Plasticity and stress tolerance override local adaptation in the responses of Mediterranean holm oak seedlings to drought and cold
Plant populations of widely distributed species experience a broad range of environmental conditions that can be faced by phenotypic plasticity or ecotypic differentiation and local adaptation. The strategy chosen will determine a population's ability to respond to climate change. To explore th...
Saved in:
Published in | Tree physiology Vol. 29; no. 1; pp. 87 - 98 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Canada
Oxford University Press
01.01.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant populations of widely distributed species experience a broad range of environmental conditions that can be faced by phenotypic plasticity or ecotypic differentiation and local adaptation. The strategy chosen will determine a population's ability to respond to climate change. To explore this, we grew Quercus ilex (L.) seedlings from acorns collected at six selected populations from climatically contrasting localities and evaluated their response to drought and late season cold events. Maximum photosynthetic rate (A(max)), instantaneous water use efficiency (iWUE), and thermal tolerance to freeze and heat (estimated from chlorophyll fluorescence versus temperature curves) were measured in 5-month-old seedlings in control (no stress), drought (water-stressed), and cold (low suboptimal temperature) conditions. The observed responses were similar for the six populations: drought decreased A(max) and increased iWUE, and cold reduced A(max) and iWUE. All the seedlings maintained photosynthetic activity under adverse conditions (drought and cold), and rapidly increased their iWUE by closing stomata when exposed to drought. Heat and freeze tolerances were similarly high for seedlings from all the populations, and they were significantly increased by drought and cold, respectively; and were positively related to each other. Differences in seedling performance across populations were primarily induced by maternal effects mediated by seed size and to a lesser extent by idiosyncratic physiologic responses to drought and low temperatures. Tolerance to multiple stresses together with the capacity to physiologically acclimate to heat waves and cold snaps may allow Q. ilex to cope with the increasingly stressful conditions imposed by climate change. Lack of evidence of physiologic seedling adaptation to local climate may reflect opposing selection pressures to complex, multidimensional environmental conditions operating within the distribution range of this species. |
---|---|
AbstractList | Plant populations of widely distributed species experience a broad range of environmental conditions that can be faced by phenotypic plasticity or ecotypic differentiation and local adaptation. The strategy chosen will determine a population's ability to respond to climate change. To explore this, we grew Quercus ilex (L.) seedlings from acorns collected at six selected populations from climatically contrasting localities and evaluated their response to drought and late season cold events. Maximum photosynthetic rate (A(max)), instantaneous water use efficiency (iWUE), and thermal tolerance to freeze and heat (estimated from chlorophyll fluorescence versus temperature curves) were measured in 5-month-old seedlings in control (no stress), drought (water-stressed), and cold (low suboptimal temperature) conditions. The observed responses were similar for the six populations: drought decreased A(max) and increased iWUE, and cold reduced A(max) and iWUE. All the seedlings maintained photosynthetic activity under adverse conditions (drought and cold), and rapidly increased their iWUE by closing stomata when exposed to drought. Heat and freeze tolerances were similarly high for seedlings from all the populations, and they were significantly increased by drought and cold, respectively; and were positively related to each other. Differences in seedling performance across populations were primarily induced by maternal effects mediated by seed size and to a lesser extent by idiosyncratic physiologic responses to drought and low temperatures. Tolerance to multiple stresses together with the capacity to