neck and thigh of the subject's body.In this paper, we perform complex network analysis on a connectivity dataset retrieved from a monitoring system in order to classify simple daily activities. The monitoring system is composed of a set of wearable sensing modules positioned on the subject's body and the connectivity data consists of the correlation between each pair of modules. A number of network measures are then computed followed by the application of statistical significance and feature selection methods. These methods were implemented for the purpose of reducing the total number of modules in the monitoring system required to provide accurate activity classification. The obtained results show that an overall accuracy of 84.6% for activity classification is achieved, using a random forest classifier, and when considering a monitoring system composed of only two modules positioned at the neck and thigh of the subject's body. |
Author | Viardot, Geoffrey Carrault, Guy Poree, Fabienne L' Hostis, Phillipe Jalloul, Nahed |
Author_xml | – sequence: 1 givenname: Nahed orcidid: 0000-0002-8726-7060 surname: Jalloul fullname: Jalloul, Nahed email: nahedjalloul5@gmail.com organization: Laboratoire Traitement du Signal et de l’Image, Université de Rennes 1, Rennes, France – sequence: 2 givenname: Fabienne orcidid: 0000-0003-2575-4821 surname: Poree fullname: Poree, Fabienne email: fabienne.poree@univ-rennes1.fr organization: Laboratoire Traitement du Signal et de l’Image, Université de Rennes 1, Rennes, France – sequence: 3 givenname: Geoffrey surname: Viardot fullname: Viardot, Geoffrey email: Geoffrey.Viardot@biotrial.com organization: Biotrial, Rennes, France – sequence: 4 givenname: Phillipe surname: L' Hostis fullname: L' Hostis, Phillipe email: phillipe.lhostis@bitorial.com organization: Biotrial, Rennes, France – sequence: 5 givenname: Guy surname: Carrault fullname: Carrault, Guy email: guy.carrault@univ-rennes1.fr organization: Laboratoire Traitement du Signal et de l’Image, Université de Rennes 1, Rennes, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29028218$$D View this record in MEDLINE/PubMed https://hal.science/hal-01736140$$DView record in HAL |
BookMark | eNp9kU1vEzEQhi1URNvQH4CQ0EpcyiHBM-sde48hAlIUgYTK2XKcSXHZrMN6U8i_x6ukOfSAL2ONnne-3ktx1saWhXgFcgIg6_dfPsxvJihBT1ATKqmeiQsEMmNEac4e_1Crc3GV0r3Mz-RUTS_EOdYSDYK5EOXU9-Eh9PviO_t414Y-xLb4kUJ7V8ziZtvw3-Ir939i96uYtq7Zp5Beiudr1yS-OsaRuP308XY2Hy--fb6ZTRdjr5D6cU3KLMmAXilTmjUqggoNSGQPWjLhmlhLTSV77VaEpUPnmSqnSC61K0fi3aHsT9fYbRc2rtvb6IKdTxd2yOXdSwIlHyCz1wd228XfO0693YTkuWlcy3GXLNQVVFpCnmQk3j5B7-Ouy6sli6BVpTQZlak3R2q33PDq1P_xchmAA-C7mFLH6xMC0g4G2cEgOxhkjwZljX6i8aF3w8X7zoXmv8rXB2Vg5lMnI4nQmPIfj9mYdw |
CODEN | IJBHA9 |
CitedBy_id | crossref_primary_10_1007_s11277_022_09819_3 crossref_primary_10_1108_ITP_12_2021_0948 crossref_primary_10_1016_j_cmpb_2022_107305 crossref_primary_10_1109_ACCESS_2020_2982225 crossref_primary_10_1007_s11042_023_16989_0 crossref_primary_10_1109_JBHI_2019_2939028 crossref_primary_10_1109_JBHI_2020_3007488 crossref_primary_10_1109_ACCESS_2021_3099567 crossref_primary_10_1109_TNSRE_2023_3266024 crossref_primary_10_1123_jpah_2019_0088 crossref_primary_10_1109_JBHI_2019_2909688 crossref_primary_10_1016_j_ins_2023_119394 crossref_primary_10_1007_s12553_020_00418_5 crossref_primary_10_3390_app12136707 |
