Exploring optimal control strategies in seasonally varying flu-like epidemics
The impact of optimal control strategies in the context of seasonally varying infectious disease transmission remains a wide open research area. We investigate optimal control strategies for flu-like epidemics using an SIR (susceptible-infectious-recovered) type epidemic model where the transmission...
Saved in:
Published in | Journal of theoretical biology Vol. 412; pp. 36 - 47 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
07.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The impact of optimal control strategies in the context of seasonally varying infectious disease transmission remains a wide open research area. We investigate optimal control strategies for flu-like epidemics using an SIR (susceptible-infectious-recovered) type epidemic model where the transmission rate varies seasonally Specifically, we explore optimal control strategies using time-dependent treatment and vaccination as control functions alone or in combination. Optimal strategies and associated epidemic outcomes are contrasted for epidemics with constant and seasonal transmission rates. Our results show that the epidemic outcomes assessed in terms of the timing and size of seasonal epidemics subject to optimal control strategies are highly sensitive to various parameters including R0, the timing of the introduction of the initial number of infectious individuals into the population, the time at which interventions start, and the strength of the seasonal forcing that modulates the time-dependent transmission rate. Findings highlight the difficult challenge in predicting short-term epidemic impact in the context of seasonally varying infectious disease transmission with some interventions scenarios exhibiting larger epidemic size compared to scenarios without control interventions.
•Epidemic dynamics with seasonal transmission rates are analyzed.•Optimal control interventions are investigated under seasonal transmission rates.•Epidemic outcomes are found to be highly sensitive to changes in various parameters.•Epidemic forecasting with seasonal transmission rates faces many challenges. |
---|---|
AbstractList | The impact of optimal control strategies in the context of seasonally varying infectious disease transmission remains a wide open research area. We investigate optimal control strategies for flu-like epidemics using an SIR (susceptible-infectious-recovered) type epidemic model where the transmission rate varies seasonally Specifically, we explore optimal control strategies using time-dependent treatment and vaccination as control functions alone or in combination. Optimal strategies and associated epidemic outcomes are contrasted for epidemics with constant and seasonal transmission rates. Our results show that the epidemic outcomes assessed in terms of the timing and size of seasonal epidemics subject to optimal control strategies are highly sensitive to various parameters including R
, the timing of the introduction of the initial number of infectious individuals into the population, the time at which interventions start, and the strength of the seasonal forcing that modulates the time-dependent transmission rate. Findings highlight the difficult challenge in predicting short-term epidemic impact in the context of seasonally varying infectious disease transmission with some interventions scenarios exhibiting larger epidemic size compared to scenarios without control interventions. The impact of optimal control strategies in the context of seasonally varying infectious disease transmission remains a wide open research area. We investigate optimal control strategies for flu-like epidemics using an SIR (susceptible-infectious-recovered) type epidemic model where the transmission rate varies seasonally Specifically, we explore optimal control strategies using time-dependent