Predicting Mechanical Strength and Optimized Parameters in FDM-Printed Polylactic Acid Parts Via Artificial Neural Networks and Desirability Analysis

Fused deposition modeling (FDM) is a commonly used additive manufacturing (AM) technique in both domestic and industrial end-product fabrications. It produces prototypes and parts with complex geometric designs, which has the major benefits of eliminating the need for expensive tooling and flexibili...

Full description

Saved in:
Bibliographic Details
Published inManagement systems in production engineering Vol. 32; no. 3; pp. 428 - 437
Main Authors Abdulridha, Hind H., Abbas, Tahseen F., Bedan, Aqeel S.
Format Journal Article
LanguageEnglish
Published Gliwice Sciendo 01.08.2024
De Gruyter Poland
Subjects
Online AccessGet full text
ISSN2450-5781
2299-0461
2450-5781
DOI10.2478/mspe-2024-0040

Cover

Loading…
Abstract Fused deposition modeling (FDM) is a commonly used additive manufacturing (AM) technique in both domestic and industrial end-product fabrications. It produces prototypes and parts with complex geometric designs, which has the major benefits of eliminating the need for expensive tooling and flexibility. However, the produced parts often face poor part strength due to anisotropic fabrication strategies. The printing procedure, the kind of material utilized, and the printing parameters all have a significant impact on the mechanical characteristics of the printed item. In order to predict the mechanical properties related to printed components made with the use of FDM and Polylactic Acid (PLA) material, this study concentrates on developing a prediction model utilizing Artificial Neural Networks (ANNs). This study used the Taguchi design of experiments technique, utilizing (L25) orthogonal array as well as a Neural Network (NN) method with two layers and 15 neurons. The effect of FDM parameters (layer thickness (mm), percentage of infill density, number of top/bottom layers, shell thickness (mm), and infill overlap percentage) on ultimate tensile and compressive strength (UTS and UCS) was examined through analysis of variance (ANOVA). With an ANOVA result of 67.183% and 40.198%, respectively, infill density percentage was found to be the most significant factor influencing UCS and UTS dependent on other parameters. The predicted results demonstrated valuable agreement with experimental values, with mean squared errors of (0.098) and (0.326) for UTS and UCS, respectively. The predictive model produces flexibility in selecting the optimal setting based on applications.
AbstractList Fused deposition modeling (FDM) is a commonly used additive manufacturing (AM) technique in both domestic and industrial end-product fabrications. It produces prototypes and parts with complex geometric designs, which has the major benefits of eliminating the need for expensive tooling and flexibility. However, the produced parts often face poor part strength due to anisotropic fabrication strategies. The printing procedure, the kind of material utilized, and the printing parameters all have a significant impact on the mechanical characteristics of the printed item. In order to predict the mechanical properties related to printed components made with the use of FDM and Polylactic Acid (PLA) material, this study concentrates on developing a prediction model utilizing Artificial Neural Networks (ANNs). This study used the Taguchi design of experiments technique, utilizing (L25) orthogonal array as well as a Neural Network (NN) method with two layers and 15 neurons. The effect of FDM parameters (layer thickness (mm), percentage of infill density, number of top/bottom layers, shell thickness (mm), and infill overlap percentage) on ultimate tensile and compressive strength (UTS and UCS) was examined through analysis of variance (ANOVA). With an ANOVA result of 67.183% and 40.198%, respectively, infill density percentage was found to be the most significant factor influencing UCS and UTS dependent on other parameters. The predicted results demonstrated valuable agreement with experimental values, with mean squared errors of (0.098) and (0.326) for UTS and UCS, respectively. The predictive model produces flexibility in selecting the optimal setting based on applications.
Author Bedan, Aqeel S.
Abdulridha, Hind H.
Abbas, Tahseen F.
Author_xml – sequence: 1
  givenname: Hind H.
  orcidid: 0000-0003-4653-6073
  surname: Abdulridha
  fullname: Abdulridha, Hind H.
  email: Hind.H.Abdulridha@uotechnology.edu.iq
  organization: University of Technology
– sequence: 2
  givenname: Tahseen F.
  surname: Abbas
  fullname: Abbas, Tahseen F.
  organization: University of Technology
– sequence: 3
  givenname: Aqeel S.
  surname: Bedan
  fullname: Bedan, Aqeel S.
