Activity Recognition Using Complex Network Analysis

In this paper, we perform complex network analysis on a connectivity dataset retrieved from a monitoring system in order to classify simple daily activities. The monitoring system is composed of a set of wearable sensing modules positioned on the subject's body and the connectivity data consist...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 22; no. 4; pp. 989 - 1000
Main Authors Jalloul, Nahed, Poree, Fabienne, Viardot, Geoffrey, L' Hostis, Phillipe, Carrault, Guy
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2017.2762404

Cover

Loading…
Abstract In this paper, we perform complex network analysis on a connectivity dataset retrieved from a monitoring system in order to classify simple daily activities. The monitoring system is composed of a set of wearable sensing modules positioned on the subject's body and the connectivity data consists of the correlation between each pair of modules. A number of network measures are then computed followed by the application of statistical significance and feature selection methods. These methods were implemented for the purpose of reducing the total number of modules in the monitoring system required to provide accurate activity classification. The obtained results show that an overall accuracy of 84.6% for activity classification is achieved, using a random forest classifier, and when considering a monitoring system composed of only two modules positioned at the neck and thigh of the subject's body.
AbstractList In this paper, we perform complex network analysis on a connectivity dataset retrieved from a monitoring system in order to classify simple daily activities. The monitoring system is composed of a set of wearable sensing modules positioned on the subject's body and the connectivity data consists of the correlation between each pair of modules. A number of network measures are then computed followed by the application of statistical significance and feature selection methods. These methods were implemented for the purpose of reducing the total number of modules in the monitoring system required to provide accurate activity classification. The obtained results show that an overall accuracy of 84.6% for activity classification is achieved, using a random forest classifier, and when considering a monitoring system composed of only two modules positioned at the neck and thigh of the subject's body.
In this paper, we perform complex network analysis on a connectivity dataset retrieved from a monitoring system in order to classify simple daily activities. The monitoring system is composed of a set of wearable sensing modules positioned on the subject's body and the connectivity data consists of the correlation between each pair of modules. A number of network measures are then computed followed by the application of statistical significance and feature selection methods. These methods were implemented for the purpose of reducing the total number of modules in the monitoring system required to provide accurate activity classification. The obtained results show that an overall accuracy of 84.6% for activity classification is achieved, using a Random Forest (RF) classifier, and when considering a monitoring system composed of only two modules positioned at the Neck and Thigh of the subject's body.
In this paper, we perform complex network analysis on a connectivity dataset retrieved from a monitoring system in order to classify simple daily activities. The monitoring system is composed of a set of wearable sensing modules positioned on the subject's body and the connectivity data consists of the correlation between each pair of modules. A number of network measures are then computed followed by the application of statistical significance and feature selection methods. These methods were implemented for the purpose of reducing the total number of modules in the monitoring system required to provide accurate activity classification. The obtained results show that an overall accuracy of 84.6% for activity classification is achieved, using a random forest classifier, and when considering a monitoring system composed of only two modules positioned at the neck and thigh of the subject's body.In this paper, we perform complex network analysis on a connectivity dataset retrieved from a monitoring system in order to classify simple daily activities. The monitoring system is composed of a set of wearable sensing modules positioned on the subject's body and the connectivity data consists of the correlation between each pair of modules. A number of network measures are then computed followed by the application of statistical significance and feature selection methods. These methods were implemented for the purpose of reducing the total number of modules in the monitoring system required to provide accurate activity classification. The obtained results show that an overall accuracy of 84.6% for activity classification is achieved, using a random forest classifier, and when considering a monitoring system composed of only two modules positioned at the neck and thigh of the subject's body.
Author Viardot, Geoffrey
Carrault, Guy
Poree, Fabienne
L' Hostis, Phillipe
Jalloul, Nahed
Author_xml – sequence: 1
  givenname: Nahed
  orcidid: 0000-0002-8726-7060
  surname: Jalloul
  fullname: Jalloul, Nahed
  email: nahedjalloul5@gmail.com
  organization: Laboratoire Traitement du Signal et de l’Image, Université de Rennes 1, Rennes, France
– sequence: 2
  givenname: Fabienne
  orcidid: 0000-0003-2575-4821
  surname: Poree
  fullname: Poree, Fabienne
  email: fabienne.poree@univ-rennes1.fr
  organization: Laboratoire Traitement du Signal et de l’Image, Université de Rennes 1, Rennes, France
– sequence: 3
  givenname: Geoffrey
  surname: Viardot
  fullname: Viardot, Geoffrey
  email: Geoffrey.Viardot@biotrial.com
  organization: Biotrial, Rennes, France
– sequence: 4
  givenname: Phillipe
  surname: L' Hostis
  fullname: L' Hostis, Phillipe
  email: phillipe.lhostis@bitorial.com
  organization: Biotrial, Rennes, France
– sequence: 5
  givenname: Guy
  surname: Carrault
  fullname: Carrault, Guy
  email: guy.carrault@univ-rennes1.fr
  organization: Laboratoire Traitement du Signal et de l’Image, Université de Rennes 1, Rennes, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29028218$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01736140$$DView record in HAL
BookMark eNp9kU1vEzEQhi1URNvQH4CQ0EpcyiHBM-sde48hAlIUgYTK2XKcSXHZrMN6U8i_x6ukOfSAL2ONnne-3ktx1saWhXgFcgIg6_dfPsxvJihBT1ATKqmeiQsEMmNEac4e_1Crc3GV0r3Mz-RUTS_EOdYSDYK5EOXU9-Eh9PviO_t414Y-xLb4kUJ7V8ziZtvw3-Ir939i96uYtq7Zp5Beiudr1yS-OsaRuP308XY2Hy--fb6ZTRdjr5D6cU3KLMmAXilTmjUqggoNSGQPWjLhmlhLTSV77VaEpUPnmSqnSC61K0fi3aHsT9fYbRc2rtvb6IKdTxd2yOXdSwIlHyCz1wd228XfO0693YTkuWlcy3GXLNQVVFpCnmQk3j5B7-Ouy6sli6BVpTQZlak3R2q33PDq1P_xchmAA-C7mFLH6xMC0g4G2cEgOxhkjwZljX6i8aF3w8X7zoXmv8rXB2Vg5lMnI4nQmPIfj9mYdw
CODEN IJBHA9
CitedBy_id crossref_primary_10_1007_s11277_022_09819_3
crossref_primary_10_1108_ITP_12_2021_0948
crossref_primary_10_1016_j_cmpb_2022_107305
crossref_primary_10_1109_ACCESS_2020_2982225
crossref_primary_10_1007_s11042_023_16989_0
crossref_primary_10_1109_JBHI_2019_2939028
crossref_primary_10_1109_JBHI_2020_3007488
crossref_primary_10_1109_ACCESS_2021_3099567
crossref_primary_10_1109_TNSRE_2023_3266024
crossref_primary_10_1123_jpah_2019_0088
crossref_primary_10_1109_JBHI_2019_2909688
crossref_primary_10_1016_j_ins_2023_119394
crossref_primary_10_1007_s12553_020_00418_5
crossref_primary_10_3390_app12136707
Cites_doi 10.2307/2280779
10.1016/j.neuroimage.2009.10.003
10.1016/B978-1-55860-247-2.50037-1
10.1249/MSS.0b013e31829736d6
10.1109/JSEN.2015.2502401
10.1016/j.humov.2014.11.013
10.1109/BSN.2015.7299372
10.1088/0967-3334/37/3/442
10.1016/j.physa.2010.08.015
10.1006/jagm.1994.1012
10.1016/j.tibtech.2014.04.005
10.1007/978-3-540-70994-7_6
10.1016/j.jtrangeo.2010.08.012
10.1109/EMBC.2015.7320273
10.1534/genetics.107.074518
10.1080/00018730601170527
10.1109/EMBC.2014.6944525
10.1109/BSN.Workshops.2014.15
10.1109/JBHI.2013.2253613
10.1016/j.pmcj.2010.12.001
10.3390/s140610691
10.1016/j.ijcard.2015.03.038
10.1088/1742-5468/2008/10/P10008
10.1023/A:1010933404324
10.1109/ICABME.2015.7323273
10.1007/978-3-319-11128-5_66
10.1109/BSN.2014.29