physiologically acclimate to heat waves and cold snaps may allow Q. ilex to cope with the increasingly stressful conditions imposed by climate change. Lack of evidence of physiologic seedling adaptation to local climate may reflect opposing selection pressures to complex, multidimensional environmental conditions operating within the distribution range of this species.Plant populations of widely distributed species experience a broad range of environmental conditions that can be faced by phenotypic plasticity or ecotypic differentiation and local adaptation. The strategy chosen will determine a population's ability to respond to climate change. To explore this, we grew Quercus ilex (L.) seedlings from acorns collected at six selected populations from climatically contrasting localities and evaluated their response to drought and late season cold events. Maximum photosynthetic rate (A(max)), instantaneous water use efficiency (iWUE), and thermal tolerance to freeze and heat (estimated from chlorophyll fluorescence versus temperature curves) were measured in 5-month-old seedlings in control (no stress), drought (water-stressed), and cold (low suboptimal temperature) conditions. The observed responses were similar for the six populations: drought decreased A(max) and increased iWUE, and cold reduced A(max) and iWUE. All the seedlings maintained photosynthetic activity under adverse conditions (drought and cold), and rapidly increased their iWUE by closing stomata when exposed to drought. Heat and freeze tolerances were similarly high for seedlings from all the populations, and they were significantly increased by drought and cold, respectively; and were positively related to each other. Differences in seedling performance across populations were primarily induced by maternal effects mediated by seed size and to a lesser extent by idiosyncratic physiologic responses to drought and low temperatures. Tolerance to multiple stresses together with the capacity to physiologically acclimate to heat waves and cold snaps may allow Q. ilex to cope with the increasingly stressful conditions imposed by climate change. Lack of evidence of physiologic seedling adaptation to local climate may reflect opposing selection pressures to complex, multidimensional environmental conditions operating within the distribution range of this species. Plant populations of widely distributed species experience a broad range of environmental conditions that can be faced by phenotypic plasticity or ecotypic differentiation and local adaptation. The strategy chosen will determine a population's ability to respond to climate change. To explore this, we grew Quercus ilex (L.) seedlings from acorns collected at six selected populations from climatically contrasting localities and evaluated their response to drought and late season cold events. Maximum photosynthetic rate (A(max)), instantaneous water use efficiency (iWUE), and thermal tolerance to freeze and heat (estimated from chlorophyll fluorescence versus temperature curves) were measured in 5-month-old seedlings in control (no stress), drought (water-stressed), and cold (low suboptimal temperature) conditions. The observed responses were similar for the six populations: drought decreased A(max) and increased iWUE, and cold reduced A(max) and iWUE. All the seedlings maintained photosynthetic activity under adverse conditions (drought and cold), and rapidly increased their iWUE by closing stomata when exposed to drought. Heat and freeze tolerances were similarly high for seedlings from all the populations, and they were significantly increased by drought and cold, respectively; and were positively related to each other. Differences in seedling performance across populations were primarily induced by maternal effects mediated by seed size and to a lesser extent by idiosyncratic physiologic responses to drought and low temperatures. Tolerance to multiple stresses together with the capacity to physiologically acclimate to heat waves and cold snaps may allow Q. ilex to cope with the increasingly stressful conditions imposed by climate change. Lack of evidence of physiologic seedling adaptation to local climate may reflect opposing selection pressures to complex, multidimensional environmental