Exploring optimal control strategies in seasonally varying flu-like epidemics

The impact of optimal control strategies in the context of seasonally varying infectious disease transmission remains a wide open research area. We investigate optimal control strategies for flu-like epidemics using an SIR (susceptible-infectious-recovered) type epidemic model where the transmission...

Full description

Saved in:
Bibliographic Details
Published inJournal of theoretical biology Vol. 412; pp. 36 - 47
Main Authors Lee, Sunmi, Chowell, Gerardo
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 07.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The impact of optimal control strategies in the context of seasonally varying infectious disease transmission remains a wide open research area. We investigate optimal control strategies for flu-like epidemics using an SIR (susceptible-infectious-recovered) type epidemic model where the transmission rate varies seasonally Specifically, we explore optimal control strategies using time-dependent treatment and vaccination as control functions alone or in combination. Optimal strategies and associated epidemic outcomes are contrasted for epidemics with constant and seasonal transmission rates. Our results show that the epidemic outcomes assessed in terms of the timing and size of seasonal epidemics subject to optimal control strategies are highly sensitive to various parameters including R0, the timing of the introduction of the initial number of infectious individuals into the population, the time at which interventions start, and the strength of the seasonal forcing that modulates the time-dependent transmission rate. Findings highlight the difficult challenge in predicting short-term epidemic impact in the context of seasonally varying infectious disease transmission with some interventions scenarios exhibiting larger epidemic size compared to scenarios without control interventions. •Epidemic dynamics with seasonal transmission rates are analyzed.•Optimal control interventions are investigated under seasonal transmission rates.•Epidemic outcomes are found to be highly sensitive to changes in various parameters.•Epidemic forecasting with seasonal transmission rates faces many challenges.
AbstractList The impact of optimal control strategies in the context of seasonally varying infectious disease transmission remains a wide open research area. We investigate optimal control strategies for flu-like epidemics using an SIR (susceptible-infectious-recovered) type epidemic model where the transmission rate varies seasonally Specifically, we explore optimal control strategies using time-dependent treatment and vaccination as control functions alone or in combination. Optimal strategies and associated epidemic outcomes are contrasted for epidemics with constant and seasonal transmission rates. Our results show that the epidemic outcomes assessed in terms of the timing and size of seasonal epidemics subject to optimal control strategies are highly sensitive to various parameters including R , the timing of the introduction of the initial number of infectious individuals into the population, the time at which interventions start, and the strength of the seasonal forcing that modulates the time-dependent transmission rate. Findings highlight the difficult challenge in predicting short-term epidemic impact in the context of seasonally varying infectious disease transmission with some interventions scenarios exhibiting larger epidemic size compared to scenarios without control interventions.
The impact of optimal control strategies in the context of seasonally varying infectious disease transmission remains a wide open research area. We investigate optimal control strategies for flu-like epidemics using an SIR (susceptible-infectious-recovered) type epidemic model where the transmission rate varies seasonally Specifically, we explore optimal control strategies using time-dependent treatment and vaccination as control functions alone or in combination. Optimal strategies and associated epidemic outcomes are contrasted for epidemics with constant and seasonal transmission rates. Our results show that the epidemic outcomes assessed in terms of the timing and size of seasonal epidemics subject to optimal control strategies are highly sensitive to various parameters including R0, the timing of the introduction of the initial number of infectious individuals into the population, the time at which interventions start, and the strength of the seasonal forcing that modulates the time-dependent transmission rate. Findings highlight the difficult challenge in predicting short-term epidemic impact in the context of seasonally varying infectious disease transmission with some interventions scenarios exhibiting larger epidemic size compared to scenarios without control interventions.The impact of optimal control strategies in the context of seasonally varying infectious disease transmission remains a wide open research area. We investigate optimal control strategies for flu-like epidemics using an SIR (susceptible-infectious-recovered) type epidemic model where the transmission rate varies seasonally Specifically, we explore optimal control strategies using time-dependent treatment and vaccination as control functions alone or in combination. Optimal strategies and associated epidemic outcomes are contrasted for epidemics with constant and seasonal transmission rates. Our results show that the epidemic outcomes assessed in terms of the timing and size of seasonal epidemics subject to optimal control strategies are highly sensitive to various parameters including R0, the timing of the introduction of the initial number of infectious individuals into the population, the time at which interventions start, and the strength of the seasonal forcing that modulates the time-dependent transmission rate. Findings highlight the difficult challenge in predicting short-term epidemic impact in the context of seasonally varying infectious disease transmission with some interventions scenarios exhibiting larger epidemic size compared to scenarios without control interventions.