10.1007/978-3-319-16226-3_5
10.1109/ISWC.2006.286345
10.1109/BSN.2014.28
10.1109/EMBC.2015.7319547
10.1145/1961189.1961199
10.21236/ADA534437
10.2522/ptj.20140253
10.1016/j.patcog.2010.04.019
10.1126/science.1165821
10.1109/MCAS.2003.1228503
10.1126/science.298.5594.824
10.1109/TITB.2007.899496
10.1109/JSEN.2010.2045498
10.1109/JIOT.2016.2561962
10.1007/978-3-540-77690-1_2
10.1016/j.neuroimage.2010.12.047
10.1016/j.irbm.2016.02.008
10.1109/TSMC.2016.2617465
10.1007/978-3-319-23024-5_42
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
1XC
VOOES
DOI 10.1109/JBHI.2017.2762404
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 1000
ExternalDocumentID oai_HAL_hal_01736140v1
29028218
10_1109_JBHI_2017_2762404
8066288
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotrial
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
1XC
VOOES
ID FETCH-LOGICAL-c426t-9648b6817d4838f2461528102ec170e62f6e70763ec7ad623a2ace65a460b7a3
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Fri May 09 12:18:40 EDT 2025
Fri Jul 11 13:03:14 EDT 2025
Mon Jun 30 04:53:31 EDT 2025
Thu Apr 03 06:56:50 EDT 2025
Thu Apr 24 23:09:51 EDT 2025
Tue Jul 01 02:59:55 EDT 2025
Wed Aug 27 02:45:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords wearable sensors
activity classification
complex network analysis
body sensor network
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-9648b6817d4838f2461528102ec170e62f6e70763ec7ad623a2ace65a460b7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8726-7060
0000-0003-2575-4821
OpenAccessLink https://hal.science/hal-01736140
PMID 29028218
PQID 2174547684
PQPubID 85417
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_01736140v1
pubmed_primary_29028218
ieee_primary_8066288
proquest_journals_2174547684
proquest_miscellaneous_1951570148
crossref_primary_10_1109_JBHI_2017_2762404
crossref_citationtrail_10_1109_JBHI_2017_2762404
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-July
2018-7-00
2018-07-00
20180701
2018-07
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-July
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref53
ref52
ref55
ref11
ref10
bao (ref17) 0
ref19
ref18
(ref16) 2016
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
jalloul (ref58) 2016
ref40
ref35
ref34
ref37
ref36
ref31
ref30
jolliffel (ref57) 2002
ref33
ref32
ref2
ref38
(ref14) 2016
o’brien (ref5) 0; 9056
vala (ref1) 2014; 2
segal (ref54) 2004
ref24
ref23
ref26
ref25
scott (ref39) 2012
ref20
marin (ref12) 2016; 33
(ref15) 2016
ref22
ref21
weisstein (ref56) 2004
ref28
ref27
ref29
References_xml – ident: ref51
  doi: 10.2307/2280779
– ident: ref36
  doi: 10.1016/j.neuroimage.2009.10.003
– ident: ref55
  doi: 10.1016/B978-1-55860-247-2.50037-1
– year: 2016
  ident: ref14
– ident: ref27
  doi: 10.1249/MSS.0b013e31829736d6
– ident: ref22
  doi: 10.1109/JSEN.2015.2502401
– ident: ref29
  doi: 10.1016/j.humov.2014.11.013
– volume: 33
  year: 2016
  ident: ref12
  article-title: Physical activity monitoring and ambulatory movement analysis using inertial measurement units
  publication-title: ISBS-Conf Proc Archive
– ident: ref30
  doi: 10.1109/BSN.2015.7299372
– ident: ref31
  doi: 10.1088/0967-3334/37/3/442
– ident: ref44
  doi: 10.1016/j.physa.2010.08.015
– ident: ref48
  doi: 10.1006/jagm.1994.1012
– ident: ref8
  doi: 10.1016/j.tibtech.2014.04.005
– year: 2004
  ident: ref56
  article-title: Bonferroni correction
– ident: ref7
  doi: 10.1007/978-3-540-70994-7_6
– ident: ref45
  doi: 10.1016/j.jtrangeo.2010.08.012
– ident: ref4
  doi: 10.1109/EMBC.2015.7320273
– year: 2016
  ident: ref16
– ident: ref43
  doi: 10.1534/genetics.107.074518
– volume: 2
  start-page: 127
  year: 2014
  ident: ref1
  article-title: Brain computer interface: Data acquisition using non-invasive Emotiv Epoc neuroheadset
  publication-title: International Journal of Software & Hardware Research in Engineering
– start-page: 1
  year: 0
  ident: ref17
  article-title: Activity recognition from user-annotated acceleration data
  publication-title: Proc Int Conf Pervasive Comput
– ident: ref38
  doi: 10.1080/00018730601170527
– ident: ref10
  doi: 10.1109/EMBC.2014.6944525
– ident: ref6
  doi: 10.1109/BSN.Workshops.2014.15
– ident: ref26
  doi: 10.1109/JBHI.2013.2253613
– ident: ref20
  doi: 10.1016/j.pmcj.2010.12.001
– ident: ref9
  doi: 10.3390/s140610691
– ident: ref13
  doi: 10.1016/j.ijcard.2015.03.038
– ident: ref49
  doi: 10.1088/1742-5468/2008/10/P10008
– ident: ref52
  doi: 10.1023/A:1010933404324
– ident: ref53
  doi: 10.1109/ICABME.2015.7323273
– year: 2002
  ident: ref57
  publication-title: Principal Component Analysis
– year: 2016
  ident: ref58
  article-title: Development of a system of acquisition and movement analysis: Application on Parkinson's disease
– ident: ref2
  doi: 10.1007/978-3-319-11128-5_66
– ident: ref28
  doi: 10.1109/BSN.2014.29
– year: 2012
  ident: ref39
  publication-title: Social Network Analysis
– ident: ref11
  doi: 10.1007/978-3-319-16226-3_5
– ident: ref3
  doi: 10.1109/ISWC.2006.286345
– ident: ref21
  doi: 10.1109/BSN.2014.28
– ident: ref46
  doi: 10.1109/EMBC.2015.7319547
– ident: ref35
  doi: 10.1145/1961189.1961199
– year: 2004
  ident: ref54
  article-title: Machine learning benchmarks and random forest regression
  publication-title: Center Bioinform Mol Biostat
– year: 2016
  ident: ref15
– ident: ref18
  doi: 10.21236/ADA534437
– ident: ref23
  doi: 10.2522/ptj.20140253
– ident: ref25
  doi: 10.1016/j.patcog.2010.04.019
– ident: ref40
  doi: 10.1126/science.1165821
– ident: ref37
  doi: 10.1109/MCAS.2003.1228503
– volume: 9056
  year: 0
  ident: ref5
  article-title: Stretch sensors for human body motion
  publication-title: Proc SPIE
– ident: ref50
  doi: 10.1126/science.298.5594.824
– ident: ref24
  doi: 10.1109/TITB.2007.899496
– ident: ref47
  doi: 10.1109/JSEN.2010.2045498
– ident: ref33
  doi: 10.1109/JIOT.2016.2561962
– ident: ref19
  doi: 10.1007/978-3-540-77690-1_2
– ident: ref41
  doi: 10.1016/j.neuroimage.2010.12.047
– ident: ref32
  doi: 10.1016/j.irbm.2016.02.008
– ident: ref34
  doi: 10.1109/TSMC.2016.2617465
– ident: ref42
  doi: 10.1007/978-3-319-23024-5_42
SSID ssj0000816896
Score 2.3413665
Snippet In this paper, we perform complex network analysis on a connectivity dataset retrieved from a monitoring system in order to classify simple daily activities....
SourceID hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 989
SubjectTerms Accelerometers
Activity classification
Activity recognition
Bioengineering
Biomedical measurement
body sensor network
Classification
complex network analysis
Complex networks
Correlation
Data processing
Engineering Sciences
Life Sciences
Modules
Monitoring
Monitoring systems
Neck
Network analysis
Protocols
Sensors
Signal and Image processing
Thigh
wearable sensors
Title Activity Recognition Using Complex Network Analysis
URI https://ieeexplore.ieee.org/document/8066288
https://www.ncbi.nlm.nih.gov/pubmed/29028218
https://www.proquest.com/docview/2174547684
https://www.proquest.com/docview/1951570148
https://hal.science/hal-01736140
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1dS9xAcPB8kL5o_WzaU2LxScy5STabzeO1eJzS80EUfFuSzQShR67UOyn-emc2HxSp0rclmSSbnZmdz50BOMmr2Ia2zIPEog4kyizQia6CWFoSb2jTzLKhOLtW0zt5dZ_cr8FZfxYGEV3yGY546GL55cKu2FV2rrlcudYDGJDh1pzV6v0proGEa8cV0SAgRpRtEDMU2fnVt-kl53Glo4i4XwpuxxNx4ZKIu338JZEGD5wP6RqtvK1zOtkz2YJZN-sm5eTnaLUsRvb5VUHH__2tj7DZKqH-uKGabVjDegc2Zm2YfRfisW2aSvg3XX7RovZddoHPG8gc__jXTf6431U12YPbycXt92nQdlcILEnlZZApqQulw7SUOtYV15VLIk36BtowFaiiSmEqaPshhOUlaUl5lFtUSS6VKNI83of1elHjJ_BTZUnLwVCV7FEq2Cgiu5GASyU0VqUHoltgY9vK49wAY26cBSIyw-gxjB7ToseD0_6RX03ZjfeAvxLWejgumD0d_zB8jaBiUkDEU-jBLq98D9UuugfDDsmm5d5Hw2ZaIjlE6cFxf5v4joMpeY2L1aMJSTVNUvbHenDQEEf_7o6yPv_7m1_gA01fN0m_Q1hf_l7hIak2y-LI0fQLj6nuDw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw8LQVifECjG0sMFhAPE1L5ySO4zwWRJWNtg-oSHuzEuciJKYUsXZC-_W7cz6EEJt4s5LLh313vk_fAXwo6tiGtiqCxKIOJMos0Imug1haEm9o08yyoThfqPybvLhMLrfgdDgLg4gu-QzHPHSx_GplN-wqO9NcrlzrbXiU8GHc9rTW4FFxLSRcQ66IBgGxouzCmKHIzi4-5uecyZWOI-J_KbghT8SlSyLu9_GHTNr-zhmRrtXK_Vqnkz7TZzDv_7tNOvkx3qzLsb39q6Tj_07sOTzt1FB_0tLNLmxh8wIez7tA-x7EE9u2lfC_9hlGq8Z3-QU-byFX-NtftBnkfl_XZB-W08_LT3nQ9VcILMnldZApqUulw7SSOtY1V5ZLIk0aB9owFaiiWmEqaAMilBUV6UlFVFhUSSGVKNMiPoBRs2rwEPxUWdJzMFQV-5RKNovIciTgSgmNdeWB6BfY2K72OLfAuDLOBhGZYfQYRo_p0OPByfDIz7bwxkPA7wlrAxyXzM4nM8PXCComFUTchB7s8coPUN2ie3DUI9l0_Htt2FBLJAcpPXg33CbO43BK0eBqc21CUk6TlD2yHrxsiWN4d09Zr_79zWPYyZfzmZmdL768hic0Fd2mAB_BaP1rg29I0VmXbx193wEk7fFX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activity+Recognition+Using+Complex+Network+Analysis&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Jalloul%2C+Nahed&rft.au=Poree%2C+Fabienne&rft.au=Viardot%2C+Geoffrey&rft.au=L+Hostis%2C+Phillipe&rft.date=2018-07-01&rft.eissn=2168-2208&rft.volume=22&rft.issue=4&rft.spage=989&rft_id=info:doi/10.1109%2FJBHI.2017.2762404&rft_id=info%3Apmid%2F29028218&rft.externalDocID=29028218
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon