BIASED RANDOM WALKS, PARTIAL DIFFERENTIAL EQUATIONS AND UPDATE SCHEMES

There is much interest within the mathematical biology and statistical physics community in converting stochastic agent-based models for random walkers into a partial differential equation description for the average agent density. Here a collection of noninteracting biased random walkers on a one-d...

Full description

Saved in:
Bibliographic Details
Published inThe ANZIAM journal Vol. 55; no. 2; pp. 93 - 108
Main Authors HYWOOD, JACK D., LANDMAN, KERRY A.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.10.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There is much interest within the mathematical biology and statistical physics community in converting stochastic agent-based models for random walkers into a partial differential equation description for the average agent density. Here a collection of noninteracting biased random walkers on a one-dimensional lattice is considered. The usual master equation approach requires that two continuum limits, involving three parameters, namely step length, time step and the random walk bias, approach zero in a specific way. We are interested in the case where the two limits are not consistent. New results are obtained using a Fokker–Planck equation and the results are highly dependent on the simulation update schemes. The theoretical results are confirmed with examples. These findings provide insight into the importance of updating schemes to an accurate macroscopic description of stochastic local movement rules in agent-based models when the lattice spacing represents a physical object such as cell diameter.
AbstractList There is much interest within the mathematical biology and statistical physics community in converting stochastic agent-based models for random walkers into a partial differential equation description for the average agent density. Here a collection of noninteracting biased random walkers on a one-dimensional lattice is considered. The usual master equation approach requires that two continuum limits, involving three parameters, namely step length, time step and the random walk bias, approach zero in a specific way. We are interested in the case where the two limits are not consistent. New results are obtained using a Fokker–Planck equation and the results are highly dependent on the simulation update schemes. The theoretical results are confirmed with examples. These findings provide insight into the importance of updating schemes to an accurate macroscopic description of stochastic local movement rules in agent-based models when the lattice spacing represents a physical object such as cell diameter.
Author HYWOOD, JACK D.
LANDMAN, KERRY A.
Author_xml – sequence: 1
  givenname: JACK D.
  surname: HYWOOD
  fullname: HYWOOD, JACK D.
  email: j.hywood@hotmail.com
  organization: 1Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia email j.hywood@hotmail.com
– sequence: 2
  givenname: KERRY A.
  surname: LANDMAN
  fullname: LANDMAN, KERRY A.
  email: kerryl@unimelb.edu.au
  organization: 1Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia email j.hywood@hotmail.com
BookMark eNqFkUtLw0AUhQepYFv9Ae4CblwYnVdmJsuxmdhg-rBJcRnymEhLm9RMu_Dfm9iCoIir-_rOgcsZgF5VVxqAawTvEUT8IUKUMiQQQgRCSJh7BvrdyhacOL1T390vwMCYNYSUcIL7wH8MZKQ8ayGn3mxivcrwObqz5nIRBzK0vMD31UJNvwb1spRxMJtGVstay7knY2VFo7GaqOgSnJfpxuirUx2Cpa_i0dgOZ0_BSIZ2TjHb20ykhMOicJhb4pKmkOJCuyVFFDt5Jgos8pxSKlBWUk0YY0gXMIekLLjOsGBkCG6Pvrumfj9os0-2K5PrzSatdH0wCWKcu5gxKv5HHcflyHFxh978QNf1oanaRxLMhSACCxe2FDpSeVMb0-gy2TWrbdp8JAgmXQjJrxBaDTlp0m3WrIo3_W39t-oTxz6Bag
CitedBy_id crossref_primary_10_1098_rsif_2020_0879
crossref_primary_10_1371_journal_pone_0117949
crossref_primary_10_3390_mi12070749
crossref_primary_10_1103_PhysRevE_91_042701
Cites_doi 10.1007/978-3-642-33350-7_42
10.1137/1.9780898718997
10.1103/PhysRevE.78.031912
10.1103/PhysRevE.81.011903
10.2307/3211856
10.1016/j.jtbi.2011.07.013
10.1016/j.plrev.2005.09.001
10.1016/j.physa.2008.10.038
10.1214/aoms/1177693172
10.1016/j.physa.2011.06.034
10.1007/s11538-009-9396-8
10.1016/j.jtbi.2009.04.025
10.1098/rsif.2008.0014
10.1093/oso/9780198537885.001.0001
10.1023/A:1023047703307
10.1080/22054952.2009.11464027
10.1137/S0036139995288976
ContentType Journal Article
Copyright Copyright © 2014 Australian Mathematical Society
Copyright_xml – notice: Copyright © 2014 Australian Mathematical Society
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7TB
8FD
FR3
KR7
DOI 10.1017/S1446181113000369
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
Technology Collection
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
Engineering Collection
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList CrossRef

Civil Engineering Abstracts
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Biology
DocumentTitleAlternate Biased random walks, partial differential equations and update schemes
J. D. Hywood and K. A. Landman
EISSN 1446-8735
EndPage 108
ExternalDocumentID 10_1017_S1446181113000369
GroupedDBID --Z
-1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.FH
09C
09E
0E1
0R~
123
23M
2WC
4.4
5VS
6J9
6~7
74X
74Y
7~V
88I
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABROB
ABUWG
ABVFV
ABXAU
ABZCX
ABZUI
ACBMC
ACCHT
ACETC
ACGFS
ACIMK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEGXH
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARABE
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BQFHP
C0O
C1A
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DOHLZ
DWQXO
EBS
EGQIC
EJD
ESX
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KAFGG
KC5
KCGVB
KFECR
KWQ
L98
LHUNA
LW7
M-V
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OK1
PTHSS
PYCCK
RAMDC
RCA
RFR
RNS
ROL
RR0
S6U
SAAAG
SJN
T9M
TN5
UT1
VH1
WFFJZ
WQ3
WXU
WXY
WYP
ZCG
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~02
~V1
AAYXX
ABVKB
ABVZP
ACDLN
ADNMO
AEMFK
CITATION
3V.
7XB
8FE
8FG
8FK
L6V
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c426t-68a370dd569f2f4a042de9f41425cb8d28cc44481bf4e36661ed0c03fd7eb2863
IEDL.DBID 8FG
ISSN 1446-1811
IngestDate Wed Dec 04 03:13:44 EST 2024
Wed Dec 04 00:36:37 EST 2024
Thu Oct 10 18:43:15 EDT 2024
Fri Dec 06 05:21:55 EST 2024
Wed Mar 13 05:46:40 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords update schemes
60G07
partial differential equations
asymmetric random walkers
Fokker–Planck
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-68a370dd569f2f4a042de9f41425cb8d28cc44481bf4e36661ed0c03fd7eb2863
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.cambridge.org/core/services/aop-cambridge-core/content/view/5C6B22B2EC76014F2F312A1B4AA56894/S1446181113000369a.pdf/div-class-title-biased-random-walks-partial-differential-equations-and-update-schemes-div.pdf
PQID 2788382890
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_1677926648
proquest_miscellaneous_1559715928
proquest_journals_2788382890
crossref_primary_10_1017_S1446181113000369
cambridge_journals_10_1017_S1446181113000369
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle The ANZIAM journal
PublicationTitleAlternate ANZIAM J
PublicationYear 2013
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S1446181113000369_r2
S1446181113000369_r3