treatment and vaccination as control functions alone or in combination. Optimal strategies and associated epidemic outcomes are contrasted for epidemics with constant and seasonal transmission rates. Our results show that the epidemic outcomes assessed in terms of the timing and size of seasonal epidemics subject to optimal control strategies are highly sensitive to various parameters including R0, the timing of the introduction of the initial number of infectious individuals into the population, the time at which interventions start, and the strength of the seasonal forcing that modulates the time-dependent transmission rate. Findings highlight the difficult challenge in predicting short-term epidemic impact in the context of seasonally varying infectious disease transmission with some interventions scenarios exhibiting larger epidemic size compared to scenarios without control interventions.The impact of optimal control strategies in the context of seasonally varying infectious disease transmission remains a wide open research area. We investigate optimal control strategies for flu-like epidemics using an SIR (susceptible-infectious-recovered) type epidemic model where the transmission rate varies seasonally Specifically, we explore optimal control strategies using time-dependent treatment and vaccination as control functions alone or in combination. Optimal strategies and associated epidemic outcomes are contrasted for epidemics with constant and seasonal transmission rates. Our results show that the epidemic outcomes assessed in terms of the timing and size of seasonal epidemics subject to optimal control strategies are highly sensitive to various parameters including R0, the timing of the introduction of the initial number of infectious individuals into the population, the time at which interventions start, and the strength of the seasonal forcing that modulates the time-dependent transmission rate. Findings highlight the difficult challenge in predicting short-term epidemic impact in the context of seasonally varying infectious disease transmission with some interventions scenarios exhibiting larger epidemic size compared to scenarios without control interventions. The impact of optimal control strategies in the context of seasonally varying infectious disease transmission remains a wide open research area. We investigate optimal control strategies for flu-like epidemics using an SIR (susceptible-infectious-recovered) type epidemic model where the transmission rate varies seasonally Specifically, we explore optimal control strategies using time-dependent treatment and vaccination as control functions alone or in combination. Optimal strategies and associated epidemic outcomes are contrasted for epidemics with constant and seasonal transmission rates. Our results show that the epidemic outcomes assessed in terms of the timing and size of seasonal epidemics subject to optimal control strategies are highly sensitive to various parameters including R0, the timing of the introduction of the initial number of infectious individuals into the population, the time at which interventions start, and the strength of the seasonal forcing that modulates the time-dependent transmission rate. Findings highlight the difficult challenge in predicting short-term epidemic impact in the context of seasonally varying infectious disease transmission with some interventions scenarios exhibiting larger epidemic size compared to scenarios without control interventions. •Epidemic dynamics with seasonal transmission rates are analyzed.•Optimal control interventions are investigated under seasonal transmission rates.•Epidemic outcomes are found to be highly sensitive to changes in various parameters.•Epidemic forecasting with seasonal transmission rates faces many challenges. |
Author | Chowell, Gerardo Lee, Sunmi |
Author_xml | – sequence: 1 givenname: Sunmi surname: Lee fullname: Lee, Sunmi email: sunmilee@khu.ac.kr organization: Department of Applied Mathematics, Kyung Hee University, Yongin, Republic of Korea – sequence: 2 givenname: Gerardo surname: Chowell fullname: Chowell, Gerardo organization: School of Public Health, Georgia State University, Atlanta, GA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27693366$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kD1v2zAQQInAQeMk_QMZCo1dpPBDpESgS2E4H0CKLslMUNQxoEuLKkkb8b-PBCcdOni6G9474N4lWgxhAIRuCK4IJuJ2U21y5yo67RWWFabsDC0JlrxseU0WaIkxpSUnkl2gy5Q2GGNZM_EFXdBGSMaEWKJf67fRh-iG1yKM2W21L0wYcgy-SDnqDK8OUuGGIoFOYdDeH4q9jodZsH5XevcHChhdD1tn0jU6t9on-Poxr9DL3fp59VA-_b5_XP18Kk1NRS6FFK3Fuu1FY0jdtRRrTEDyhlvT05Z3EqQltoeGS9qQvunA2loTaLsGDHB2hb4f744x_N1BymrrkgHv9QBhlxRpGWe8xoJN6LcPdNdtoVdjnJ6MB_WZYALoETAxpBTB_kMIVnNntVFzZzV3VliqqfMktf9JxmWd3ZxOO39a_XFUYQq0dxBVMg4GA72LYLLqgzulvwPeFJne |
CitedBy_id | crossref_primary_10_1016_j_amc_2023_128223 crossref_primary_10_1016_j_rico_2021_100078 crossref_primary_10_1142_S1793524522500267 crossref_primary_10_1016_j_nonrwa_2018_09_023 crossref_primary_10_1016_j_jtbi_2020_110277 crossref_primary_10_12677_AAM_2022_116420 crossref_primary_10_1016_j_aej_2024_10_012 crossref_primary_10_3934_mbe_2024283 crossref_primary_10_1002_oca_2621 crossref_primary_10_3934_mbe_2024337 crossref_primary_10_1016_j_scitotenv_2020_140101 crossref_primary_10_1097_JOM_0000000000002039 crossref_primary_10_3934_math_2024123 crossref_primary_10_1016_j_jtbi_2022_111003 crossref_primary_10_1371_journal_pcbi_1011187 crossref_primary_10_1016_j_matcom_2019_08_002 crossref_primary_10_1007_s11071_024_09500_3 crossref_primary_10_1016_j_jtbi_2019_03_006 crossref_primary_10_1371_journal_pone_0315280 crossref_primary_10_1016_j_aml_2022_108446 crossref_primary_10_1007_s41748_021_00218_5 crossref_primary_10_1016_j_cnsns_2018_07_003 crossref_primary_10_1080_02331934_2020_1786568 crossref_primary_10_1038_s44260_024_00020_0 crossref_primary_10_1016_j_epidem_2023_100730 crossref_primary_10_1002_num_22872 crossref_primary_10_1007_s40010_021_00754_9 |
Cites_doi | 10.7554/eLife.09186 10.1017/S0950268807009144 10.1093/aje/kwh092 10.1126/science.1115717 10.1371/journal.pmed.0040013 10.1371/journal.pcbi.1004337 10.1007/s00285-010-0354-8 10.1208/s12248-011-9284-7 10.1007/s11538-011-9704-y 10.1073/pnas.0806852106 10.1016/j.jtbi.2013.03.027 10.3201/eid1209.041344 10.1007/s11538-009-9433-7 10.3201/eid0703.017301 10.1371/journal.pmed.1000436 10.1038/nature04795 10.1371/journal.pone.0060343 10.1016/j.jtbi.2012.02.031 10.1186/1471-2334-9-8 10.1016/j.jtbi.2010.04.003 10.1371/journal.pone.0094130 10.1007/s11538-009-9435-5 10.1016/j.jtbi.2005.11.026 10.1007/s00285-015-0887-y 10.1371/journal.pone.0097297 10.1016/j.jtbi.2012.10.032 10.1098/rspb.2006.0015 10.2807/ese.14.41.19358-en 10.1038/nature04017 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright © 2016 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jtbi.2016.09.023 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1095-8541 |
EndPage | 47 |
ExternalDocumentID | 27693366 10_1016_j_jtbi_2016_09_023 S0022519316303204 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HLV IHE J1W KOM LG5 LW8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SAB SCC SDF SDG SDP SES SPCBC SSA SSZ T5K TN5 YQT ZMT ZU3 ~02 ~G- .GJ 29L 3O- 53G AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO AEIPS AETEA AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF FA8 FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT R2- SEW SSH UQL VH1 WUQ XPP ZGI ZXP ZY4 ~KM CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c426t-6968f0a8d67c14b820a01e9575fcd285b9e9f1fde759271d7beff4a1e8b7ece53 |
IEDL.DBID | .~1 |
ISSN | 0022-5193 1095-8541 |
IngestDate | Thu Jul 10 23:53:24 EDT 2025 Thu Apr 03 07:06:44 EDT 2025 Tue Jul 01 03:10:58 EDT 2025 Thu Apr 24 22:51:07 EDT 2025 Fri Feb 23 02:26:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Optimal control theory Influenza transmission dynamics Seasonally varying transmission rate Vaccination and treatment strategies |