The impact of optimal control strategies in the context of seasonally varying infectious disease transmission remains a wide open research area. We investigate optimal control strategies for flu-like epidemics using an SIR (susceptible-infectious-recovered) type epidemic model where the transmission rate varies seasonally Specifically, we explore optimal control strategies using time-dependent treatment and vaccination as control functions alone or in combination. Optimal strategies and associated epidemic outcomes are contrasted for epidemics with constant and seasonal transmission rates. Our results show that the epidemic outcomes assessed in terms of the timing and size of seasonal epidemics subject to optimal control strategies are highly sensitive to various parameters including R0, the timing of the introduction of the initial number of infectious individuals into the population, the time at which interventions start, and the strength of the seasonal forcing that modulates the time-dependent transmission rate. Findings highlight the difficult challenge in predicting short-term epidemic impact in the context of seasonally varying infectious disease transmission with some interventions scenarios exhibiting larger epidemic size compared to scenarios without control interventions. •Epidemic dynamics with seasonal transmission rates are analyzed.•Optimal control interventions are investigated under seasonal transmission rates.•Epidemic outcomes are found to be highly sensitive to changes in various parameters.•Epidemic forecasting with seasonal transmission rates faces many challenges.
Author Chowell, Gerardo
Lee, Sunmi
Author_xml – sequence: 1
  givenname: Sunmi
  surname: Lee
  fullname: Lee, Sunmi
  email: sunmilee@khu.ac.kr
  organization: Department of Applied Mathematics, Kyung Hee University, Yongin, Republic of Korea
– sequence: 2
  givenname: Gerardo
  surname: Chowell
  fullname: Chowell, Gerardo
  organization: School of Public Health, Georgia State University, Atlanta, GA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27693366$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1v2zAQQInAQeMk_QMZCo1dpPBDpESgS2E4H0CKLslMUNQxoEuLKkkb8b-PBCcdOni6G9474N4lWgxhAIRuCK4IJuJ2U21y5yo67RWWFabsDC0JlrxseU0WaIkxpSUnkl2gy5Q2GGNZM_EFXdBGSMaEWKJf67fRh-iG1yKM2W21L0wYcgy-SDnqDK8OUuGGIoFOYdDeH4q9jodZsH5XevcHChhdD1tn0jU6t9on-Poxr9DL3fp59VA-_b5_XP18Kk1NRS6FFK3Fuu1FY0jdtRRrTEDyhlvT05Z3EqQltoeGS9qQvunA2loTaLsGDHB2hb4f744x_N1BymrrkgHv9QBhlxRpGWe8xoJN6LcPdNdtoVdjnJ6MB_WZYALoETAxpBTB_kMIVnNntVFzZzV3VliqqfMktf9JxmWd3ZxOO39a_XFUYQq0dxBVMg4GA72LYLLqgzulvwPeFJne
CitedBy_id crossref_primary_10_1016_j_amc_2023_128223
crossref_primary_10_1016_j_rico_2021_100078
crossref_primary_10_1142_S1793524522500267
crossref_primary_10_1016_j_nonrwa_2018_09_023
crossref_primary_10_1016_j_jtbi_2020_110277
crossref_primary_10_12677_AAM_2022_116420
crossref_primary_10_1016_j_aej_2024_10_012
crossref_primary_10_3934_mbe_2024283
crossref_primary_10_1002_oca_2621
crossref_primary_10_3934_mbe_2024337
crossref_primary_10_1016_j_scitotenv_2020_140101
crossref_primary_10_1097_JOM_0000000000002039
crossref_primary_10_3934_math_2024123
crossref_primary_10_1016_j_jtbi_2022_111003
crossref_primary_10_1371_journal_pcbi_1011187
crossref_primary_10_1016_j_matcom_2019_08_002
crossref_primary_10_1007_s11071_024_09500_3
crossref_primary_10_1016_j_jtbi_2019_03_006
crossref_primary_10_1371_journal_pone_0315280
crossref_primary_10_1016_j_aml_2022_108446
crossref_primary_10_1007_s41748_021_00218_5
crossref_primary_10_1016_j_cnsns_2018_07_003
crossref_primary_10_1080_02331934_2020_1786568
crossref_primary_10_1038_s44260_024_00020_0
crossref_primary_10_1016_j_epidem_2023_100730
crossref_primary_10_1002_num_22872
crossref_primary_10_1007_s40010_021_00754_9
Cites_doi 10.7554/eLife.09186
10.1017/S0950268807009144
10.1093/aje/kwh092
10.1126/science.1115717
10.1371/journal.pmed.0040013
10.1371/journal.pcbi.1004337
10.1007/s00285-010-0354-8
10.1208/s12248-011-9284-7
10.1007/s11538-011-9704-y
10.1073/pnas.0806852106
10.1016/j.jtbi.2013.03.027
10.3201/eid1209.041344
10.1007/s11538-009-9433-7
10.3201/eid0703.017301
10.1371/journal.pmed.1000436
10.1038/nature04795
10.1371/journal.pone.0060343
10.1016/j.jtbi.2012.02.031
10.1186/1471-2334-9-8
10.1016/j.jtbi.2010.04.003
10.1371/journal.pone.0094130
10.1007/s11538-009-9435-5
10.1016/j.jtbi.2005.11.026
10.1007/s00285-015-0887-y
10.1371/journal.pone.0097297
10.1016/j.jtbi.2012.10.032
10.1098/rspb.2006.0015
10.2807/ese.14.41.19358-en
10.1038/nature04017
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright © 2016 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright © 2016 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jtbi.2016.09.023
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1095-8541
EndPage 47
ExternalDocumentID 27693366
10_1016_j_jtbi_2016_09_023
S0022519316303204
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLV
IHE
J1W
KOM
LG5
LW8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPCBC
SSA
SSZ
T5K
TN5
YQT
ZMT
ZU3
~02
~G-
.GJ
29L
3O-
53G
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
AEIPS
AETEA
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
FA8
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEW
SSH
UQL
VH1
WUQ
XPP
ZGI
ZXP
ZY4
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c426t-6968f0a8d67c14b820a01e9575fcd285b9e9f1fde759271d7beff4a1e8b7ece53
IEDL.DBID .~1
ISSN 0022-5193
1095-8541
IngestDate Thu Jul 10 23:53:24 EDT 2025
Thu Apr 03 07:06:44 EDT 2025
Tue Jul 01 03:10:58 EDT 2025
Thu Apr 24 22:51:07 EDT 2025
Fri Feb 23 02:26:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Optimal control theory
Influenza transmission dynamics
Seasonally varying transmission rate
Vaccination and treatment strategies
Language English
License Copyright © 2016 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-6968f0a8d67c14b820a01e9575fcd285b9e9f1fde759271d7beff4a1e8b7ece53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27693366
PQID 1835354063
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1835354063
pubmed_primary_27693366
crossref_primary_10_1016_j_jtbi_2016_09_023
crossref_citationtrail_10_1016_j_jtbi_2016_09_023
elsevier_sciencedirect_doi_10_1016_j_jtbi_2016_09_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-07
PublicationDateYYYYMMDD 2017-01-07
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-07
  day: 07
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of theoretical biology
PublicationTitleAlternate J Theor Biol
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chowell, Ammon, Hengartner, Hyman (bib6) 2006; 241
Xiao, Y., Brauer, F. Moghadas, S.M., 2015. Can treatment increase the epidemic size? J. Math. Biol. Epub 30.04.15
Colizza, Barrat, Barthelemy, Valleron, Vespignani (bib11) 2007; 4
Chretien, George, Shaman, Chitale, McKenzie (bib9) 2014; 9
Tamerius, J., Viboud, C., Shaman, J., Chowell, G., 2015. Impact of School Cycles and Environmental Forcing on the Timing of Pandemic Influenza Activity in Mexican States, May–December 2009. Plos Comput. Biol.
Jackson, Mangtani, Hawker, Olowokure, Vynnycky (bib19) 2014; 9
Shaman, Kohn (bib30) 2009; 106
Arino, Bowman, Moghadas (bib2) 2009; 9
Anderson, May (bib1) 1991
Washington Times, 11/20/2009. H1N1 vaccine too late to help most.