Cites_doi | 10.2307/2280779 10.1016/j.neuroimage.2009.10.003 10.1016/B978-1-55860-247-2.50037-1 10.1249/MSS.0b013e31829736d6 10.1109/JSEN.2015.2502401 10.1016/j.humov.2014.11.013 10.1109/BSN.2015.7299372 10.1088/0967-3334/37/3/442 10.1016/j.physa.2010.08.015 10.1006/jagm.1994.1012 10.1016/j.tibtech.2014.04.005 10.1007/978-3-540-70994-7_6 10.1016/j.jtrangeo.2010.08.012 10.1109/EMBC.2015.7320273 10.1534/genetics.107.074518 10.1080/00018730601170527 10.1109/EMBC.2014.6944525 10.1109/BSN.Workshops.2014.15 10.1109/JBHI.2013.2253613 10.1016/j.pmcj.2010.12.001 10.3390/s140610691 10.1016/j.ijcard.2015.03.038 10.1088/1742-5468/2008/10/P10008 10.1023/A:1010933404324 10.1109/ICABME.2015.7323273 10.1007/978-3-319-11128-5_66 10.1109/BSN.2014.29 10.1007/978-3-319-16226-3_5 10.1109/ISWC.2006.286345 10.1109/BSN.2014.28 10.1109/EMBC.2015.7319547 10.1145/1961189.1961199 10.21236/ADA534437 10.2522/ptj.20140253 10.1016/j.patcog.2010.04.019 10.1126/science.1165821 10.1109/MCAS.2003.1228503 10.1126/science.298.5594.824 10.1109/TITB.2007.899496 10.1109/JSEN.2010.2045498 10.1109/JIOT.2016.2561962 10.1007/978-3-540-77690-1_2 10.1016/j.neuroimage.2010.12.047 10.1016/j.irbm.2016.02.008 10.1109/TSMC.2016.2617465 10.1007/978-3-319-23024-5_42 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 1XC VOOES |
DOI | 10.1109/JBHI.2017.2762404 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 1000 |
ExternalDocumentID | oai_HAL_hal_01736140v1 29028218 10_1109_JBHI_2017_2762404 8066288 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotrial |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 1XC VOOES |
ID | FETCH-LOGICAL-c426t-9648b6817d4838f2461528102ec170e62f6e70763ec7ad623a2ace65a460b7a3 |
IEDL.DBID | RIE |
ISSN | 2168-2194 2168-2208 |
IngestDate | Fri May 09 12:18:40 EDT 2025 Fri Jul 11 13:03:14 EDT 2025 Mon Jun 30 04:53:31 EDT 2025 Thu Apr 03 06:56:50 EDT 2025 Thu Apr 24 23:09:51 EDT 2025 Tue Jul 01 02:59:55 EDT 2025 Wed Aug 27 02:45:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | wearable sensors activity classification complex network analysis body sensor network |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-9648b6817d4838f2461528102ec170e62f6e70763ec7ad623a2ace65a460b7a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8726-7060 0000-0003-2575-4821 |
OpenAccessLink | https://hal.science/hal-01736140 |
PMID | 29028218 |
PQID | 2174547684 |
PQPubID | 85417 |
PageCount | 12 |
ParticipantIDs | hal_primary_oai_HAL_hal_01736140v1 pubmed_primary_29028218 ieee_primary_8066288 proquest_journals_2174547684 proquest_miscellaneous_1951570148 crossref_primary_10_1109_JBHI_2017_2762404 crossref_citationtrail_10_1109_JBHI_2017_2762404 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-July 2018-7-00 2018-07-00 20180701 2018-07 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-July |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationTitleAbbrev | JBHI |
PublicationTitleAlternate | IEEE J Biomed Health Inform |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
