Extended mechanical loads for the analysis of acetabular cages

To analyse the strength and mechanical behaviour of hip implants, it is essential to employ an appropriate loading model. Generating computational models supplemented with muscle forces is a complicated task, especially in the initial phase of implant development. This research aims to expand the po...

Full description

Saved in:
Bibliographic Details
Published inBiomechanics and modeling in mechanobiology Vol. 22; no. 4; pp. 1411 - 1423
Main Authors Dóczi, Martin O., Sződy, Róbert, Zwierczyk, Péter T.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To analyse the strength and mechanical behaviour of hip implants, it is essential to employ an appropriate loading model. Generating computational models supplemented with muscle forces is a complicated task, especially in the initial phase of implant development. This research aims to expand the possibilities of the simpler acetabular cage model based on joint loads without significantly increasing the demand for computing resources. A Python script covered and grouped the loads from daily activities. The ten calculated major loads were compared with the maximum of the walking and stair climbing loads through the finite element analyses of a custom-made acetabular cage. Sensitivity analyses were performed for the surrounding bones’ elastic modulus and the pelvis boundary conditions. The major loads can geometrically cover the entire load spectrum of daily activities. The effect of many high-magnitude force vectors is uncertain in the approach that uses the most common maximum loads. Using these resultant major loads, a new stress concentration area could be detected on the acetabular cage, besides the stress concentration areas induced by the loads reported in the literature. The qualitative correctness of the results is also supported by a control computed tomography scan: a fracture occurred in an extensive, high-stress zone. The results are not sensitive to changes in the elastic modulus of the surrounding bone and the boundary conditions of the model. The presented load vectors and the algorithm make more extensive static analyses possible with little computational overhead. The proposed method can be used for checking the static strength of similar implants.
AbstractList To analyse the strength and mechanical behaviour of hip implants, it is essential to employ an appropriate loading model. Generating computational models supplemented with muscle forces is a complicated task, especially in the initial phase of implant development. This research aims to expand the possibilities of the simpler acetabular cage model based on joint loads without significantly increasing the demand for computing resources. A Python script covered and grouped the loads from daily activities. The ten calculated major loads were compared with the maximum of the walking and stair climbing loads through the finite element analyses of a custom-made acetabular cage. Sensitivity analyses were performed for the surrounding bones’ elastic modulus and the pelvis boundary conditions. The major loads can geometrically cover the entire load spectrum of daily activities. The effect of many high-magnitude force vectors is uncertain in the approach that uses the most common maximum loads. Using these resultant major loads, a new stress concentration area could be detected on the acetabular cage, besides the stress concentration areas induced by the loads reported in the literature. The qualitative correctness of the results is also supported by a control computed tomography scan: a fracture occurred in an extensive, high-stress zone. The results are not sensitive to changes in the elastic modulus of the surrounding bone and the boundary conditions of the model. The presented load vectors and the algorithm make more extensive static analyses possible with little computational overhead. The proposed method can be used for checking the static strength of similar implants.
To analyse the strength and mechanical behaviour of hip implants, it is essential to employ an appropriate loading model. Generating computational models supplemented with muscle forces is a complicated task, especially in the initial phase of implant development. This research aims to expand the possibilities of the simpler acetabular cage model based on joint loads without significantly increasing the demand for computing resources. A Python script covered and grouped the loads from daily activities. The ten calculated major loads were compared with the maximum of the walking and stair climbing loads through the finite element analyses of a custom-made acetabular cage. Sensitivity analyses were performed for the surrounding bones’ elastic modulus and the pelvis boundary conditions. The major loads can geometrically cover the entire load spectrum of daily activities. The effect of many high-magnitude force vectors is uncertain in the approach that uses the most common maximum loads. Using these resultant major loads, a new stress concentration area could be detected on the acetabular cage, besides the stress concentration areas induced by the loads reported in the literature. The qualitative correctness of the results is also supported by a control computed tomography scan: a fracture occurred in an extensive, high-stress zone. The results are not sensitive to changes in the elastic modulus of the surrounding bone and the boundary conditions of the model. The presented load vectors and the algorithm make more extensive static analyses possible with little computational overhead. The proposed method can be used for checking the static strength of similar implants.