Pontryagin, Boltyanskii, Gamkrelidze, Mishchenko (bib28) 1962
Chowell, Echevarria-Zuno, Viboud, Simonsen, Tamerius (bib8) 2011; 8
Qiu, Feng (bib29) 2010; 72
Omori, Sasaki (bib27) 2013; 329
Bacaer, Ait Dads (bib3) 2011; 62
Uziel, Stone (bib33) 2012; 305
Longini, Halloran, Nizam, Yang (bib24) 2004; 159
Chretien, Riley, George (bib10) 2015; 4
Dowell (bib12) 2001; 7
Lee, Golinski, Chowell (bib21) 2012; 74
Mummert, Weiss, Long, Jos, Amig, Wan (bib26) 2013
Lenhart, Workman (bib23) 2007
Bacaer, Gomes (bib4) 2009; 71
Ferguson, Cummings, Cauchemez, Fraser, Riley, Meeyai, Lamsirithaworn, Burke (bib14) 2005; 437
Handel, Longini, Antia (bib18) 2007; 274
Lee, Chowell, Castillo-Chavez (bib20) 2010; 265
Lee, Kim, Kwon (bib22) 2013; 317
Cauchemez, Valleron, Bolle, Flahault, Ferguson (bib5) 2008; 452
Longini, Nizam, Shufu, Ungchusak, Hanshaoworakul, Cummings, Halloran (bib25) 2005; 309
Chowell, Miller, Viboud (bib7) 2008; 136
Ferguson, Cummings, Fraser, Cajka, Cooley, Burke (bib15) 2006; 442
Gani, Hughes, Fleming, Grifin, Medlock, Leach (bib17) 2005; 11
(accessed 01.06.11).
Fleming, Rishel (bib16) 1975
Towers, Feng (bib32) 2009; 14
Feng, Towers, Yang (bib13) 2011; 13
Handel (10.1016/j.jtbi.2016.09.023_bib18) 2007; 274
Lee (10.1016/j.jtbi.2016.09.023_bib22) 2013; 317
Lenhart (10.1016/j.jtbi.2016.09.023_bib23) 2007
Jackson (10.1016/j.jtbi.2016.09.023_bib19) 2014; 9
Chowell (10.1016/j.jtbi.2016.09.023_bib8) 2011; 8
Mummert (10.1016/j.jtbi.2016.09.023_bib26) 2013
Longini (10.1016/j.jtbi.2016.09.023_bib24) 2004; 159
Dowell (10.1016/j.jtbi.2016.09.023_bib12) 2001; 7
Chretien (10.1016/j.jtbi.2016.09.023_bib10) 2015; 4
Shaman (10.1016/j.jtbi.2016.09.023_bib30) 2009; 106
Ferguson (10.1016/j.jtbi.2016.09.023_bib15) 2006; 442
Omori (10.1016/j.jtbi.2016.09.023_bib27) 2013; 329
Colizza (10.1016/j.jtbi.2016.09.023_bib11) 2007; 4
Chowell (10.1016/j.jtbi.2016.09.023_bib6) 2006; 241
10.1016/j.jtbi.2016.09.023_bib35
10.1016/j.jtbi.2016.09.023_bib34
Fleming (10.1016/j.jtbi.2016.09.023_bib16) 1975
Bacaer (10.1016/j.jtbi.2016.09.023_bib3) 2011; 62
10.1016/j.jtbi.2016.09.023_bib31
Lee (10.1016/j.jtbi.2016.09.023_bib21) 2012; 74
Longini (10.1016/j.jtbi.2016.09.023_bib25) 2005; 309
Cauchemez (10.1016/j.jtbi.2016.09.023_bib5) 2008; 452
Lee (10.1016/j.jtbi.2016.09.023_bib20) 2010; 265
Ferguson (10.1016/j.jtbi.2016.09.023_bib14) 2005; 437
Chretien (10.1016/j.jtbi.2016.09.023_bib9) 2014; 9
Anderson (10.1016/j.jtbi.2016.09.023_bib1) 1991
Chowell (10.1016/j.jtbi.2016.09.023_bib7) 2008; 136
Qiu (10.1016/j.jtbi.2016.09.023_bib29) 2010; 72
Feng (10.1016/j.jtbi.2016.09.023_bib13) 2011; 13
Uziel (10.1016/j.jtbi.2016.09.023_bib33) 2012; 305
Arino (10.1016/j.jtbi.2016.09.023_bib2) 2009; 9
Pontryagin (10.1016/j.jtbi.2016.09.023_bib28) 1962
Bacaer (10.1016/j.jtbi.2016.09.023_bib4) 2009; 71
Gani (10.1016/j.jtbi.2016.09.023_bib17) 2005; 11
Towers (10.1016/j.jtbi.2016.09.023_bib32) 2009; 14
References_xml – volume: 106
  start-page: 3243
  year: 2009
  end-page: 3248
  ident: bib30
  article-title: Absolute humidity modulates influenza survival, transmission, and seasonality
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 14
  start-page: 6
  year: 2009
  end-page: 8
  ident: bib32
  article-title: Pandemic H1N1 influenza
  publication-title: Eurosurveillance
– volume: 305
  start-page: 88
  year: 2012
  end-page: 95
  ident: bib33
  article-title: Determinants of periodicity in seasonally driven epidemics
  publication-title: J. Theor. Biol.
– volume: 4
  start-page: e13
  year: 2007
  ident: bib11
  article-title: Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions
  publication-title: PLoS Med.
– volume: 62
  start-page: 741
  year: 2011
  end-page: 762
  ident: bib3
  article-title: Genealogy with seasonality, the basic reproduction number, and the influenza pandemic
  publication-title: J. Math. Biol.
– volume: 265
  start-page: 136
  year: 2010
  end-page: 150
  ident: bib20
  article-title: Optimal control for pandemic influenza: the role of limited antiviral treatment and isolation
  publication-title: J. Theor. Biol.
– volume: 452
  start-page: 750
  year: 2008
  end-page: 754
  ident: bib5
  article-title: Estimating the impact of school closure on influenza transmission from Sentinel data
  publication-title: Nature (Nature Publishing Group)
– reference: 〉. (accessed 01.06.11).
– volume: 442
  start-page: 448
  year: 2006
  end-page: 452
  ident: bib15
  article-title: Strategies for mitigating an influenza pandemic
  publication-title: Nature
– volume: 71
  start-page: 1954
  year: 2009
  end-page: 1966
  ident: bib4
  article-title: On the final size of epidemics with seasonality
  publication-title: Bull. Math. Biol.
– volume: 136
  start-page: 852
  year: 2008
  end-page: 864
  ident: bib7
  article-title: Seasonal influenza in the United States, France and Australia
  publication-title: Epidemiol. Infect.
– volume: 9
  start-page: e94130
  year: 2014
  ident: bib9
  article-title: Influenza forecasting in human populations: a scoping review
  publication-title: PLoS One
– volume: 437
  start-page: 209
  year: 2005
  end-page: 214
  ident: bib14
  article-title: Strategies for containing an emerging influenza pandemic in Southeast Asia
  publication-title: Nature
– volume: 9
  start-page: 8
  year: 2009
  ident: bib2
  article-title: Antiviral resistance during pandemic influenza
  publication-title: BMC Infect. Dis.
– volume: 74
  start-page: 958
  year: 2012
  end-page: 980
  ident: bib21
  article-title: Modeling optimal age-specific vaccination strategies against pandemic influenza
  publication-title: Bull. Math. Biol.
– volume: 241
  start-page: 193
  year: 2006
  end-page: 204
  ident: bib6
  article-title: Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland
  publication-title: J. Theor. Biol.
– volume: 329
  start-page: 32
  year: 2013
  end-page: 38
  ident: bib27
  article-title: Timing of the emergence of new successful viral strains in seasonal influenza
  publication-title: J. Theor. Biol.
– volume: 317
  start-page: 310
  year: 2013
  end-page: 320
  ident: bib22
  article-title: Optimal control of an influenza model with seasonal forcing and age-dependent transmission rates
  publication-title: J. Theor. Biol.
– volume: 9
  start-page: e97297
  year: 2014
  ident: bib19
  article-title: The effects of school closures on influenza outbreaks and pandemics
  publication-title: PLoS One
– volume: 72
  start-page: 1
  year: 2010
  end-page: 33
  ident: bib29
  article-title: Transmission dynamics of an influenza model with vaccination and antiviral treatment
  publication-title: Bull. Math. Biol.
– volume: 4
  year: 2015
  ident: bib10
  article-title: Mathematical modeling of the West Africa Ebola epidemic
  publication-title: Elife
– volume: 274
  start-page: 833
  year: 2007
  end-page: 837
  ident: bib18
  article-title: What is the best control strategy for multiple infectious disease outbreaks?
  publication-title: Proc. R. Soc. B
– reference: Washington Times, 11/20/2009. H1N1 vaccine too late to help most. 〈
– volume: 11
  start-page: 1355
  year: 2005
  end-page: 1362
  ident: bib17
  article-title: Potential impact of antiviral use during influenza pandemic
  publication-title: Emerg. Infect Dis.
– volume: 7
  start-page: 369
  year: 2001
  end-page: 373
  ident: bib12
  article-title: Seasonal variation in host susceptibility and cycles of certain infectious diseases
  publication-title: Emerg. Infect. Dis.
– year: 1991
  ident: bib1
  article-title: Infectious Diseases of Humans: Dynamics and Control
– volume: 159
  start-page: 623
  year: 2004
  end-page: 633
  ident: bib24
  article-title: Containing pandemic influenza with antiviral agents
  publication-title: Am. J. Epidemiol.
– year: 2013
  ident: bib26
  article-title: A perspective on multiple waves of influenza pandemics
  publication-title: Plos One
– volume: 309
  start-page: 1083
  year: 2005
  end-page: 1087
  ident: bib25
  article-title: Containing pandemic influenza at the source
  publication-title: Science
– volume: 13
  start-page: 427
  year: 2011
  end-page: 437
  ident: bib13
  article-title: Modeling the effects of vaccination and treatment on pandemic influenza
  publication-title: AAPS J.
– year: 1975
  ident: bib16
  article-title: Deterministic and Stochastic Optimal Control
– volume: 8
  start-page: e1000436
  year: 2011
  ident: bib8
  article-title: Characterizing the epidemiology of the 2009 influenza A/H1N1 pandemic in Mexico
  publication-title: PLoS Med.
– reference: Xiao, Y., Brauer, F. Moghadas, S.M., 2015. Can treatment increase the epidemic size? J. Math. Biol. Epub 30.04.15,
– reference: Tamerius, J., Viboud, C., Shaman, J., Chowell, G., 2015. Impact of School Cycles and Environmental Forcing on the Timing of Pandemic Influenza Activity in Mexican States, May–December 2009. Plos Comput. Biol.
– year: 1962
  ident: bib28
  article-title: The Mathematical Theory of Optimal Processes
– year: 2007
  ident: bib23
  article-title: Optimal Control Applied to Biological Models. CRC Mathematical and Computational Biology Series
– volume: 4
  year: 2015
  ident: 10.1016/j.jtbi.2016.09.023_bib10
  article-title: Mathematical modeling of the West Africa Ebola epidemic
  publication-title: Elife
  doi: 10.7554/eLife.09186
– volume: 136
  start-page: 852
  year: 2008
  ident: 10.1016/j.jtbi.2016.09.023_bib7
  article-title: Seasonal influenza in the United States, France and Australia
  publication-title: Epidemiol. Infect.
  doi: 10.1017/S0950268807009144
– volume: 159
  start-page: 623
  issue: 7
  year: 2004
  ident: 10.1016/j.jtbi.2016.09.023_bib24
  article-title: Containing pandemic influenza with antiviral agents
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwh092
– year: 1962
  ident: 10.1016/j.jtbi.2016.09.023_bib28
– volume: 309
  start-page: 1083
  year: 2005
  ident: 10.1016/j.jtbi.2016.09.023_bib25
  article-title: Containing pandemic influenza at the source
  publication-title: Science
  doi: 10.1126/science.1115717
– volume: 4
  start-page: e13
  issue: 1
  year: 2007
  ident: 10.1016/j.jtbi.2016.09.023_bib11
  article-title: Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.0040013
– year: 1991
  ident: 10.1016/j.jtbi.2016.09.023_bib1
– ident: 10.1016/j.jtbi.2016.09.023_bib31
  doi: 10.1371/journal.pcbi.1004337
– ident: 10.1016/j.jtbi.2016.09.023_bib34
– volume: 62
  start-page: 741
  year: 2011
  ident: 10.1016/j.jtbi.2016.09.023_bib3
  article-title: Genealogy with seasonality, the basic reproduction number, and the influenza pandemic
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-010-0354-8
– volume: 13
  start-page: 427
  issue: 3
  year: 2011
  ident: 10.1016/j.jtbi.2016.09.023_bib13
  article-title: Modeling the effects of vaccination and treatment on pandemic influenza
  publication-title: AAPS J.