Turner (S1446181113000369_r27) 2004; 69
S1446181113000369_r4
S1446181113000369_r5
S1446181113000369_r6
S1446181113000369_r17
S1446181113000369_r8
Soong (S1446181113000369_r25) 1973
S1446181113000369_r9
Hywood (S1446181113000369_r11) 2013; 88
S1446181113000369_r26
S1446181113000369_r21
S1446181113000369_r20
S1446181113000369_r23
S1446181113000369_r22
Karlin (S1446181113000369_r12) 1981
Hughes (S1446181113000369_r10) 1995
Lange (S1446181113000369_r16) 2003
Penington (S1446181113000369_r18) 2011; 84
Alber (S1446181113000369_r1) 2006; 73
Port (S1446181113000369_r19) 1994
S1446181113000369_r14
S1446181113000369_r13
S1446181113000369_r15
Deroulers (S1446181113000369_r7) 2009; 79
Sobczyk (S1446181113000369_r24) 1991
References_xml – volume: 73
  year: 2006
  ident: S1446181113000369_r1
  article-title: Multiscale dynamics of biological cells with chemotactic interactions: from a discrete stochastic model to a continuous description
  publication-title: Phys. Rev. E
  contributor:
    fullname: Alber
– ident: S1446181113000369_r14
  doi: 10.1007/978-3-642-33350-7_42
– ident: S1446181113000369_r2
  doi: 10.1137/1.9780898718997
– volume-title: Random equations in science and engineering
  year: 1973
  ident: S1446181113000369_r25
  contributor:
    fullname: Soong
– volume: 69
  start-page: 021910
  year: 2004
  ident: S1446181113000369_r27
  article-title: From a discrete to a continuous model of biological cell movement
  publication-title: Phys. Rev. E
  contributor:
    fullname: Turner
– ident: S1446181113000369_r4
  doi: 10.1103/PhysRevE.78.031912
– ident: S1446181113000369_r8
  doi: 10.1103/PhysRevE.81.011903
– ident: S1446181113000369_r13
  doi: 10.2307/3211856
– volume-title: Theoretical probability for applications
  year: 1994
  ident: S1446181113000369_r19
  contributor:
    fullname: Port
– ident: S1446181113000369_r9
  doi: 10.1016/j.jtbi.2011.07.013
– volume: 88
  year: 2013
  ident: S1446181113000369_r11
  article-title: Modelling biological tissue growth: discrete to continuum representations
  publication-title: Phys. Rev. E
  contributor:
    fullname: Hywood
– ident: S1446181113000369_r5
  doi: 10.1016/j.plrev.2005.09.001
– volume: 84
  year: 2011
  ident: S1446181113000369_r18
  article-title: Building macroscale models from microscale probabilistic models: a general probabilistic approach for nonlinear diffusion and multispecies phenomena
  publication-title: Phys. Rev. E
  contributor:
    fullname: Penington
– volume: 79
  year: 2009
  ident: S1446181113000369_r7
  article-title: Modeling tumor cell migration: from microscopic to macroscopic models
  publication-title: Phys. Rev. E
  contributor:
    fullname: Deroulers
– ident: S1446181113000369_r23
  doi: 10.1016/j.physa.2008.10.038
– ident: S1446181113000369_r21
  doi: 10.1214/aoms/1177693172
– volume-title: Applied probability
  year: 2003
  ident: S1446181113000369_r16
  contributor:
    fullname: Lange
– ident: S1446181113000369_r15
  doi: 10.1016/j.physa.2011.06.034
– ident: S1446181113000369_r17
  doi: 10.1007/s11538-009-9396-8
– ident: S1446181113000369_r3
  doi: 10.1016/j.jtbi.2009.04.025
– ident: S1446181113000369_r6
  doi: 10.1098/rsif.2008.0014
– volume-title: A second course in stochastic processes
  year: 1981
  ident: S1446181113000369_r12
  contributor:
    fullname: Karlin
– volume-title: Random walks and random environments, Volume 1
  year: 1995
  ident: S1446181113000369_r10
  doi: 10.1093/oso/9780198537885.001.0001
  contributor:
    fullname: Hughes
– ident: S1446181113000369_r20
  doi: 10.1023/A:1023047703307
– ident: S1446181113000369_r22
  doi: 10.1080/22054952.2009.11464027
– volume-title: Stochastic differential equations, with applications to physics and engineering
  year: 1991
  ident: S1446181113000369_r24
  contributor:
    fullname: Sobczyk
– ident: S1446181113000369_r26
  doi: 10.1137/S0036139995288976
SSID ssj0043732
Score 1.9899482
Snippet There is much interest within the mathematical biology and statistical physics community in converting stochastic agent-based models for random walkers into a...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Publisher
StartPage 93
SubjectTerms Biology
Communities
Density
Lattices
Mathematical analysis
Mathematical models
Partial differential equations
Random walk
Stochasticity
Title BIASED RANDOM WALKS, PARTIAL DIFFERENTIAL EQUATIONS AND UPDATE SCHEMES
URI https://www.cambridge.org/core/product/identifier/S1446181113000369/type/journal_article
https://www.proquest.com/docview/2788382890
https://search.proquest.com/docview/1559715928
https://search.proquest.com/docview/1677926648
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEG8UXvTB-BlRJDXxydC4daXdnsyQTVBAwkf0jZS1fQQU-P-9jg0kJjyua9rk2t7dr3f9HUIP2hVKOkISqiQjzFU1ItUkIEI7WnJOwUWwD4U7Xd4csbev2ld24bbI0ipznZgqajVL7B35EwWs5ll44DzPv4mtGmWjq1kJjUNUdKngNqXPj19zTWxZe9JoJ0AeApbMzaOaljLaNto2G84BLR785VbYtVG7Kjq1O_EpOskcRhyuV_gMHejpOTrubNhWFxcorrfCQdTA_bDb-Ojgz7D9PqjiHriqrbCNG604jvpRN_2IwINNHw5j6ItHvUY4jPDA8iJEg0s0iqPhS5Nk9RFIAnZ1SbgvPeEoVeOBoYZJOH9KB4a5cA6Tia-onyQM4Jc7MUx7gFNcrZzE8YwSgKd97l2hwnQ21dcISyG5UQ4zNKmxJFCBJaUBNQ7oRPtGmxKqbqQzznb5YrzOEBPjf8IsocdcgOP5mjVjX-dyLuLt0NvlLqH7zW_Y-jaeIad6toLpLRoCd4z6e_pwIQJwQph_s3-aW3REbaWLNE-vjArLn5W-A39jOamkm6qCivWo2-v_Alxiyfc
link.rule.ids 314,780,784,12765,21388,27924,27925,33373,33744,33745,43600,43805,74035,74302
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELWgHIADYhWFAkbihGqRxY2TEwo0oaELVRfRW-TE9jEttP1_xmnSgpB6jGPF0tieeS9jv0HoQZpMcINxYglOCTVFg3CReIRJQ3LHsQAi6IvC3Z7TGtP3SWNS_HCbF8cqS5-YO2oxTfU_8icLuJqt6YHxPPsiumqUzq4WJTR20R61IXTrm-LhW-mJtWpPnu0EykMgkpllVlNLRutG3abTOeDFvd_aCn9j1F8Xnced8BgdFYAR-6sZPkE7MjtFh9212ur8DIUvkT8Mmnjg95ofXfzpd9rDOu4DVI38Dm5GYRgMgl7-EACCzS8OY-iLx_2mPwrwUOsiBMNzNA6D0WuLFPURSApxdUEcl9vMEKLheMpSlMP-E9JT1IR9mCausNw0pUC_zERRaQNPMaUwUsNWggGfdh37AlWyaSYvEeaMO0oYVFlpg6ae8LQoDbhxYCfSVVJVUX1tnbhY5fN4dUKMxf-MWUWPpQHj2Uo1Y1vnWmnizac3011F9-vXsPR1PoNncrqE4TUbAjhmuVv6OIx5AEKoe7V9mDu03xp1O3En6rWv0YGlq17kZ_ZqqLL4XsobwB6L5DZfYD-HyMs_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgSAgOiKcYzyBxQkS0ada0J1RoKwZbmTYmuFVZkxw3YOP_43TtACHt2DRqJMex_dXOZ4BL7QolHSEpU5JT7qoWlWoUUqEdLX2fYYhgLwp3M_9hyB_fWm9V_dO0KqusbWJpqNWksP_IbxhiNc_CA-fGVGURvTi9ff-gtoOUzbRW7TRWYQ29osMasHaXZL1-bZcth0-Z-0QARNGvuXWO0xJI20E7ZpM7aNPD30wLfz3WX4NdeqF0G7aq8JFE8_3egRU93oXN7oJ7dboH6V07GiQx6UdZ_Nwlr1HnaXBNehi4tqMOidtpmvSTrHxIMJ4trxETnEuGvTh6ScjAsiQkg30YpsnL_QOtuiXQAr3sjPqB9ISjVMsPDTNc4mlUOjTcxVNZjALFgqLgCMbckeHaQ9TiauUUjmeUQHQd-N4BNMaTsT4EIoX0jXK4YUWLF6EKLUUNGnXEKjow2jTheiGdvNL5aT6vFxP5P2E24aoWYP4-59BYNvmkFvHPp382vwkXi9d4EGx2Q4715AuXt9gIgzMWLJnjCxFiSMKDo-XLnMM6alfeaWdPx7DBbAuMsoDvBBqzzy99ioHIbHRWadg3MxTQ2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BIASED+RANDOM+WALKS%2C+PARTIAL+DIFFERENTIAL+EQUATIONS+AND+UPDATE+SCHEMES&rft.jtitle=The+ANZIAM+journal&rft.au=Hywood%2C+Jack+D&rft.au=Landman%2C+Kerry+A&rft.date=2013-10-01&rft.pub=Cambridge+University+Press&rft.issn=1446-1811&rft.eissn=1446-8735&rft.volume=55&rft.issue=2&rft.spage=93&rft.epage=108&rft_id=info:doi/10.1017%2FS1446181113000369&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1446-1811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1446-1811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1446-1811&client=summon