Abstract To analyse the strength and mechanical behaviour of hip implants, it is essential to employ an appropriate loading model. Generating computational models supplemented with muscle forces is a complicated task, especially in the initial phase of implant development. This research aims to expand the possibilities of the simpler acetabular cage model based on joint loads without significantly increasing the demand for computing resources. A Python script covered and grouped the loads from daily activities. The ten calculated major loads were compared with the maximum of the walking and stair climbing loads through the finite element analyses of a custom-made acetabular cage. Sensitivity analyses were performed for the surrounding bones’ elastic modulus and the pelvis boundary conditions. The major loads can geometrically cover the entire load spectrum of daily activities. The effect of many high-magnitude force vectors is uncertain in the approach that uses the most common maximum loads. Using these resultant major loads, a new stress concentration area could be detected on the acetabular cage, besides the stress concentration areas induced by the loads reported in the literature. The qualitative correctness of the results is also supported by a control computed tomography scan: a fracture occurred in an extensive, high-stress zone. The results are not sensitive to changes in the elastic modulus of the surrounding bone and the boundary conditions of the model. The presented load vectors and the algorithm make more extensive static analyses possible with little computational overhead. The proposed method can be used for checking the static strength of similar implants.
Author Zwierczyk, Péter T.
Dóczi, Martin O.
Sződy, Róbert
Author_xml – sequence: 1
  givenname: Martin O.
  orcidid: 0000-0001-9708-3559
  surname: Dóczi
  fullname: Dóczi, Martin O.
  email: doczi.martin@gt3.bme.hu
  organization: Department of Machine and Product Design, Faculty of Mechanical Engineering, Budapest University of Technology and Economics
– sequence: 2
  givenname: Róbert
  orcidid: 0000-0002-0856-1772
  surname: Sződy
  fullname: Sződy, Róbert
  organization: Dr. Manninger Jenő Trauma Center
– sequence: 3
  givenname: Péter T.
  orcidid: 0000-0002-5431-1782
  surname: Zwierczyk
  fullname: Zwierczyk, Péter T.
  organization: Department of Machine and Product Design, Faculty of Mechanical Engineering, Budapest University of Technology and Economics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37266733$$D View this record in MEDLINE/PubMed
BookMark eNp9kctO5TAMhiME4v4CLEaV2LDpkEubtBsQQsAgIbGBdeQmzjlFPQmTtKOBp58wBw6XBRvbkj__TvzvkHUfPBJywOhPRqk6ToxyococSsoUb8rnNbLNJFOlaiu6vqrrdovspPRAKaeiEZtkSygupRJim5xc_B3RW7TFAs0cfG9gKIYANhUuxGKcYwEehqfUpyK4AgyO0E0DxMLADNMe2XAwJNx_zbvk_vLi7vxXeXN7dX1-dlOaisuxrFFC19nKNSht27SutbI1jjLnOlN1XWUarKltgAOTVjSKciVbVXFroeOOi11yutR9nLoFWoN-jDDox9gvID7pAL3-3PH9XM_CH82okJLXMiscvSrE8HvCNOpFnwwOA3gMU9K84fmYiiuW0cMv6EOYYr7CC1UxTmulVKb4kjIxpBTRrV7DqH7xRy_90Tno__7o5zz04-M_ViNvhmRALIGUW36G8X33N7L_ABSUnlY
Cites_doi 10.1016/j.arth.2011.04.019
10.1016/S0021-9290(01)00040-9
10.1016/j.medengphy.2019.06.008
10.1177/0954411917692009
10.1016/j.asjsur.2016.07.002
10.1080/10255842.2011.633906
10.3390/ma14227066
10.1016/j.medengphy.2015.10.001
10.1155/2020/4809013
10.1115/1.1894148
10.1016/j.jss.2012.08.036
10.1016/j.medengphy.2006.08.010
10.1186/s13018-018-1023-7
10.1016/j.prostr.2016.06.165
10.15438/rr.6.1.141
10.1115/1.4039894
10.1016/j.jor.2015.10.011
10.1155/2018/6367203
10.21595/vp.2019.20961
10.3390/ma13061372
10.1016/0883-5403(94)90135-X
10.1002/jor.24310
10.1016/j.jmbbm.2020.103705
10.1016/j.medengphy.2006.11.005
10.7148/2020-0250
10.1007/978-3-642-19094-0_16
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QO
7QP
7TB
7TK
7X7
7XB
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2P
M7P
M7S
P64
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
7X8
5PM
DOI 10.1007/s10237-023-01728-z
DatabaseName SpringerOpen
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Science Journals
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

ProQuest Central Student
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1617-7940
EndPage 1423
ExternalDocumentID 10_1007_s10237_023_01728_z
37266733
Genre Journal Article
GrantInformation_xml – fundername: Budapest University of Technology and Economics
– fundername: Ministry of Culture and Innovation of Hungary, National Research, Development and Innovation Fund
  grantid: TKP2021-EGA, TKP-9-8/PALY-2021; TKP2021-EGA, TKP-9-8/PALY-2021
– fundername: Ministry of Culture and Innovation of Hungary, National Research, Development and Innovation Fund
  grantid: TKP2021-EGA, TKP-9-8/PALY-2021
– fundername: ;
– fundername: ;
  grantid: TKP2021-EGA, TKP-9-8/PALY-2021; TKP2021-EGA, TKP-9-8/PALY-2021
GroupedDBID ---
-5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
23N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACSNA
ACTTH
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LK8
LLZTM
M1P
M2P
M4Y
M7P
M7S
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PQQKQ
PROAC
PSQYO
PT4
PTHSS
Q2X
QOS
R89
R9I
ROL
RPX
RSV
S0W
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7V
Z7X
Z7Y
Z83
ZMTXR
~A9
~KM
AACDK
AAJBT
AASML
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
ALIPV
CGR
CUY
CVF
ECM
EIF
H13
NPM
AAYXX
CITATION
7QO
7QP
7TB
7TK
7XB
8FD
8FK
FR3
K9.
P64
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c426t-5e6abbd4f8e6d989f9d69cf01ffbc4bb4c8e50d8a2a16d38702769742ddab2f23
IEDL.DBID C6C
ISSN 1617-7959
IngestDate Tue Sep 17 21:30:43 EDT 2024
Fri Oct 25 02:49:33 EDT 2024
Sat Nov 02 03:56:19 EDT 2024
Thu Sep 12 18:52:26 EDT 2024
Wed Oct 16 00:39:40 EDT 2024
Sat Dec 16 12:05:32 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Finite element model
Hip joint loads
Acetabular cage
Orthopaedics
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-5e6abbd4f8e6d989f9d69cf01ffbc4bb4c8e50d8a2a16d38702769742ddab2f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5431-1782
0000-0002-0856-1772
0000-0001-9708-3559
OpenAccessLink https://doi.org/10.1007/s10237-023-01728-z
PMID 37266733
PQID 2841205777
PQPubID 54766
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10366256
proquest_miscellaneous_2822377271
proquest_journals_2841205777
crossref_primary_10_1007_s10237_023_01728_z
pubmed_primary_37266733
springer_journals_10_1007_s10237_023_01728_z
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Dordrecht
PublicationTitle Biomechanics and modeling in mechanobiology
PublicationTitleAbbrev Biomech Model Mechanobiol
PublicationTitleAlternate Biomech Model Mechanobiol
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Maslov, Surkova, Maslova, Solovev, Zhmaylo, Kovalenko, Bilyk (CR19) 2019; 26
Ma, Zhang, Wang, Zhang, Chen, Zhang (CR18) 2013; 179
Clarke, Phillips, Bull (CR5) 2016; 16
Du, Fu, Sun, Zhang, Chen, Ni, Zhou (CR10) 2020; 2020
Ahmad, Schwarzkopf (CR1) 2015; 12
Plessers, Mau (CR24) 2016; 6
Iqbal, Shi, Wang, Liu, Li, Qin, Jin (CR14) 2017; 231
Vogel, Klimek, Saemann, Bader (CR28) 2020; 13
CR13
Anderson, Peters, Tuttle, Weiss (CR2) 2005; 127
Kawanabe, Akiyama, Goto, Maeno, Nakamura (CR16) 2011; 26
Del-Valle-Mojica, Alonso-Rasgado, Jimenez-Cruz, Bailey, Board (CR8) 2019; 37
Phillips, Pankaj, Howie, Usmani, Simpson (CR23) 2007; 29
Wang, Huang, Song, Liang (CR29) 2017; 40
Maslov, Borovkov, Maslova, Soloviev, Zhmaylo, Tarasenko (CR20) 2021; 14
La Rosa, Clienti, Di Bella, Rizza (CR17) 2016; 2
Paprosky, Perona, Lawrence (CR22) 1994; 9
Moussa, Rahman, Xu, Tanzer, Pasini (CR21) 2020; 105
Bergmann, Deuretzbacher, Heller, Graichen, Rohlmann, Strauss, Duda (CR3) 2001; 34
Fu, Ni, Chen, Li, Chai, Hao, Zhang, Zhou (CR11) 2018; 2018
Costin, Micu, Cristea, Dragomirescu (CR6) 2014; 76
Hsu, Chang, Huang, Zobitz, Chen, Lai, An (CR12) 2007; 29
Totoribe, Chosa, Yamako, Zhao, Ouchi, Hamada, Deng (CR27) 2018; 13
CR7
Chang, Chen, Li, Peng, Chang (CR4) 2014; 37
CR9
CR26
CR25
Iqbal, Wang, Li, Dong, Fan, Fu, Hu (CR15) 2019; 69
Zaharie, Phillips (CR30) 2018; 140
CW Chang (1728_CR4) 2014; 37
W Ma (1728_CR18) 2013; 179
T Iqbal (1728_CR15) 2019; 69
G La Rosa (1728_CR17) 2016; 2
T Iqbal (1728_CR14) 2017; 231
W Paprosky (1728_CR22) 1994; 9
A Ahmad (1728_CR1) 2015; 12
AE Anderson (1728_CR2) 2005; 127
Y Du (1728_CR10) 2020; 2020
D Vogel (1728_CR28) 2020; 13
1728_CR13
JT Hsu (1728_CR12) 2007; 29
G Bergmann (1728_CR3) 2001; 34
K Plessers (1728_CR24) 2016; 6
K Totoribe (1728_CR27) 2018; 13
JF Del-Valle-Mojica (1728_CR8) 2019; 37
A Moussa (1728_CR21) 2020; 105
L Maslov (1728_CR20) 2021; 14
SG Clarke (1728_CR5) 2016; 16
J Fu (1728_CR11) 2018; 2018
S Costin (1728_CR6) 2014; 76
DT Zaharie (1728_CR30) 2018; 140
1728_CR9
L Maslov (1728_CR19) 2019; 26
ATM Phillips (1728_CR23) 2007; 29
1728_CR7
K Kawanabe (1728_CR16) 2011; 26
1728_CR26
G Wang (1728_CR29) 2017; 40
1728_CR25
References_xml – volume: 26
  start-page: 1061
  issue: 7
  year: 2011
  end-page: 1066
  ident: CR16
  article-title: Load dispersion effects of acetabular reinforcement devices used in revision total hip arthroplasty: a simulation study using finite element analysis
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2011.04.019
  contributor:
    fullname: Nakamura
– volume: 34
  start-page: 859
  issue: 7
  year: 2001
  end-page: 891
  ident: CR3
  article-title: Hip contact forces and gait patterns from routine activities
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(01)00040-9
  contributor:
    fullname: Duda
– volume: 69
  start-page: 8
  year: 2019
  end-page: 16
  ident: CR15
  article-title: A general multi-objective topology optimization methodology developed for customized design of pelvic prostheses
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2019.06.008
  contributor:
    fullname: Hu
– volume: 231
  start-page: 525
  issue: 6
  year: 2017
  end-page: 533
  ident: CR14
  article-title: Development of finite element model for customized prostheses design for patient with pelvic bone tumor
  publication-title: Proc Inst Mech Eng H
  doi: 10.1177/0954411917692009
  contributor:
    fullname: Jin
– volume: 40
  start-page: 463
  issue: 6
  year: 2017
  end-page: 469
  ident: CR29
  article-title: Three-dimensional finite analysis of acetabular contact pressure and contact area during normal walking
  publication-title: Asian J Surg
  doi: 10.1016/j.asjsur.2016.07.002
  contributor:
    fullname: Liang
– volume: 16
  start-page: 717
  issue: 7
  year: 2016
  end-page: 724
  ident: CR5
  article-title: Evaluating a suitable level of model complexity for finite element analysis of the intact acetabulum
  publication-title: Comput Methods Biomech Biomed Eng
  doi: 10.1080/10255842.2011.633906
  contributor:
    fullname: Bull
– volume: 14
  start-page: 7066
  issue: 22
  year: 2021
  ident: CR20
  article-title: Finite element analysis of customized acetabular implant and bone after pelvic tumour resection throughout the gait cycle
  publication-title: Materials (basel)
  doi: 10.3390/ma14227066
  contributor:
    fullname: Tarasenko
– volume: 37
  start-page: 1174
  issue: 112
  year: 2014
  end-page: 1179
  ident: CR4
  article-title: Role of the compression screw in the dynamic hip–screw system: a finite-element study
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2015.10.001
  contributor:
    fullname: Chang
– volume: 76
  start-page: 181
  year: 2014
  end-page: 192
  ident: CR6
  article-title: Process for realisation of a cage adapted to patient for specific acetabular defects in tha revision
  publication-title: UPB Sci Bull, Ser d: Mech Eng
  contributor:
    fullname: Dragomirescu
– volume: 2020
  start-page: 4809013
  year: 2020
  ident: CR10
  article-title: Acetabular bone defect in total hip arthroplasty for crowe II or III developmental dysplasia of the hip: a finite element study
  publication-title: Biomed Res Int
  doi: 10.1155/2020/4809013
  contributor:
    fullname: Zhou
– volume: 127
  start-page: 364
  issue: 3
  year: 2005
  end-page: 373
  ident: CR2
  article-title: Subject-specific finite element model of the pelvis: development, validation and sensitivity studies
  publication-title: J Biomech Eng
  doi: 10.1115/1.1894148
  contributor:
    fullname: Weiss
– volume: 179
  start-page: 78
  issue: 1
  year: 2013
  end-page: 86
  ident: CR18
  article-title: Optimized design for a novel acetabular component with three wings. A study of finite element analysis
  publication-title: J Surg Res
  doi: 10.1016/j.jss.2012.08.036
  contributor:
    fullname: Zhang
– ident: CR25
– volume: 29
  start-page: 739
  issue: 7
  year: 2007
  end-page: 748
  ident: CR23
  article-title: Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2006.08.010
  contributor:
    fullname: Simpson
– volume: 13
  start-page: 313
  year: 2018
  ident: CR27
  article-title: Acetabular reinforcement ring with additional hook improves stability in three-dimensional finite element analyses of dysplastic hip arthroplasty
  publication-title: J Orthop Surg Res
  doi: 10.1186/s13018-018-1023-7
  contributor:
    fullname: Deng
– volume: 2
  start-page: 1295
  year: 2016
  end-page: 1302
  ident: CR17
  article-title: Numerical analysis of a custom-made pelvic prosthesis
  publication-title: Procedia Struct Int
  doi: 10.1016/j.prostr.2016.06.165
  contributor:
    fullname: Rizza
– volume: 6
  start-page: 37
  issue: 1
  year: 2016
  end-page: 42
  ident: CR24
  article-title: Stress analysis of a Burch-Schneider cage in an acetabular bone defect: A case study
  publication-title: Reconstr Rev
  doi: 10.15438/rr.6.1.141
  contributor:
    fullname: Mau
– volume: 140
  start-page: 091001
  issue: 9
  year: 2018
  ident: CR30
  article-title: Pelvic Construct Prediction of Trabecular and Cortical Bone Structural Architecture
  publication-title: J Biomech Eng
  doi: 10.1115/1.4039894
  contributor:
    fullname: Phillips
– volume: 12
  start-page: S238
  issue: 2
  year: 2015
  end-page: S243
  ident: CR1
  article-title: Clinical evaluation and surgical options in acetabular reconstruction: a literature review
  publication-title: J Orthop
  doi: 10.1016/j.jor.2015.10.011
  contributor:
    fullname: Schwarzkopf
– volume: 2018
  start-page: 6367203
  year: 2018
  ident: CR11
  article-title: Reconstruction of severe acetabular bone defect with 3D printed Ti6Al4V augment: a finite element study
  publication-title: Biomed Res Int
  doi: 10.1155/2018/6367203
  contributor:
    fullname: Zhou
– ident: CR13
– volume: 26
  start-page: 40
  year: 2019
  end-page: 45
  ident: CR19
  article-title: Finite-element study of the customized implant for revision hip replacement
  publication-title: Vibroeng Proc
  doi: 10.21595/vp.2019.20961
  contributor:
    fullname: Bilyk
– volume: 13
  start-page: 1372
  year: 2020
  ident: CR28
  article-title: Influence of the acetabular cup material on the shell deformation and strain distribution in the adjacent bone—a finite element analysis
  publication-title: Materials
  doi: 10.3390/ma13061372
  contributor:
    fullname: Bader
– ident: CR9
– volume: 9
  start-page: 33
  issue: 1
  year: 1994
  end-page: 44
  ident: CR22
  article-title: Acetabular defect classification and surgical reconstruction in revision arthroplasty: a 6-year follow-up evaluation
  publication-title: J Arthroplasty
  doi: 10.1016/0883-5403(94)90135-X
  contributor:
    fullname: Lawrence
– volume: 37
  start-page: 1771
  year: 2019
  end-page: 1783
  ident: CR8
  article-title: Effect of femoral head size, subject weight, and activity level on acetabular cement mantle stress following total hip arthroplasty
  publication-title: J Orthop Res
  doi: 10.1002/jor.24310
  contributor:
    fullname: Board
– volume: 105
  start-page: 103705
  year: 2020
  ident: CR21
  article-title: Topology optimization of 3D-printed structurally porous cage for acetabular reinforcement in total hip arthroplasty
  publication-title: J Mech Behav Biomed Mater
  doi: 10.1016/j.jmbbm.2020.103705
  contributor:
    fullname: Pasini
– ident: CR7
– volume: 29
  start-page: 1089
  issue: 10
  year: 2007
  end-page: 1095
  ident: CR12
  article-title: The number of screws, bone quality, and friction coefficient affect acetabular cup stability
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2006.11.005
  contributor:
    fullname: An
– ident: CR26
– volume: 29
  start-page: 739
  issue: 7
  year: 2007
  ident: 1728_CR23
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2006.08.010
  contributor:
    fullname: ATM Phillips
– volume: 37
  start-page: 1771
  year: 2019
  ident: 1728_CR8
  publication-title: J Orthop Res
  doi: 10.1002/jor.24310
  contributor:
    fullname: JF Del-Valle-Mojica
– volume: 40
  start-page: 463
  issue: 6
  year: 2017
  ident: 1728_CR29
  publication-title: Asian J Surg
  doi: 10.1016/j.asjsur.2016.07.002
  contributor:
    fullname: G Wang
– volume: 26
  start-page: 1061
  issue: 7
  year: 2011
  ident: 1728_CR16
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2011.04.019
  contributor:
    fullname: K Kawanabe
– volume: 2020
  start-page: 4809013
  year: 2020
  ident: 1728_CR10
  publication-title: Biomed Res Int
  doi: 10.1155/2020/4809013
  contributor:
    fullname: Y Du
– volume: 69
  start-page: 8
  year: 2019
  ident: 1728_CR15
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2019.06.008
  contributor:
    fullname: T Iqbal
– volume: 9
  start-page: 33
  issue: 1
  year: 1994
  ident: 1728_CR22
  publication-title: J Arthroplasty
  doi: 10.1016/0883-5403(94)90135-X
  contributor:
    fullname: W Paprosky
– ident: 1728_CR9
  doi: 10.7148/2020-0250
– volume: 2018
  start-page: 6367203
  year: 2018
  ident: 1728_CR11
  publication-title: Biomed Res Int
  doi: 10.1155/2018/6367203
  contributor:
    fullname: J Fu
– volume: 12
  start-page: S238
  issue: 2
  year: 2015
  ident: 1728_CR1
  publication-title: J Orthop
  doi: 10.1016/j.jor.2015.10.011
  contributor:
    fullname: A Ahmad
– volume: 34
  start-page: 859
  issue: 7
  year: 2001
  ident: 1728_CR3
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(01)00040-9
  contributor:
    fullname: G Bergmann
– ident: 1728_CR7
  doi: 10.1007/978-3-642-19094-0_16
– ident: 1728_CR26
– ident: 1728_CR25
– volume: 127
  start-page: 364
  issue: 3
  year: 2005
  ident: 1728_CR2
  publication-title: J Biomech Eng
  doi: 10.1115/1.1894148
  contributor:
    fullname: AE Anderson
– volume: 231
  start-page: 525
  issue: 6
  year: 2017
  ident: 1728_CR14
  publication-title: Proc Inst Mech Eng H
  doi: 10.1177/0954411917692009
  contributor:
    fullname: T Iqbal
– volume: 105
  start-page: 103705
  year: 2020
  ident: 1728_CR21
  publication-title: J Mech Behav Biomed Mater
  doi: 10.1016/j.jmbbm.2020.103705
  contributor:
    fullname: A Moussa
– volume: 140
  start-page: 091001
  issue: 9
  year: 2018
  ident: 1728_CR30
  publication-title: J Biomech Eng
  doi: 10.1115/1.4039894
  contributor:
    fullname: DT Zaharie
– volume: 76
  start-page: 181
  year: 2014
  ident: 1728_CR6
  publication-title: UPB Sci Bull, Ser d: Mech Eng
  contributor:
    fullname: S Costin
– volume: 2
  start-page: 1295
  year: 2016
  ident: 1728_CR17
  publication-title: Procedia Struct Int
  doi: 10.1016/j.prostr.2016.06.165
  contributor:
    fullname: G La Rosa
– volume: 179
  start-page: 78
  issue: 1
  year: 2013
  ident: 1728_CR18
  publication-title: J Surg Res
  doi: 10.1016/j.jss.2012.08.036
  contributor:
    fullname: W Ma
– volume: 6
  start-page: 37
  issue: 1
  year: 2016
  ident: 1728_CR24
  publication-title: Reconstr Rev
  doi: 10.15438/rr.6.1.141
  contributor:
    fullname: K Plessers
– volume: 14
  start-page: 7066
  issue: 22
  year: 2021
  ident: 1728_CR20
  publication-title: Materials (basel)
  doi: 10.3390/ma14227066
  contributor:
    fullname: L Maslov
– ident: 1728_CR13
– volume: 13
  start-page: 1372
  year: 2020
  ident: 1728_CR28
  publication-title: Materials
  doi: 10.3390/ma13061372
  contributor:
    fullname: D Vogel
– volume: 37
  start-page: 1174
  issue: 112
  year: 2014
  ident: 1728_CR4
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2015.10.001
  contributor:
    fullname: CW Chang
– volume: 29
  start-page: 1089
  issue: 10
  year: 2007
  ident: 1728_CR12
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2006.11.005
  contributor:
    fullname: JT Hsu
– volume: 26
  start-page: 40
  year: 2019
  ident: 1728_CR19
  publication-title: Vibroeng Proc
  doi: 10.21595/vp.2019.20961
  contributor:
    fullname: L Maslov
– volume: 13
  start-page: 313
  year: 2018
  ident: 1728_CR27
  publication-title: J Orthop Surg Res
  doi: 10.1186/s13018-018-1023-7
  contributor:
    fullname: K Totoribe
– volume: 16
  start-page: 717
  issue: 7
  year: 2016
  ident: 1728_CR5
  publication-title: Comput Methods Biomech Biomed Eng
  doi: 10.1080/10255842.2011.633906
  contributor:
    fullname: SG Clarke
SSID ssj0020383
Score 2.388127
Snippet To analyse the strength and mechanical behaviour of hip implants, it is essential to employ an appropriate loading model. Generating computational models...