Language | English |
License | Copyright © 2016 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-6968f0a8d67c14b820a01e9575fcd285b9e9f1fde759271d7beff4a1e8b7ece53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27693366 |
PQID | 1835354063 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1835354063 pubmed_primary_27693366 crossref_primary_10_1016_j_jtbi_2016_09_023 crossref_citationtrail_10_1016_j_jtbi_2016_09_023 elsevier_sciencedirect_doi_10_1016_j_jtbi_2016_09_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-07 |
PublicationDateYYYYMMDD | 2017-01-07 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of theoretical biology |
PublicationTitleAlternate | J Theor Biol |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chowell, Ammon, Hengartner, Hyman (bib6) 2006; 241 Xiao, Y., Brauer, F. Moghadas, S.M., 2015. Can treatment increase the epidemic size? J. Math. Biol. Epub 30.04.15 Colizza, Barrat, Barthelemy, Valleron, Vespignani (bib11) 2007; 4 Chretien, George, Shaman, Chitale, McKenzie (bib9) 2014; 9 Tamerius, J., Viboud, C., Shaman, J., Chowell, G., 2015. Impact of School Cycles and Environmental Forcing on the Timing of Pandemic Influenza Activity in Mexican States, May–December 2009. Plos Comput. Biol. Jackson, Mangtani, Hawker, Olowokure, Vynnycky (bib19) 2014; 9 Shaman, Kohn (bib30) 2009; 106 Arino, Bowman, Moghadas (bib2) 2009; 9 Anderson, May (bib1) 1991 Washington Times, 11/20/2009. H1N1 vaccine too late to help most. Pontryagin, Boltyanskii, Gamkrelidze, Mishchenko (bib28) 1962 Chowell, Echevarria-Zuno, Viboud, Simonsen, Tamerius (bib8) 2011; 8 Qiu, Feng (bib29) 2010; 72 Omori, Sasaki (bib27) 2013; 329 Bacaer, Ait Dads (bib3) 2011; 62 Uziel, Stone (bib33) 2012; 305 Longini, Halloran, Nizam, Yang (bib24) 2004; 159 Chretien, Riley, George (bib10) 2015; 4 Dowell (bib12) 2001; 7 Lee, Golinski, Chowell (bib21) 2012; 74 Mummert, Weiss, Long, Jos, Amig, Wan (bib26) 2013 Lenhart, Workman (bib23) 2007 Bacaer, Gomes (bib4) 2009; 71 Ferguson, Cummings, Cauchemez, Fraser, Riley, Meeyai, Lamsirithaworn, Burke (bib14) 2005; 437 Handel, Longini, Antia (bib18) 2007; 274 Lee, Chowell, Castillo-Chavez (bib20) 2010; 265 Lee, Kim, Kwon (bib22) 2013; 317 Cauchemez, Valleron, Bolle, Flahault, Ferguson (bib5) 2008; 452 Longini, Nizam, Shufu, Ungchusak, Hanshaoworakul, Cummings, Halloran (bib25) 2005; 309 Chowell, Miller, Viboud (bib7) 2008; 136 Ferguson, Cummings, Fraser, Cajka, Cooley, Burke (bib15) 2006; 442 Gani, Hughes, Fleming, Grifin, Medlock, Leach (bib17) 2005; 11 (accessed 01.06.11). Fleming, Rishel (bib16) 1975 Towers, Feng (bib32) 2009; 14 Feng, Towers, Yang (bib13) 2011; 13 Handel (10.1016/j.jtbi.2016.09.023_bib18) 2007; 274 Lee (10.1016/j.jtbi.2016.09.023_bib22) 2013; 317 Lenhart (10.1016/j.jtbi.2016.09.023_bib23) 2007 Jackson (10.1016/j.jtbi.2016.09.023_bib19) 2014; 9 Chowell (10.1016/j.jtbi.2016.09.023_bib8) 2011; 8 Mummert (10.1016/j.jtbi.2016.09.023_bib26) 2013 Longini (10.1016/j.jtbi.2016.09.023_bib24) 2004; 159 Dowell (10.1016/j.jtbi.2016.09.023_bib12) 2001; 7 Chretien (10.1016/j.jtbi.2016.09.023_bib10) 2015; 4 Shaman (10.1016/j.jtbi.2016.09.023_bib30) 2009; 106 Ferguson (10.1016/j.jtbi.2016.09.023_bib15) 2006; 442 Omori (10.1016/j.jtbi.2016.09.023_bib27) 2013; 329 Colizza (10.1016/j.jtbi.2016.09.023_bib11) 2007; 4 Chowell (10.1016/j.jtbi.2016.09.023_bib6) 2006; 241 10.1016/j.jtbi.2016.09.023_bib35 10.1016/j.jtbi.2016.09.023_bib34 Fleming (10.1016/j.jtbi.2016.09.023_bib16) 1975 Bacaer (10.1016/j.jtbi.2016.09.023_bib3) 2011; 62 10.1016/j.jtbi.2016.09.023_bib31 Lee (10.1016/j.jtbi.2016.09.023_bib21) 2012; 74 Longini (10.1016/j.jtbi.2016.09.023_bib25) 2005; 309 Cauchemez (10.1016/j.jtbi.2016.09.023_bib5) 2008; 452 Lee (10.1016/j.jtbi.2016.09.023_bib20) 2010; 265 Ferguson (10.1016/j.jtbi.2016.09.023_bib14) 2005; 437 Chretien (10.1016/j.jtbi.2016.09.023_bib9) 2014; 9 Anderson (10.1016/j.jtbi.2016.09.023_bib1) 1991 Chowell (10.1016/j.jtbi.2016.09.023_bib7) 2008; 136 Qiu (10.1016/j.jtbi.2016.09.023_bib29) 2010; 72 Feng (10.1016/j.jtbi.2016.09.023_bib13) 2011; 13 Uziel (10.1016/j.jtbi.2016.09.023_bib33) 2012; 305 Arino (10.1016/j.jtbi.2016.09.023_bib2) 2009; 9 Pontryagin (10.1016/j.jtbi.2016.09.023_bib28) 1962 Bacaer (10.1016/j.jtbi.2016.09.023_bib4) 2009; 71 Gani (10.1016/j.jtbi.2016.09.023_bib17) 2005; 11 Towers (10.1016/j.jtbi.2016.09.023_bib32) 2009; 14 |
References_xml | – volume: 106 start-page: 3243 year: 2009 end-page: 3248 ident: bib30 article-title: Absolute humidity modulates influenza survival, transmission, and seasonality publication-title: Proc. Natl. Acad. Sci. USA – volume: 14 start-page: 6 year: 2009 end-page: 8 ident: bib32 article-title: Pandemic H1N1 influenza publication-title: Eurosurveillance – volume: 305 start-page: 88 year: 2012 end-page: 95 ident: bib33 article-title: Determinants of periodicity in seasonally driven epidemics publication-title: J. Theor. Biol. – volume: 4 start-page: e13 year: 2007 ident: bib11 article-title: Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions publication-title: PLoS Med. – volume: 62 start-page: 741 year: 2011 end-page: 762 ident: bib3 article-title: Genealogy with seasonality, the basic reproduction number, and the influenza pandemic publication-title: J. Math. Biol. – volume: 265 start-page: 136 year: 2010 end-page: 150 ident: bib20 article-title: Optimal control for pandemic influenza: the role of limited antiviral treatment and isolation publication-title: J. Theor. Biol. – volume: 452 start-page: 750 year: 2008 end-page: 754 ident: bib5 article-title: Estimating the impact of school closure on influenza transmission from Sentinel data publication-title: Nature (Nature Publishing Group) – reference: 〉. (accessed 01.06.11). – volume: 442 start-page: 448 year: 2006 end-page: 452 ident: bib15 article-title: Strategies for mitigating an influenza pandemic publication-title: Nature – volume: 71 start-page: 1954 year: 2009 end-page: 1966 ident: bib4 article-title: On the final size of epidemics with seasonality publication-title: Bull. Math. Biol. – volume: 136 start-page: 852 year: 2008 end-page: 864 ident: bib7 article-title: Seasonal influenza in the United States, France and Australia publication-title: Epidemiol. Infect. – volume: 9 start-page: e94130 year: 2014 ident: bib9 article-title: Influenza forecasting in human populations: a scoping review publication-title: PLoS One – volume: 437 start-page: 209 year: 2005 end-page: 214 ident: bib14 article-title: Strategies for containing an emerging influenza pandemic in Southeast Asia publication-title: Nature – volume: 9 start-page: 8 year: 2009 ident: bib2 article-title: Antiviral resistance during pandemic influenza publication-title: BMC Infect. Dis. – volume: 74 start-page: 958 year: 2012 end-page: 980 ident: bib21 article-title: Modeling optimal age-specific vaccination strategies against pandemic influenza publication-title: Bull. Math. Biol. – volume: 241 start-page: 193 year: 2006 end-page: 204 ident: bib6 article-title: Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland publication-title: J. Theor. Biol. – volume: 329 start-page: 32 year: 2013 end-page: 38 ident: bib27 article-title: Timing of the emergence of new successful viral strains in seasonal influenza publication-title: J. Theor. Biol. – volume: 317 start-page: 310 year: 2013 end-page: 320 ident: bib22 article-title: Optimal control of an influenza model with seasonal forcing and age-dependent transmission rates publication-title: J. Theor. Biol. – volume: 9 start-page: e97297 year: 2014 ident: bib19 article-title: The effects of school closures on influenza outbreaks and pandemics publication-title: PLoS One – volume: 72 start-page: 1 year: 2010 end-page: 33 ident: bib29 article-title: Transmission dynamics of an influenza model with vaccination and antiviral treatment publication-title: Bull. Math. Biol. – volume: 4 year: 2015 ident: bib10 article-title: Mathematical modeling of the West Africa Ebola epidemic publication-title: Elife – volume: 274 start-page: 833 year: 2007 end-page: 837 ident: bib18 article-title: What is the best control strategy for multiple infectious disease outbreaks? publication-title: Proc. R. Soc. B – reference: Washington Times, 11/20/2009. H1N1 vaccine too late to help most. 〈 – volume: 11 start-page: 1355 year: 2005 end-page: 1362 ident: bib17 article-title: Potential impact of antiviral use during influenza pandemic publication-title: Emerg. Infect Dis. – volume: 7 start-page: 369 year: 2001 end-page: 373 ident: bib12 article-title: Seasonal variation in host susceptibility and cycles of certain infectious diseases publication-title: Emerg. Infect. Dis. – year: 1991 ident: bib1 article-title: Infectious Diseases of Humans: Dynamics and Control – volume: 159 start-page: 623 year: 2004 end-page: 633 ident: bib24 article-title: Containing pandemic influenza with antiviral agents publication-title: Am. J. Epidemiol. – year: 2013 ident: bib26 article-title: A perspective on multiple waves of influenza pandemics publication-title: Plos One – volume: 309 start-page: 1083 year: 2005 end-page: 1087 ident: bib25 article-title: Containing pandemic influenza at the source publication-title: Science – volume: 13 start-page: 427 year: 2011 end-page: 437 ident: bib13 article-title: Modeling the effects of vaccination and treatment on pandemic influenza publication-title: AAPS J. – year: 1975 ident: bib16 article-title: Deterministic and Stochastic Optimal Control – volume: 8 start-page: e1000436 year: 2011 ident: bib8 article-title: Characterizing the epidemiology of the 2009 influenza A/H1N1 pandemic in Mexico publication-title: PLoS Med. – reference: Xiao, Y., Brauer, F. Moghadas, S.M., 2015. Can treatment increase the epidemic size? J. Math. Biol. Epub 30.04.15, – reference: Tamerius, J., Viboud, C., Shaman, J., Chowell, G., 2015. Impact of School Cycles and Environmental Forcing on the Timing of Pandemic Influenza Activity in Mexican States, May–December 2009. Plos Comput. Biol. – year: 1962 ident: bib28 article-title: The Mathematical Theory of Optimal Processes – year: 2007 ident: bib23 article-title: Optimal Control Applied to Biological Models. CRC Mathematical and Computational Biology Series – volume: 4 year: 2015 ident: 10.1016/j.jtbi.2016.09.023_bib10 article-title: Mathematical modeling of the West Africa Ebola epidemic publication-title: Elife doi: 10.7554/eLife.09186 – volume: 136 start-page: 852 year: 2008 ident: 10.1016/j.jtbi.2016.09.023_bib7 article-title: Seasonal influenza in the United States, France and Australia publication-title: Epidemiol. Infect. doi: 10.1017/S0950268807009144 – volume: 159 start-page: 623 issue: 7 year: 2004 ident: 10.1016/j.jtbi.2016.09.023_bib24 article-title: Containing pandemic influenza with antiviral agents publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kwh092 – year: 1962 ident: 10.1016/j.jtbi.2016.09.023_bib28 – volume: 309 start-page: 1083 year: 2005 ident: 10.1016/j.jtbi.2016.09.023_bib25 article-title: Containing pandemic influenza at the source publication-title: Science doi: 10.1126/science.1115717 – volume: 4 start-page: e13 issue: 1 year: 2007 ident: 10.1016/j.jtbi.2016.09.023_bib11 article-title: Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions publication-title: PLoS Med. doi: 10.1371/journal.pmed.0040013 – year: 1991 ident: 10.1016/j.jtbi.2016.09.023_bib1 – ident: 10.1016/j.jtbi.2016.09.023_bib31 doi: 10.1371/journal.pcbi.1004337 – ident: 10.1016/j.jtbi.2016.09.023_bib34 – volume: 62 start-page: 741 year: 2011 ident: 10.1016/j.jtbi.2016.09.023_bib3 article-title: Genealogy with seasonality, the basic reproduction number, and the influenza pandemic publication-title: J. Math. Biol. doi: 10.1007/s00285-010-0354-8 – volume: 13 start-page: 427 issue: 3 year: 2011 ident: 10.1016/j.jtbi.2016.09.023_bib13 article-title: Modeling the effects of vaccination and treatment on pandemic influenza publication-title: AAPS J. doi: 10.1208/s12248-011-9284-7 – volume: 74 start-page: 958 year: 2012 ident: 10.1016/j.jtbi.2016.09.023_bib21 article-title: Modeling optimal age-specific vaccination strategies against pandemic influenza publication-title: Bull. Math. Biol. doi: 10.1007/s11538-011-9704-y – volume: 106 start-page: 3243 year: 2009 ident: 10.1016/j.jtbi.2016.09.023_bib30 article-title: Absolute humidity modulates influenza survival, transmission, and seasonality publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0806852106 – volume: 329 start-page: 32 year: 2013 ident: 10.1016/j.jtbi.2016.09.023_bib27 article-title: Timing of the emergence of new successful viral strains in seasonal influenza publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2013.03.027 – year: 2007 ident: 10.1016/j.jtbi.2016.09.023_bib23 – volume: 11 start-page: 1355 issue: 9 year: 2005 ident: 10.1016/j.jtbi.2016.09.023_bib17 article-title: Potential impact of antiviral use during influenza pandemic publication-title: Emerg. Infect Dis. doi: 10.3201/eid1209.041344 – volume: 71 start-page: 1954 year: 2009 ident: 10.1016/j.jtbi.2016.09.023_bib4 article-title: On the final size of epidemics with seasonality publication-title: Bull. Math. Biol. doi: 10.1007/s11538-009-9433-7 – volume: 7 start-page: 369 year: 2001 ident: 10.1016/j.jtbi.2016.09.023_bib12 article-title: Seasonal variation in host susceptibility and cycles of certain infectious diseases publication-title: Emerg. Infect. Dis. doi: 10.3201/eid0703.017301 – year: 1975 ident: 10.1016/j.jtbi.2016.09.023_bib16 – volume: 8 start-page: e1000436 year: 2011 ident: 10.1016/j.jtbi.2016.09.023_bib8 article-title: Characterizing the epidemiology of the 2009 influenza A/H1N1 pandemic in Mexico publication-title: PLoS Med. doi: 10.1371/journal.pmed.1000436 – volume: 442 start-page: 448 issue: 7101 year: 2006 ident: 10.1016/j.jtbi.2016.09.023_bib15 article-title: Strategies for mitigating an influenza pandemic publication-title: Nature doi: 10.1038/nature04795 – year: 2013 ident: 10.1016/j.jtbi.2016.09.023_bib26 article-title: A perspective on multiple waves of influenza pandemics publication-title: Plos One doi: 10.1371/journal.pone.0060343 – volume: 305 start-page: 88 year: 2012 ident: 10.1016/j.jtbi.2016.09.023_bib33 article-title: Determinants of periodicity in seasonally driven epidemics publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2012.02.031 – volume: 9 start-page: 8 year: 2009 ident: 10.1016/j.jtbi.2016.09.023_bib2 article-title: Antiviral resistance during pandemic influenza publication-title: BMC Infect. Dis. doi: 10.1186/1471-2334-9-8 – volume: 265 start-page: 136 year: 2010 ident: 10.1016/j.jtbi.2016.09.023_bib20 article-title: Optimal control for pandemic influenza: the role of limited antiviral treatment and isolation publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2010.04.003 – volume: 9 start-page: e94130 issue: 4 year: 2014 ident: 10.1016/j.jtbi.2016.09.023_bib9 article-title: Influenza forecasting in human populations: a scoping review publication-title: PLoS One doi: 10.1371/journal.pone.0094130 – volume: 72 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.jtbi.2016.09.023_bib29 article-title: Transmission dynamics of an influenza model with vaccination and antiviral treatment publication-title: Bull. Math. Biol. doi: 10.1007/s11538-009-9435-5 – volume: 241 start-page: 193 year: 2006 ident: 10.1016/j.jtbi.2016.09.023_bib6 article-title: Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2005.11.026 – ident: 10.1016/j.jtbi.2016.09.023_bib35 doi: 10.1007/s00285-015-0887-y – volume: 9 start-page: e97297 issue: 5 year: 2014 ident: 10.1016/j.jtbi.2016.09.023_bib19 article-title: The effects of school closures on influenza outbreaks and pandemics publication-title: PLoS One doi: 10.1371/journal.pone.0097297 – volume: 317 start-page: 310 year: 2013 ident: 10.1016/j.jtbi.2016.09.023_bib22 article-title: Optimal control of an influenza model with seasonal forcing and age-dependent transmission rates publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2012.10.032 – volume: 452 start-page: 750 year: 2008 ident: 10.1016/j.jtbi.2016.09.023_bib5 article-title: Estimating the impact of school closure on influenza transmission from Sentinel data publication-title: Nature (Nature Publishing Group) – volume: 274 start-page: 833 year: 2007 ident: 10.1016/j.jtbi.2016.09.023_bib18 article-title: What is the best control strategy for multiple infectious disease outbreaks? publication-title: Proc. R. Soc. B doi: 10.1098/rspb.2006.0015 – volume: 14 start-page: 6 issue: 41 year: 2009 ident: 10.1016/j.jtbi.2016.09.023_bib32 article-title: Pandemic H1N1 influenza publication-title: Eurosurveillance doi: 10.2807/ese.14.41.19358-en – volume: 437 start-page: 209 year: 2005 ident: 10.1016/j.jtbi.2016.09.023_bib14 article-title: Strategies for containing an emerging influenza pandemic in Southeast Asia publication-title: Nature doi: 10.1038/nature04017 |
SSID | ssj0009436 |
Score | 2.334966 |
Snippet | The impact of optimal control strategies in the context of seasonally varying infectious disease transmission remains a wide open research area. We investigate... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 36 |
SubjectTerms | Humans Influenza transmission dynamics Influenza, Human - epidemiology Influenza, Human - transmission Models, Biological Optimal control theory Seasonally varying transmission rate Seasons Vaccination and treatment strategies |
Title | Exploring optimal control strategies in seasonally varying flu-like epidemics |
URI | https://dx.doi.org/10.1016/j.jtbi.2016.09.023 https://www.ncbi.nlm.nih.gov/pubmed/27693366 https://www.proquest.com/docview/1835354063 |
Volume | 412 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kIngR39YXK3iT2Dz20T1KsVRFTwreln0FUmNa2lTw4m93J4-Kh3rwGmbJMjOZGSbfzIfQpXHCiVSYwFBmA-LSJNBUsYAxwROutFIWBpwfn9johdy_0tc1NGhnYQBW2cT-OqZX0bp50mu02ZtmGcz4xjB2mfiKAljAYScoIRy8_PrrB-YhSEUTWKHWQboZnKkxXuNSZwDvYtWu0zhZlZxWFZ9VEhpuo62mesQ39QV30JordtFGzSf5uYcel4g6PPGh4N2LNlB0PC_bnRA4KzB0BqEEzz_xh5rBpBNO80WQZ28Ou5oz1sz30cvw9nkwChq-hMD4PFsGsOcmDVXfMm4ion1uV2HkhC_IUmPjPtVglii1jlMR88hy7dKUqMj1NXfG0eQAdYpJ4Y4QNt5QmhpuTZ8QI4g3nBahC6lNCKE86aKoVZQ0zTJx4LTIZYsaG0tQrgTlylBIr9wuulqemdarNP6Upq3-5S-HkD7W_3nuojWW9F8K_P5QhZss5tIHLwpdLuZlDmsrLu8RAyVkwtjxP996gjZjyPfQm-GnqFPOFu7MVyulPq_c8Ryt39w9jJ6-AWOQ6dg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BIkQvFYWWUkpxJW4oIg8_1keEihb2cWIlbpbtOFJgySI2i8S_x5M4W3FYDlyjsWLNODMj55vvAzi1TjpZSBtZxvOIuiKLDNM84lyKTGijdY4DzuMJH0zpzR2724DLbhYGYZUh97c5vcnW4cl58Ob5U1nijG-KY5eZ7yhQBZxuwhayU7EebF1cDweT_9y7tFEKbIDruCDMzrQwr_valIjw4g3daZqtq0_r-s-mDl3twtfQQJKLdo_fYMNVe7DdSkq-7sN4Baojc58NHr1pQKOTRd3RQpCyIng5iF347JW86GccdiLFbBnNygdHXCsbaxffYXr17_ZyEAXJhMj6UltHSHVTxLqfc2ETanx513HipO_JCpunfWYwMkmRO8FkKpJcGFcUVCeub4SzjmU_oFfNK_cTiPWxMsyK3PYptZL62BkZu5jlGaVMZIeQdI5SNvCJo6zFTHXAsXuFzlXoXBVL5Z17CGerNU8tm8aH1qzzv3p3JpRP9x-u-9sFS_mPBf-A6MrNlwvl8xfDiy7ubQ7aKK72kaIqZMb5r0--9QR2BrfjkRpdT4ZH8CXF8o9XNeI39OrnpTv2zUtt_oTD-QZt8eyJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+optimal+control+strategies+in+seasonally+varying+flu-like+epidemics&rft.jtitle=Journal+of+theoretical+biology&rft.au=Lee%2C+Sunmi&rft.au=Chowell%2C+Gerardo&rft.date=2017-01-07&rft.pub=Elsevier+Ltd&rft.issn=0022-5193&rft.eissn=1095-8541&rft.volume=412&rft.spage=36&rft.epage=47&rft_id=info:doi/10.1016%2Fj.jtbi.2016.09.023&rft.externalDocID=S0022519316303204 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5193&client=summon |