conditions operating within the distribution range of this species. Plant populations of widely distributed species experience a broad range of environmental conditions that can be faced by phenotypic plasticity or ecotypic differentiation and local adaptation. The strategy chosen will determine a population's ability to respond to climate change. To explore this, we grew Quercus ilex (L.) seedlings from acorns collected at six selected populations from climatically contrasting localities and evaluated their response to drought and late season cold events. Maximum photosynthetic rate (A max), instantaneous water use efficiency (iWUE), and thermal tolerance to freeze and heat (estimated from chlorophyll fluorescence versus temperature curves) were measured in 5-month-old seedlings in control (no stress), drought (water-stressed), and cold (low suboptimal temperature) conditions. The observed responses were similar for the six populations: drought decreased A max and increased iWUE, and cold reduced A max and iWUE. All the seedlings maintained photosynthetic activity under adverse conditions (drought and cold), and rapidly increased their iWUE by closing stomata when exposed to drought. Heat and freeze tolerances were similarly high for seedlings from all the populations, and they were significantly increased by drought and cold, respectively; and were positively related to each other. Differences in seedling performance across populations were primarily induced by maternal effects mediated by seed size and to a lesser extent by idiosyncratic physiologic responses to drought and low temperatures. Tolerance to multiple stresses together with the capacity to physiologically acclimate to heat waves and cold snaps may allow Q. ilex to cope with the increasingly stressful conditions imposed by climate change. Lack of evidence of physiologic seedling adaptation to local climate may reflect opposing selection pressures to complex, multidimensional environmental conditions operating within the distribution range of this species. |
Author | Lemos-Filho, José P Pías, Beatriz Gimeno, Teresa E Valladares, Fernando |
Author_xml | – sequence: 1 fullname: Gimeno, Teresa E – sequence: 2 fullname: Pías, Beatriz – sequence: 3 fullname: Lemos-Filho, José P – sequence: 4 fullname: Valladares, Fernando |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19203935$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v1DAQhi1URLcLZ27gEwekZcdO4sRHVPElFYEElbhFjj3eNXjtYDtIe-0vb9q0QuIAnObyPO-M5j0jJyEGJOQpg1cMZLUtCXHcH_O2jAGgfUBWrG26TV0LeUJW0HG5qVj37ZSc5fwdgDVdJx-RUyY5VLJqVuTqs1e5OO3KkapgaJ4Tc6YlekwqaKTxF6bkDFIftfJUGTUWVVwM1AVa9khnfowhY6bR0o9oXJkFFVAFuo_-QKP6QTOi8S7sboKpSXHa7cvtOh29eUweWuUzPrmba3L59s3X8_ebi0_vPpy_vtjomouyaSygFQItdBXKloOx7WCabtAcQVtbD43mljFthNEohpYPTW2tgtYqDQyqNXmx5I4p_pwwl_7gskbv52PjlHshJLRS1P8Ea8FZJeYz1uTZHTgNBzT9mNxBpWN__94Z2C6ATjHnhPY3Av1Ngf19gf1S4Gw0fxhzNbf_Lkk5_xfv5eLFafyPJc8X2KrYq11yub_8woFVwARAzWV1DW9PwFk |
CitedBy_id | crossref_primary_10_1016_j_envexpbot_2019_103918 crossref_primary_10_1016_j_ufug_2021_127248 crossref_primary_10_1016_j_envexpbot_2018_08_006 crossref_primary_10_1038_hdy_2014_58 crossref_primary_10_1007_s11099_011_0025_z crossref_primary_10_1111_plb_13590 crossref_primary_10_1371_journal_pone_0208512 crossref_primary_10_1111_jbi_13984 crossref_primary_10_3732_ajb_0900356 crossref_primary_10_1111_1442_1984_12253 crossref_primary_10_1016_j_catena_2018_04_011 crossref_primary_10_1111_pce_12251 crossref_primary_10_1007_s11295_015_0950_2 crossref_primary_10_1016_j_ufug_2020_126705 crossref_primary_10_1080_17550874_2015_1051154 crossref_primary_10_1093_jpe_rts036 crossref_primary_10_1007_s11295_016_1069_9 crossref_primary_10_1007_s11104_016_2970_6 crossref_primary_10_1007_s11056_015_9471_y crossref_primary_10_1093_treephys_tpae107 crossref_primary_10_1111_1365_2745_12648 crossref_primary_10_1111_aec_12122 crossref_primary_10_1111_j_1469_8137_2011_03992_x crossref_primary_10_1111_ele_12155 crossref_primary_10_1111_pce_14840 crossref_primary_10_3389_ffgc_2022_914199 crossref_primary_10_1007_s00468_011_0593_3 crossref_primary_10_2139_ssrn_4178007 crossref_primary_10_1016_j_flora_2022_152148 crossref_primary_10_1016_j_flora_2024_152504 crossref_primary_10_1016_j_envexpbot_2024_105857 crossref_primary_10_1111_nph_13001 crossref_primary_10_1371_journal_pone_0243292 crossref_primary_10_1093_jpe_rtw095 crossref_primary_10_1098_rstb_2016_0139 crossref_primary_10_1111_1365_2745_13762 crossref_primary_10_1186_s13595_023_01179_7 crossref_primary_10_1007_s00442_014_3115_3 crossref_primary_10_1007_s11295_012_0496_5 crossref_primary_10_3389_fpls_2017_00585 crossref_primary_10_1111_ppl_12402 crossref_primary_10_3832_ifor2573_011 crossref_primary_10_1093_aobpla_plad051 crossref_primary_10_3732_ajb_1500097 crossref_primary_10_1016_j_envexpbot_2010_12_001 crossref_primary_10_1093_g3journal_jkab154 crossref_primary_10_1111_nph_17968 crossref_primary_10_3389_fpls_2019_01526 crossref_primary_10_1016_j_foreco_2018_01_004 crossref_primary_10_1111_1365_2435_14528 crossref_primary_10_1111_ddi_12873 crossref_primary_10_3398_064_071_0104 crossref_primary_10_1002_ajb2_1404 crossref_primary_10_1016_j_envexpbot_2010_08_008 crossref_primary_10_1111_aec_12223 crossref_primary_10_1515_sg_2014_0010 crossref_primary_10_1111_pce_14425 crossref_primary_10_1016_j_apsoil_2015_11_025 crossref_primary_10_1111_ppl_12095 crossref_primary_10_1007_s11284_015_1294_y crossref_primary_10_1111_avsc_12216 crossref_primary_10_1080_23766808_2021_1940049 crossref_primary_10_1016_j_envexpbot_2013_09_004 crossref_primary_10_1111_ppl_14281 crossref_primary_10_1093_treephys_tpaa055 crossref_primary_10_1007_s11099_011_0007_1 crossref_primary_10_1080_02827581_2012_683532 crossref_primary_10_1111_oik_01526 crossref_primary_10_61186_ifej_11_22_22 crossref_primary_10_1139_gen_2016_0208 crossref_primary_10_1016_j_scienta_2024_113455 crossref_primary_10_1016_j_stress_2023_100195 crossref_primary_10_1002_ece3_70300 crossref_primary_10_1016_j_envexpbot_2024_106053 crossref_primary_10_1016_j_plaphy_2023_107868 crossref_primary_10_1007_s11056_012_9347_3 crossref_primary_10_1093_treephys_tpw117 crossref_primary_10_1093_treephys_tpq013 crossref_primary_10_1111_1365_2435_13962 crossref_primary_10_1016_j_foreco_2017_12_014 crossref_primary_10_1007_s40626_024_00321_8 crossref_primary_10_2478_s11756_012_0077_y crossref_primary_10_1016_j_flora_2012_06_003 crossref_primary_10_1111_1442_1984_12103 crossref_primary_10_1098_rstb_2010_0016 crossref_primary_10_3389_fpls_2020_01042 crossref_primary_10_3389_fpls_2017_01020 crossref_primary_10_1007_s00442_023_05414_w crossref_primary_10_1007_s10342_011_0512_6 crossref_primary_10_1093_treephys_tpw007 crossref_primary_10_1016_j_ecolmodel_2016_10_008 crossref_primary_10_1111_eva_13212 crossref_primary_10_1111_nph_17640 crossref_primary_10_1007_s11258_023_01362_w crossref_primary_10_1002_ece3_3484 crossref_primary_10_1086_680683 crossref_primary_10_1111_plb_13574 crossref_primary_10_1007_s40626_021_00201_5 crossref_primary_10_3923_ajps_2019_75_84 crossref_primary_10_1016_j_envexpbot_2014_11_006 crossref_primary_10_1111_1365_2745_14254 crossref_primary_10_1007_s00468_016_1420_7 crossref_primary_10_1111_pce_15141 crossref_primary_10_1093_treephys_tpv129 crossref_primary_10_1007_s13595_013_0328_2 crossref_primary_10_1111_nph_19136 crossref_primary_10_1016_j_actao_2012_04_008 crossref_primary_10_3390_f14050894 crossref_primary_10_1093_forestry_cpae045 crossref_primary_10_1007_s00468_012_0798_0 crossref_primary_10_1016_j_envexpbot_2013_11_008 crossref_primary_10_1016_j_jenvman_2022_117181 crossref_primary_10_1016_j_stress_2025_100801 crossref_primary_10_1007_s11356_017_9316_7 crossref_primary_10_1016_j_foreco_2023_120855 crossref_primary_10_1016_j_scitotenv_2020_142012 crossref_primary_10_1016_j_scitotenv_2023_164122 crossref_primary_10_1007_s10342_011_0578_1 crossref_primary_10_1111_ppl_12295 crossref_primary_10_1007_s10342_015_0910_2 crossref_primary_10_1016_j_envexpbot_2023_105512 crossref_primary_10_2989_20702620_2018_1512789 |
Cites_doi | 10.1111/j.1469-8137.2005.01555.x 10.1111/j.1469-8137.2006.01711.x 10.1016/S0167-4781(02)00417-7 10.1051/forest:2008002 10.1146/annurev.arplant.50.1.571 10.1046/j.1469-8137.2000.00737.x 10.1016/S0176-1617(99)80064-9 10.1146/annurev.es.18.110187.001233 10.1890/03-0788 10.1111/j.1466-822X.2005.00166.x 10.1111/j.1469-8137.2007.02275.x 10.1007/s00468-004-0325-z 10.1098/rspb.2007.0997 10.1016/j.tplants.2004.03.006 10.1093/jxb/eri037 10.1111/j.1461-0248.2004.00684.x 10.1641/B580311 10.1055/s-2004-817881 10.1007/s00468-002-0184-4 10.1093/treephys/26.7.947 10.2307/2446631 10.1016/S0168-9452(99)00034-5 10.1093/treephys/24.9.981 10.1104/pp.117.2.651 10.1093/treephys/22.10.687 10.1007/s10682-005-2220-5 10.1111/j.1469-8137.2007.02157.x 10.1046/j.1365-2435.2001.00505.x 10.1093/treephys/25.5.599 10.2307/1938523 10.1093/treephys/25.8.1085 10.1007/s00468-003-0269-8 10.1007/s11120-007-9215-8 10.1111/j.1365-3040.2005.01414.x 10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2 10.1007/s11099-007-0065-6 10.1139/b05-143 10.1016/S1146-609X(99)00103-4 10.3732/ajb.94.11.1795 10.21273/HORTSCI.40.2.346 10.1046/j.1469-8137.2003.00866.x 10.1080/11263500012331350455 10.1111/j.1461-0248.2005.00796.x 10.1086/342519 10.1093/treephys/23.15.1031 10.1080/11956860.2004.11682831 10.2503/jjshs.65.587 10.1007/s00442-004-1686-0 10.1073/pnas.0303029101 10.1086/518943 10.1046/j.1469-8137.2002.00525.x 10.1023/A:1007000406399 10.1146/annurev.ecolsys.37.091305.110100 10.1146/annurev.ecolsys.38.091206.095646 10.1111/j.1365-3040.2005.01466.x |
ContentType | Journal Article |
Copyright | The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2008 |
Copyright_xml | – notice: The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2008 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
DOI | 10.1093/treephys/tpn007 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry Botany |
EISSN | 1758-4469 |
EndPage | 98 |
ExternalDocumentID | 19203935 10_1093_treephys_tpn007 10.1093/treephys/tpn007 US201301600429 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .2P .I3 0R~ 123 1TH 4.4 48X 53G 5VS 5WD 70D AAHBH AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT ABDBF ABDFA ABEJV ABEUO ABGNP ABIME ABIXL ABJNI ABMNT ABNKS ABPIB ABPQP ABPTD ABQLI ABSMQ ABTAH ABVGC ABWST ABXVV ABXZS ABZBJ ABZEO ACFRR ACGFS ACUFI ACUHS ACUTJ ACVCV ACZBC ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AHXPO AIJHB AJDVS AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO ARIXL ASAOO ATDFG ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC C45 CDBKE CXTWN CZ4 DAKXR DFGAJ DIK DILTD D~K E3Z EBD EBS EDH EE~ EJD ELUNK EMOBN ESX F5P F9B FBQ FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KBUDW KOP KSI KSN M49 MBTAY N9A NGC NLBLG NOMLY NU- NVLIB O0~ O9- OAWHX OBOKY ODMLO OJQWA OJZSN OVD OWPYF O~Y PAFKI PEELM Q1. Q5Y RD5 ROX ROZ RSU RUSNO RW1 RXO SJN SV3 TCN TEORI TLC TR2 TUS W8F WHG X7H Y6R YAYTL YKOAZ YXANX ZY4 ~91 ~KM AASNB ABSAR ADRIX AFXEN OK1 AAYXX AGORE AJBYB CITATION AHGBF CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c426t-5f0ef66ef083e9720df7bd58bc2e0cff4b5c2f11cd6dce6b72b54ffa07fac0103 |
ISSN | 0829-318X |
IngestDate | Fri Jul 11 02:16:04 EDT 2025 Fri Jul 11 15:31:11 EDT 2025 Mon Jul 21 06:04:39 EDT 2025 Thu Apr 24 23:07:54 EDT 2025 Tue Jul 01 03:58:24 EDT 2025 Wed Aug 28 03:24:54 EDT 2024 Thu Apr 03 09:42:12 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | water use efficiency thermal tolerance |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c426t-5f0ef66ef083e9720df7bd58bc2e0cff4b5c2f11cd6dce6b72b54ffa07fac0103 |
Notes | http://dx.doi.org/10.1093/treephys/tpn007 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/treephys/article-pdf/29/1/87/4672264/tpn007.pdf |
PMID | 19203935 |
PQID | 46213608 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_66907964 proquest_miscellaneous_46213608 pubmed_primary_19203935 crossref_primary_10_1093_treephys_tpn007 crossref_citationtrail_10_1093_treephys_tpn007 oup_primary_10_1093_treephys_tpn007 fao_agris_US201301600429 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-01-01 |
PublicationDateYYYYMMDD | 2009-01-01 |
PublicationDate_xml | – month: 01 year: 2009 text: 2009-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Canada |
PublicationPlace_xml | – name: Canada |
PublicationTitle | Tree physiology |
PublicationTitleAlternate | Tree Physiol |
PublicationYear | 2009 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Cavender-Bares (7_30033616) 2007; 94 (19_32683546) 1999; 143 (44_27165504) 2006; 37 (60_25664877) 2002; 156 (12_32709006) -1; -1 (22_32683547) 2005; 19 (32_26494266) 2004; 7 (20_26067363) 1999; 155 (36_32683551) 1998; 7 (14_32683542) 2006; 47 Boorse (4_19872812) 1998; 85 (45_32683555) 2003; 15 Sabehat (50_6040047) 1998; 117 Huve (30_22939619) 2006; 29 (68_32683562) 2006; 84 Zarter (70_22948927) 2006; 29 (23_32833202) -1; -1 (29_29845775) 2002; 163 (3_32683538) 2004; 15 Kennedy (33_18529406) 2004; 141 (21_32757007) -1; -1 (55_32683559) 2002; 1577 (37_32683552) 1996; 65 (42_28522324) 2004; 11 Wang (67_18172965) 2004; 9 Sanchez-Gomez (51_22113518) 2006; 170 Quero (47_29845701) 2007; 94 (25_32683549) 2008; 58 Kov ts (58_5769648) 1997; 20 (62_18644505) 2005; 56 (38_32708639) -1; -1 (35_25490990) 2000; 134 (1_32709165) -1; -1 (10_32683540) 1999; 56 Roach (48_19929415) 1987; 18 (65_32683561) 2007; 45 Thomashow (57_19851650) 1999; 50 (28_25467811) 2003; 160 (66_32541695) 2008; 275 (16_26772829) 2005; 86 (31_26564571) 2005; 8 (15_32683543) 2008; 65 (17_32683544) 1926; 2 (18_32683545) 2004; 18 (61_32683560) 2002; 16 (46_24892081) 1986; 67 (13_32683541) 2005; 14 Zhou (56_28011474) 2005; 40 Cavender-Bares (9_19712877) 2005; 168 (34_30950649) 2002; 68 Nicotra (39_29386469) 2007; 176 (8_32683539) 1999; 36 (24_32683548) 2003; 17 (41_19685371) 2004; 101 (52_32683556) 2007; 168 (40_32683553) 2004; 6 (54_32683558) 2007; 38 Zablocki (5_12209668) 1965; 13 (59_24635883) 2000; 148 (53_32683557) 2006; 13 (43_32683554) 2004; 175 Valladares (63_29875337) 2007; 176 (2_32683537) 2001; 15 (26_32624590) -1; -1 (27_32683550) 1999; 20 |
References_xml | – volume: 168 start-page: 597 issn: 1469-8137 issue: 3 year: 2005 ident: 9_19712877 publication-title: New Phytologist doi: 10.1111/j.1469-8137.2005.01555.x – volume: 170 start-page: 795 issn: 1469-8137 issue: 4 year: 2006 ident: 51_22113518 publication-title: New Phytologist doi: 10.1111/j.1469-8137.2006.01711.x – volume: 15 start-page: 483 year: 2003 ident: 45_32683555 publication-title: J TROP FOR SCI – volume: 1577 start-page: 1 year: 2002 ident: 55_32683559 publication-title: BIOCHIM BIOPHYS ACTA GENE STRUCT EXPR doi: 10.1016/S0167-4781(02)00417-7 – volume: 65 start-page: 305 year: 2008 ident: 15_32683543 publication-title: ANN FOR SCI doi: 10.1051/forest:2008002 – volume: 50 start-page: 571 issn: 0066-4294 issue: 1 year: 1999 ident: 57_19851650 publication-title: Annual review of plant biology doi: 10.1146/annurev.arplant.50.1.571 – volume: 148 start-page: 79 issn: 1469-8137 year: 2000 ident: 59_24635883 publication-title: New Phytologist doi: 10.1046/j.1469-8137.2000.00737.x – volume: 155 start-page: 625 issn: 0176-1617 year: 1999 ident: 20_26067363 publication-title: Journal of plant physiology doi: 10.1016/S0176-1617(99)80064-9 – volume: 18 start-page: 209 issue: 1 year: 1987 ident: 48_19929415 publication-title: Annual Review of Ecology and Systematics doi: 10.1146/annurev.es.18.110187.001233 – volume: 7 start-page: 157 year: 1998 ident: 36_32683551 publication-title: GLOB ECOL BIOGEOGR – volume: 20 start-page: 25 issue: 1 year: 1997 ident: 58_5769648 publication-title: Medline Rows With NULL issns Will Point To This – volume: 86 start-page: 1704 issn: 0012-9658 year: 2005 ident: 16_26772829 publication-title: Ecology doi: 10.1890/03-0788 – volume: 14 start-page: 509 year: 2005 ident: 13_32683541 publication-title: GLOB ECOL BIOGEOGR doi: 10.1111/j.1466-822X.2005.00166.x – volume: 176 start-page: 749 issn: 1469-8137 issue: 4 year: 2007 ident: 63_29875337 publication-title: New Phytologist doi: 10.1111/j.1469-8137.2007.02275.x – volume: 18 start-page: 615 year: 2004 ident: 18_32683545 publication-title: TREES STRUCT FUNCT doi: 10.1007/s00468-004-0325-z – volume: 275 start-page: 649 issn: 1364-5021 year: 2008 ident: 66_32541695 publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rspb.2007.0997 – volume: 9 start-page: 244 issn: 1360-1385 issue: 5 year: 2004 ident: 67_18172965 publication-title: Trends in plant science doi: 10.1016/j.tplants.2004.03.006 – volume: 56 start-page: 483 issn: 0022-0957 issue: 411 year: 2005 ident: 62_18644505 publication-title: Journal of Experimental Botany doi: 10.1093/jxb/eri037 – volume: 7 start-page: 1225 issn: 1461-0248 year: 2004 ident: 32_26494266 doi: 10.1111/j.1461-0248.2004.00684.x – volume: 13 start-page: 115 year: 1965 ident: 5_12209668 publication-title: Medline Rows With NULL issns Will Point To This – volume: 58 start-page: 253 issn: 0006-3568 year: 2008 ident: 25_32683549 publication-title: BioScience doi: 10.1641/B580311 – volume: 47 start-page: 61 year: 2006 ident: 14_32683542 publication-title: BOT STUD – volume: 6 start-page: 254 year: 2004 ident: 40_32683553 publication-title: PLANT BIOL doi: 10.1055/s-2004-817881 – volume: 16 start-page: 395 year: 2002 ident: 61_32683560 publication-title: TREES STRUCT FUNCT doi: 10.1007/s00468-002-0184-4 – volume: -1 start-page: MASTER issn: 0829-318X year: -1 ident: 23_32833202 publication-title: Tree Physiology doi: 10.1093/treephys/26.7.947 – volume: 85 start-page: 1224 issn: 0002-9122 issue: 9 year: 1998 ident: 4_19872812 publication-title: American Journal of Botany doi: 10.2307/2446631 – volume: 143 start-page: 125 issn: 0168-9452 year: 1999 ident: 19_32683546 doi: 10.1016/S0168-9452(99)00034-5 – volume: -1 start-page: MASTER issn: 0829-318X year: -1 ident: 38_32708639 publication-title: Tree Physiology doi: 10.1093/treephys/24.9.981 – volume: 117 start-page: 651 issn: 0032-0889 issue: 2 year: 1998 ident: 50_6040047 publication-title: Plant Physiology doi: 10.1104/pp.117.2.651 – volume: -1 start-page: MASTER issn: 0829-318X year: -1 ident: 26_32624590 publication-title: Tree Physiology doi: 10.1093/treephys/22.10.687 – volume: 19 start-page: 603 year: 2005 ident: 22_32683547 publication-title: EVOL ECOL doi: 10.1007/s10682-005-2220-5 – volume: 176 start-page: 136 issn: 1469-8137 issue: 1 year: 2007 ident: 39_29386469 publication-title: New Phytologist doi: 10.1111/j.1469-8137.2007.02157.x – volume: 15 start-page: 124 year: 2001 ident: 2_32683537 publication-title: FUNCT ECOL doi: 10.1046/j.1365-2435.2001.00505.x – volume: -1 start-page: MASTER issn: 0829-318X year: -1 ident: 12_32709006 publication-title: Tree Physiology doi: 10.1093/treephys/25.5.599 – volume: 67 start-page: 240 issn: 0012-9658 year: 1986 ident: 46_24892081 publication-title: Ecology doi: 10.2307/1938523 – volume: -1 start-page: MASTER issn: 0829-318X year: -1 ident: 1_32709165 publication-title: Tree Physiology doi: 10.1093/treephys/25.8.1085 – volume: 17 start-page: 515 year: 2003 ident: 24_32683548 publication-title: TREES STRUCT FUNCT doi: 10.1007/s00468-003-0269-8 – volume: 94 start-page: 437 issn: 0166-8595 issue: 2-3 year: 2007 ident: 7_30033616 publication-title: Photosynthesis Research doi: 10.1007/s11120-007-9215-8 – volume: 29 start-page: 212 issn: 1365-3040 issue: 2 year: 2006 ident: 30_22939619 publication-title: Plant, Cell, and Environment (Print) doi: 10.1111/j.1365-3040.2005.01414.x – volume: 68 start-page: 270 issn: 0006-8101 year: 2002 ident: 34_30950649 publication-title: The Botanical Review doi: 10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2 – volume: 45 start-page: 385 issn: 0300-3604 year: 2007 ident: 65_32683561 doi: 10.1007/s11099-007-0065-6 – volume: 13 start-page: 256 year: 2006 ident: 53_32683557 publication-title: ECOSCIENCE – volume: 56 start-page: 417 year: 1999 ident: 10_32683540 publication-title: ANN FOR SCI – volume: 2 start-page: 449 year: 1926 ident: 17_32683544 publication-title: LA METEOROLOGIE – volume: 84 start-page: 49 year: 2006 ident: 68_32683562 publication-title: CANADIAN JOURNAL OF BOTANY doi: 10.1139/b05-143 – volume: 20 start-page: 579 year: 1999 ident: 27_32683550 publication-title: ACTA OECOL doi: 10.1016/S1146-609X(99)00103-4 – volume: 175 start-page: 179 year: 2004 ident: 43_32683554 publication-title: PLANT ECOL – volume: 94 start-page: 1795 issn: 0002-9122 issue: 11 year: 2007 ident: 47_29845701 publication-title: American Journal of Botany doi: 10.3732/ajb.94.11.1795 – volume: 40 start-page: 346 issn: 0018-5345 issue: 2 year: 2005 ident: 56_28011474 publication-title: HortScience doi: 10.21273/HORTSCI.40.2.346 – volume: 15 start-page: 423 year: 2004 ident: 3_32683538 publication-title: J VEG SCI – volume: 160 start-page: 21 issn: 1469-8137 year: 2003 ident: 28_25467811 publication-title: New Phytologist doi: 10.1046/j.1469-8137.2003.00866.x – volume: 134 start-page: 279 year: 2000 ident: 35_25490990 publication-title: PLANT BIOSYST doi: 10.1080/11263500012331350455 – volume: 8 start-page: 1010 issn: 1461-0248 year: 2005 ident: 31_26564571 doi: 10.1111/j.1461-0248.2005.00796.x – volume: 163 start-page: 907 issn: 0006-8071 year: 2002 ident: 29_29845775 publication-title: International Journal of Plant Sciences doi: 10.1086/342519 – volume: -1 start-page: MASTER issn: 0829-318X year: -1 ident: 21_32757007 publication-title: Tree Physiology doi: 10.1093/treephys/23.15.1031 – volume: 11 start-page: 263 year: 2004 ident: 42_28522324 publication-title: ECOSCIENCE doi: 10.1080/11956860.2004.11682831 – volume: 65 start-page: 587 year: 1996 ident: 37_32683552 publication-title: J JPN SOC HORTIC SCI doi: 10.2503/jjshs.65.587 – volume: 141 start-page: 547 issn: 0029-8549 issue: 4 year: 2004 ident: 33_18529406 publication-title: Oecologia doi: 10.1007/s00442-004-1686-0 – volume: 101 start-page: 3985 issn: 0027-8424 issue: 11 year: 2004 ident: 41_19685371 publication-title: PNAS doi: 10.1073/pnas.0303029101 – volume: 168 start-page: 973 issn: 0006-8071 year: 2007 ident: 52_32683556 publication-title: International Journal of Plant Sciences doi: 10.1086/518943 – volume: 156 start-page: 457 issn: 1469-8137 year: 2002 ident: 60_25664877 publication-title: New Phytologist doi: 10.1046/j.1469-8137.2002.00525.x – volume: 36 start-page: 587 issn: 0300-3604 year: 1999 ident: 8_32683539 doi: 10.1023/A:1007000406399 – volume: 37 start-page: 637 year: 2006 ident: 44_27165504 publication-title: ANNU REV ECOL EVOL SYST doi: 10.1146/annurev.ecolsys.37.091305.110100 – volume: 38 start-page: 595 year: 2007 ident: 54_32683558 publication-title: ANNU REV ECOL EVOL SYST doi: 10.1146/annurev.ecolsys.38.091206.095646 – volume: 29 start-page: 869 issn: 1365-3040 issue: 5 year: 2006 ident: 70_22948927 publication-title: Plant, Cell, and Environment (Print) doi: 10.1111/j.1365-3040.2005.01466.x |
SSID | ssj0015889 |
Score | 2.2986493 |
Snippet | Plant populations of widely distributed species experience a broad range of environmental conditions that can be faced by phenotypic plasticity or ecotypic... |
SourceID | proquest pubmed crossref oup fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 87 |
SubjectTerms | adaptation Adaptation, Biological Adaptation, Biological - physiology climate change Cold Temperature cold tolerance drought drought tolerance Droughts Freezing Genetic Variation heat tolerance Hot Temperature Nuts phenotypic variation photosynthesis Photosynthesis - physiology physiology plant response plant stress Quercus Quercus - physiology Quercus ilex Stress, Physiological temperature Trees Water Water - physiology water use efficiency |
Title | Plasticity and stress tolerance override local adaptation in the responses of Mediterranean holm oak seedlings to drought and cold |
URI | https://www.ncbi.nlm.nih.gov/pubmed/19203935 https://www.proquest.com/docview/46213608 https://www.proquest.com/docview/66907964 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6DiFeEIzLytUSPCBF6VI3cZLHla1MSKBJtKhvkRPbo6I0VZs-sEf-H_-Jc-xc2o3C4CWKIttJfb763M8h5HXWj1gYae5mEotqM6ldwaRyQ-GliqtQeqbizYeP_Gzsv58Ek1br50bU0rpIu9nlb_NK_oeq8Azoilmy_0DZelF4APdAX7gCheF6Ixqfg-iLUdGFLaJU5n0U-UwtTSYAhmcup1I5hmM5QopFGVxYRjcubYSsLTyLPhvYZZiK1nm0ljq5-OqsgL_NTHNPEFOl6epTlNlws60un6OlUtZSsmWqf4f9A4xBdqTgfcI57dbnsXHTn9icsoHCbgGXTYTQt3zlDqezL3npqbA-fee8nv4ZnQASE6iMCG4t4vmWHSO-YsfYkR-5eRyyGHO9J5Zz2eMatB0XFNp48zwvLSibuF1tcnbL5m3v62sMxBbXwoAA3C-8Xcw9L2y4ZR3D-IfRe2SfgdbC2mT_eHAyGNZurSAyPRnrn1LVmor7R9UiR3aJLTFpT4v8SgLmNT3IyEOje-RuqcjQY4vK-6Sl5gfk1iAHZeP7AbmNLV-xj-AD8qNBKQX6UItSWqOUViilBqW0QSmdzimglNYopbmmWyiliFIKKKU1SmFhWqLUvA5R-pCMh6ejt2du2fnDzUBiLNxAe0pzrjQoCCoOmSd1mMogSjOmvExrPw0ypns9OGBkpngasjTwtRZeqEWGnUsekfY8n6tDQrEiptJYho8JUBZ4FKUy9bNYKl8xpViHdKuNTrKyLD52Z5klNjyjn1SUSSxlOuRNPWFhK8LsHnoIlEvEBfDrZPyJYZRAjxsZsENeATn_vsDLitwJHPvoy4PdzderxOes1-detHsER7tXzP0OeWxx0rwsZiYj_8mNvuEpudP8XZ-RdrFcq-cgiBfpixLevwChRup1 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasticity+and+stress+tolerance+override+local+adaptation+in+the+responses+of+Mediterranean+holm+oak+seedlings+to+drought+and+cold&rft.jtitle=Tree+physiology&rft.au=Gimeno%2C+Teresa+E.&rft.au=P%C3%ADas%2C+Beatriz&rft.au=Lemos-Filho%2C+Jos%C3%A9+P.&rft.au=Valladares%2C+Fernando&rft.date=2009-01-01&rft.pub=Oxford+University+Press&rft.issn=0829-318X&rft.eissn=1758-4469&rft.volume=29&rft.issue=1&rft.spage=87&rft.epage=98&rft_id=info:doi/10.1093%2Ftreephys%2Ftpn007&rft.externalDocID=10.1093%2Ftreephys%2Ftpn007 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0829-318X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0829-318X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0829-318X&client=summon |