Abstract To analyse the strength and mechanical behaviour of hip implants, it is essential to employ an appropriate loading model. Generating computational...
SourceID pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1411
SubjectTerms Acetabulum
Algorithms
Biological and Medical Physics
Biomechanical Phenomena
Biomedical Engineering and Bioengineering
Biophysics
Bone implants
Bones
Boundary conditions
Cages
Computed tomography
Computer applications
Engineering
Finite Element Analysis
Finite element method
Hip Prosthesis
Mathematical models
Mechanical loading
Mechanical properties
Modulus of elasticity
Muscles
Original Paper
Pelvis
Programming languages
Sensitivity analysis
Stress concentration
Stress, Mechanical
Theoretical and Applied Mechanics
Transplants & implants
Walking
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEB_UIvgi_VC7rZUU-qbB2yT7kZeWUjxFqE8Kvi35xELdvXrng_71zuzm7jjFvoSFBLKZSWZ-k8wHwLfKuLy2MiJy8wVXMhhu7ajgUSmnYvSFC2Qo_r4oz67U-XVxnS7cpsmtci4Te0HtO0d35McoRnOB4KKqfkz-caoaRa-rqYTGOrzJBXZRpPj4dGFwjYY0nAThOdXUTkEzKXROyIpjw8kKqvnjqmJ6gTZfOk0-ezntFdL4LWwnJMl-Dqx_B2uhfQ-bQ23Jhw_w_SRdb7PbQNG9xAz2tzN-yhCnMsR9zKSEJKyLzLgwM5Z8UplDETPdgavxyeWvM56KJXCHSnbGi1Aaa72KdSi9rnXUvtQujvIYrVPWKleHYuRrI0xeeonHVFQlGhPCe2NFFHIXNtquDR-BaR2lLn0MVe2Vwu_ca2URhUcpdBF1BodzSjWTISdGs8x-THRtsGl6ujaPGezPidmk8zFtltzM4OuiG3c2PVeYNnT3NAahC4L_Ks9gb6D9YjpZCapXKjOoV7iyGEBZs1d72j83ffbsHHU2Gn1lBkdzBi7_6_VlfPr_Mj7Dlug3E7kG7sPG7O4-fEG4MrMH_Z58AsRj58c
  priority: 102
  providerName: ProQuest
Title Extended mechanical loads for the analysis of acetabular cages
URI https://link.springer.com/article/10.1007/s10237-023-01728-z
https://www.ncbi.nlm.nih.gov/pubmed/37266733
https://www.proquest.com/docview/2841205777
https://search.proquest.com/docview/2822377271
https://pubmed.ncbi.nlm.nih.gov/PMC10366256
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LixNBEC7cXQQ9iK6v0TW04E0bMt09_bgISUh2UQwiBuJp6Ccr6ERM9uD-eqtnJlmzqwcv3QPdzKOqZ-qr6aqvAF4p60vteELkFioqeLTUuWFFkxBepBQqH7Oj-GEuzxbi3bJa9jQ5ORfm2v59TnFjXFFsaPZWNL08gCO0wTqHb03kZOdcDTvKzQzXaa6f3SfI_P0c-0boBrK8GSB5bZe0NT6z-3CvR41k1Kn5AdyKzTHc7upI_jqGu3-wCj6Et9P-xzb5HnNeb1YD-bayYU0QoRJEfMT2VCRklYj1cWNdjkYlHj8u60ewmE0_T85oXyaBejSvG1pFaZ0LIukog9EmmSCNT8MyJeeFc8LrWA2DtsyWMnB8QZmS6EawEKxjifHHcNismvgUiDGJGxlSVDoIgcdlMMIh_k6cmSqZAl5v5Vb_6Ngw6ive4yzlGpu6lXJ9WcDJVrR1_2asazSHJUOQqFQBL3fDuKbzRoVt4uoiz0HQgrBflQU86TSxuxxXLFcq5QXoPR3tJmS-7P2R5ut5y5tdorVGd08W8Garzqv7-vdjPPu_6c_hDmuXWg4SPIHDzc-L-AKBy8YN4EAtFbZ6djqAo9FsPJ7n_vTL-yn24-n846dBu6qxXbDRbxz-7QE
link.rule.ids 230,315,783,787,888,12068,12777,21400,27936,27937,31731,31732,33385,33386,33756,33757,41093,41132,41535,42162,42201,42604,43322,43612,43817,51588,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BEaIXxLuhBYzEDSw2thPHl6KqarVA21Mr7S3yU0WCpLDbA_31zCTeXS0VXKJItpR4xp75xh7PB_BOW182TiZEbqHiSkbLnZtUPCnlVUqh8pECxdOzenqhvsyqWd5wm-e0yqVNHAx16D3tkX9EM1oKBBdaf7r6yYk1ik5XM4XGXbhHdbiIwUDP1gHXZCzDSRCeE6d2vjSTr84JqTk-OEVBDb_ZdEy30ObtpMm_Tk4Hh3T8CB5mJMkORtU_hjuxewL3R27J309h_yhvb7MfkW73kjLY996GOUOcyhD3MZsLkrA-MevjwjrKSWUeTcz8GVwcH50fTnkmS-AeneyCV7G2zgWVmlgH05hkQm18mpQpOa-cU76J1SQ0VtiyDhKXqdA1BhMiBOtEEvI5bHV9F3eAGZOkqUOKuglK4XsZjHKIwpMUpkqmgPdLSbVXY02Mdl39mOTa4qMd5NreFLC3FGab18e8XWuzgLerZpzZdFxhu9hfUx-ELgj-dVnAi1H2q89JLYivVBbQbGhl1YGqZm-2dN8uh-rZJfpsDPrqAj4sFbj-r38P4-X_h_EGHkzPT0_ak89nX3dhWwwTi9IE92Br8es6vkLosnCvh_n5B6yA6qk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61VFT0gMqzAVqMxA0sNrbjxBckRFnR8hAHkLhFfgokyKJuOJRfzzjJLrsFDr1YkWLlMWNnvsnMfAOwnWubFoYHRG4uo4J7TY3pZTQIYUUILrM-Oopn5_L4Svy-zq4nqvibbPdRSLKtaYgsTVW99-DC3kThG-M5xYFGH6agTx_hk4hN02O4Vh6OXa5eS8QZQTyNXbW7spm3rzFtml7hzddpk__EThuT1P8K8x2WJAet8hfgg68WYbbtLvl3Eb5McA0uwf5R97ub3PtY7RuVQ-4G2g0J4laCOJDojqCEDALR1tfaxBxVYvGTM1yGq_7R5eEx7ZonUItGt6aZl9oYJ0LhpVOFCspJZUMvDcFYYYywhc96rtBMp9Jx3LYsl-hcMOe0YYHxFZipBpX_BkSpwJV0weeFEwKPU6eEQVQeOFNZUAnsjORWPrQcGeULG3KUcolD2Ui5fEpgYyTastsvwxKNZMoQOuZ5Alvj07jSY_hCV37wGOcglEFnIE8TWG01Mb4dz1nsX8oTKKZ0NJ4QWbSnz1S3Nw2bdoo2HJ1AmcDuSJ0vz_X-a6z93_RN-Hzxs1-e_jo_WYc51qy6mEW4ATP1n0f_HZFNbX40i_cZxQ3wyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extended+mechanical+loads+for+the+analysis+of+acetabular+cages&rft.jtitle=Biomechanics+and+modeling+in+mechanobiology&rft.au=D%C3%B3czi%2C+Martin+O.&rft.au=Sz%C5%91dy%2C+R%C3%B3bert&rft.au=Zwierczyk%2C+P%C3%A9ter+T.&rft.date=2023-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1617-7959&rft.eissn=1617-7940&rft.volume=22&rft.issue=4&rft.spage=1411&rft.epage=1423&rft_id=info:doi/10.1007%2Fs10237-023-01728-z&rft.externalDocID=10_1007_s10237_023_01728_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-7959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-7959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-7959&client=summon