Predicting Mechanical Strength and Optimized Parameters in FDM-Printed Polylactic Acid Parts Via Artificial Neural Networks and Desirability Analysis
Fused deposition modeling (FDM) is a commonly used additive manufacturing (AM) technique in both domestic and industrial end-product fabrications. It produces prototypes and parts with complex geometric designs, which has the major benefits of eliminating the need for expensive tooling and flexibili...
Saved in:
Published in | Management systems in production engineering Vol. 32; no. 3; pp. 428 - 437 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Gliwice
Sciendo
01.08.2024
De Gruyter Poland |
Subjects | |
Online Access | Get full text |
ISSN | 2450-5781 2299-0461 2450-5781 |
DOI | 10.2478/mspe-2024-0040 |
Cover
Loading…
Abstract | Fused deposition modeling (FDM) is a commonly used additive manufacturing (AM) technique in both domestic and industrial end-product fabrications. It produces prototypes and parts with complex geometric designs, which has the major benefits of eliminating the need for expensive tooling and flexibility. However, the produced parts often face poor part strength due to anisotropic fabrication strategies. The printing procedure, the kind of material utilized, and the printing parameters all have a significant impact on the mechanical characteristics of the printed item. In order to predict the mechanical properties related to printed components made with the use of FDM and Polylactic Acid (PLA) material, this study concentrates on developing a prediction model utilizing Artificial Neural Networks (ANNs). This study used the Taguchi design of experiments technique, utilizing (L25) orthogonal array as well as a Neural Network (NN) method with two layers and 15 neurons. The effect of FDM parameters (layer thickness (mm), percentage of infill density, number of top/bottom layers, shell thickness (mm), and infill overlap percentage) on ultimate tensile and compressive strength (UTS and UCS) was examined through analysis of variance (ANOVA). With an ANOVA result of 67.183% and 40.198%, respectively, infill density percentage was found to be the most significant factor influencing UCS and UTS dependent on other parameters. The predicted results demonstrated valuable agreement with experimental values, with mean squared errors of (0.098) and (0.326) for UTS and UCS, respectively. The predictive model produces flexibility in selecting the optimal setting based on applications. |
---|---|
AbstractList | Fused deposition modeling (FDM) is a commonly used additive manufacturing (AM) technique in both domestic and industrial end-product fabrications. It produces prototypes and parts with complex geometric designs, which has the major benefits of eliminating the need for expensive tooling and flexibility. However, the produced parts often face poor part strength due to anisotropic fabrication strategies. The printing procedure, the kind of material utilized, and the printing parameters all have a significant impact on the mechanical characteristics of the printed item. In order to predict the mechanical properties related to printed components made with the use of FDM and Polylactic Acid (PLA) material, this study concentrates on developing a prediction model utilizing Artificial Neural Networks (ANNs). This study used the Taguchi design of experiments technique, utilizing (L25) orthogonal array as well as a Neural Network (NN) method with two layers and 15 neurons. The effect of FDM parameters (layer thickness (mm), percentage of infill density, number of top/bottom layers, shell thickness (mm), and infill overlap percentage) on ultimate tensile and compressive strength (UTS and UCS) was examined through analysis of variance (ANOVA). With an ANOVA result of 67.183% and 40.198%, respectively, infill density percentage was found to be the most significant factor influencing UCS and UTS dependent on other parameters. The predicted results demonstrated valuable agreement with experimental values, with mean squared errors of (0.098) and (0.326) for UTS and UCS, respectively. The predictive model produces flexibility in selecting the optimal setting based on applications. |
Author | Bedan, Aqeel S. Abdulridha, Hind H. Abbas, Tahseen F. |
Author_xml | – sequence: 1 givenname: Hind H. orcidid: 0000-0003-4653-6073 surname: Abdulridha fullname: Abdulridha, Hind H. email: Hind.H.Abdulridha@uotechnology.edu.iq organization: University of Technology – sequence: 2 givenname: Tahseen F. surname: Abbas fullname: Abbas, Tahseen F. organization: University of Technology – sequence: 3 givenname: Aqeel S. surname: Bedan fullname: Bedan, Aqeel S. organization: University of Technology |
BookMark | eNp1kU9v1DAQxSNUJErplbMlzim24ySOxGXVUqjU0pX4c7UGe7KdJesstldV-B79vnV2QSCknt7Ifu-nGb2XxZEfPRbFa8HPpGr1203cYim5VCXnij8rjqWqeVm3Whz9M78oTmNcc86FroVU3XHxsAzoyCbyK3aD9g48WRjY5xTQr9IdA-_Y7TbRhn6hY0sIsMGEITLy7PLiplwG8mn-GYdpgMyxbGFp70yRfSNgi5CoJ0uZ-gl3YS_pfgw_4h5-gZECfKeB0sQWHoYpUnxVPO9hiHj6W0-Kr5fvv5x_LK9vP1ydL65Lq2STSq0b7Lhs-rYVDrByTSdbB33rLCrRitZp4RRWwDtoXF3LvmpsB1KDc71UvDoprg5cN8LabANtIExmBDL7hzGsTL6D7IBGWwCFstK211ltp6vMbOuaA4DtMbPeHFjbMP7cYUxmPe5CPiiaStRdrbjomuxSB5cNY4wBe2MpQaLRpwA0GMHN3KeZ-zRzn2buM8fO_ov9WfbJwLtD4B6G3JfDVdhNefi71BNBWSmpq0cDubsw |
CitedBy_id | crossref_primary_10_1007_s11665_025_10992_2 |
Cites_doi | 10.3390/jmmp3030064 10.1007/s00170-007-1310-7 10.1016/j.proeng.2016.06.657 10.12913/22998624/173562 10.1088/1742-6596/1402/4/044041 10.1007/s40436-017-0187-4 10.31272/jeasd.conf.1.50 10.3390/polym14173668 10.1002/0470033991 10.3390/polym14173667 10.1016/j.biortech.2018.09.115 10.37917/ijeee.16.1.7 10.3390/ma10101199 10.1016/j.matdes.2009.04.030 10.1088/1757-899X/290/1/012077 10.1080/2374068X.2022.2091085 10.1088/1757-899X/1201/1/012031 10.1080/14484846.2022.2047472 10.21203/rs.3.rs-3204960/v1 10.21271/ZJPAS.33.2.10 10.1007/s00170-019-03626-0 10.1016/j.procs.2015.03.145 10.30684/etj.v40i1.2118 |
ContentType | Journal Article |
Copyright | 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.2478/mspe-2024-0040 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2450-5781 |
EndPage | 437 |
ExternalDocumentID | oai_doaj_org_article_8caa4e238cf84e2c983a6d7550aaacfe 10_2478_mspe_2024_0040 10_2478_mspe_2024_0040323428 |
GroupedDBID | 5VS 9WM ABFKT ADBBV ADBLJ ADMLS AFKRA AHGSO AHQJS AKVCP ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU EBS EOJEC GROUPED_DOAJ KQ8 OBODZ OK1 PHGZM PHGZT PIMPY PUEGO QD8 SLJYH TH9 AAYXX CITATION Y2W ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c426t-886e9026f771dae3d6927daf7dce41717d81d4e3a09a6d552f36c9a28addf2403 |
IEDL.DBID | DOA |
ISSN | 2450-5781 2299-0461 |
IngestDate | Wed Aug 27 01:29:02 EDT 2025 Fri Jul 25 22:38:05 EDT 2025 Thu Apr 24 23:09:46 EDT 2025 Tue Jul 01 02:52:30 EDT 2025 Sat Sep 06 16:59:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-886e9026f771dae3d6927daf7dce41717d81d4e3a09a6d552f36c9a28addf2403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4653-6073 |
OpenAccessLink | https://doaj.org/article/8caa4e238cf84e2c983a6d7550aaacfe |
PQID | 3159540196 |
PQPubID | 6762849 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8caa4e238cf84e2c983a6d7550aaacfe proquest_journals_3159540196 crossref_citationtrail_10_2478_mspe_2024_0040 crossref_primary_10_2478_mspe_2024_0040 walterdegruyter_journals_10_2478_mspe_2024_0040323428 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Gliwice |
PublicationPlace_xml | – name: Gliwice |
PublicationTitle | Management systems in production engineering |
PublicationYear | 2024 |
Publisher | Sciendo De Gruyter Poland |
Publisher_xml | – name: Sciendo – name: De Gruyter Poland |
References | 2024090510104773485_j_mspe-2024-0040_ref_011 2024090510104773485_j_mspe-2024-0040_ref_012 2024090510104773485_j_mspe-2024-0040_ref_010 2024090510104773485_j_mspe-2024-0040_ref_015 2024090510104773485_j_mspe-2024-0040_ref_016 2024090510104773485_j_mspe-2024-0040_ref_013 2024090510104773485_j_mspe-2024-0040_ref_014 2024090510104773485_j_mspe-2024-0040_ref_019 2024090510104773485_j_mspe-2024-0040_ref_017 2024090510104773485_j_mspe-2024-0040_ref_018 2024090510104773485_j_mspe-2024-0040_ref_022 2024090510104773485_j_mspe-2024-0040_ref_001 2024090510104773485_j_mspe-2024-0040_ref_023 2024090510104773485_j_mspe-2024-0040_ref_020 2024090510104773485_j_mspe-2024-0040_ref_021 2024090510104773485_j_mspe-2024-0040_ref_004 2024090510104773485_j_mspe-2024-0040_ref_026 2024090510104773485_j_mspe-2024-0040_ref_005 2024090510104773485_j_mspe-2024-0040_ref_027 2024090510104773485_j_mspe-2024-0040_ref_002 2024090510104773485_j_mspe-2024-0040_ref_024 2024090510104773485_j_mspe-2024-0040_ref_003 2024090510104773485_j_mspe-2024-0040_ref_025 2024090510104773485_j_mspe-2024-0040_ref_008 2024090510104773485_j_mspe-2024-0040_ref_009 2024090510104773485_j_mspe-2024-0040_ref_006 2024090510104773485_j_mspe-2024-0040_ref_028 2024090510104773485_j_mspe-2024-0040_ref_007 2024090510104773485_j_mspe-2024-0040_ref_029 |
References_xml | – ident: 2024090510104773485_j_mspe-2024-0040_ref_022 doi: 10.3390/jmmp3030064 – ident: 2024090510104773485_j_mspe-2024-0040_ref_003 – ident: 2024090510104773485_j_mspe-2024-0040_ref_013 doi: 10.1007/s00170-007-1310-7 – ident: 2024090510104773485_j_mspe-2024-0040_ref_018 – ident: 2024090510104773485_j_mspe-2024-0040_ref_006 doi: 10.1016/j.proeng.2016.06.657 – ident: 2024090510104773485_j_mspe-2024-0040_ref_027 doi: 10.12913/22998624/173562 – ident: 2024090510104773485_j_mspe-2024-0040_ref_029 – ident: 2024090510104773485_j_mspe-2024-0040_ref_009 doi: 10.1088/1742-6596/1402/4/044041 – ident: 2024090510104773485_j_mspe-2024-0040_ref_023 doi: 10.1007/s40436-017-0187-4 – ident: 2024090510104773485_j_mspe-2024-0040_ref_007 doi: 10.31272/jeasd.conf.1.50 – ident: 2024090510104773485_j_mspe-2024-0040_ref_017 doi: 10.3390/polym14173668 – ident: 2024090510104773485_j_mspe-2024-0040_ref_025 – ident: 2024090510104773485_j_mspe-2024-0040_ref_012 doi: 10.1002/0470033991 – ident: 2024090510104773485_j_mspe-2024-0040_ref_020 doi: 10.3390/polym14173667 – ident: 2024090510104773485_j_mspe-2024-0040_ref_024 doi: 10.1016/j.biortech.2018.09.115 – ident: 2024090510104773485_j_mspe-2024-0040_ref_004 doi: 10.37917/ijeee.16.1.7 – ident: 2024090510104773485_j_mspe-2024-0040_ref_015 – ident: 2024090510104773485_j_mspe-2024-0040_ref_001 doi: 10.3390/ma10101199 – ident: 2024090510104773485_j_mspe-2024-0040_ref_005 doi: 10.1016/j.matdes.2009.04.030 – ident: 2024090510104773485_j_mspe-2024-0040_ref_008 doi: 10.1088/1757-899X/290/1/012077 – ident: 2024090510104773485_j_mspe-2024-0040_ref_016 doi: 10.1080/2374068X.2022.2091085 – ident: 2024090510104773485_j_mspe-2024-0040_ref_021 doi: 10.1088/1757-899X/1201/1/012031 – ident: 2024090510104773485_j_mspe-2024-0040_ref_010 – ident: 2024090510104773485_j_mspe-2024-0040_ref_019 doi: 10.1080/14484846.2022.2047472 – ident: 2024090510104773485_j_mspe-2024-0040_ref_014 doi: 10.21203/rs.3.rs-3204960/v1 – ident: 2024090510104773485_j_mspe-2024-0040_ref_002 doi: 10.21271/ZJPAS.33.2.10 – ident: 2024090510104773485_j_mspe-2024-0040_ref_026 doi: 10.1007/s00170-019-03626-0 – ident: 2024090510104773485_j_mspe-2024-0040_ref_011 doi: 10.1016/j.procs.2015.03.145 – ident: 2024090510104773485_j_mspe-2024-0040_ref_028 doi: 10.30684/etj.v40i1.2118 |
SSID | ssj0001851249 ssib044752341 |
Score | 2.3214011 |
Snippet | Fused deposition modeling (FDM) is a commonly used additive manufacturing (AM) technique in both domestic and industrial end-product fabrications. It produces... |
SourceID | doaj proquest crossref walterdegruyter |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 428 |
SubjectTerms | ANN ANOVA Design of experiments FDM Neural networks PLA Polylactic acid process parameters Variance analysis |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcCh4imWFuQDEierG8dJ7BNqoasKacsKUdRb5PixRNpmlyQV2v4P_i8zjtNSBJwiJSPnMV_m4Rl_JuRN4q3yVZIxkWcWEhRhmUqrhLmpdl4r7_NQLpif5afn4uNFdhEn3LrYVjnaxGCo7drgHPlhCn4XogsAzLvNd4a7RmF1NW6hcZ_sggmWgPPd45OzxecRUchmx9Po8MOsCwQYPMTEnOPye5EnA5MjF4U8vOw2DmDDBUNs3_FUgdD_ThS69yPUs61btlfbfqyfBrc0e0T2YjxJjwYAPCb3XPOEPPyNZfAp-blosRqD_c107nClLyqGYj26WfbfqG4s_QSW47K-dpYuNLZrIecmrRs6-zBnixY5JeDKerVdhTVV9MjUQbLv6Ndah7sPTBQUyT7CIXSXd2FwyG3rduAD39KRBeUZOZ-dfHl_yuJuDMyAF--ZlLlTkLH5okisdqnNFS-s9oU1TiSQFVoIfYVL9VTp3GYZ92lulOYSLKhH1r_nZKdZN-4FoVNurMuVVUWlhPaADVl5Ma1goIJDqj8hbPzypYlU5bhjxqqElAU1VaKmStRUiZqakLc38puBpOOfkseoyBspJNcOJ9btsoz_aimN1sJBLGO8hKNRMoU3KiCX01ob7ybkYIRBGf_4rrzF54Rkf0DjVurvT5UCRrl8-f9h98mDAZrYfHhAdvr2yr2CgKivXkfU_wJKGwvI priority: 102 providerName: ProQuest |
Title | Predicting Mechanical Strength and Optimized Parameters in FDM-Printed Polylactic Acid Parts Via Artificial Neural Networks and Desirability Analysis |
URI | https://www.degruyter.com/doi/10.2478/mspe-2024-0040 https://www.proquest.com/docview/3159540196 https://doaj.org/article/8caa4e238cf84e2c983a6d7550aaacfe |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQvZQDamkrli7Ih0qcLPJwHj6yZVcIaWGFoOJmOX7QSLsBZYPQcuBf8H8742RhQVS99BJLySixZsb2fJnxZ0J-hM4IV4QJ42liAKBww0RchMwGyjolnEt9umB8mh5f8pOr5GrlqC-sCWvpgVvFHeRaKW5hYdEuh1aLPFapySCwVkppZ3H2DUSwAqb83xUIJABYtCyNEc_yg9n81oJLRJyh375ahTxZ_6sIc_Pe56qNva7vFs0yN-qXnNEnstnFivSw7eNnsmarLbKxwiD4hTxNasy0YO0yHVvcxYtKp5hrrq6b31RVhp7BrDArH6yhE4WlWMinScuKjo7GbFIjXwQ8uZkupn6_FD3UpZds5vRXqfzXW5YJikQevvGV43P_csCtZd1yfS_okuHkK7kcDS9-HrPupAWmYYVuWJ6nVgAac1kWGmVjk4ooM8plRlseAuIzENZyG6tAgPKTJHJxqoWKcpgdHTL6fSPr1U1ltwkNIm1sKozICsGVA7vnheNBAS_KIoDxPcKWmpe6oyHH0zCmEuAIWkqipSRaSqKlemT_Wf62JeD4q-QADfkshcTZ_ga4k-zcSf7LnXqkv3QD2Y3muYwh5oPIFiarHkneuMaL1Pu9iqMYEN7O_-jbd_KxdWAsP-yT9aa-s7sQEjXFHvkwGJ5Ozvf8KIDr-HH4B0n2Eds |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAcKp4itMAeQJysxuv1Yw8ItbRRSpsQoRb1Ztb7CJZSJ7VdVeF_8Df4jcys7ZYi4NaTJWe0TjLfzs54Zr4h5LVvtbCZH3o8CjUEKFx7Ish8zwyksVJYG7l0wXgSjU74x9PwdI387HphsKyys4nOUOuFwnfk2wGcu-BdAGDeL889nBqF2dVuhEYDi0OzuoSQrXp3sAf6fcPYcP_4w8hrpwp4Ck6j2kuSyAiIPGwc-1qaQEeCxVraWCvDfYhuNLhw3ARyIGSkw5DZIFJCsgQsgUX2Olj3Dlnn2NHaI-u7-5Pp5w7ByJ7HgtbBcG95wKFhzgdnDNv9eeQ3zJGMx8n2WbU0AFPGPdxLN05GN0Dghte7ceny59rMyotV3eVr3TE4fEA2Wv-V7jSAe0jWTPGI3P-N1fAx-TEtMfuD9dR0bLCzGIFAMf9dzOpvVBaafgJLdZZ_N5pOJZaHIccnzQs63Bt70xI5LOCTxXw1dz1cdEflTrKu6Jdcuqc3zBcUyUXcxVWzV25xiKXzsuEfX9GOdeUJObkVPT0lvWJRmGeEDpjSJhJaxJng0gIWk8zyQQYLxcxkrE-87p9PVUuNjhM65imESKipFDWVoqZS1FSfvL2SXzakIP-U3EVFXkkhmbe7sShnaWsb0kRJyQ34TsomcFUiCeAXxRA7SimVNX2y1cEgbS1MlV7vhz4J_4DGtdTfv1UAGGXJ8_8v-4rcHR2Pj9Kjg8nhJrnXwBQLH7dIry4vzAtwxursZbsDKPl625vuFxznSPs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgKyE4VDzVpQV8QOJkNQ8njo8LZVke264ERb1Zjh9LpG12lU2Ftv-D_8uMk20pKhdOlpKxk3jG9nyZ8WdCXsfeSl_GGeN5ZgGgcMtkWsbMRdp5Lb3PQ7hgepxPTvmns-ysB4q4FybM-zZEKw9X1odUZS6Kw_P1yoFGE87Q7O6SHZHJKBuQndHkw9eT678q4EAAoOjYGW-peGP1CST9NzzL3Z8hRm3dvLnYtNuYaFhqxg_Jbu8j0lGn1Efkjqsfkwd_MAc-Ib9mDUZYMGeZTh3u3sXOphhjruftD6prS09gNjivLp2lM40pWMijSauajo-mbNYgTwTcWS42i7BPio5MFSTbNf1e6fD0jl2CIoFHKELG-Do0Dni1ajqO7w3dMps8Jafj99_eTVh_wgIzsDK3rChyJwGFeSFiq11qc5kIq72wxvEYkJ4Fd5a7VEdS5zbLEp_mRuqkgFnRI5PfMzKol7XbIzRKjHW5tFKUkmsP-i5Kz6MSGhIJwPchYdueV6anH8dTMBYKYAhqSqGmFGpKoaaG5M2V_Koj3vin5FtU5JUUEmaHC8tmrvrxpwqjNXfgnxhfQGlkkcIXCcBnWmvj3ZAcbM1A9aN4rVLw9cCjhUlqSLK_TONa6va3SpMUkN3z_6z3itybHY3Vl4_Hn_fJ_c58MenwgAza5sK9AEeoLV_21v8b2ysIog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Mechanical+Strength+and+Optimized+Parameters+in+FDM-Printed+Polylactic+Acid+Parts+Via+Artificial+Neural+Networks+and+Desirability+Analysis&rft.jtitle=Management+systems+in+production+engineering&rft.au=Abdulridha+Hind+H.&rft.au=Abbas+Tahseen+F.&rft.au=Bedan+Aqeel+S.&rft.date=2024-08-01&rft.pub=Sciendo&rft.eissn=2450-5781&rft.volume=32&rft.issue=3&rft.spage=428&rft.epage=437&rft_id=info:doi/10.2478%2Fmspe-2024-0040&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8caa4e238cf84e2c983a6d7550aaacfe |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2450-5781&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2450-5781&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2450-5781&client=summon |