  doi: 10.1208/s12248-011-9284-7
– volume: 74
  start-page: 958
  year: 2012
  ident: 10.1016/j.jtbi.2016.09.023_bib21
  article-title: Modeling optimal age-specific vaccination strategies against pandemic influenza
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-011-9704-y
– volume: 106
  start-page: 3243
  year: 2009
  ident: 10.1016/j.jtbi.2016.09.023_bib30
  article-title: Absolute humidity modulates influenza survival, transmission, and seasonality
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0806852106
– volume: 329
  start-page: 32
  year: 2013
  ident: 10.1016/j.jtbi.2016.09.023_bib27
  article-title: Timing of the emergence of new successful viral strains in seasonal influenza
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2013.03.027
– year: 2007
  ident: 10.1016/j.jtbi.2016.09.023_bib23
– volume: 11
  start-page: 1355
  issue: 9
  year: 2005
  ident: 10.1016/j.jtbi.2016.09.023_bib17
  article-title: Potential impact of antiviral use during influenza pandemic
  publication-title: Emerg. Infect Dis.
  doi: 10.3201/eid1209.041344
– volume: 71
  start-page: 1954
  year: 2009
  ident: 10.1016/j.jtbi.2016.09.023_bib4
  article-title: On the final size of epidemics with seasonality
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-009-9433-7
– volume: 7
  start-page: 369
  year: 2001
  ident: 10.1016/j.jtbi.2016.09.023_bib12
  article-title: Seasonal variation in host susceptibility and cycles of certain infectious diseases
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid0703.017301
– year: 1975
  ident: 10.1016/j.jtbi.2016.09.023_bib16
– volume: 8
  start-page: e1000436
  year: 2011
  ident: 10.1016/j.jtbi.2016.09.023_bib8
  article-title: Characterizing the epidemiology of the 2009 influenza A/H1N1 pandemic in Mexico
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1000436
– volume: 442
  start-page: 448
  issue: 7101
  year: 2006
  ident: 10.1016/j.jtbi.2016.09.023_bib15
  article-title: Strategies for mitigating an influenza pandemic
  publication-title: Nature
  doi: 10.1038/nature04795
– year: 2013
  ident: 10.1016/j.jtbi.2016.09.023_bib26
  article-title: A perspective on multiple waves of influenza pandemics
  publication-title: Plos One
  doi: 10.1371/journal.pone.0060343
– volume: 305
  start-page: 88
  year: 2012
  ident: 10.1016/j.jtbi.2016.09.023_bib33
  article-title: Determinants of periodicity in seasonally driven epidemics
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2012.02.031
– volume: 9
  start-page: 8
  year: 2009
  ident: 10.1016/j.jtbi.2016.09.023_bib2
  article-title: Antiviral resistance during pandemic influenza
  publication-title: BMC Infect. Dis.
  doi: 10.1186/1471-2334-9-8
– volume: 265
  start-page: 136
  year: 2010
  ident: 10.1016/j.jtbi.2016.09.023_bib20
  article-title: Optimal control for pandemic influenza: the role of limited antiviral treatment and isolation
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2010.04.003
– volume: 9
  start-page: e94130
  issue: 4
  year: 2014
  ident: 10.1016/j.jtbi.2016.09.023_bib9
  article-title: Influenza forecasting in human populations: a scoping review
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0094130
– volume: 72
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.jtbi.2016.09.023_bib29
  article-title: Transmission dynamics of an influenza model with vaccination and antiviral treatment
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-009-9435-5
– volume: 241
  start-page: 193
  year: 2006
  ident: 10.1016/j.jtbi.2016.09.023_bib6
  article-title: Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2005.11.026
– ident: 10.1016/j.jtbi.2016.09.023_bib35
  doi: 10.1007/s00285-015-0887-y
– volume: 9
  start-page: e97297
  issue: 5
  year: 2014
  ident: 10.1016/j.jtbi.2016.09.023_bib19
  article-title: The effects of school closures on influenza outbreaks and pandemics
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0097297
– volume: 317
  start-page: 310
  year: 2013
  ident: 10.1016/j.jtbi.2016.09.023_bib22
  article-title: Optimal control of an influenza model with seasonal forcing and age-dependent transmission rates
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2012.10.032
– volume: 452
  start-page: 750
  year: 2008
  ident: 10.1016/j.jtbi.2016.09.023_bib5
  article-title: Estimating the impact of school closure on influenza transmission from Sentinel data
  publication-title: Nature (Nature Publishing Group)
– volume: 274
  start-page: 833
  year: 2007
  ident: 10.1016/j.jtbi.2016.09.023_bib18
  article-title: What is the best control strategy for multiple infectious disease outbreaks?
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.2006.0015
– volume: 14
  start-page: 6
  issue: 41
  year: 2009
  ident: 10.1016/j.jtbi.2016.09.023_bib32
  article-title: Pandemic H1N1 influenza
  publication-title: Eurosurveillance
  doi: 10.2807/ese.14.41.19358-en
– volume: 437
  start-page: 209
  year: 2005
  ident: 10.1016/j.jtbi.2016.09.023_bib14
  article-title: Strategies for containing an emerging influenza pandemic in Southeast Asia
  publication-title: Nature
  doi: 10.1038/nature04017
SSID ssj0009436
Score 2.334966
Snippet The impact of optimal control strategies in the context of seasonally varying infectious disease transmission remains a wide open research area. We investigate...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 36
SubjectTerms Humans
Influenza transmission dynamics
Influenza, Human - epidemiology
Influenza, Human - transmission
Models, Biological
Optimal control theory
Seasonally varying transmission rate
Seasons
Vaccination and treatment strategies
Title Exploring optimal control strategies in seasonally varying flu-like epidemics
URI https://dx.doi.org/10.1016/j.jtbi.2016.09.023
https://www.ncbi.nlm.nih.gov/pubmed/27693366
https://www.proquest.com/docview/1835354063
Volume 412
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kIngR39YXK3iT2Dz20T1KsVRFTwreln0FUmNa2lTw4m93J4-Kh3rwGmbJMjOZGSbfzIfQpXHCiVSYwFBmA-LSJNBUsYAxwROutFIWBpwfn9johdy_0tc1NGhnYQBW2cT-OqZX0bp50mu02ZtmGcz4xjB2mfiKAljAYScoIRy8_PrrB-YhSEUTWKHWQboZnKkxXuNSZwDvYtWu0zhZlZxWFZ9VEhpuo62mesQ39QV30JordtFGzSf5uYcel4g6PPGh4N2LNlB0PC_bnRA4KzB0BqEEzz_xh5rBpBNO80WQZ28Ou5oz1sz30cvw9nkwChq-hMD4PFsGsOcmDVXfMm4ion1uV2HkhC_IUmPjPtVglii1jlMR88hy7dKUqMj1NXfG0eQAdYpJ4Y4QNt5QmhpuTZ8QI4g3nBahC6lNCKE86aKoVZQ0zTJx4LTIZYsaG0tQrgTlylBIr9wuulqemdarNP6Upq3-5S-HkD7W_3nuojWW9F8K_P5QhZss5tIHLwpdLuZlDmsrLu8RAyVkwtjxP996gjZjyPfQm-GnqFPOFu7MVyulPq_c8Ryt39w9jJ6-AWOQ6dg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BIkQvFYWWUkpxJW4oIg8_1keEihb2cWIlbpbtOFJgySI2i8S_x5M4W3FYDlyjsWLNODMj55vvAzi1TjpZSBtZxvOIuiKLDNM84lyKTGijdY4DzuMJH0zpzR2724DLbhYGYZUh97c5vcnW4cl58Ob5U1nijG-KY5eZ7yhQBZxuwhayU7EebF1cDweT_9y7tFEKbIDruCDMzrQwr_valIjw4g3daZqtq0_r-s-mDl3twtfQQJKLdo_fYMNVe7DdSkq-7sN4Baojc58NHr1pQKOTRd3RQpCyIng5iF347JW86GccdiLFbBnNygdHXCsbaxffYXr17_ZyEAXJhMj6UltHSHVTxLqfc2ETanx513HipO_JCpunfWYwMkmRO8FkKpJcGFcUVCeub4SzjmU_oFfNK_cTiPWxMsyK3PYptZL62BkZu5jlGaVMZIeQdI5SNvCJo6zFTHXAsXuFzlXoXBVL5Z17CGerNU8tm8aH1qzzv3p3JpRP9x-u-9sFS_mPBf-A6MrNlwvl8xfDiy7ubQ7aKK72kaIqZMb5r0--9QR2BrfjkRpdT4ZH8CXF8o9XNeI39OrnpTv2zUtt_oTD-QZt8eyJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+optimal+control+strategies+in+seasonally+varying+flu-like+epidemics&rft.jtitle=Journal+of+theoretical+biology&rft.au=Lee%2C+Sunmi&rft.au=Chowell%2C+Gerardo&rft.date=2017-01-07&rft.pub=Elsevier+Ltd&rft.issn=0022-5193&rft.eissn=1095-8541&rft.volume=412&rft.spage=36&rft.epage=47&rft_id=info:doi/10.1016%2Fj.jtbi.2016.09.023&rft.externalDocID=S0022519316303204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5193&client=summon