  organization: University of Technology
BookMark eNp1kU9v1DAQxSNUJErplbMlzim24ySOxGXVUqjU0pX4c7UGe7KdJesstldV-B79vnV2QSCknt7Ifu-nGb2XxZEfPRbFa8HPpGr1203cYim5VCXnij8rjqWqeVm3Whz9M78oTmNcc86FroVU3XHxsAzoyCbyK3aD9g48WRjY5xTQr9IdA-_Y7TbRhn6hY0sIsMGEITLy7PLiplwG8mn-GYdpgMyxbGFp70yRfSNgi5CoJ0uZ-gl3YS_pfgw_4h5-gZECfKeB0sQWHoYpUnxVPO9hiHj6W0-Kr5fvv5x_LK9vP1ydL65Lq2STSq0b7Lhs-rYVDrByTSdbB33rLCrRitZp4RRWwDtoXF3LvmpsB1KDc71UvDoprg5cN8LabANtIExmBDL7hzGsTL6D7IBGWwCFstK211ltp6vMbOuaA4DtMbPeHFjbMP7cYUxmPe5CPiiaStRdrbjomuxSB5cNY4wBe2MpQaLRpwA0GMHN3KeZ-zRzn2buM8fO_ov9WfbJwLtD4B6G3JfDVdhNefi71BNBWSmpq0cDubsw
CitedBy_id crossref_primary_10_1007_s11665_025_10992_2
Cites_doi 10.3390/jmmp3030064
10.1007/s00170-007-1310-7
10.1016/j.proeng.2016.06.657
10.12913/22998624/173562
10.1088/1742-6596/1402/4/044041
10.1007/s40436-017-0187-4
10.31272/jeasd.conf.1.50
10.3390/polym14173668
10.1002/0470033991
10.3390/polym14173667
10.1016/j.biortech.2018.09.115
10.37917/ijeee.16.1.7
10.3390/ma10101199
10.1016/j.matdes.2009.04.030
10.1088/1757-899X/290/1/012077
10.1080/2374068X.2022.2091085
10.1088/1757-899X/1201/1/012031
10.1080/14484846.2022.2047472
10.21203/rs.3.rs-3204960/v1
10.21271/ZJPAS.33.2.10
10.1007/s00170-019-03626-0
10.1016/j.procs.2015.03.145
10.30684/etj.v40i1.2118
ContentType Journal Article
Copyright 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.2478/mspe-2024-0040
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2450-5781
EndPage 437
ExternalDocumentID oai_doaj_org_article_8caa4e238cf84e2c983a6d7550aaacfe
10_2478_mspe_2024_0040
10_2478_mspe_2024_0040323428
GroupedDBID 5VS
9WM
ABFKT
ADBBV
ADBLJ
ADMLS
AFKRA
AHGSO
AHQJS
AKVCP
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
EBS
EOJEC
GROUPED_DOAJ
KQ8
OBODZ
OK1
PHGZM
PHGZT
PIMPY
PUEGO
QD8
SLJYH
TH9
AAYXX
CITATION
Y2W
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c426t-886e9026f771dae3d6927daf7dce41717d81d4e3a09a6d552f36c9a28addf2403
IEDL.DBID DOA
ISSN 2450-5781
2299-0461
IngestDate Wed Aug 27 01:29:02 EDT 2025
Fri Jul 25 22:38:05 EDT 2025
Thu Apr 24 23:09:46 EDT 2025
Tue Jul 01 02:52:30 EDT 2025
Sat Sep 06 16:59:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-886e9026f771dae3d6927daf7dce41717d81d4e3a09a6d552f36c9a28addf2403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4653-6073
OpenAccessLink https://doaj.org/article/8caa4e238cf84e2c983a6d7550aaacfe
PQID 3159540196
PQPubID 6762849
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_8caa4e238cf84e2c983a6d7550aaacfe
proquest_journals_3159540196
crossref_citationtrail_10_2478_mspe_2024_0040
crossref_primary_10_2478_mspe_2024_0040
walterdegruyter_journals_10_2478_mspe_2024_0040323428
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Gliwice
PublicationPlace_xml – name: Gliwice
PublicationTitle Management systems in production engineering
PublicationYear 2024
Publisher Sciendo
De Gruyter Poland
Publisher_xml – name: Sciendo
– name: De Gruyter Poland
References 2024090510104773485_j_mspe-2024-0040_ref_011
2024090510104773485_j_mspe-2024-0040_ref_012
2024090510104773485_j_mspe-2024-0040_ref_010
2024090510104773485_j_mspe-2024-0040_ref_015
2024090510104773485_j_mspe-2024-0040_ref_016
2024090510104773485_j_mspe-2024-0040_ref_013
2024090510104773485_j_mspe-2024-0040_ref_014
2024090510104773485_j_mspe-2024-0040_ref_019
2024090510104773485_j_mspe-2024-0040_ref_017
2024090510104773485_j_mspe-2024-0040_ref_018
2024090510104773485_j_mspe-2024-0040_ref_022
2024090510104773485_j_mspe-2024-0040_ref_001
2024090510104773485_j_mspe-2024-0040_ref_023
2024090510104773485_j_mspe-2024-0040_ref_020
2024090510104773485_j_mspe-2024-0040_ref_021
2024090510104773485_j_mspe-2024-0040_ref_004
2024090510104773485_j_mspe-2024-0040_ref_026
2024090510104773485_j_mspe-2024-0040_ref_005
2024090510104773485_j_mspe-2024-0040_ref_027
2024090510104773485_j_mspe-2024-0040_ref_002
2024090510104773485_j_mspe-2024-0040_ref_024
2024090510104773485_j_mspe-2024-0040_ref_003
2024090510104773485_j_mspe-2024-0040_ref_025
2024090510104773485_j_mspe-2024-0040_ref_008
2024090510104773485_j_mspe-2024-0040_ref_009
2024090510104773485_j_mspe-2024-0040_ref_006
2024090510104773485_j_mspe-2024-0040_ref_028
2024090510104773485_j_mspe-2024-0040_ref_007
2024090510104773485_j_mspe-2024-0040_ref_029
References_xml – ident: 2024090510104773485_j_mspe-2024-0040_ref_022
  doi: 10.3390/jmmp3030064
– ident: 2024090510104773485_j_mspe-2024-0040_ref_003
– ident: 2024090510104773485_j_mspe-2024-0040_ref_013
  doi: 10.1007/s00170-007-1310-7
– ident: 2024090510104773485_j_mspe-2024-0040_ref_018
– ident: 2024090510104773485_j_mspe-2024-0040_ref_006
  doi: 10.1016/j.proeng.2016.06.657
– ident: 2024090510104773485_j_mspe-2024-0040_ref_027
  doi: 10.12913/22998624/173562
– ident: 2024090510104773485_j_mspe-2024-0040_ref_029
– ident: 2024090510104773485_j_mspe-2024-0040_ref_009
  doi: 10.1088/1742-6596/1402/4/044041
– ident: 2024090510104773485_j_mspe-2024-0040_ref_023
  doi: 10.1007/s40436-017-0187-4
– ident: 2024090510104773485_j_mspe-2024-0040_ref_007
  doi: 10.31272/jeasd.conf.1.50
– ident: 2024090510104773485_j_mspe-2024-0040_ref_017
  doi: 10.3390/polym14173668
– ident: 2024090510104773485_j_mspe-2024-0040_ref_025
– ident: 2024090510104773485_j_mspe-2024-0040_ref_012
  doi: 10.1002/0470033991
– ident: 2024090510104773485_j_mspe-2024-0040_ref_020
  doi: 10.3390/polym14173667
– ident: 2024090510104773485_j_mspe-2024-0040_ref_024
  doi: 10.1016/j.biortech.2018.09.115
– ident: 2024090510104773485_j_mspe-2024-0040_ref_004
  doi: 10.37917/ijeee.16.1.7
– ident: 2024090510104773485_j_mspe-2024-0040_ref_015
– ident: 2024090510104773485_j_mspe-2024-0040_ref_001
  doi: 10.3390/ma10101199
– ident: 2024090510104773485_j_mspe-2024-0040_ref_005
  doi: 10.1016/j.matdes.2009.04.030
– ident: 2024090510104773485_j_mspe-2024-0040_ref_008
  doi: 10.1088/1757-899X/290/1/012077
– ident: 2024090510104773485_j_mspe-2024-0040_ref_016
  doi: 10.1080/2374068X.2022.2091085
– ident: 2024090510104773485_j_mspe-2024-0040_ref_021
  doi: 10.1088/1757-899X/1201/1/012031
– ident: 2024090510104773485_j_mspe-2024-0040_ref_010
– ident: 2024090510104773485_j_mspe-2024-0040_ref_019
  doi: 10.1080/14484846.2022.2047472
– ident: 2024090510104773485_j_mspe-2024-0040_ref_014
  doi: 10.21203/rs.3.rs-3204960/v1
– ident: 2024090510104773485_j_mspe-2024-0040_ref_002
  doi: 10.21271/ZJPAS.33.2.10
– ident: 2024090510104773485_j_mspe-2024-0040_ref_026
  doi: 10.1007/s00170-019-03626-0
– ident: 2024090510104773485_j_mspe-2024-0040_ref_011
  doi: 10.1016/j.procs.2015.03.145
– ident: 2024090510104773485_j_mspe-2024-0040_ref_028
  doi: 10.30684/etj.v40i1.2118
SSID ssj0001851249
ssib044752341
Score 2.3214011
Snippet Fused deposition modeling (FDM) is a commonly used additive manufacturing (AM) technique in both domestic and industrial end-product fabrications. It produces...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 428
SubjectTerms ANN
ANOVA
Design of experiments
FDM
Neural networks
PLA
Polylactic acid
process parameters
Variance analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcCh4imWFuQDEierG8dJ7BNqoasKacsKUdRb5PixRNpmlyQV2v4P_i8zjtNSBJwiJSPnMV_m4Rl_JuRN4q3yVZIxkWcWEhRhmUqrhLmpdl4r7_NQLpif5afn4uNFdhEn3LrYVjnaxGCo7drgHPlhCn4XogsAzLvNd4a7RmF1NW6hcZ_sggmWgPPd45OzxecRUchmx9Po8MOsCwQYPMTEnOPye5EnA5MjF4U8vOw2DmDDBUNs3_FUgdD_ThS69yPUs61btlfbfqyfBrc0e0T2YjxJjwYAPCb3XPOEPPyNZfAp-blosRqD_c107nClLyqGYj26WfbfqG4s_QSW47K-dpYuNLZrIecmrRs6-zBnixY5JeDKerVdhTVV9MjUQbLv6Ndah7sPTBQUyT7CIXSXd2FwyG3rduAD39KRBeUZOZ-dfHl_yuJuDMyAF--ZlLlTkLH5okisdqnNFS-s9oU1TiSQFVoIfYVL9VTp3GYZ92lulOYSLKhH1r_nZKdZN-4FoVNurMuVVUWlhPaADVl5Ma1goIJDqj8hbPzypYlU5bhjxqqElAU1VaKmStRUiZqakLc38puBpOOfkseoyBspJNcOJ9btsoz_aimN1sJBLGO8hKNRMoU3KiCX01ob7ybkYIRBGf_4rrzF54Rkf0DjVurvT5UCRrl8-f9h98mDAZrYfHhAdvr2yr2CgKivXkfU_wJKGwvI
  priority: 102
  providerName: ProQuest
Title Predicting Mechanical Strength and Optimized Parameters in FDM-Printed Polylactic Acid Parts Via Artificial Neural Networks and Desirability Analysis
URI https://www.degruyter.com/doi/10.2478/mspe-2024-0040
https://www.proquest.com/docview/3159540196
https://doaj.org/article/8caa4e238cf84e2c983a6d7550aaacfe
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQvZQDamkrli7Ih0qcLPJwHj6yZVcIaWGFoOJmOX7QSLsBZYPQcuBf8H8742RhQVS99BJLySixZsb2fJnxZ0J-hM4IV4QJ42liAKBww0RchMwGyjolnEt9umB8mh5f8pOr5GrlqC-sCWvpgVvFHeRaKW5hYdEuh1aLPFapySCwVkppZ3H2DUSwAqb83xUIJABYtCyNEc_yg9n81oJLRJyh375ahTxZ_6sIc_Pe56qNva7vFs0yN-qXnNEnstnFivSw7eNnsmarLbKxwiD4hTxNasy0YO0yHVvcxYtKp5hrrq6b31RVhp7BrDArH6yhE4WlWMinScuKjo7GbFIjXwQ8uZkupn6_FD3UpZds5vRXqfzXW5YJikQevvGV43P_csCtZd1yfS_okuHkK7kcDS9-HrPupAWmYYVuWJ6nVgAac1kWGmVjk4ooM8plRlseAuIzENZyG6tAgPKTJHJxqoWKcpgdHTL6fSPr1U1ltwkNIm1sKozICsGVA7vnheNBAS_KIoDxPcKWmpe6oyHH0zCmEuAIWkqipSRaSqKlemT_Wf62JeD4q-QADfkshcTZ_ga4k-zcSf7LnXqkv3QD2Y3muYwh5oPIFiarHkneuMaL1Pu9iqMYEN7O_-jbd_KxdWAsP-yT9aa-s7sQEjXFHvkwGJ5Ozvf8KIDr-HH4B0n2Eds
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAcKp4itMAeQJysxuv1Yw8ItbRRSpsQoRb1Ztb7CJZSJ7VdVeF_8Df4jcys7ZYi4NaTJWe0TjLfzs54Zr4h5LVvtbCZH3o8CjUEKFx7Ish8zwyksVJYG7l0wXgSjU74x9PwdI387HphsKyys4nOUOuFwnfk2wGcu-BdAGDeL889nBqF2dVuhEYDi0OzuoSQrXp3sAf6fcPYcP_4w8hrpwp4Ck6j2kuSyAiIPGwc-1qaQEeCxVraWCvDfYhuNLhw3ARyIGSkw5DZIFJCsgQsgUX2Olj3Dlnn2NHaI-u7-5Pp5w7ByJ7HgtbBcG95wKFhzgdnDNv9eeQ3zJGMx8n2WbU0AFPGPdxLN05GN0Dghte7ceny59rMyotV3eVr3TE4fEA2Wv-V7jSAe0jWTPGI3P-N1fAx-TEtMfuD9dR0bLCzGIFAMf9dzOpvVBaafgJLdZZ_N5pOJZaHIccnzQs63Bt70xI5LOCTxXw1dz1cdEflTrKu6Jdcuqc3zBcUyUXcxVWzV25xiKXzsuEfX9GOdeUJObkVPT0lvWJRmGeEDpjSJhJaxJng0gIWk8zyQQYLxcxkrE-87p9PVUuNjhM65imESKipFDWVoqZS1FSfvL2SXzakIP-U3EVFXkkhmbe7sShnaWsb0kRJyQ34TsomcFUiCeAXxRA7SimVNX2y1cEgbS1MlV7vhz4J_4DGtdTfv1UAGGXJ8_8v-4rcHR2Pj9Kjg8nhJrnXwBQLH7dIry4vzAtwxursZbsDKPl625vuFxznSPs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgKyE4VDzVpQV8QOJkNQ8njo8LZVke264ERb1Zjh9LpG12lU2Ftv-D_8uMk20pKhdOlpKxk3jG9nyZ8WdCXsfeSl_GGeN5ZgGgcMtkWsbMRdp5Lb3PQ7hgepxPTvmns-ysB4q4FybM-zZEKw9X1odUZS6Kw_P1yoFGE87Q7O6SHZHJKBuQndHkw9eT678q4EAAoOjYGW-peGP1CST9NzzL3Z8hRm3dvLnYtNuYaFhqxg_Jbu8j0lGn1Efkjqsfkwd_MAc-Ib9mDUZYMGeZTh3u3sXOphhjruftD6prS09gNjivLp2lM40pWMijSauajo-mbNYgTwTcWS42i7BPio5MFSTbNf1e6fD0jl2CIoFHKELG-Do0Dni1ajqO7w3dMps8Jafj99_eTVh_wgIzsDK3rChyJwGFeSFiq11qc5kIq72wxvEYkJ4Fd5a7VEdS5zbLEp_mRuqkgFnRI5PfMzKol7XbIzRKjHW5tFKUkmsP-i5Kz6MSGhIJwPchYdueV6anH8dTMBYKYAhqSqGmFGpKoaaG5M2V_Koj3vin5FtU5JUUEmaHC8tmrvrxpwqjNXfgnxhfQGlkkcIXCcBnWmvj3ZAcbM1A9aN4rVLw9cCjhUlqSLK_TONa6va3SpMUkN3z_6z3itybHY3Vl4_Hn_fJ_c58MenwgAza5sK9AEeoLV_21v8b2ysIog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Mechanical+Strength+and+Optimized+Parameters+in+FDM-Printed+Polylactic+Acid+Parts+Via+Artificial+Neural+Networks+and+Desirability+Analysis&rft.jtitle=Management+systems+in+production+engineering&rft.au=Abdulridha+Hind+H.&rft.au=Abbas+Tahseen+F.&rft.au=Bedan+Aqeel+S.&rft.date=2024-08-01&rft.pub=Sciendo&rft.eissn=2450-5781&rft.volume=32&rft.issue=3&rft.spage=428&rft.epage=437&rft_id=info:doi/10.2478%2Fmspe-2024-0040&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8caa4e238cf84e2c983a6d7550aaacfe
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2450-5781&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2450-5781&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2450-5781&client=summon