References | ref13 ref53 ref52 ref55 ref11 ref10 bao (ref17) 0 ref19 ref18 (ref16) 2016 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 jalloul (ref58) 2016 ref40 ref35 ref34 ref37 ref36 ref31 ref30 jolliffel (ref57) 2002 ref33 ref32 ref2 ref38 (ref14) 2016 o’brien (ref5) 0; 9056 vala (ref1) 2014; 2 segal (ref54) 2004 ref24 ref23 ref26 ref25 scott (ref39) 2012 ref20 marin (ref12) 2016; 33 (ref15) 2016 ref22 ref21 weisstein (ref56) 2004 ref28 ref27 ref29 |
References_xml | – ident: ref51 doi: 10.2307/2280779 – ident: ref36 doi: 10.1016/j.neuroimage.2009.10.003 – ident: ref55 doi: 10.1016/B978-1-55860-247-2.50037-1 – year: 2016 ident: ref14 – ident: ref27 doi: 10.1249/MSS.0b013e31829736d6 – ident: ref22 doi: 10.1109/JSEN.2015.2502401 – ident: ref29 doi: 10.1016/j.humov.2014.11.013 – volume: 33 year: 2016 ident: ref12 article-title: Physical activity monitoring and ambulatory movement analysis using inertial measurement units publication-title: ISBS-Conf Proc Archive – ident: ref30 doi: 10.1109/BSN.2015.7299372 – ident: ref31 doi: 10.1088/0967-3334/37/3/442 – ident: ref44 doi: 10.1016/j.physa.2010.08.015 – ident: ref48 doi: 10.1006/jagm.1994.1012 – ident: ref8 doi: 10.1016/j.tibtech.2014.04.005 – year: 2004 ident: ref56 article-title: Bonferroni correction – ident: ref7 doi: 10.1007/978-3-540-70994-7_6 – ident: ref45 doi: 10.1016/j.jtrangeo.2010.08.012 – ident: ref4 doi: 10.1109/EMBC.2015.7320273 – year: 2016 ident: ref16 – ident: ref43 doi: 10.1534/genetics.107.074518 – volume: 2 start-page: 127 year: 2014 ident: ref1 article-title: Brain computer interface: Data acquisition using non-invasive Emotiv Epoc neuroheadset publication-title: International Journal of Software & Hardware Research in Engineering – start-page: 1 year: 0 ident: ref17 article-title: Activity recognition from user-annotated acceleration data publication-title: Proc Int Conf Pervasive Comput – ident: ref38 doi: 10.1080/00018730601170527 – ident: ref10 doi: 10.1109/EMBC.2014.6944525 – ident: ref6 doi: 10.1109/BSN.Workshops.2014.15 – ident: ref26 doi: 10.1109/JBHI.2013.2253613 – ident: ref20 doi: 10.1016/j.pmcj.2010.12.001 – ident: ref9 doi: 10.3390/s140610691 – ident: ref13 doi: 10.1016/j.ijcard.2015.03.038 – ident: ref49 doi: 10.1088/1742-5468/2008/10/P10008 – ident: ref52 doi: 10.1023/A:1010933404324 – ident: ref53 doi: 10.1109/ICABME.2015.7323273 – year: 2002 ident: ref57 publication-title: Principal Component Analysis – year: 2016 ident: ref58 article-title: Development of a system of acquisition and movement analysis: Application on Parkinson's disease – ident: ref2 doi: 10.1007/978-3-319-11128-5_66 – ident: ref28 doi: 10.1109/BSN.2014.29 – year: 2012 ident: ref39 publication-title: Social Network Analysis – ident: ref11 doi: 10.1007/978-3-319-16226-3_5 – ident: ref3 doi: 10.1109/ISWC.2006.286345 – ident: ref21 doi: 10.1109/BSN.2014.28 – ident: ref46 doi: 10.1109/EMBC.2015.7319547 – ident: ref35 doi: 10.1145/1961189.1961199 – year: 2004 ident: ref54 article-title: Machine learning benchmarks and random forest regression publication-title: Center Bioinform Mol Biostat – year: 2016 ident: ref15 – ident: ref18 doi: 10.21236/ADA534437 – ident: ref23 doi: 10.2522/ptj.20140253 – ident: ref25 doi: 10.1016/j.patcog.2010.04.019 – ident: ref40 doi: 10.1126/science.1165821 – ident: ref37 doi: 10.1109/MCAS.2003.1228503 – volume: 9056 year: 0 ident: ref5 article-title: Stretch sensors for human body motion publication-title: Proc SPIE – ident: ref50 doi: 10.1126/science.298.5594.824 – ident: ref24 doi: 10.1109/TITB.2007.899496 – ident: ref47 doi: 10.1109/JSEN.2010.2045498 – ident: ref33 doi: 10.1109/JIOT.2016.2561962 – ident: ref19 doi: 10.1007/978-3-540-77690-1_2 – ident: ref41 doi: 10.1016/j.neuroimage.2010.12.047 – ident: ref32 doi: 10.1016/j.irbm.2016.02.008 – ident: ref34 doi: 10.1109/TSMC.2016.2617465 – ident: ref42 doi: 10.1007/978-3-319-23024-5_42 |
SSID | ssj0000816896 |
Score | 2.3413665 |
Snippet | In this paper, we perform complex network analysis on a connectivity dataset retrieved from a monitoring system in order to classify simple daily activities.... |
SourceID | hal proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 989 |
SubjectTerms | Accelerometers Activity classification Activity recognition Bioengineering Biomedical measurement body sensor network Classification complex network analysis Complex networks Correlation Data processing Engineering Sciences Life Sciences Modules Monitoring Monitoring systems Neck Network analysis Protocols Sensors Signal and Image processing Thigh wearable sensors |
Title | Activity Recognition Using Complex Network Analysis |
URI | https://ieeexplore.ieee.org/document/8066288 https://www.ncbi.nlm.nih.gov/pubmed/29028218 https://www.proquest.com/docview/2174547684 https://www.proquest.com/docview/1951570148 https://hal.science/hal-01736140 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1dS9xAcPB8kL5o_WzaU2LxScy5STabzeO1eJzS80EUfFuSzQShR67UOyn-emc2HxSp0rclmSSbnZmdz50BOMmr2Ia2zIPEog4kyizQia6CWFoSb2jTzLKhOLtW0zt5dZ_cr8FZfxYGEV3yGY546GL55cKu2FV2rrlcudYDGJDh1pzV6v0proGEa8cV0SAgRpRtEDMU2fnVt-kl53Glo4i4XwpuxxNx4ZKIu338JZEGD5wP6RqtvK1zOtkz2YJZN-sm5eTnaLUsRvb5VUHH__2tj7DZKqH-uKGabVjDegc2Zm2YfRfisW2aSvg3XX7RovZddoHPG8gc__jXTf6431U12YPbycXt92nQdlcILEnlZZApqQulw7SUOtYV15VLIk36BtowFaiiSmEqaPshhOUlaUl5lFtUSS6VKNI83of1elHjJ_BTZUnLwVCV7FEq2Cgiu5GASyU0VqUHoltgY9vK49wAY26cBSIyw-gxjB7ToseD0_6RX03ZjfeAvxLWejgumD0d_zB8jaBiUkDEU-jBLq98D9UuugfDDsmm5d5Hw2ZaIjlE6cFxf5v4joMpeY2L1aMJSTVNUvbHenDQEEf_7o6yPv_7m1_gA01fN0m_Q1hf_l7hIak2y-LI0fQLj6nuDw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw8LQVifECjG0sMFhAPE1L5ySO4zwWRJWNtg-oSHuzEuciJKYUsXZC-_W7cz6EEJt4s5LLh313vk_fAXwo6tiGtiqCxKIOJMos0Imug1haEm9o08yyoThfqPybvLhMLrfgdDgLg4gu-QzHPHSx_GplN-wqO9NcrlzrbXiU8GHc9rTW4FFxLSRcQ66IBgGxouzCmKHIzi4-5uecyZWOI-J_KbghT8SlSyLu9_GHTNr-zhmRrtXK_Vqnkz7TZzDv_7tNOvkx3qzLsb39q6Tj_07sOTzt1FB_0tLNLmxh8wIez7tA-x7EE9u2lfC_9hlGq8Z3-QU-byFX-NtftBnkfl_XZB-W08_LT3nQ9VcILMnldZApqUulw7SSOtY1V5ZLIk0aB9owFaiiWmEqaAMilBUV6UlFVFhUSSGVKNMiPoBRs2rwEPxUWdJzMFQV-5RKNovIciTgSgmNdeWB6BfY2K72OLfAuDLOBhGZYfQYRo_p0OPByfDIz7bwxkPA7wlrAxyXzM4nM8PXCComFUTchB7s8coPUN2ie3DUI9l0_Htt2FBLJAcpPXg33CbO43BK0eBqc21CUk6TlD2yHrxsiWN4d09Zr_79zWPYyZfzmZmdL768hic0Fd2mAB_BaP1rg29I0VmXbx193wEk7fFX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activity+Recognition+Using+Complex+Network+Analysis&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Jalloul%2C+Nahed&rft.au=Poree%2C+Fabienne&rft.au=Viardot%2C+Geoffrey&rft.au=L+Hostis%2C+Phillipe&rft.date=2018-07-01&rft.eissn=2168-2208&rft.volume=22&rft.issue=4&rft.spage=989&rft_id=info:doi/10.1109%2FJBHI.2017.2762404&rft_id=info%3Apmid%2F29028218&rft.externalDocID=29028218 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |