Cellulosic pine needles-based biorefinery for a circular bioeconomy
[Display omitted] •Chemical composition, physicochemical properties and extraction of nano cellulose.•Need of pine needles valorisation and their utilisation in multidimensional fields.•Pine needles role as antibacterial, bio-catalyst, reinforcing and adsorbing agents.•Potential of Pine needles in c...
Saved in:
Published in | Bioresource technology Vol. 367; p. 128255 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Chemical composition, physicochemical properties and extraction of nano cellulose.•Need of pine needles valorisation and their utilisation in multidimensional fields.•Pine needles role as antibacterial, bio-catalyst, reinforcing and adsorbing agents.•Potential of Pine needles in comparison to other biomasses in multiple applications.•Current challenges in utilisation and future prospectus of Pine needles wastes.
Pine needles (PNs) are one of the largest bio-polymer produced worldwide. Its waste, i.e., fallen PNs, is mostly responsible for forest fires and is a major challenge. In present article, we have reviewed differenteffortsmadeto tackle this situation. PNs have been used in various fields such asin composite, water purification industries,electronic devices, etc. Gasification is one of the appealing processes for turning PNs into bio-energy; pyrolysis technique has been employed to create various carbon-based water purification materials; saccharification combined with fermentation produced good yields of bio-ethanol; Pd or Ni/PNs biocatalyst showed good catalytic properties in variousreactionsand pyrolysis with or without catalyst is an alluring technique to prepare bio-fuel. Nano cellulose extracted from PNs showed appealing thermal and mechanical strength. The air quality of nearbyenvironment was examinedby studying the magnetic properties of PNs. Packing materials made of PNs showed exceptional ethylene scavenging abilities. |
---|---|
AbstractList | Pine needles (PNs) are one of the largest bio-polymer produced worldwide. Its waste, i.e., fallen PNs, is mostly responsible for forest fires and is a major challenge. In present article, we have reviewed differenteffortsmadeto tackle this situation. PNs have been used in various fields such asin composite, water purification industries,electronic devices, etc. Gasification is one of the appealing processes for turning PNs into bio-energy; pyrolysis technique has been employed to create various carbon-based water purification materials; saccharification combined with fermentation produced good yields of bio-ethanol; Pd or Ni/PNs biocatalyst showed good catalytic properties in variousreactionsand pyrolysis with or without catalyst is an alluring technique to prepare bio-fuel. Nano cellulose extracted from PNs showed appealing thermal and mechanical strength. The air quality of nearbyenvironment was examinedby studying the magnetic properties of PNs. Packing materials made of PNs showed exceptional ethylene scavenging abilities.Pine needles (PNs) are one of the largest bio-polymer produced worldwide. Its waste, i.e., fallen PNs, is mostly responsible for forest fires and is a major challenge. In present article, we have reviewed differenteffortsmadeto tackle this situation. PNs have been used in various fields such asin composite, water purification industries,electronic devices, etc. Gasification is one of the appealing processes for turning PNs into bio-energy; pyrolysis technique has been employed to create various carbon-based water purification materials; saccharification combined with fermentation produced good yields of bio-ethanol; Pd or Ni/PNs biocatalyst showed good catalytic properties in variousreactionsand pyrolysis with or without catalyst is an alluring technique to prepare bio-fuel. Nano cellulose extracted from PNs showed appealing thermal and mechanical strength. The air quality of nearbyenvironment was examinedby studying the magnetic properties of PNs. Packing materials made of PNs showed exceptional ethylene scavenging abilities. Pine needles (PNs) are one of the largest bio-polymer produced worldwide. Its waste, i.e., fallen PNs, is mostly responsible for forest fires and is a major challenge. In present article, we have reviewed differenteffortsmadeto tackle this situation. PNs have been used in various fields such asin composite, water purification industries,electronic devices, etc. Gasification is one of the appealing processes for turning PNs into bio-energy; pyrolysis technique has been employed to create various carbon-based water purification materials; saccharification combined with fermentation produced good yields of bio-ethanol; Pd or Ni/PNs biocatalyst showed good catalytic properties in variousreactionsand pyrolysis with or without catalyst is an alluring technique to prepare bio-fuel. Nano cellulose extracted from PNs showed appealing thermal and mechanical strength. The air quality of nearbyenvironment was examinedby studying the magnetic properties of PNs. Packing materials made of PNs showed exceptional ethylene scavenging abilities. [Display omitted] •Chemical composition, physicochemical properties and extraction of nano cellulose.•Need of pine needles valorisation and their utilisation in multidimensional fields.•Pine needles role as antibacterial, bio-catalyst, reinforcing and adsorbing agents.•Potential of Pine needles in comparison to other biomasses in multiple applications.•Current challenges in utilisation and future prospectus of Pine needles wastes. Pine needles (PNs) are one of the largest bio-polymer produced worldwide. Its waste, i.e., fallen PNs, is mostly responsible for forest fires and is a major challenge. In present article, we have reviewed differenteffortsmadeto tackle this situation. PNs have been used in various fields such asin composite, water purification industries,electronic devices, etc. Gasification is one of the appealing processes for turning PNs into bio-energy; pyrolysis technique has been employed to create various carbon-based water purification materials; saccharification combined with fermentation produced good yields of bio-ethanol; Pd or Ni/PNs biocatalyst showed good catalytic properties in variousreactionsand pyrolysis with or without catalyst is an alluring technique to prepare bio-fuel. Nano cellulose extracted from PNs showed appealing thermal and mechanical strength. The air quality of nearbyenvironment was examinedby studying the magnetic properties of PNs. Packing materials made of PNs showed exceptional ethylene scavenging abilities. |
ArticleNumber | 128255 |
Author | Guleria, Sanjay Thakur, Vijay Kumar Rana, Ashvinder K. Gupta, Vijai Kumar |
Author_xml | – sequence: 1 givenname: Ashvinder K. surname: Rana fullname: Rana, Ashvinder K. organization: Department of Chemistry, Sri Sai University, Palampur 176061 India – sequence: 2 givenname: Sanjay surname: Guleria fullname: Guleria, Sanjay organization: Natural Product-cum-Nano Lab, Division of Biochemistry, Faculty of Basic Sciences, Sher-e- Kashmir University of Agricultural Sciences and Technology of Jammu, J&Kashmir, India – sequence: 3 givenname: Vijai Kumar surname: Gupta fullname: Gupta, Vijai Kumar organization: Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, UK – sequence: 4 givenname: Vijay Kumar surname: Thakur fullname: Thakur, Vijay Kumar email: Vijay.Thakur@sruc.ac.uk organization: Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, UK |
BookMark | eNqFkE1LxDAQhoOs4O7qX5AevXRN0iRtwYNS_IIFL3oO6WSKWbrNmrTC_ntbqhcvewpMnvdl5lmRRec7JOSa0Q2jTN3uNrXzoUf43HDK-Ybxgkt5RpasyLOUl7lakCUtFU0LycUFWcW4o5RmLOdLUlXYtkPro4Pk4DpMOkTbYkxrE9EmUzM24zwck8aHxCTgAgytCdMXgu_8_nhJzhvTRrz6fdfk4-nxvXpJt2_Pr9XDNgXBVZ9KRC6toNI0uUVeC4EsBy6waTIrCsZzgwVaIUa8AStLQRmFWklQikGD2ZrczL2H4L8GjL3euwjj_qZDP0SdMZkVQpYFO4nyPBOK5UxlI6pmFIKPcbxWH4Lbm3DUjOpJsN7pP8F6EqxnwWPw7l8QXG9657s-GNeejt_PcRyVfTsMOoLDDtC6gNBr692pih8FHp3- |
CitedBy_id | crossref_primary_10_1371_journal_pone_0302135 crossref_primary_10_32604_jrm_2023_027579 crossref_primary_10_1016_j_jobab_2023_12_002 crossref_primary_10_1016_j_combustflame_2024_113683 crossref_primary_10_3390_polym15112487 crossref_primary_10_1016_j_indcrop_2023_116407 crossref_primary_10_3390_ma16165695 crossref_primary_10_1002_vnl_22006 crossref_primary_10_1016_j_ijbiomac_2023_127387 crossref_primary_10_3390_pharmaceutics16101331 crossref_primary_10_1016_j_ultsonch_2023_106742 crossref_primary_10_3390_polym15020409 crossref_primary_10_1109_JSTARS_2024_3494838 crossref_primary_10_1002_cssc_202402011 crossref_primary_10_1016_j_indcrop_2023_117404 crossref_primary_10_1016_j_coco_2024_102073 crossref_primary_10_1016_j_indcrop_2023_116636 crossref_primary_10_3390_f15101834 crossref_primary_10_1016_j_ijbiomac_2023_123511 crossref_primary_10_1108_TQM_10_2023_0311 crossref_primary_10_1016_j_indcrop_2023_116752 crossref_primary_10_1007_s11144_024_02639_5 crossref_primary_10_1016_j_indcrop_2023_116632 crossref_primary_10_1016_j_indcrop_2024_118753 crossref_primary_10_1016_j_seta_2024_104123 crossref_primary_10_1515_npprj_2022_0091 crossref_primary_10_1007_s13399_024_06044_9 crossref_primary_10_1039_D3RA01248D crossref_primary_10_1007_s10570_023_05377_4 crossref_primary_10_1016_j_biortech_2023_129632 crossref_primary_10_1016_j_chemosphere_2024_143103 crossref_primary_10_1016_j_indcrop_2023_117709 crossref_primary_10_1080_1023666X_2024_2371426 crossref_primary_10_1007_s42247_023_00478_z crossref_primary_10_1016_j_clema_2025_100295 crossref_primary_10_1016_j_indcrop_2023_117310 crossref_primary_10_3390_ma16093386 crossref_primary_10_1016_j_indcrop_2023_117710 crossref_primary_10_1016_j_indcrop_2023_116501 crossref_primary_10_1080_02626667_2024_2349261 crossref_primary_10_1002_adsu_202500108 crossref_primary_10_1016_j_ijbiomac_2023_126798 crossref_primary_10_1016_j_jarmap_2025_100624 crossref_primary_10_1016_j_ijbiomac_2024_130599 crossref_primary_10_1016_j_indcrop_2024_118297 crossref_primary_10_1016_j_biortech_2023_129725 crossref_primary_10_3390_molecules29010165 crossref_primary_10_1016_j_fpsl_2023_101090 crossref_primary_10_1016_j_ijbiomac_2022_12_249 crossref_primary_10_1016_j_biortech_2023_128679 crossref_primary_10_1007_s13399_023_03946_y crossref_primary_10_3390_polym15071659 crossref_primary_10_1016_j_indcrop_2023_117904 crossref_primary_10_1016_j_indcrop_2023_117584 crossref_primary_10_1007_s10924_023_02989_6 crossref_primary_10_1016_j_indcrop_2023_117501 crossref_primary_10_1016_j_indcrop_2023_116971 |
Cites_doi | 10.1007/s13762-018-2096-x 10.1007/s10068-010-0005-2 10.1016/j.atmosenv.2007.10.025 10.1016/j.carbpol.2015.12.020 10.1016/j.foodcont.2021.108567 10.1007/s13399-021-01277-4 10.1016/j.jclepro.2020.123575 10.1016/j.indcrop.2022.115356 10.1007/s13399-019-00433-1 10.1016/j.jclepro.2020.124930 10.1016/j.biortech.2013.06.033 10.1021/acssuschemeng.1c03634 10.33015/dominican.edu/2017.HONORS.ST.12 10.1016/j.indcrop.2021.113669 10.1080/03602551003682067 10.1039/D2NR01967A 10.1039/D1MA00429H 10.1016/j.biombioe.2014.03.047 10.15376/biores.6.2.1556-1575 10.1007/s12649-018-0239-4 10.1177/0731684408100354 10.1016/j.indcrop.2021.113752 10.1007/s13369-015-1601-5 10.1016/S1001-0742(09)60211-4 10.3390/ijms14047370 10.1016/j.eti.2021.102200 10.1016/j.jaap.2019.03.007 10.3390/ma15051654 10.3390/pr7120903 10.1007/s11814-019-0467-8 10.1016/j.conbuildmat.2021.122333 10.1016/j.fuel.2021.122230 10.1007/s13399-018-0304-z 10.1021/acsomega.0c00216 10.1007/s11418-015-0956-y 10.1371/journal.pone.0192711 10.1016/j.scitotenv.2013.10.008 10.1021/acs.est.6b03239 10.1007/s13399-021-02191-5 10.1007/s10973-017-6727-0 10.1039/C4RA15505J 10.1016/j.compositesa.2011.11.019 10.1016/j.conbuildmat.2021.124134 10.15376/biores.4.1.292-308 10.1105/tpc.105.032508 10.3390/ijms161126015 10.1016/j.envpol.2005.01.020 10.1007/978-981-15-1063-2_4 10.1007/s12034-010-0040-x 10.5004/dwt.2020.25445 10.1207/s15327914nc5602_7 10.1016/j.jclepro.2020.123840 10.1021/jf047932x 10.1051/e3sconf/20172304001 10.1016/j.jenvman.2019.109677 10.1007/s13399-021-02017-4 10.1039/C4RA06717G 10.1016/S0269-7491(99)00260-2 10.1080/00914037.2011.641694 10.1016/j.foodcont.2021.107877 10.1016/j.molliq.2020.112661 10.1080/00914030802461857 10.2174/138955712803832735 10.1016/j.conbuildmat.2018.07.187 10.1016/j.renene.2017.04.035 10.3390/plants9010005 10.1021/acssuschemeng.1c06363 10.1016/j.ijfoodmicro.2011.10.019 10.1016/j.jaap.2008.11.015 10.1016/j.catcom.2022.106467 10.1016/j.biortech.2022.127289 10.1016/j.fuproc.2021.106997 10.1016/j.biortech.2020.124548 10.1016/j.carbpol.2014.11.041 10.1021/acs.chemrev.9b00553 10.1016/j.ijbiomac.2021.05.119 10.4209/aaqr.2012.06.0153 10.1080/01932691.2018.1464933 10.1016/j.indcrop.2020.113188 10.1039/D1GC01707A 10.1016/j.fuel.2021.122953 10.3390/ma14164557 10.1002/pc.24074 10.1016/j.indcrop.2021.113780 10.1007/s10853-014-8513-8 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2022 The Author(s) – notice: Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2022.128255 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
ExternalDocumentID | 10_1016_j_biortech_2022_128255 S0960852422015887 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAHCO AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXKI AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABWVN ABXDB ACDAQ ACGFS ACIUM ACRLP ACRPL ADBBV ADEWK ADEZE ADMUD ADNMO ADQTV ADUVX AEBSH AEGFY AEHWI AEIPS AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CJTIS CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c426t-5ee25d405af7de2b44e17c24eff3d48127ae8ed44c42fcd594010cb65c661cfe3 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Fri Jul 11 05:54:03 EDT 2025 Mon Jul 21 11:08:33 EDT 2025 Tue Jul 01 03:19:10 EDT 2025 Thu Apr 24 23:04:29 EDT 2025 Sat Jan 18 16:09:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bio-adsorbents Polymer composites Gasification Electronic devices Packaging materials Pine needles |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-5ee25d405af7de2b44e17c24eff3d48127ae8ed44c42fcd594010cb65c661cfe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0960852422015887 |
PQID | 2734617163 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3153845981 proquest_miscellaneous_2734617163 crossref_primary_10_1016_j_biortech_2022_128255 crossref_citationtrail_10_1016_j_biortech_2022_128255 elsevier_sciencedirect_doi_10_1016_j_biortech_2022_128255 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | Bioresource technology |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Thompson, Shimabuku, Kearns, Knappe, Summers, Cook (b0545) 2016; 50 Hoang, Pandey, Huang, Luque, Ng, Papadopoulos, Chen, Rajamohan, Hadiyanto, Nguyen (b0230) 2022; 10 Hoang (b0220) 2021; 148 Hammud, Shmait, Hourani (b0200) 2015; 5 Dhyani, Bhaskar (b0090) 2018; 129 Indian Express, 2016. Uttarakhand forest fire: Mi-17 choppers to spray water over burning forests | India News,The Indian Express [WWW Document]. URL https://indianexpress.com/article/india/india-news-india/uttarakhand-forest-fires-mi-17-choppers-to-spray-water-over-burning-forests-2778328/(accessed 9.1.22). Ko, Co (b0305) 2010; 4 Choudhary, Patel, Pittman, Mohan (b0065) 2020; 5 Thakur, Singha (b0540) 2010; 33 Singha, Thakur (b0470) 2008; 5 Guo, Huang, Zhao, Zhang, Ji, Ma (b0175) 2022; 9 Hafeez, Khanif, Saleem (b0195) 2013; 3 . Khan, Rashid, Younas (b0285) 2015; 40 Kumari, N., Chhabra, T., Kumar, S., Krishnan, V., 2022. Nanoarchitectonics of sulfonated biochar from pine needles as catalyst for conversion of biomass derived chemicals to value added products. Catal. Commun. 106467. Chakrabarty, A., 2016. Uttarakhand: Pine needles to power homes in Uttarakhand, Energy News, ET EnergyWorld [WWW Document]. URL Valentini, Ferlin, Lilli, Marrocchi, Ping, Gu, Vaccaro (b0570) 2021; 23 Dorotíková, Kamenik, Bogdanovičová, Křepelová, Strejček, Haruštiaková (b0115) 2022; 133 Rana, Gupta, Newbold, Roberts, Rees, Krishnamurthy, Thakur (b0445) 2022; 312 Wang, Gao, Li (b0595) 2022; 15 Dickens, E.D., Moorhead, D.J., Morris, L.A., McElvany, B.C., 2003. Straw raking in southern pine stands and fertilization recommendations. Liu, Tang, Zhu, Zhang-Fa, Han-Bing, Yan-Kui (b0345) 2020; 37 (accessed 10.22.22). Beluns, Gaidukovs, Platnieks, Gaidukova, Mierina, Grase, Starkova, Brazdausks, Thakur (b0035) 2021; 170 Rana, Scarpa, Thakur (b0450) 2022; 187 Web page, 2022. Cithr, Briquettes and pellets produced at center [WWW Document]. URL Dong, Parsons, Davies (b0110) 2014; 49 Ohri, A., Ohri, J., 2007. Role of Information Technology in Energy Management, in: Proceedings of the World Congress on Engineering and Computer Science. Citeseer, pp. 24–26. Tang, Yang, Qiang, Li, Morrell, Yao, Su (b0525) 2021; 14 Park, Lee, Choi, Kim, Kim, Cheong (b0405) 2016; 70 Mandal, Prasanna Kumar, Bhattacharya, Tanna, Jena (b0360) 2019; 10 Pietrzykowski, Socha, van Doorn (b0420) 2014; 470 Liu, Li, Ma, Li, Ren, Zhou (b0340) 2021; 278 Hayat, A., Khan, H., Haq, R.U., Ali, M., 2017. Use of Pine-Needle Reinforced Composites in Kashmir, Pakistan–A Critical Review. Ma, Liu, Shang, Gao, Wang, Guo, Tong (b0355) 2014; 4 Hoang, Varbanov, Nižetić, Sirohi, Pandey, Luque, Ng (b0235) 2022; 131897 Sharma, N., 2018. IIT Roorkee to design portable briquette machines to utilise pine needles [WWW Document]. Hindustan Times. URL (accessed 9.1.22). Thakur, Singha (bib648) 2010; 49 Ward, M., 2021. 16 Innovative Ways to Use Pine Needles in the Garden - Gardening [WWW Document]. URL Varma, Mondal (b0575) 2018; 131 Juranović Cindrić, Zeiner, Starčević, Stingeder (b0255) 2019; 16 Avcı, Oymak, Bağda (b0025) 2022 Su, Du, Liang, Wang, Zhao, Wang, Sun, Zhang (b0505) 2022; 109165 Kwak, Moon, Lee (b0330) 2006; 56 Anastopoulos, Katsouromalli, Pashalidis (b0015) 2020; 304 Blevins, Allen, Colbett, Gardner (b0055) 2005 Dhaundiyal, Tewari (b0085) 2015; 18 Kumar, Nanda, Verma, Singh (b0320) 2018; 8 Pine Needles Information, Recipes and Facts [WWW Document], 2022. URL https://specialtyproduce.com/produce/Pine_Needles_10289.php (accessed 9.1.22). Orjola, T., 2016. Tamara Orjola makes furniture and textiles using pine needles [WWW Document]. URL Xiao, Gao, Lu, Li, Sun (b0625) 2015; 119 Duryea, M.L., 1989. Pine-straw management in Florida’s forests. Florida Cooperative Extension Service, Institute of Food and Agricultural …. Dwivedi, Rathour, Sharma, Rana, Bhatt, Bhatia (b0125) 2022 Ferlin, Valentini, Sciosci, Calamante, Petricci, Vaccaro (b0145) 2021; 9 Philippou, Konstantinou, Pashalidis (b0415) 2020; 194 Uttarakhand Renewable Energy Development Agency, 2018. Uttarakhand Renewable Energy Development Agency 2018. Bai, Wu, Liu, Zhong, Huang, Gao (b0030) 2015; 16 Holoubek, I., Kořı́nek, P., Šeda, Z., Schneiderová, E., Holoubková, I., Pacl, A., Třı́ska, J., Cudlın, P., Čáslavskỳ, J., 2000. The use of mosses and pine needles to detect persistent organic pollutants at local and regional scales. Environ. Pollut. 109, 283–292. Sundseth, K., 2009. Natura 2000 in the Mediterranean region. Hindustantimes, 2020. Uttarakhand gets its first pine needle power generation plant [WWW Document]. Hindustan Times. URL Myers, V.R., 2022. 40 Species of Pine Trees and Shrubs [WWW Document]. The Spruce. URL Sinha, Mathur, Sharma, Kumar (b0490) 2018; 39 Jové-Sandoval, Barbero-Barrera, Medina (b0250) 2018; 187 Skonieczna, Małek (b0495) 2014 Hoang, Ong, Fattah, Chong, Cheng, Sakthivel, Ok (b0225) 2021; 223 Ghosh, Ghosh (b0165) 2011; 6 Trache, Tarchoun, Abdelaziz, Bessa, Hussin, Brosse, Thakur (b0550) 2022; 14 Kumar, Deshmukh, Gaikwad (b0315) 2022 Zielińska, Rydzkowski, Thakur, Borysiak (b0645) 2021; 161 Encyclopaedia Britannica, 2022. pine | Description, Conifer, Genus, Species, Uses, Characteristics, & Facts | Britannica [WWW Document]. URL Wu, Wang, Xue, Hu, Gao, An (b0620) 2019; 40 Cogurcu (b0075) 2022; 16 Kala, L.D., Subbarao, P.M.V., 2017. Pine needles as potential energy feedstock: availability in the central Himalayan state of Uttarakhand, India, in: E3S Web of Conferences. EDP Sciences, p. 04001. Suri, Dwivedi, Rathour, Rana, Sharma, Bhatia, Bhatt (b0520) 2022; 12 Slathia, Raina, Kiran, Kour, Bhagat, Sharma (b0500) 2020; 10 Rana, Thakur (b0440) 2021; 2 Singha, Thakur (b0480) 2009; 4 Lehndorff, Schwark (b0335) 2008; 42 Tausz, Trummer, Goessler, Wonisch, Grill, Naumann, Jiménez, Morales (b0530) 2005; 136 Feng, Zeng, Luo, Zhao, Yang, Sun (b0140) 2010; 19 Khan (b0280) 2012 Tsui (b0555) 1955; 4 Atabani, A.E., Tyagi, V.K., Fongaro, G., Treichel, H., Pugazhendhi, A., Hoang, A.T., 2021. Integrated biorefineries, circular bio-economy, and valorization of organic waste streams with respect to bio-products. Biomass Convers. Biorefinery. Platnieks, Sereda, Gaidukovs, Thakur, Barkane, Gaidukova, Filipova, Ogurcovs, Fridrihsone (b0430) 2021; 169 Hepler (b0210) 2005; 17 Ka, Choi, Chun, Lee (b0260) 2005; 53 Wang, Long (b0590) 2021; 302 Amjad, Raza, Murtaza, Abbas, Imran, Shahid, Naeem, Zakir, Iqbal (b0010) 2019; 9 Gupta, Joshi, Rana, Rawat, Sharma (b0180) 2020; 146 Kim, Lee, Jang, Jeong, Ryu, Jung, Park (b0300) 2020; 37 Kandel, Timilsina, Bhattarai, Thapa, Koirala, Shrestha (b0275) 2020; 8 Yaqub, Ajab, Almas, Syed, Azam, Khan, Awais, Muhammad, Galal, Alshahrani (b0635) 2022; 12 Mathew, A.A., 2021. Sustainability Agenda: Why this startup chose pine needles to make tablewares [WWW Document]. YourStory.com. URL Singha, Thakur (b0475) 2008; 58 Wang, Zheng, Shen, Guo (b0600) 2013; 14 Ates, Koytepe, Ulu, Gurses, Thakur (bib646) 2020; 120 Dmuchowski, Gozdowski, Baczewska-Dąbrowska, Dąbrowski, Gworek, Suwara (b0105) 2018; 13 Gupta, Patel, Mondal (b0190) 2022; 310 Khuller, A., 2019. Fuel from Forests [WWW Document]. Renew. Watch. URL https://renewablewatch.in/2019/09/20/fuel-from-forests/ (accessed 9.1.22). Fires ravage forests in Himalayas, threatening health and biodiversity, 2017. Third Pole. URL Serbula, Kalinovic, Ilic, Kalinovic, Steharnik (b0460) 2013; 13 Singha, Thakur (b0485) 2010; 29 Thakur, Singha, Thakur (bib647) 2013; 62 Bisht, Singh, Kumar (b0045) 2014; 3 Font, Conesa, Moltó, Muñoz (b0155) 2009; 85 Bhatia, Palai, Kumar, Bhatia, Patel, Thakur, Yang (b0040) 2021; 340 Gupta, Mondal (b0185) 2021; 286 Estevez, Estevez (b0135) 2012; 12 Bisht, Thakur (b0050) 2020 Moriana, Vilaplana, Ek (b0370) 2016; 139 Ahmad, Lee, Rajapaksha, Vithanage, Zhang, Cho, Lee, Ok (b0005) 2013; 143 Kadam, Singh, Gaikwad (b0265) 2021; 124 Kumar, Gupta, Singh, Saini, Gaikwad (b0310) 2021; 170 Moscariello, Matassa, Pirozzi, Esposito, Papirio (b0375) 2022; 355 Correa, Hehr, Voglhuber-Slavinsky, Rauscher, Kruse (b0080) 2019; 140 Gresham (b0170) 1982; 28 Fuentes, A., 2017. Pine Needle Pyrolysis: Bio-waste into Biofuel. Thakur, Singha (bib649) 2010; 19 Taylor, E., Foster, C.D., 2004. Producing pine straw in East Texas forests. Tex. FARMER Collect. Varnagirytė-Kabašinskienė, Armolaitis, Stupak, Kukkola, Wójcik, Mikšys (b0580) 2014; 66 Nicolaou, Philippou, Anastopoulos, Pashalidis (b0385) 2019; 7 Sengar, Sharma, Agrawal, Dwivedi, Dwivedi, Joshi, Dixit, Sharma, Barthwal (b0455) 2020; 275 Pandey, Daverey, Dutta, Yata, Arunachalam (b0400) 2022; 25 Usmani, Z., Sharma, M., Awasthi, A.K., Sivakumar, N., Lukk, T., Pecoraro, L., Thakur, V.K., Roberts, D., Newbold, J., Gupta, V.K., 2020. Bioprocessing of waste biomass for sustainable product development and minimizing environmental impact. Bioresour. Technol. 124548. Vikaspedia, 2022. vikaspedia Domains [WWW Document]. URL World Bioenergy Association (b0615) 2020 Xie, Lan, Yu, Wu (b0630) 2012 Long, Wang (b0350) 2021; 278 Dittenber, GangaRao (b0100) 2012; 43 Sun, Wen, Kuang, Li, Li, Zuo (b0510) 2010; 22 Philippou, Anastopoulos, Dosche, Pashalidis (b0410) 2019; 252 Khitab (b0290) 2020; 57 Clarke, Preto (b0070) 2011 Zeng, He, Sun, Zhong, Gao (b0640) 2012; 153 Rana, Frollini, Thakur (b0435) 2021; 182 Thompson (10.1016/j.biortech.2022.128255_b0545) 2016; 50 10.1016/j.biortech.2022.128255_b0565 Dittenber (10.1016/j.biortech.2022.128255_b0100) 2012; 43 Dmuchowski (10.1016/j.biortech.2022.128255_b0105) 2018; 13 10.1016/j.biortech.2022.128255_b0325 10.1016/j.biortech.2022.128255_b0205 Correa (10.1016/j.biortech.2022.128255_b0080) 2019; 140 10.1016/j.biortech.2022.128255_b0605 Hoang (10.1016/j.biortech.2022.128255_b0230) 2022; 10 Singha (10.1016/j.biortech.2022.128255_b0470) 2008; 5 Rana (10.1016/j.biortech.2022.128255_b0440) 2021; 2 Slathia (10.1016/j.biortech.2022.128255_b0500) 2020; 10 Thakur (10.1016/j.biortech.2022.128255_b0540) 2010; 33 Dorotíková (10.1016/j.biortech.2022.128255_b0115) 2022; 133 Wang (10.1016/j.biortech.2022.128255_b0595) 2022; 15 10.1016/j.biortech.2022.128255_b0295 Avcı (10.1016/j.biortech.2022.128255_b0025) 2022 Kim (10.1016/j.biortech.2022.128255_b0300) 2020; 37 Choudhary (10.1016/j.biortech.2022.128255_b0065) 2020; 5 Kumar (10.1016/j.biortech.2022.128255_b0315) 2022 Mandal (10.1016/j.biortech.2022.128255_b0360) 2019; 10 10.1016/j.biortech.2022.128255_b0610 10.1016/j.biortech.2022.128255_b0215 Ma (10.1016/j.biortech.2022.128255_b0355) 2014; 4 Gupta (10.1016/j.biortech.2022.128255_b0185) 2021; 286 Sinha (10.1016/j.biortech.2022.128255_b0490) 2018; 39 Gresham (10.1016/j.biortech.2022.128255_b0170) 1982; 28 Bisht (10.1016/j.biortech.2022.128255_b0050) 2020 Yaqub (10.1016/j.biortech.2022.128255_b0635) 2022; 12 Platnieks (10.1016/j.biortech.2022.128255_b0430) 2021; 169 10.1016/j.biortech.2022.128255_b0060 Ko (10.1016/j.biortech.2022.128255_b0305) 2010; 4 Liu (10.1016/j.biortech.2022.128255_b0340) 2021; 278 10.1016/j.biortech.2022.128255_b0585 Clarke (10.1016/j.biortech.2022.128255_b0070) 2011 10.1016/j.biortech.2022.128255_b0465 Valentini (10.1016/j.biortech.2022.128255_b0570) 2021; 23 Guo (10.1016/j.biortech.2022.128255_b0175) 2022; 9 Suri (10.1016/j.biortech.2022.128255_b0520) 2022; 12 Rana (10.1016/j.biortech.2022.128255_b0445) 2022; 312 Singha (10.1016/j.biortech.2022.128255_b0475) 2008; 58 Kwak (10.1016/j.biortech.2022.128255_b0330) 2006; 56 Amjad (10.1016/j.biortech.2022.128255_b0010) 2019; 9 Rana (10.1016/j.biortech.2022.128255_b0450) 2022; 187 Dwivedi (10.1016/j.biortech.2022.128255_b0125) 2022 Rana (10.1016/j.biortech.2022.128255_b0435) 2021; 182 Long (10.1016/j.biortech.2022.128255_b0350) 2021; 278 Moriana (10.1016/j.biortech.2022.128255_b0370) 2016; 139 Trache (10.1016/j.biortech.2022.128255_b0550) 2022; 14 Pandey (10.1016/j.biortech.2022.128255_b0400) 2022; 25 Varma (10.1016/j.biortech.2022.128255_b0575) 2018; 131 10.1016/j.biortech.2022.128255_b0515 Feng (10.1016/j.biortech.2022.128255_b0140) 2010; 19 Skonieczna (10.1016/j.biortech.2022.128255_b0495) 2014 Liu (10.1016/j.biortech.2022.128255_b0345) 2020; 37 Wang (10.1016/j.biortech.2022.128255_b0600) 2013; 14 Bai (10.1016/j.biortech.2022.128255_b0030) 2015; 16 Tsui (10.1016/j.biortech.2022.128255_b0555) 1955; 4 Tausz (10.1016/j.biortech.2022.128255_b0530) 2005; 136 Dhaundiyal (10.1016/j.biortech.2022.128255_b0085) 2015; 18 Hepler (10.1016/j.biortech.2022.128255_b0210) 2005; 17 Moscariello (10.1016/j.biortech.2022.128255_b0375) 2022; 355 Tang (10.1016/j.biortech.2022.128255_b0525) 2021; 14 Anastopoulos (10.1016/j.biortech.2022.128255_b0015) 2020; 304 Dong (10.1016/j.biortech.2022.128255_b0110) 2014; 49 Kadam (10.1016/j.biortech.2022.128255_b0265) 2021; 124 Wang (10.1016/j.biortech.2022.128255_b0590) 2021; 302 10.1016/j.biortech.2022.128255_b0240 10.1016/j.biortech.2022.128255_b0120 10.1016/j.biortech.2022.128255_b0365 10.1016/j.biortech.2022.128255_b0245 Khitab (10.1016/j.biortech.2022.128255_b0290) 2020; 57 Kandel (10.1016/j.biortech.2022.128255_b0275) 2020; 8 Park (10.1016/j.biortech.2022.128255_b0405) 2016; 70 Font (10.1016/j.biortech.2022.128255_b0155) 2009; 85 Ahmad (10.1016/j.biortech.2022.128255_b0005) 2013; 143 Khan (10.1016/j.biortech.2022.128255_b0280) 2012 Juranović Cindrić (10.1016/j.biortech.2022.128255_b0255) 2019; 16 Nicolaou (10.1016/j.biortech.2022.128255_b0385) 2019; 7 Bisht (10.1016/j.biortech.2022.128255_b0045) 2014; 3 10.1016/j.biortech.2022.128255_b0095 Philippou (10.1016/j.biortech.2022.128255_b0410) 2019; 252 10.1016/j.biortech.2022.128255_b0130 Sun (10.1016/j.biortech.2022.128255_b0510) 2010; 22 World Bioenergy Association (10.1016/j.biortech.2022.128255_b0615) 2020 Wu (10.1016/j.biortech.2022.128255_b0620) 2019; 40 10.1016/j.biortech.2022.128255_b0535 Hoang (10.1016/j.biortech.2022.128255_b0225) 2021; 223 Ghosh (10.1016/j.biortech.2022.128255_b0165) 2011; 6 Pietrzykowski (10.1016/j.biortech.2022.128255_b0420) 2014; 470 Varnagirytė-Kabašinskienė (10.1016/j.biortech.2022.128255_b0580) 2014; 66 Gupta (10.1016/j.biortech.2022.128255_b0180) 2020; 146 Ka (10.1016/j.biortech.2022.128255_b0260) 2005; 53 Khan (10.1016/j.biortech.2022.128255_b0285) 2015; 40 Hammud (10.1016/j.biortech.2022.128255_b0200) 2015; 5 Thakur (10.1016/j.biortech.2022.128255_bib648) 2010; 49 Xie (10.1016/j.biortech.2022.128255_b0630) 2012 Zeng (10.1016/j.biortech.2022.128255_b0640) 2012; 153 Kumar (10.1016/j.biortech.2022.128255_b0310) 2021; 170 10.1016/j.biortech.2022.128255_b0380 10.1016/j.biortech.2022.128255_b0020 Blevins (10.1016/j.biortech.2022.128255_b0055) 2005 Dhyani (10.1016/j.biortech.2022.128255_b0090) 2018; 129 Philippou (10.1016/j.biortech.2022.128255_b0415) 2020; 194 Kumar (10.1016/j.biortech.2022.128255_b0320) 2018; 8 10.1016/j.biortech.2022.128255_b0425 Estevez (10.1016/j.biortech.2022.128255_b0135) 2012; 12 Jové-Sandoval (10.1016/j.biortech.2022.128255_b0250) 2018; 187 Singha (10.1016/j.biortech.2022.128255_b0480) 2009; 4 Thakur (10.1016/j.biortech.2022.128255_bib649) 2010; 19 Zielińska (10.1016/j.biortech.2022.128255_b0645) 2021; 161 Hoang (10.1016/j.biortech.2022.128255_b0235) 2022; 131897 Hafeez (10.1016/j.biortech.2022.128255_b0195) 2013; 3 Gupta (10.1016/j.biortech.2022.128255_b0190) 2022; 310 Beluns (10.1016/j.biortech.2022.128255_b0035) 2021; 170 Cogurcu (10.1016/j.biortech.2022.128255_b0075) 2022; 16 Ates (10.1016/j.biortech.2022.128255_bib646) 2020; 120 Ferlin (10.1016/j.biortech.2022.128255_b0145) 2021; 9 10.1016/j.biortech.2022.128255_b0390 10.1016/j.biortech.2022.128255_b0270 10.1016/j.biortech.2022.128255_b0150 Xiao (10.1016/j.biortech.2022.128255_b0625) 2015; 119 10.1016/j.biortech.2022.128255_b0395 Singha (10.1016/j.biortech.2022.128255_b0485) 2010; 29 Su (10.1016/j.biortech.2022.128255_b0505) 2022; 109165 Serbula (10.1016/j.biortech.2022.128255_b0460) 2013; 13 Sengar (10.1016/j.biortech.2022.128255_b0455) 2020; 275 10.1016/j.biortech.2022.128255_b0160 Hoang (10.1016/j.biortech.2022.128255_b0220) 2021; 148 Thakur (10.1016/j.biortech.2022.128255_bib647) 2013; 62 Lehndorff (10.1016/j.biortech.2022.128255_b0335) 2008; 42 Bhatia (10.1016/j.biortech.2022.128255_b0040) 2021; 340 10.1016/j.biortech.2022.128255_b0560 |
References_xml | – volume: 304 year: 2020 ident: b0015 article-title: Oxidized biochar obtained from pine needles as a novel adsorbent to remove caffeine from aqueous solutions publication-title: J. Mol. Liq. – reference: Mathew, A.A., 2021. Sustainability Agenda: Why this startup chose pine needles to make tablewares [WWW Document]. YourStory.com. URL – volume: 50 start-page: 11253 year: 2016 end-page: 11262 ident: b0545 article-title: Environmental comparison of biochar and activated carbon for tertiary wastewater treatment publication-title: Environ. Sci. Technol. – reference: Fires ravage forests in Himalayas, threatening health and biodiversity, 2017. Third Pole. URL – volume: 16 start-page: 4339 year: 2019 end-page: 4346 ident: b0255 article-title: Metals in pine needles: Characterisation of bio-indicators depending on species publication-title: Int. J. Environ. Sci. Technol. – volume: 5 start-page: 1055 year: 2008 end-page: 1062 ident: b0470 article-title: Synthesis and characterization of pine needles reinforced RF matrix based biocomposites publication-title: E-J. Chem. – volume: 10 start-page: 3079 year: 2022 end-page: 3115 ident: b0230 article-title: Catalyst-based synthesis of 2, 5-dimethylfuran from carbohydrates as a sustainable biofuel production route publication-title: ACS Sustain. Chem. Eng. – start-page: 1 year: 2022 end-page: 10 ident: b0315 article-title: Quality preservation in banana fruits packed in pine needle and halloysite nanotube-based ethylene gas scavenging paper during storage publication-title: Biomass Convers. Biorefinery – reference: Fuentes, A., 2017. Pine Needle Pyrolysis: Bio-waste into Biofuel. – volume: 33 start-page: 257 year: 2010 end-page: 264 ident: b0540 article-title: Natural fibres-based polymers: Part I—Mechanical analysis of Pine needles reinforced biocomposites publication-title: Bull. Mater. Sci. – volume: 6 start-page: 1556 year: 2011 end-page: 1575 ident: b0165 article-title: Utilization of pine needles as bed material in solid state fermentation for production of lactic acid by lactobacillus strains publication-title: BioResources – reference: Khuller, A., 2019. Fuel from Forests [WWW Document]. Renew. Watch. URL https://renewablewatch.in/2019/09/20/fuel-from-forests/ (accessed 9.1.22). – reference: Pine Needles Information, Recipes and Facts [WWW Document], 2022. URL https://specialtyproduce.com/produce/Pine_Needles_10289.php (accessed 9.1.22). – volume: 13 start-page: 563 year: 2013 end-page: 573 ident: b0460 article-title: Assessment of airborne heavy metal pollution using Pinus spp. and Tilia spp publication-title: Aerosol Air Qual. Res. – volume: 153 start-page: 78 year: 2012 end-page: 84 ident: b0640 article-title: Antibacterial activity of water-soluble extract from pine needles of Cedrus deodara publication-title: Int. J. Food Microbiol. – volume: 85 start-page: 276 year: 2009 end-page: 286 ident: b0155 article-title: Kinetics of pyrolysis and combustion of pine needles and cones publication-title: J. Anal. Appl. Pyrol. – start-page: 8 year: 2005 ident: b0055 article-title: Woodland owner notes: Nutrition management for longleaf pinestraw – volume: 16 start-page: e00970 year: 2022 ident: b0075 article-title: Investigation of mechanical properties of red pine needle fiber reinforced self-compacting ultra high performance concrete publication-title: Case Stud. Constr. Mater. – volume: 12 start-page: 3663 year: 2022 end-page: 3672 ident: b0520 article-title: Enhanced C-5 sugar production from pine needle waste biomass using Bacillus sp. XPB-11 mutant and its biotransformation to bioethanol publication-title: Biomass Convers. Biorefinery – volume: 62 start-page: 226 year: 2013 end-page: 230 ident: bib647 article-title: Fabrication and Physico-Chemical Properties of High-Performance Pine Needles/Green Polymer Composites publication-title: Int. J. Polym. Mater. Polym. Biomater. – volume: 70 start-page: 492 year: 2016 end-page: 501 ident: b0405 article-title: Antithrombosis activity of protocatechuic and shikimic acids from functional plant Pinus densiflora Sieb. et Zucc needles publication-title: J. Nat. Med. – year: 2020 ident: b0615 article-title: Global bioenergy statistics 2019 – volume: 18 start-page: 29 year: 2015 end-page: 35 ident: b0085 article-title: Comparative analysis of pine needles and coal for electricity generation using carbon taxation and emission reductions publication-title: Acta Technol. Agric. – start-page: 752 year: 2012 end-page: 759 ident: b0630 article-title: Study on extraction of Shikimic acid from pine needles of Pinus Elliottii Engelm by means of microwave pretreatment publication-title: Adv. Mater. Res. Trans. Tech. Publ. – volume: 143 start-page: 615 year: 2013 end-page: 622 ident: b0005 article-title: Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures publication-title: Bioresour. Technol. – volume: 10 start-page: 2415 year: 2019 end-page: 2424 ident: b0360 article-title: Briquetting of pine needles (Pinus roxburgii) and their physical, handling and combustion properties publication-title: Waste Biomass Valorization – reference: (accessed 9.1.22). – reference: Kala, L.D., Subbarao, P.M.V., 2017. Pine needles as potential energy feedstock: availability in the central Himalayan state of Uttarakhand, India, in: E3S Web of Conferences. EDP Sciences, p. 04001. – volume: 109165 year: 2022 ident: b0505 article-title: Nanozymes for foodborne microbial contaminants detection: Mechanisms, recent advances, and challenges publication-title: Food Control – volume: 22 start-page: 1006 year: 2010 end-page: 1013 ident: b0510 article-title: Concentrations of heavy metals and polycyclic aromatic hydrocarbons in needles of Masson pine (Pinus massoniana L.) growing nearby different industrial sources publication-title: J. Environ. Sci. – year: 2012 ident: b0280 article-title: How an Uttarakhand company is producing electricity with pine needles [WWW Document] – volume: 25 year: 2022 ident: b0400 article-title: Valorization of waste pine needle biomass into biosorbents for the removal of methylene blue dye from water: Kinetics, equilibrium and thermodynamics study publication-title: Environ. Technol. Innov. – volume: 43 start-page: 1419 year: 2012 end-page: 1429 ident: b0100 article-title: Critical review of recent publications on use of natural composites in infrastructure publication-title: Compos. Part Appl. Sci. Manuf. – reference: Orjola, T., 2016. Tamara Orjola makes furniture and textiles using pine needles [WWW Document]. URL – volume: 40 start-page: 186 year: 2019 end-page: 191 ident: b0620 article-title: Selective adsorption and removal ability of pine needle-based activated carbon towards Al (III) from La (III) publication-title: J. Dispers. Sci. Technol. – volume: 9 start-page: 5 year: 2019 ident: b0010 article-title: Nickel toxicity induced changes in nutrient dynamics and antioxidant profiling in two maize (Zea mays L.) hybrids publication-title: Plants – start-page: 77 year: 2014 end-page: 87 ident: b0495 article-title: Element content of Scots pine (Pinus sylvestris L.) stands of different densities publication-title: Drew. Pr. Nauk. Doniesienia Komun. – volume: 19 start-page: 3 year: 2010 end-page: 16 ident: bib649 article-title: Physico-Chemical And Mechanical Characterization Of Natural Fibre Reinforced Polymer Composites publication-title: Iran. Polym. J. – volume: 7 start-page: 903 year: 2019 ident: b0385 article-title: Copper adsorption by magnetized pine-needle biochar publication-title: Processes – volume: 161 year: 2021 ident: b0645 article-title: Enzymatic engineering of nanometric cellulose for sustainable polypropylene nanocomposites publication-title: Ind. Crops Prod. – reference: (accessed 10.22.22). – volume: 120 start-page: 9304 year: 2020 end-page: 9362 ident: bib646 article-title: Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources publication-title: Chem. Rev. – volume: 3 start-page: 374 year: 2013 ident: b0195 article-title: Role of zinc in plant nutrition-a review publication-title: Am. J. Exp. Agric. – reference: Holoubek, I., Kořı́nek, P., Šeda, Z., Schneiderová, E., Holoubková, I., Pacl, A., Třı́ska, J., Cudlın, P., Čáslavskỳ, J., 2000. The use of mosses and pine needles to detect persistent organic pollutants at local and regional scales. Environ. Pollut. 109, 283–292. – volume: 42 start-page: 833 year: 2008 end-page: 845 ident: b0335 article-title: Accumulation histories of major and trace elements on pine needles in the Cologne Conurbation as function of air quality publication-title: Atmos. Environ. – volume: 66 start-page: 434 year: 2014 end-page: 441 ident: b0580 article-title: Some metals in aboveground biomass of Scots pine in Lithuania publication-title: Biomass Bioenergy – year: 2011 ident: b0070 article-title: Biomass densification for energy production, Ministry of Agriculture Food and Rural Affairs – volume: 312 year: 2022 ident: b0445 article-title: Sugar beet pulp: Resurgence and trailblazing journey towards a circular bioeconomy publication-title: Fuel – volume: 10 start-page: 95 year: 2020 end-page: 106 ident: b0500 article-title: Dilute acid pretreatment of pine needles of Pinus roxburghii by response surface methodology for bioethanol production by separate hydrolysis and fermentation publication-title: Biomass Convers. Biorefinery – volume: 169 year: 2021 ident: b0430 article-title: Adding value to poly (butylene succinate) and nanofibrillated cellulose-based sustainable nanocomposites by applying masterbatch process publication-title: Ind. Crops Prod. – volume: 4 start-page: 36777 year: 2014 end-page: 36783 ident: b0355 article-title: Tribological and mechanical properties of pine needle fiber reinforced friction composites under dry sliding conditions publication-title: RSC Adv. – volume: 129 start-page: 695 year: 2018 end-page: 716 ident: b0090 article-title: A comprehensive review on the pyrolysis of lignocellulosic biomass publication-title: Renew. Energy – reference: Hindustantimes, 2020. Uttarakhand gets its first pine needle power generation plant [WWW Document]. Hindustan Times. URL – volume: 29 start-page: 700 year: 2010 end-page: 709 ident: b0485 article-title: Synthesis, characterization and study of pine needles reinforced polymer matrix based composites publication-title: J. Reinf. Plast. Compos. – volume: 140 start-page: 137 year: 2019 end-page: 147 ident: b0080 article-title: Pyrolysis vs. hydrothermal carbonization: Understanding the effect of biomass structural components and inorganic compounds on the char properties publication-title: J. Anal. Appl. Pyrolysis – reference: Dickens, E.D., Moorhead, D.J., Morris, L.A., McElvany, B.C., 2003. Straw raking in southern pine stands and fertilization recommendations. – reference: Vikaspedia, 2022. vikaspedia Domains [WWW Document]. URL – volume: 37 start-page: 74 year: 2020 ident: b0345 article-title: Cr (Ⅵ) removal from wastewater using molded masson pine needles publication-title: J. Agric. Resour. Environ. – volume: 182 start-page: 1554 year: 2021 end-page: 1581 ident: b0435 article-title: Cellulose nanocrystals: Pretreatments, preparation strategies, and surface functionalization publication-title: Int. J. Biol. Macromol. – volume: 53 start-page: 4124 year: 2005 end-page: 4129 ident: b0260 article-title: Antioxidative activity of volatile extracts isolated from Angelica tenuissimae roots, peppermint leaves, pine needles, and sweet flag leaves publication-title: J. Agric. Food Chem. – volume: 310 year: 2022 ident: b0190 article-title: Biofuels production from pine needles via pyrolysis: Process parameters modeling and optimization through combined RSM and ANN based approach publication-title: Fuel – volume: 37 start-page: 493 year: 2020 end-page: 496 ident: b0300 article-title: Production of biofuels from pine needle via catalytic fast pyrolysis over HBeta publication-title: Korean J. Chem. Eng. – volume: 355 year: 2022 ident: b0375 article-title: Valorisation of industrial hemp (Cannabis sativa L.) biomass residues through acidogenic fermentation and co-fermentation for volatile fatty acids production publication-title: Bioresour. Technol. – volume: 49 start-page: 8057 year: 2014 end-page: 8062 ident: b0110 article-title: Tensile strength of pine needles and their feasibility as reinforcement in composite materials publication-title: J. Mater. Sci. – volume: 28 start-page: 223 year: 1982 end-page: 231 ident: b0170 article-title: Litterfall patterns in mature loblolly and longleaf pine stands in coastal South Carolina publication-title: For. Sci. – reference: Kumari, N., Chhabra, T., Kumar, S., Krishnan, V., 2022. Nanoarchitectonics of sulfonated biochar from pine needles as catalyst for conversion of biomass derived chemicals to value added products. Catal. Commun. 106467. – reference: Indian Express, 2016. Uttarakhand forest fire: Mi-17 choppers to spray water over burning forests | India News,The Indian Express [WWW Document]. URL https://indianexpress.com/article/india/india-news-india/uttarakhand-forest-fires-mi-17-choppers-to-spray-water-over-burning-forests-2778328/(accessed 9.1.22). – reference: Ohri, A., Ohri, J., 2007. Role of Information Technology in Energy Management, in: Proceedings of the World Congress on Engineering and Computer Science. Citeseer, pp. 24–26. – volume: 252 year: 2019 ident: b0410 article-title: Synthesis and characterization of a novel Fe3O4-loaded oxidized biochar from pine needles and its application for uranium removal. Kinetic, thermodynamic, and mechanistic analysis publication-title: J. Environ. Manage. – reference: Chakrabarty, A., 2016. Uttarakhand: Pine needles to power homes in Uttarakhand, Energy News, ET EnergyWorld [WWW Document]. URL – reference: Myers, V.R., 2022. 40 Species of Pine Trees and Shrubs [WWW Document]. The Spruce. URL – volume: 12 start-page: 1443 year: 2012 end-page: 1454 ident: b0135 article-title: A short overview on the medicinal chemistry of (—)-shikimic acid publication-title: Mini Rev. Med. Chem. – volume: 58 start-page: 21 year: 2008 end-page: 31 ident: b0475 article-title: Mechanical, morphological and thermal properties of pine needle-reinforced polymer composites publication-title: Int. J. Polym. Mater. – volume: 131897 year: 2022 ident: b0235 article-title: Perspective review on Municipal Solid Waste-to-energy route: Characteristics, management strategy, and role in circular economy publication-title: J. Clean. Prod. – volume: 4 start-page: 129 year: 1955 end-page: 135 ident: b0555 article-title: Effect of seed treatment with micro-elements on the germination and early growth of wheat publication-title: Sci. Sin. – reference: Ward, M., 2021. 16 Innovative Ways to Use Pine Needles in the Garden - Gardening [WWW Document]. URL – volume: 19 start-page: 35 year: 2010 end-page: 41 ident: b0140 article-title: Antibacterial activity of organic acids in aqueous extracts from pine needles (Pinus massoniana Lamb.) publication-title: Food Sci. Biotechnol. – volume: 13 start-page: e0192711 year: 2018 ident: b0105 article-title: Evaluation of the impact of reducing national emissions of SO2 and metals in Poland on background pollution using a bioindication method publication-title: PLoS One – volume: 223 year: 2021 ident: b0225 article-title: Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability publication-title: Fuel Process. Technol. – volume: 124 year: 2021 ident: b0265 article-title: Chitosan based antioxidant films incorporated with pine needles (Cedrus deodara) extract for active food packaging applications publication-title: Food Control – volume: 14 start-page: 12515 year: 2022 end-page: 12546 ident: b0550 article-title: Cellulose nanofibrils–graphene hybrids: recent advances in fabrication, properties, and applications publication-title: Nanoscale – volume: 340 year: 2021 ident: b0040 article-title: Trends in renewable energy production employing biomass-based biochar publication-title: Bioresour. Technol. – volume: 2 start-page: 4945 year: 2021 end-page: 4965 ident: b0440 article-title: The bright side of cellulosic hibiscus sabdariffa fibres: towards sustainable materials from the macro-to nano-scale publication-title: Mater. Adv. – volume: 286 year: 2021 ident: b0185 article-title: Catalytic pyrolysis of pine needles with nickel doped gamma-alumina: Reaction kinetics, mechanism, thermodynamics and products analysis publication-title: J. Clean. Prod. – volume: 12 start-page: 1787 year: 2022 end-page: 1802 ident: b0635 article-title: Utilization of nano-biosorbents based on pine needles and banana peel for methylene blue removal: equilibrium, kinetics, thermodynamic study, and application publication-title: Biomass Convers. Biorefinery – volume: 16 start-page: 27145 year: 2015 end-page: 27155 ident: b0030 article-title: Antibacterial activity of shikimic acid from pine needles of Cedrus deodara against Staphylococcus aureus through damage to cell membrane publication-title: Int. J. Mol. Sci. – reference: Encyclopaedia Britannica, 2022. pine | Description, Conifer, Genus, Species, Uses, Characteristics, & Facts | Britannica [WWW Document]. URL – reference: Taylor, E., Foster, C.D., 2004. Producing pine straw in East Texas forests. Tex. FARMER Collect. – volume: 5 start-page: 7909 year: 2015 end-page: 7920 ident: b0200 article-title: Removal of Malachite Green from water using hydrothermally carbonized pine needles publication-title: Rsc Adv. – volume: 39 start-page: 1339 year: 2018 end-page: 1349 ident: b0490 article-title: Potential of pine needles for PLA-based composites publication-title: Polym. Compos. – volume: 148 year: 2021 ident: b0220 article-title: 2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines publication-title: Renew. Sustain. Energy Rev. – volume: 14 start-page: 7370 year: 2013 end-page: 7390 ident: b0600 article-title: The critical role of potassium in plant stress response publication-title: Int. J. Mol. Sci. – start-page: 47 year: 2020 end-page: 59 ident: b0050 article-title: Pine needles biomass gasification based electricity generation for Indian Himalayan region: drivers and barriers publication-title: Green Build. Sustain. Eng. Springer – volume: 275 year: 2020 ident: b0455 article-title: Prioritization of barriers to energy generation using pine needles to mitigate climate change: Evidence from India publication-title: J. Clean. Prod. – reference: Uttarakhand Renewable Energy Development Agency, 2018. Uttarakhand Renewable Energy Development Agency 2018. – reference: Duryea, M.L., 1989. Pine-straw management in Florida’s forests. Florida Cooperative Extension Service, Institute of Food and Agricultural …. – reference: Hayat, A., Khan, H., Haq, R.U., Ali, M., 2017. Use of Pine-Needle Reinforced Composites in Kashmir, Pakistan–A Critical Review. – volume: 9 start-page: 12196 year: 2021 end-page: 12204 ident: b0145 article-title: Biomass waste-derived Pd–PiNe catalyst for the continuous-flow copper-free sonogashira reaction in a CPME–water azeotropic mixture publication-title: ACS Sustain. Chem. Eng. – volume: 40 start-page: 1269 year: 2015 end-page: 1278 ident: b0285 article-title: Adsorption of reactive black-5 by pine needles biochar produced via catalytic and non-catalytic pyrolysis publication-title: Arab. J. Sci. Eng. – volume: 187 year: 2022 ident: b0450 article-title: Cellulose/polyaniline hybrid nanocomposites: Design, fabrication, and emerging multidimensional applications publication-title: Ind. Crops Prod. – volume: 9 year: 2022 ident: b0175 article-title: Pine (Pinus massoniana Lamb.) needle extract supplementation improves performance, egg quality, serum parameters, and the gut microbiome in laying hens publication-title: Front. Nutr. – reference: Atabani, A.E., Tyagi, V.K., Fongaro, G., Treichel, H., Pugazhendhi, A., Hoang, A.T., 2021. Integrated biorefineries, circular bio-economy, and valorization of organic waste streams with respect to bio-products. Biomass Convers. Biorefinery. – volume: 194 start-page: 411 year: 2020 end-page: 416 ident: b0415 article-title: Thorium adsorption by oxidized biochar pine needles-the effect of particle size publication-title: Desalination Water Treat. – start-page: 1 year: 2022 end-page: 12 ident: b0025 article-title: Determination of sulfadiazine in natural waters by pine needle biochar-derivatized magnetic nanocomposite based solid-phase extraction (SPE) with High-Performance Liquid Chromatography (HPLC) publication-title: Anal. Lett. – volume: 4 start-page: 292 year: 2009 end-page: 308 ident: b0480 article-title: Study of mechanical properties of urea-formaldehyde thermosets reinforced by pine needle powder publication-title: BioResources – volume: 119 start-page: 202 year: 2015 end-page: 209 ident: b0625 article-title: Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles publication-title: Carbohydr. Polym. – volume: 136 start-page: 397 year: 2005 end-page: 407 ident: b0530 article-title: Accumulating pollutants in conifer needles on an Atlantic island–A case study with Pinus canariensis on Tenerife, Canary Islands publication-title: Environ. Pollut. – volume: 139 start-page: 139 year: 2016 end-page: 149 ident: b0370 article-title: Cellulose nanocrystals from forest residues as reinforcing agents for composites: A study from macro-to nano-dimensions publication-title: Carbohydr. Polym. – volume: 3 start-page: 161 year: 2014 end-page: 164 ident: b0045 article-title: Pine needles a source of energy for Himalayan region publication-title: Int. J. Sci. Technol. Res. – volume: 8 start-page: 843 year: 2020 end-page: 848 ident: b0275 article-title: Stabilization of soft soil with pine needles and lime publication-title: Proc. 8th IOE Grad Conf. – volume: 133 year: 2022 ident: b0115 article-title: Microbial contamination and occurrence of Bacillus cereus sensu lato, Staphylococcus aureus, and Escherichia coli on food handlers’ hands in mass catering: Comparison of the glove juice and swab methods publication-title: Food Control – volume: 8 start-page: 447 year: 2018 end-page: 454 ident: b0320 article-title: An integrated approach for extracting fuel, chemicals, and residual carbon using pine needles publication-title: Biomass Convers. Biorefinery – volume: 170 year: 2021 ident: b0035 article-title: From wood and hemp biomass wastes to sustainable nanocellulose foams publication-title: Ind. Crops Prod. – volume: 14 start-page: 4557 year: 2021 ident: b0525 article-title: Preparation of cellulose nanoparticles from foliage by bio-enzyme methods publication-title: Materials – reference: Sharma, N., 2018. IIT Roorkee to design portable briquette machines to utilise pine needles [WWW Document]. Hindustan Times. URL – volume: 146 start-page: 538 year: 2020 end-page: 543 ident: b0180 article-title: Utilization of pine needles for preparation of sheets for application as internal packaging material publication-title: Indian For. – volume: 470 start-page: 501 year: 2014 end-page: 510 ident: b0420 article-title: Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas publication-title: Sci. Total Environ. – volume: 17 start-page: 2142 year: 2005 end-page: 2155 ident: b0210 article-title: Calcium: a central regulator of plant growth and development publication-title: Plant Cell – volume: 5 start-page: 16366 year: 2020 end-page: 16378 ident: b0065 article-title: Batch and continuous fixed-bed lead removal using himalayan pine needle biochar: isotherm and kinetic studies publication-title: ACS Omega – volume: 23 start-page: 5887 year: 2021 end-page: 5895 ident: b0570 article-title: Valorisation of urban waste to access low-cost heterogeneous palladium catalysts for cross-coupling reactions in biomass-derived γ-valerolactone publication-title: Green Chem. – start-page: 1 year: 2022 end-page: 13 ident: b0125 article-title: Co-fermentation of forest pine needle waste biomass hydrolysate into bioethanol publication-title: Biomass Convers. Biorefinery – volume: 4 start-page: 200 year: 2010 end-page: 222 ident: b0305 article-title: The importance of mineral elements for humans, domestic animals and plants-A review publication-title: Afr. J. Food Sci. – volume: 278 year: 2021 ident: b0340 article-title: Metal-organic framework modified pine needle-derived N, O-doped magnetic porous carbon embedded with Au nanoparticles for adsorption and catalytic degradation of tetracycline publication-title: J. Clean. Prod. – reference: . – volume: 15 start-page: 1654 year: 2022 ident: b0595 article-title: Study on compression deformation and damage characteristics of pine needle fiber-reinforced concrete using DIC publication-title: Materials – volume: 170 year: 2021 ident: b0310 article-title: Pine needles lignocellulosic ethylene scavenging paper impregnated with nanozeolite for active packaging applications publication-title: Ind. Crops Prod. – reference: Web page, 2022. Cithr, Briquettes and pellets produced at center [WWW Document]. URL – volume: 57 start-page: 33 year: 2020 end-page: 46 ident: b0290 article-title: Effect of pine needle fibers on properties of cementitious mortars: pine needles-reinforced mortars publication-title: Proc. Pak. Acad. Sci. Phys. Comput. Sci. – volume: 302 year: 2021 ident: b0590 article-title: Complete stress–strain curves for pine needle fibre reinforced concrete under compression publication-title: Constr. Build. Mater. – reference: Usmani, Z., Sharma, M., Awasthi, A.K., Sivakumar, N., Lukk, T., Pecoraro, L., Thakur, V.K., Roberts, D., Newbold, J., Gupta, V.K., 2020. Bioprocessing of waste biomass for sustainable product development and minimizing environmental impact. Bioresour. Technol. 124548. – volume: 131 start-page: 2057 year: 2018 end-page: 2072 ident: b0575 article-title: Pyrolysis of pine needles: effects of process parameters on products yield and analysis of products publication-title: J. Therm. Anal. Calorim. – volume: 56 start-page: 162 year: 2006 end-page: 171 ident: b0330 article-title: Antioxidant, antimutagenic, and antitumor effects of pine needles (Pinus densiflora) publication-title: Nutr. Cancer – volume: 187 start-page: 205 year: 2018 end-page: 213 ident: b0250 article-title: Assessment of the mechanical performance of three varieties of pine needles as natural reinforcement of adobe publication-title: Constr. Build. Mater. – volume: 49 start-page: 694 year: 2010 end-page: 700 ident: bib648 article-title: Mechanical and Water Absorption Properties of Natural Fibers/Polymer Biocomposites publication-title: Polym.-Plast. Technol. Eng. – volume: 278 year: 2021 ident: b0350 article-title: Effect of pine needle fibre reinforcement on the mechanical properties of concrete publication-title: Constr. Build. Mater. – reference: Sundseth, K., 2009. Natura 2000 in the Mediterranean region. – volume: 16 start-page: 4339 year: 2019 ident: 10.1016/j.biortech.2022.128255_b0255 article-title: Metals in pine needles: Characterisation of bio-indicators depending on species publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-018-2096-x – volume: 19 start-page: 35 year: 2010 ident: 10.1016/j.biortech.2022.128255_b0140 article-title: Antibacterial activity of organic acids in aqueous extracts from pine needles (Pinus massoniana Lamb.) publication-title: Food Sci. Biotechnol. doi: 10.1007/s10068-010-0005-2 – volume: 42 start-page: 833 year: 2008 ident: 10.1016/j.biortech.2022.128255_b0335 article-title: Accumulation histories of major and trace elements on pine needles in the Cologne Conurbation as function of air quality publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2007.10.025 – volume: 139 start-page: 139 year: 2016 ident: 10.1016/j.biortech.2022.128255_b0370 article-title: Cellulose nanocrystals from forest residues as reinforcing agents for composites: A study from macro-to nano-dimensions publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2015.12.020 – ident: 10.1016/j.biortech.2022.128255_b0465 – volume: 133 year: 2022 ident: 10.1016/j.biortech.2022.128255_b0115 article-title: Microbial contamination and occurrence of Bacillus cereus sensu lato, Staphylococcus aureus, and Escherichia coli on food handlers’ hands in mass catering: Comparison of the glove juice and swab methods publication-title: Food Control doi: 10.1016/j.foodcont.2021.108567 – ident: 10.1016/j.biortech.2022.128255_b0130 – ident: 10.1016/j.biortech.2022.128255_b0150 – start-page: 77 year: 2014 ident: 10.1016/j.biortech.2022.128255_b0495 article-title: Element content of Scots pine (Pinus sylvestris L.) stands of different densities publication-title: Drew. Pr. Nauk. Doniesienia Komun. – volume: 131897 year: 2022 ident: 10.1016/j.biortech.2022.128255_b0235 article-title: Perspective review on Municipal Solid Waste-to-energy route: Characteristics, management strategy, and role in circular economy publication-title: J. Clean. Prod. – ident: 10.1016/j.biortech.2022.128255_b0215 – volume: 12 start-page: 3663 year: 2022 ident: 10.1016/j.biortech.2022.128255_b0520 article-title: Enhanced C-5 sugar production from pine needle waste biomass using Bacillus sp. XPB-11 mutant and its biotransformation to bioethanol publication-title: Biomass Convers. Biorefinery doi: 10.1007/s13399-021-01277-4 – start-page: 752 year: 2012 ident: 10.1016/j.biortech.2022.128255_b0630 article-title: Study on extraction of Shikimic acid from pine needles of Pinus Elliottii Engelm by means of microwave pretreatment publication-title: Adv. Mater. Res. Trans. Tech. Publ. – volume: 278 year: 2021 ident: 10.1016/j.biortech.2022.128255_b0340 article-title: Metal-organic framework modified pine needle-derived N, O-doped magnetic porous carbon embedded with Au nanoparticles for adsorption and catalytic degradation of tetracycline publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.123575 – volume: 187 year: 2022 ident: 10.1016/j.biortech.2022.128255_b0450 article-title: Cellulose/polyaniline hybrid nanocomposites: Design, fabrication, and emerging multidimensional applications publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2022.115356 – volume: 10 start-page: 95 year: 2020 ident: 10.1016/j.biortech.2022.128255_b0500 article-title: Dilute acid pretreatment of pine needles of Pinus roxburghii by response surface methodology for bioethanol production by separate hydrolysis and fermentation publication-title: Biomass Convers. Biorefinery doi: 10.1007/s13399-019-00433-1 – start-page: 1 year: 2022 ident: 10.1016/j.biortech.2022.128255_b0125 article-title: Co-fermentation of forest pine needle waste biomass hydrolysate into bioethanol publication-title: Biomass Convers. Biorefinery – volume: 286 year: 2021 ident: 10.1016/j.biortech.2022.128255_b0185 article-title: Catalytic pyrolysis of pine needles with nickel doped gamma-alumina: Reaction kinetics, mechanism, thermodynamics and products analysis publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.124930 – volume: 143 start-page: 615 year: 2013 ident: 10.1016/j.biortech.2022.128255_b0005 article-title: Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.06.033 – volume: 9 start-page: 12196 year: 2021 ident: 10.1016/j.biortech.2022.128255_b0145 article-title: Biomass waste-derived Pd–PiNe catalyst for the continuous-flow copper-free sonogashira reaction in a CPME–water azeotropic mixture publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.1c03634 – ident: 10.1016/j.biortech.2022.128255_b0160 doi: 10.33015/dominican.edu/2017.HONORS.ST.12 – ident: 10.1016/j.biortech.2022.128255_b0365 – volume: 8 start-page: 843 year: 2020 ident: 10.1016/j.biortech.2022.128255_b0275 article-title: Stabilization of soft soil with pine needles and lime publication-title: Proc. 8th IOE Grad Conf. – volume: 169 year: 2021 ident: 10.1016/j.biortech.2022.128255_b0430 article-title: Adding value to poly (butylene succinate) and nanofibrillated cellulose-based sustainable nanocomposites by applying masterbatch process publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2021.113669 – volume: 49 start-page: 694 year: 2010 ident: 10.1016/j.biortech.2022.128255_bib648 article-title: Mechanical and Water Absorption Properties of Natural Fibers/Polymer Biocomposites publication-title: Polym.-Plast. Technol. Eng. doi: 10.1080/03602551003682067 – volume: 14 start-page: 12515 year: 2022 ident: 10.1016/j.biortech.2022.128255_b0550 article-title: Cellulose nanofibrils–graphene hybrids: recent advances in fabrication, properties, and applications publication-title: Nanoscale doi: 10.1039/D2NR01967A – volume: 2 start-page: 4945 year: 2021 ident: 10.1016/j.biortech.2022.128255_b0440 article-title: The bright side of cellulosic hibiscus sabdariffa fibres: towards sustainable materials from the macro-to nano-scale publication-title: Mater. Adv. doi: 10.1039/D1MA00429H – volume: 66 start-page: 434 year: 2014 ident: 10.1016/j.biortech.2022.128255_b0580 article-title: Some metals in aboveground biomass of Scots pine in Lithuania publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2014.03.047 – volume: 6 start-page: 1556 year: 2011 ident: 10.1016/j.biortech.2022.128255_b0165 article-title: Utilization of pine needles as bed material in solid state fermentation for production of lactic acid by lactobacillus strains publication-title: BioResources doi: 10.15376/biores.6.2.1556-1575 – volume: 10 start-page: 2415 year: 2019 ident: 10.1016/j.biortech.2022.128255_b0360 article-title: Briquetting of pine needles (Pinus roxburgii) and their physical, handling and combustion properties publication-title: Waste Biomass Valorization doi: 10.1007/s12649-018-0239-4 – volume: 3 start-page: 161 year: 2014 ident: 10.1016/j.biortech.2022.128255_b0045 article-title: Pine needles a source of energy for Himalayan region publication-title: Int. J. Sci. Technol. Res. – year: 2012 ident: 10.1016/j.biortech.2022.128255_b0280 – ident: 10.1016/j.biortech.2022.128255_b0245 – volume: 5 start-page: 1055 year: 2008 ident: 10.1016/j.biortech.2022.128255_b0470 article-title: Synthesis and characterization of pine needles reinforced RF matrix based biocomposites publication-title: E-J. Chem. – volume: 28 start-page: 223 year: 1982 ident: 10.1016/j.biortech.2022.128255_b0170 article-title: Litterfall patterns in mature loblolly and longleaf pine stands in coastal South Carolina publication-title: For. Sci. – volume: 29 start-page: 700 year: 2010 ident: 10.1016/j.biortech.2022.128255_b0485 article-title: Synthesis, characterization and study of pine needles reinforced polymer matrix based composites publication-title: J. Reinf. Plast. Compos. doi: 10.1177/0731684408100354 – volume: 170 year: 2021 ident: 10.1016/j.biortech.2022.128255_b0310 article-title: Pine needles lignocellulosic ethylene scavenging paper impregnated with nanozeolite for active packaging applications publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2021.113752 – volume: 40 start-page: 1269 year: 2015 ident: 10.1016/j.biortech.2022.128255_b0285 article-title: Adsorption of reactive black-5 by pine needles biochar produced via catalytic and non-catalytic pyrolysis publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-015-1601-5 – volume: 22 start-page: 1006 year: 2010 ident: 10.1016/j.biortech.2022.128255_b0510 article-title: Concentrations of heavy metals and polycyclic aromatic hydrocarbons in needles of Masson pine (Pinus massoniana L.) growing nearby different industrial sources publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(09)60211-4 – volume: 14 start-page: 7370 year: 2013 ident: 10.1016/j.biortech.2022.128255_b0600 article-title: The critical role of potassium in plant stress response publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms14047370 – volume: 25 year: 2022 ident: 10.1016/j.biortech.2022.128255_b0400 article-title: Valorization of waste pine needle biomass into biosorbents for the removal of methylene blue dye from water: Kinetics, equilibrium and thermodynamics study publication-title: Environ. Technol. Innov. doi: 10.1016/j.eti.2021.102200 – volume: 4 start-page: 200 year: 2010 ident: 10.1016/j.biortech.2022.128255_b0305 article-title: The importance of mineral elements for humans, domestic animals and plants-A review publication-title: Afr. J. Food Sci. – ident: 10.1016/j.biortech.2022.128255_b0515 – ident: 10.1016/j.biortech.2022.128255_b0605 – volume: 140 start-page: 137 year: 2019 ident: 10.1016/j.biortech.2022.128255_b0080 article-title: Pyrolysis vs. hydrothermal carbonization: Understanding the effect of biomass structural components and inorganic compounds on the char properties publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2019.03.007 – volume: 15 start-page: 1654 year: 2022 ident: 10.1016/j.biortech.2022.128255_b0595 article-title: Study on compression deformation and damage characteristics of pine needle fiber-reinforced concrete using DIC publication-title: Materials doi: 10.3390/ma15051654 – volume: 7 start-page: 903 year: 2019 ident: 10.1016/j.biortech.2022.128255_b0385 article-title: Copper adsorption by magnetized pine-needle biochar publication-title: Processes doi: 10.3390/pr7120903 – volume: 37 start-page: 493 year: 2020 ident: 10.1016/j.biortech.2022.128255_b0300 article-title: Production of biofuels from pine needle via catalytic fast pyrolysis over HBeta publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-019-0467-8 – volume: 278 year: 2021 ident: 10.1016/j.biortech.2022.128255_b0350 article-title: Effect of pine needle fibre reinforcement on the mechanical properties of concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.122333 – volume: 57 start-page: 33 year: 2020 ident: 10.1016/j.biortech.2022.128255_b0290 article-title: Effect of pine needle fibers on properties of cementitious mortars: pine needles-reinforced mortars publication-title: Proc. Pak. Acad. Sci. Phys. Comput. Sci. – volume: 146 start-page: 538 year: 2020 ident: 10.1016/j.biortech.2022.128255_b0180 article-title: Utilization of pine needles for preparation of sheets for application as internal packaging material publication-title: Indian For. – volume: 18 start-page: 29 year: 2015 ident: 10.1016/j.biortech.2022.128255_b0085 article-title: Comparative analysis of pine needles and coal for electricity generation using carbon taxation and emission reductions publication-title: Acta Technol. Agric. – volume: 310 year: 2022 ident: 10.1016/j.biortech.2022.128255_b0190 article-title: Biofuels production from pine needles via pyrolysis: Process parameters modeling and optimization through combined RSM and ANN based approach publication-title: Fuel doi: 10.1016/j.fuel.2021.122230 – volume: 8 start-page: 447 year: 2018 ident: 10.1016/j.biortech.2022.128255_b0320 article-title: An integrated approach for extracting fuel, chemicals, and residual carbon using pine needles publication-title: Biomass Convers. Biorefinery doi: 10.1007/s13399-018-0304-z – volume: 5 start-page: 16366 year: 2020 ident: 10.1016/j.biortech.2022.128255_b0065 article-title: Batch and continuous fixed-bed lead removal using himalayan pine needle biochar: isotherm and kinetic studies publication-title: ACS Omega doi: 10.1021/acsomega.0c00216 – ident: 10.1016/j.biortech.2022.128255_b0565 – volume: 70 start-page: 492 year: 2016 ident: 10.1016/j.biortech.2022.128255_b0405 article-title: Antithrombosis activity of protocatechuic and shikimic acids from functional plant Pinus densiflora Sieb. et Zucc needles publication-title: J. Nat. Med. doi: 10.1007/s11418-015-0956-y – ident: 10.1016/j.biortech.2022.128255_b0395 – volume: 13 start-page: e0192711 year: 2018 ident: 10.1016/j.biortech.2022.128255_b0105 article-title: Evaluation of the impact of reducing national emissions of SO2 and metals in Poland on background pollution using a bioindication method publication-title: PLoS One doi: 10.1371/journal.pone.0192711 – volume: 470 start-page: 501 year: 2014 ident: 10.1016/j.biortech.2022.128255_b0420 article-title: Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.10.008 – ident: 10.1016/j.biortech.2022.128255_b0095 – volume: 50 start-page: 11253 year: 2016 ident: 10.1016/j.biortech.2022.128255_b0545 article-title: Environmental comparison of biochar and activated carbon for tertiary wastewater treatment publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b03239 – ident: 10.1016/j.biortech.2022.128255_b0585 – volume: 12 start-page: 1787 year: 2022 ident: 10.1016/j.biortech.2022.128255_b0635 article-title: Utilization of nano-biosorbents based on pine needles and banana peel for methylene blue removal: equilibrium, kinetics, thermodynamic study, and application publication-title: Biomass Convers. Biorefinery doi: 10.1007/s13399-021-02191-5 – volume: 131 start-page: 2057 year: 2018 ident: 10.1016/j.biortech.2022.128255_b0575 article-title: Pyrolysis of pine needles: effects of process parameters on products yield and analysis of products publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-017-6727-0 – volume: 5 start-page: 7909 year: 2015 ident: 10.1016/j.biortech.2022.128255_b0200 article-title: Removal of Malachite Green from water using hydrothermally carbonized pine needles publication-title: Rsc Adv. doi: 10.1039/C4RA15505J – volume: 43 start-page: 1419 year: 2012 ident: 10.1016/j.biortech.2022.128255_b0100 article-title: Critical review of recent publications on use of natural composites in infrastructure publication-title: Compos. Part Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2011.11.019 – ident: 10.1016/j.biortech.2022.128255_b0295 – volume: 302 year: 2021 ident: 10.1016/j.biortech.2022.128255_b0590 article-title: Complete stress–strain curves for pine needle fibre reinforced concrete under compression publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.124134 – volume: 4 start-page: 292 year: 2009 ident: 10.1016/j.biortech.2022.128255_b0480 article-title: Study of mechanical properties of urea-formaldehyde thermosets reinforced by pine needle powder publication-title: BioResources doi: 10.15376/biores.4.1.292-308 – ident: 10.1016/j.biortech.2022.128255_b0060 – volume: 17 start-page: 2142 year: 2005 ident: 10.1016/j.biortech.2022.128255_b0210 article-title: Calcium: a central regulator of plant growth and development publication-title: Plant Cell doi: 10.1105/tpc.105.032508 – volume: 16 start-page: 27145 year: 2015 ident: 10.1016/j.biortech.2022.128255_b0030 article-title: Antibacterial activity of shikimic acid from pine needles of Cedrus deodara against Staphylococcus aureus through damage to cell membrane publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms161126015 – volume: 9 year: 2022 ident: 10.1016/j.biortech.2022.128255_b0175 article-title: Pine (Pinus massoniana Lamb.) needle extract supplementation improves performance, egg quality, serum parameters, and the gut microbiome in laying hens publication-title: Front. Nutr. – volume: 136 start-page: 397 year: 2005 ident: 10.1016/j.biortech.2022.128255_b0530 article-title: Accumulating pollutants in conifer needles on an Atlantic island–A case study with Pinus canariensis on Tenerife, Canary Islands publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2005.01.020 – ident: 10.1016/j.biortech.2022.128255_b0205 – start-page: 47 year: 2020 ident: 10.1016/j.biortech.2022.128255_b0050 article-title: Pine needles biomass gasification based electricity generation for Indian Himalayan region: drivers and barriers publication-title: Green Build. Sustain. Eng. Springer doi: 10.1007/978-981-15-1063-2_4 – volume: 33 start-page: 257 year: 2010 ident: 10.1016/j.biortech.2022.128255_b0540 article-title: Natural fibres-based polymers: Part I—Mechanical analysis of Pine needles reinforced biocomposites publication-title: Bull. Mater. Sci. doi: 10.1007/s12034-010-0040-x – ident: 10.1016/j.biortech.2022.128255_b0390 – volume: 194 start-page: 411 year: 2020 ident: 10.1016/j.biortech.2022.128255_b0415 article-title: Thorium adsorption by oxidized biochar pine needles-the effect of particle size publication-title: Desalination Water Treat. doi: 10.5004/dwt.2020.25445 – volume: 56 start-page: 162 year: 2006 ident: 10.1016/j.biortech.2022.128255_b0330 article-title: Antioxidant, antimutagenic, and antitumor effects of pine needles (Pinus densiflora) publication-title: Nutr. Cancer doi: 10.1207/s15327914nc5602_7 – volume: 275 year: 2020 ident: 10.1016/j.biortech.2022.128255_b0455 article-title: Prioritization of barriers to energy generation using pine needles to mitigate climate change: Evidence from India publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.123840 – volume: 53 start-page: 4124 year: 2005 ident: 10.1016/j.biortech.2022.128255_b0260 article-title: Antioxidative activity of volatile extracts isolated from Angelica tenuissimae roots, peppermint leaves, pine needles, and sweet flag leaves publication-title: J. Agric. Food Chem. doi: 10.1021/jf047932x – volume: 4 start-page: 129 year: 1955 ident: 10.1016/j.biortech.2022.128255_b0555 article-title: Effect of seed treatment with micro-elements on the germination and early growth of wheat publication-title: Sci. Sin. – ident: 10.1016/j.biortech.2022.128255_b0270 doi: 10.1051/e3sconf/20172304001 – volume: 252 year: 2019 ident: 10.1016/j.biortech.2022.128255_b0410 article-title: Synthesis and characterization of a novel Fe3O4-loaded oxidized biochar from pine needles and its application for uranium removal. Kinetic, thermodynamic, and mechanistic analysis publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2019.109677 – ident: 10.1016/j.biortech.2022.128255_b0020 doi: 10.1007/s13399-021-02017-4 – start-page: 1 year: 2022 ident: 10.1016/j.biortech.2022.128255_b0315 article-title: Quality preservation in banana fruits packed in pine needle and halloysite nanotube-based ethylene gas scavenging paper during storage publication-title: Biomass Convers. Biorefinery – volume: 4 start-page: 36777 year: 2014 ident: 10.1016/j.biortech.2022.128255_b0355 article-title: Tribological and mechanical properties of pine needle fiber reinforced friction composites under dry sliding conditions publication-title: RSC Adv. doi: 10.1039/C4RA06717G – ident: 10.1016/j.biortech.2022.128255_b0240 doi: 10.1016/S0269-7491(99)00260-2 – volume: 62 start-page: 226 year: 2013 ident: 10.1016/j.biortech.2022.128255_bib647 article-title: Fabrication and Physico-Chemical Properties of High-Performance Pine Needles/Green Polymer Composites publication-title: Int. J. Polym. Mater. Polym. Biomater. doi: 10.1080/00914037.2011.641694 – volume: 124 year: 2021 ident: 10.1016/j.biortech.2022.128255_b0265 article-title: Chitosan based antioxidant films incorporated with pine needles (Cedrus deodara) extract for active food packaging applications publication-title: Food Control doi: 10.1016/j.foodcont.2021.107877 – volume: 304 year: 2020 ident: 10.1016/j.biortech.2022.128255_b0015 article-title: Oxidized biochar obtained from pine needles as a novel adsorbent to remove caffeine from aqueous solutions publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.112661 – volume: 58 start-page: 21 year: 2008 ident: 10.1016/j.biortech.2022.128255_b0475 article-title: Mechanical, morphological and thermal properties of pine needle-reinforced polymer composites publication-title: Int. J. Polym. Mater. doi: 10.1080/00914030802461857 – volume: 19 start-page: 3 year: 2010 ident: 10.1016/j.biortech.2022.128255_bib649 article-title: Physico-Chemical And Mechanical Characterization Of Natural Fibre Reinforced Polymer Composites publication-title: Iran. Polym. J. – year: 2020 ident: 10.1016/j.biortech.2022.128255_b0615 – volume: 12 start-page: 1443 year: 2012 ident: 10.1016/j.biortech.2022.128255_b0135 article-title: A short overview on the medicinal chemistry of (—)-shikimic acid publication-title: Mini Rev. Med. Chem. doi: 10.2174/138955712803832735 – volume: 187 start-page: 205 year: 2018 ident: 10.1016/j.biortech.2022.128255_b0250 article-title: Assessment of the mechanical performance of three varieties of pine needles as natural reinforcement of adobe publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.07.187 – volume: 340 year: 2021 ident: 10.1016/j.biortech.2022.128255_b0040 article-title: Trends in renewable energy production employing biomass-based biochar publication-title: Bioresour. Technol. – volume: 129 start-page: 695 year: 2018 ident: 10.1016/j.biortech.2022.128255_b0090 article-title: A comprehensive review on the pyrolysis of lignocellulosic biomass publication-title: Renew. Energy doi: 10.1016/j.renene.2017.04.035 – ident: 10.1016/j.biortech.2022.128255_b0535 – volume: 16 start-page: e00970 year: 2022 ident: 10.1016/j.biortech.2022.128255_b0075 article-title: Investigation of mechanical properties of red pine needle fiber reinforced self-compacting ultra high performance concrete publication-title: Case Stud. Constr. Mater. – volume: 9 start-page: 5 year: 2019 ident: 10.1016/j.biortech.2022.128255_b0010 article-title: Nickel toxicity induced changes in nutrient dynamics and antioxidant profiling in two maize (Zea mays L.) hybrids publication-title: Plants doi: 10.3390/plants9010005 – volume: 10 start-page: 3079 year: 2022 ident: 10.1016/j.biortech.2022.128255_b0230 article-title: Catalyst-based synthesis of 2, 5-dimethylfuran from carbohydrates as a sustainable biofuel production route publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.1c06363 – year: 2011 ident: 10.1016/j.biortech.2022.128255_b0070 – volume: 148 year: 2021 ident: 10.1016/j.biortech.2022.128255_b0220 article-title: 2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines publication-title: Renew. Sustain. Energy Rev. – ident: 10.1016/j.biortech.2022.128255_b0610 – volume: 153 start-page: 78 year: 2012 ident: 10.1016/j.biortech.2022.128255_b0640 article-title: Antibacterial activity of water-soluble extract from pine needles of Cedrus deodara publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2011.10.019 – start-page: 1 year: 2022 ident: 10.1016/j.biortech.2022.128255_b0025 article-title: Determination of sulfadiazine in natural waters by pine needle biochar-derivatized magnetic nanocomposite based solid-phase extraction (SPE) with High-Performance Liquid Chromatography (HPLC) publication-title: Anal. Lett. – volume: 85 start-page: 276 year: 2009 ident: 10.1016/j.biortech.2022.128255_b0155 article-title: Kinetics of pyrolysis and combustion of pine needles and cones publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2008.11.015 – ident: 10.1016/j.biortech.2022.128255_b0325 doi: 10.1016/j.catcom.2022.106467 – start-page: 8 year: 2005 ident: 10.1016/j.biortech.2022.128255_b0055 – volume: 355 year: 2022 ident: 10.1016/j.biortech.2022.128255_b0375 article-title: Valorisation of industrial hemp (Cannabis sativa L.) biomass residues through acidogenic fermentation and co-fermentation for volatile fatty acids production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.127289 – volume: 223 year: 2021 ident: 10.1016/j.biortech.2022.128255_b0225 article-title: Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2021.106997 – volume: 109165 year: 2022 ident: 10.1016/j.biortech.2022.128255_b0505 article-title: Nanozymes for foodborne microbial contaminants detection: Mechanisms, recent advances, and challenges publication-title: Food Control – ident: 10.1016/j.biortech.2022.128255_b0560 doi: 10.1016/j.biortech.2020.124548 – volume: 119 start-page: 202 year: 2015 ident: 10.1016/j.biortech.2022.128255_b0625 article-title: Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2014.11.041 – volume: 120 start-page: 9304 year: 2020 ident: 10.1016/j.biortech.2022.128255_bib646 article-title: Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00553 – volume: 37 start-page: 74 year: 2020 ident: 10.1016/j.biortech.2022.128255_b0345 article-title: Cr (Ⅵ) removal from wastewater using molded masson pine needles publication-title: J. Agric. Resour. Environ. – ident: 10.1016/j.biortech.2022.128255_b0425 – volume: 182 start-page: 1554 year: 2021 ident: 10.1016/j.biortech.2022.128255_b0435 article-title: Cellulose nanocrystals: Pretreatments, preparation strategies, and surface functionalization publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.05.119 – volume: 13 start-page: 563 year: 2013 ident: 10.1016/j.biortech.2022.128255_b0460 article-title: Assessment of airborne heavy metal pollution using Pinus spp. and Tilia spp publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2012.06.0153 – ident: 10.1016/j.biortech.2022.128255_b0380 – volume: 40 start-page: 186 year: 2019 ident: 10.1016/j.biortech.2022.128255_b0620 article-title: Selective adsorption and removal ability of pine needle-based activated carbon towards Al (III) from La (III) publication-title: J. Dispers. Sci. Technol. doi: 10.1080/01932691.2018.1464933 – volume: 161 year: 2021 ident: 10.1016/j.biortech.2022.128255_b0645 article-title: Enzymatic engineering of nanometric cellulose for sustainable polypropylene nanocomposites publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2020.113188 – volume: 23 start-page: 5887 year: 2021 ident: 10.1016/j.biortech.2022.128255_b0570 article-title: Valorisation of urban waste to access low-cost heterogeneous palladium catalysts for cross-coupling reactions in biomass-derived γ-valerolactone publication-title: Green Chem. doi: 10.1039/D1GC01707A – volume: 312 year: 2022 ident: 10.1016/j.biortech.2022.128255_b0445 article-title: Sugar beet pulp: Resurgence and trailblazing journey towards a circular bioeconomy publication-title: Fuel doi: 10.1016/j.fuel.2021.122953 – volume: 14 start-page: 4557 year: 2021 ident: 10.1016/j.biortech.2022.128255_b0525 article-title: Preparation of cellulose nanoparticles from foliage by bio-enzyme methods publication-title: Materials doi: 10.3390/ma14164557 – ident: 10.1016/j.biortech.2022.128255_b0120 – volume: 39 start-page: 1339 year: 2018 ident: 10.1016/j.biortech.2022.128255_b0490 article-title: Potential of pine needles for PLA-based composites publication-title: Polym. Compos. doi: 10.1002/pc.24074 – volume: 170 year: 2021 ident: 10.1016/j.biortech.2022.128255_b0035 article-title: From wood and hemp biomass wastes to sustainable nanocellulose foams publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2021.113780 – volume: 3 start-page: 374 year: 2013 ident: 10.1016/j.biortech.2022.128255_b0195 article-title: Role of zinc in plant nutrition-a review publication-title: Am. J. Exp. Agric. – volume: 49 start-page: 8057 year: 2014 ident: 10.1016/j.biortech.2022.128255_b0110 article-title: Tensile strength of pine needles and their feasibility as reinforcement in composite materials publication-title: J. Mater. Sci. doi: 10.1007/s10853-014-8513-8 |
SSID | ssj0003172 |
Score | 2.6309083 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Chemical composition, physicochemical properties and extraction of nano cellulose.•Need of pine needles valorisation and their utilisation... Pine needles (PNs) are one of the largest bio-polymer produced worldwide. Its waste, i.e., fallen PNs, is mostly responsible for forest fires and is a major... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 128255 |
SubjectTerms | air quality Bio-adsorbents biocatalysts bioeconomics bioethanol biopolymers biorefining cellulose Electronic devices ethylene fermentation forests Gasification magnetism Packaging materials Pine needles Polymer composites pyrolysis saccharification strength (mechanics) wastes water purification |
Title | Cellulosic pine needles-based biorefinery for a circular bioeconomy |
URI | https://dx.doi.org/10.1016/j.biortech.2022.128255 https://www.proquest.com/docview/2734617163 https://www.proquest.com/docview/3153845981 |
Volume | 367 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QHIADggFiPKYicc0ebdJ2x6liGiC4wKTdorRxUFHVTXscuPDbsfuAgTRx4NrYUmQ7_pzGD8Zueh7GwMZYbjwruYi1x_tSBlyGBk0K8D4WUnHy45M_Gov7iZxssaiuhaG0ysr3lz698NbVl04lzc4sTTvPFHyHEiEGMUziWaEKdhGQlbc_vtM8EB-LlwQk5kS9ViX81o5TymgtHiVct92jOk65CaB-ueoCf4aH7KAKHJ1BubcjtgV5g-0PXudV8wxosN2ont6GK2uNBo9ZFEGWrbIpqsSZ4WcHV0wGC04gZhzaIFgqA3x3MIh1tJOk8yJBlZagqF1-P2Hj4e1LNOLV-ASeIOwuuQRwpcGATNvAgBsLAb0gcQVY6xmBwB5oCMEIgeQ2MbKPV61uEvsyQcxOLHinbDuf5nDGnNgHPPkadGh9YUIba4ksMtSmCyAsNJmsZaaSqrc4jbjIVJ1E9qZqWSuStSpl3WSdL75Z2V3jT45-rRL1w04UQsCfvNe1DhVqg15GdA7T1UJRjx-fGgd5m2k8wgYh-2Hv_B97uGB7NLC-_IlzybaX8xVcYVizjFuF3bbYzuDuYfT0CZJ_-Qg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTyMxDLZKOQAHxGsFy7LMSnsNpTPxdHqsRqCytL0sSNyizMRZFY3aqrQH_v3a80DdlRAHrpNYiuzEnzOxPwP87EYcAzvnlYs8Kp3ZSPURewoTx1uK-D6WSHHyeBIPH_WvJ3xqQdrUwkhaZe37K59eeuv6S6fWZmcxnXZ-S_CdIEMMYxjyWdmCbWGnwjZsD-7uh5M3h8wQWT4m8HwlAhuFws9X2VSSWst3iTC86kopJ76HUf956xKCbg9gv44dg0G1vENo0ewI9gZ_ljV_Bh3BTto0cOORDa7BY0hTKop1MWerBAv-HPCIK-hFCY65QBZIXioBXwOOYwMb5NNlmaMqQ1SWL7-ewOPtzUM6VHUHBZUz8q4UEoXoOCazvucozLSmbi8PNXkfOc3Y3rOUkNOap_vcYZ9vW9d5FmPOsJ17ir5Aezaf0SkEWUx8-C3ZxMfaJT6zyCKYWHdNpD2dATY6M3lNLy5dLgrT5JE9m0bXRnRtKl2fQedNblERbHwo0W9MYv7ZKoZR4EPZH40NDVtDHkfsjObrFyM0P7FwB0Xvz4kEHjT2k-7XT6zhEnaGD-ORGd1N7s9hV_rXV_90vkF7tVzTBUc5q-x7vYv_AhQ8-7k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cellulosic+pine+needles-based+biorefinery+for+a+circular+bioeconomy&rft.jtitle=Bioresource+technology&rft.au=Rana%2C+Ashvinder+K.&rft.au=Guleria%2C+Sanjay&rft.au=Gupta%2C+Vijai+Kumar&rft.au=Thakur%2C+Vijay+Kumar&rft.date=2023-01-01&rft.issn=0960-8524&rft.volume=367&rft.spage=128255&rft_id=info:doi/10.1016%2Fj.biortech.2022.128255&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biortech_2022_128255 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |