Knee-Loading Predictions with Neural Networks Improve Finite Element Modeling Classifications of Knee Osteoarthritis: Data from the Osteoarthritis Initiative

Physics-based modeling methods have the potential to investigate the mechanical factors associated with knee osteoarthritis (OA) and predict the future radiographic condition of the joint. However, it remains unclear what level of detail is optimal in these methods to achieve accurate prediction res...

Full description

Saved in:
Bibliographic Details
Published inAnnals of biomedical engineering Vol. 52; no. 9; pp. 2569 - 2583
Main Authors Paz, Alexander, Lavikainen, Jere, Turunen, Mikael J., García, José J., Korhonen, Rami K., Mononen, Mika E.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0090-6964
1573-9686
1573-9686
DOI10.1007/s10439-024-03549-2

Cover

Loading…
Abstract Physics-based modeling methods have the potential to investigate the mechanical factors associated with knee osteoarthritis (OA) and predict the future radiographic condition of the joint. However, it remains unclear what level of detail is optimal in these methods to achieve accurate prediction results in cohort studies. In this work, we extended a template-based finite element (FE) method to include the lateral and medial compartments of the tibiofemoral joint and simulated the mechanical responses of 97 knees under three conditions of gait loading. Furthermore, the effects of variations in cartilage thickness and failure equation on predicted cartilage degeneration were investigated. Our results showed that using neural network-based estimations of peak knee loading provided classification performances of 0.70 (AUC, p  < 0.05) in distinguishing between knees that developed severe OA or mild OA and knees that did not develop OA eight years after a healthy radiographic baseline. However, FE models incorporating subject-specific femoral and tibial cartilage thickness did not improve this classification performance, suggesting there exists an optimal point between personalized loading and geometry for discrimination purposes. In summary, we proposed a modeling framework that streamlines the rapid generation of individualized knee models achieving promising classification performance while avoiding motion capture and cartilage image segmentation.
AbstractList Physics-based modeling methods have the potential to investigate the mechanical factors associated with knee osteoarthritis (OA) and predict the future radiographic condition of the joint. However, it remains unclear what level of detail is optimal in these methods to achieve accurate prediction results in cohort studies. In this work, we extended a template-based finite element (FE) method to include the lateral and medial compartments of the tibiofemoral joint and simulated the mechanical responses of 97 knees under three conditions of gait loading. Furthermore, the effects of variations in cartilage thickness and failure equation on predicted cartilage degeneration were investigated. Our results showed that using neural network-based estimations of peak knee loading provided classification performances of 0.70 (AUC, p < 0.05) in distinguishing between knees that developed severe OA or mild OA and knees that did not develop OA eight years after a healthy radiographic baseline. However, FE models incorporating subject-specific femoral and tibial cartilage thickness did not improve this classification performance, suggesting there exists an optimal point between personalized loading and geometry for discrimination purposes. In summary, we proposed a modeling framework that streamlines the rapid generation of individualized knee models achieving promising classification performance while avoiding motion capture and cartilage image segmentation.Physics-based modeling methods have the potential to investigate the mechanical factors associated with knee osteoarthritis (OA) and predict the future radiographic condition of the joint. However, it remains unclear what level of detail is optimal in these methods to achieve accurate prediction results in cohort studies. In this work, we extended a template-based finite element (FE) method to include the lateral and medial compartments of the tibiofemoral joint and simulated the mechanical responses of 97 knees under three conditions of gait loading. Furthermore, the effects of variations in cartilage thickness and failure equation on predicted cartilage degeneration were investigated. Our results showed that using neural network-based estimations of peak knee loading provided classification performances of 0.70 (AUC, p < 0.05) in distinguishing between knees that developed severe OA or mild OA and knees that did not develop OA eight years after a healthy radiographic baseline. However, FE models incorporating subject-specific femoral and tibial cartilage thickness did not improve this classification performance, suggesting there exists an optimal point between personalized loading and geometry for discrimination purposes. In summary, we proposed a modeling framework that streamlines the rapid generation of individualized knee models achieving promising classification performance while avoiding motion capture and cartilage image segmentation.
Physics-based modeling methods have the potential to investigate the mechanical factors associated with knee osteoarthritis (OA) and predict the future radiographic condition of the joint. However, it remains unclear what level of detail is optimal in these methods to achieve accurate prediction results in cohort studies. In this work, we extended a template-based finite element (FE) method to include the lateral and medial compartments of the tibiofemoral joint and simulated the mechanical responses of 97 knees under three conditions of gait loading. Furthermore, the effects of variations in cartilage thickness and failure equation on predicted cartilage degeneration were investigated. Our results showed that using neural network-based estimations of peak knee loading provided classification performances of 0.70 (AUC, p  < 0.05) in distinguishing between knees that developed severe OA or mild OA and knees that did not develop OA eight years after a healthy radiographic baseline. However, FE models incorporating subject-specific femoral and tibial cartilage thickness did not improve this classification performance, suggesting there exists an optimal point between personalized loading and geometry for discrimination purposes. In summary, we proposed a modeling framework that streamlines the rapid generation of individualized knee models achieving promising classification performance while avoiding motion capture and cartilage image segmentation.
Physics-based modeling methods have the potential to investigate the mechanical factors associated with knee osteoarthritis (OA) and predict the future radiographic condition of the joint. However, it remains unclear what level of detail is optimal in these methods to achieve accurate prediction results in cohort studies. In this work, we extended a template-based finite element (FE) method to include the lateral and medial compartments of the tibiofemoral joint and simulated the mechanical responses of 97 knees under three conditions of gait loading. Furthermore, the effects of variations in cartilage thickness and failure equation on predicted cartilage degeneration were investigated. Our results showed that using neural network-based estimations of peak knee loading provided classification performances of 0.70 (AUC, p < 0.05) in distinguishing between knees that developed severe OA or mild OA and knees that did not develop OA eight years after a healthy radiographic baseline. However, FE models incorporating subject-specific femoral and tibial cartilage thickness did not improve this classification performance, suggesting there exists an optimal point between personalized loading and geometry for discrimination purposes. In summary, we proposed a modeling framework that streamlines the rapid generation of individualized knee models achieving promising classification performance while avoiding motion capture and cartilage image segmentation.
Author Turunen, Mikael J.
Korhonen, Rami K.
Mononen, Mika E.
García, José J.
Lavikainen, Jere
Paz, Alexander
Author_xml – sequence: 1
  givenname: Alexander
  orcidid: 0000-0002-5804-4781
  surname: Paz
  fullname: Paz, Alexander
  email: alexander.paz@uef.fi
  organization: Department of Technical Physics, University of Eastern Finland, Escuela de Ingeniería Civil y Geomática, Universidad del Valle
– sequence: 2
  givenname: Jere
  surname: Lavikainen
  fullname: Lavikainen, Jere
  organization: Department of Technical Physics, University of Eastern Finland, Diagnostic Imaging Center, Wellbeing Services County of North Savo
– sequence: 3
  givenname: Mikael J.
  surname: Turunen
  fullname: Turunen, Mikael J.
  organization: Department of Technical Physics, University of Eastern Finland, Science Service Center, Kuopio University Hospital, Wellbeing Services County of North Savo
– sequence: 4
  givenname: José J.
  surname: García
  fullname: García, José J.
  organization: Escuela de Ingeniería Civil y Geomática, Universidad del Valle
– sequence: 5
  givenname: Rami K.
  orcidid: 0000-0002-3486-7855
  surname: Korhonen
  fullname: Korhonen, Rami K.
  organization: Department of Technical Physics, University of Eastern Finland
– sequence: 6
  givenname: Mika E.
  surname: Mononen
  fullname: Mononen, Mika E.
  organization: Department of Technical Physics, University of Eastern Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38842728$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9u1DAQxi1URLeFF-CALHHhEup_SWwuCC0tXbFQDnC2nGSy65LYi-1sxcPwrnhJKdADpznMb76ZT_OdoCPnHSD0lJKXlJD6LFIiuCoIEwXhpVAFe4AWtKx5oSpZHaEFIYoUlarEMTqJ8ZoQSiUvH6FjLqVgNZML9OO9AyjW3nTWbfCnAJ1tk_Uu4hubtvgjTMEMuaQbH75GvBp3we8BX1hnE-DzAUZwCX_wHQwHgeVgYrS9bc0s4nt8WICvYgJvQtoGm2x8hd-aZHAf_IjT9n4Xr7K2zQJ7eIwe9maI8OS2nqIvF-efl5fF-urdavlmXbSCVakQjRGCl1W22hhlTC2NNKRvatn3pIWWsK7mUhHOmpYBlLxnkrKuFKaDugHKT9HrWXc3NSN0bfaUbetdsKMJ37U3Vv_bcXarN36vKeVMCVJnhRe3CsF_myAmPdrYwjAYB36KmpOqZDWVRGb0-T302k_BZX-ZUryqVal4pp79fdLdLb9flwE2A23wMQbo7xBK9CEfes6HzvnQv_KhWR7i81DMsNtA-LP7P1M_ASdLwTc
Cites_doi 10.1186/ar1962
10.1002/jor.25338
10.1007/s004290050291
10.2307/2531595
10.1115/1.4005694
10.1038/s41598-022-15585-w
10.1302/0301-620X.99B6.BJJ-2016-0713.R1
10.1016/j.joca.2012.05.013
10.1007/s10439-018-02184-y
10.3899/jrheum.170571
10.1136/ard.41.5.508
10.1007/s10439-023-03252-8
10.3389/fpubh.2022.911863
10.1002/acr.21606
10.1007/s10439-023-03278-y
10.1080/10255842.2014.899588
10.1016/j.jbiomech.2013.11.003
10.1002/jor.20936
10.1016/j.medengphy.2019.02.009
10.1016/j.jbiomech.2022.111390
10.1016/j.jbiomech.2018.09.009
10.1016/j.knee.2019.06.002
10.1016/j.abb.2016.02.008
10.1097/01.PHM.0000056987.33630.56
10.1080/10255842.2019.1661393
10.7717/peerj.9676
10.1115/1.1339819
10.1016/0021-9290(76)90004-X
10.1136/ard.37.1.58
10.1038/s41598-023-35832-y
10.1080/10255842.2022.2117548
10.1002/acr.22778
10.1097/BOR.0000000000000161
10.1016/j.jbiomech.2021.110439
10.1016/j.joca.2014.11.006
10.3389/fbioe.2020.00093
10.1002/jor.25285
10.1016/j.jbiomech.2010.08.005
10.1007/s10439-022-02941-0
10.1016/S0736-0266(02)00201-2
10.1016/S0268-0033(97)85881-0
10.1136/ard.2004.021253
10.3389/fspor.2022.904924
10.1097/JTO.0b013e3181ec173d
10.1016/j.joca.2011.05.004
10.1007/s10237-024-01822-w
10.1093/bmb/lds038
10.4178/epih.e2022088
10.1186/s12891-016-0879-0
10.1115/1.4038330
10.1115/1.3118773
10.1002/jor.25358
10.1016/j.exger.2023.112102
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7X7
7XB
88E
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0S
M1P
M7P
M7S
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
5PM
DOI 10.1007/s10439-024-03549-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE
Materials Research Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1573-9686
EndPage 2583
ExternalDocumentID PMC11329407
38842728
10_1007_s10439_024_03549_2
Genre Journal Article
GrantInformation_xml – fundername: Sigrid Juséliuksen Säätiö
  funderid: http://dx.doi.org/10.13039/501100006306
– fundername: Research Council of Finland
  grantid: 324529; 352666; 328920; 324994
– fundername: Doctoral Programme in Science, Forestry, and Technology, University of Eastern Finland
– fundername: University of Eastern Finland (including Kuopio University Hospital)
– fundername: Pohjois-Savon Rahasto
  funderid: http://dx.doi.org/10.13039/501100005432
– fundername: Research Council of Finland
  grantid: 352666
– fundername: Research Council of Finland
  grantid: 324529
– fundername: Research Council of Finland
  grantid: 328920
– fundername: Research Council of Finland
  grantid: 324994
GroupedDBID ---
-4W
-56
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6J9
6NX
78A
7X7
85S
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L6V
L7B
LAK
LK8
LLZTM
M1P
M4Y
M7P
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UKR
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WJK
WK6
WK8
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8N
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZMTXR
ZOVNA
ZY4
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7XB
8BQ
8FD
8FK
ABRTQ
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c426t-4ba44356696ba9aa78a8a0fb78ff0cec02d7389032bc2ee53f2812d54ade7be13
IEDL.DBID U2A
ISSN 0090-6964
1573-9686
IngestDate Thu Aug 21 18:34:50 EDT 2025
Mon Jul 21 10:02:56 EDT 2025
Tue Sep 02 03:17:54 EDT 2025
Wed Feb 19 02:04:02 EST 2025
Tue Jul 01 00:38:25 EDT 2025
Fri Feb 21 02:38:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Cartilage
Finite element modeling
Knee osteoarthritis
Neural networks
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-4ba44356696ba9aa78a8a0fb78ff0cec02d7389032bc2ee53f2812d54ade7be13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Associate Editor Joel Stitzel oversaw the review of this article.
ORCID 0000-0002-3486-7855
0000-0002-5804-4781
OpenAccessLink https://link.springer.com/10.1007/s10439-024-03549-2
PMID 38842728
PQID 3093679593
PQPubID 54090
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11329407
proquest_miscellaneous_3065271808
proquest_journals_3093679593
pubmed_primary_38842728
crossref_primary_10_1007_s10439_024_03549_2
springer_journals_10_1007_s10439_024_03549_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: United States
– name: New York
PublicationSubtitle The Journal of the Biomedical Engineering Society
PublicationTitle Annals of biomedical engineering
PublicationTitleAbbrev Ann Biomed Eng
PublicationTitleAlternate Ann Biomed Eng
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Wesseling, Van Rossom, Jonkers, Henak (CR53) 2019; 22
Chen, Chen, Pei, Lew, Wong, Tang (CR7) 2003; 82
Huang, Hull, Howell (CR18) 2003; 21
Weightman, Chappell, Jenkins (CR52) 1978; 37
Lampen, Su, Chan, Yan (CR25) 2023; 41
Wluka, Forbes, Wang, Hanna, Jones, Cicuttini (CR55) 2006; 8
Mononen, Paz, Liukkonen, Turunen (CR36) 2023; 13
Ramazanian, Fu, Sohn, Taunton, Maradit (CR44) 2023; 11
Segal, Kern, Anderson, Niu, Lynch, Guermazi, Torner, Brown, Nevitt (CR50) 2012; 20
Dhaher, Kwon, Barry (CR11) 2010; 43
CR32
Lavikainen, Stenroth, Alkjær, Korhonen, Henriksen, Mononen (CR27) 2022; 2022
Clouthier, Smith, Vignos, Thelen, Deluzio, Rainbow (CR9) 2019; 66
Hall, Laslett, Martel-Pelletier, Pelletier, Abram, Ding, Cicuttini, Jones (CR16) 2016; 17
Van Rossom, Wesseling, Smith, Thelen, Vanwanseele, Dieter, Jonkers (CR45) 2019; 26
Paz, García, Korhonen, Mononen (CR41) 2023; 51
Weightman (CR51) 1976; 9
Burton, Myers, Rullkoetter (CR6) 2021; 123
CR5
Allen, Golightly (CR3) 2015; 27
Mononen, Liukkonen, Korhonen (CR35) 2019; 47
Mandrekar (CR33) 2010; 5
Maas, Ellis, Ateshian, Weiss (CR31) 2012; 134
Gilbert, Chen, Hutchinson, Choi, Voigt, Warren, Maher (CR14) 2014; 47
Segal, Anderson, Iyer, Baker, Torner, Lynch, Felson, Lewis, Brown (CR49) 2009; 27
Halilaj, Rajagopal, Fiterau, Hicks, Hastie, Delp (CR15) 2018; 81
Nuño, Ahmed (CR39) 2001; 123
DeLong, DeLong, Clarke-Pearson (CR10) 1988; 44
Aitken, Westermann, Bartschat, Meyer, Brouillette, Glass, Clohisy, Willey, Goetz (CR2) 2022; 40
Liukkonen, Mononen, Vartiainen, Kaukinen, Bragge, Suomalainen, Malo, Venesmaa, Käkelä, Pihlajamäki, Karjalainen, Arokoski, Korhonen (CR30) 2018; 140
Miller, Krupenevich (CR34) 2020; 8
Mootanah, Imhauser, Reisse, Carpanen, Walker, Koff, Lenhoff, Rozbruch, Fragomen, Dewan, Kirane, Cheah, Dowell, Hillstrom, Imhauser, Reisse, Carpanen, Walker, Koff (CR37) 2014; 17
Ebrahimi, Turkiewicz, Finnilä, Saarakkala, Englund, Korhonen, Tanska (CR12) 2022; 145
Jahangir, Mohammadi, Mononen, Hirvasniemi, Suomalainen, Saarakkala, Korhonen, Tanska (CR21) 2022; 50
Saito, Nakamura, Tanaka, Watanabe, Narimatsu, Chung (CR46) 2022; 4
Kutzner, Bender, Dymke, Duda, von Roth, Bergmann (CR24) 2017; 99
Eckstein, Tieschky, Faber, Englmeier, Reiser (CR13) 1999; 200
Ateshian, Rajan, Chahine, Canal, Hung (CR4) 2009; 131
CR17
Pradsgaard, Hørlyck, Spannow, Heuck, Herlin (CR43) 2019; 46
Yao, Crockett, Souza, Day, Wilcox, Jones (CR56) 2024
Khan, Chou, Aitken, McBride, Ding, Blizzard, Pelletier, Martel-Pelletier, Cicuttini, Jones (CR20) 2016; 68
Wise, Niu, Yang, Lane, Harvey, Felson, Hietpas, Nevitt, Sharma, Torner, Lewis, Zhang (CR54) 2012; 64
Hunter, Guermazi, Lo, Grainger, Conaghan, Boudreau, Roemer (CR19) 2011; 19
Litwic, Edwards, Dennison, Cooper (CR29) 2013; 105
Li, Wang, Chubinskaya, Schoeberl, Florine, Kopesky, Grodzinsky (CR28) 2015; 23
Adam, Eckstein, Milz, Schulte, Becker, Putz (CR1) 1998; 13
Parodi, Verda, Bagnasco, Muselli (CR40) 2022; 44
Schneider, Rooks, Besier (CR48) 2022; 12
Paz, Orozco, Tanska, García, Korhonen, Mononen (CR42) 2023; 26
Kempson (CR23) 1982; 41
Cicuttini, Jones, Forbes, Wluka (CR8) 2004; 63
Mukherjee, Nazemi, Jonkers, Geris (CR38) 2020; 8
Lavikainen, Stenroth, Alkjær, Karjalainen, Korhonen, Mononen (CR26) 2023; 51
Kar, Smith, Gardiner, Li, Wang, Grodzinsky (CR22) 2016; 594
Schantz, Olsson, Eriksson, Rosdahl (CR47) 2022; 10
KD Allen (3549_CR3) 2015; 27
M Wesseling (3549_CR53) 2019; 22
S Jahangir (3549_CR21) 2022; 50
A Paz (3549_CR41) 2023; 51
3549_CR17
R Mootanah (3549_CR37) 2014; 17
B Weightman (3549_CR52) 1978; 37
A Paz (3549_CR42) 2023; 26
AE Wluka (3549_CR55) 2006; 8
ME Mononen (3549_CR36) 2023; 13
B Weightman (3549_CR51) 1976; 9
HD Aitken (3549_CR2) 2022; 40
MK Liukkonen (3549_CR30) 2018; 140
ER DeLong (3549_CR10) 1988; 44
N Nuño (3549_CR39) 2001; 123
F Eckstein (3549_CR13) 1999; 200
GA Ateshian (3549_CR4) 2009; 131
S Kar (3549_CR22) 2016; 594
FM Cicuttini (3549_CR8) 2004; 63
J Lavikainen (3549_CR26) 2023; 51
MTY Schneider (3549_CR48) 2022; 12
GE Kempson (3549_CR23) 1982; 41
SA Maas (3549_CR31) 2012; 134
C Adam (3549_CR1) 1998; 13
NA Segal (3549_CR50) 2012; 20
DØ Pradsgaard (3549_CR43) 2019; 46
3549_CR32
J Hall (3549_CR16) 2016; 17
E Halilaj (3549_CR15) 2018; 81
J Yao (3549_CR56) 2024
J Lavikainen (3549_CR27) 2022; 2022
I Kutzner (3549_CR24) 2017; 99
RH Miller (3549_CR34) 2020; 8
S Mukherjee (3549_CR38) 2020; 8
Y Saito (3549_CR46) 2022; 4
Y Li (3549_CR28) 2015; 23
DJ Hunter (3549_CR19) 2011; 19
P Schantz (3549_CR47) 2022; 10
3549_CR5
T Ramazanian (3549_CR44) 2023; 11
BL Wise (3549_CR54) 2012; 64
M Ebrahimi (3549_CR12) 2022; 145
S Gilbert (3549_CR14) 2014; 47
HI Khan (3549_CR20) 2016; 68
ME Mononen (3549_CR35) 2019; 47
S Parodi (3549_CR40) 2022; 44
NA Segal (3549_CR49) 2009; 27
N Lampen (3549_CR25) 2023; 41
A Litwic (3549_CR29) 2013; 105
WS Burton (3549_CR6) 2021; 123
A Huang (3549_CR18) 2003; 21
AL Clouthier (3549_CR9) 2019; 66
JN Mandrekar (3549_CR33) 2010; 5
S Van Rossom (3549_CR45) 2019; 26
CPC Chen (3549_CR7) 2003; 82
YY Dhaher (3549_CR11) 2010; 43
References_xml – volume: 8
  start-page: 1
  year: 2006
  end-page: 9
  ident: CR55
  article-title: Knee cartilage loss in symptomatic knee osteoarthritis over 4.5 years
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/ar1962
– volume: 41
  start-page: 72
  year: 2023
  end-page: 83
  ident: CR25
  article-title: Finite element modeling with subject-specific mechanical properties to assess knee osteoarthritis initiation and progression
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.25338
– volume: 200
  start-page: 419
  year: 1999
  end-page: 424
  ident: CR13
  article-title: Functional analysis of articular cartilage deformation, recovery, and fluid flow following dynamic exercise in vivo
  publication-title: Anat. Embryol. (Berl)
  doi: 10.1007/s004290050291
– volume: 44
  start-page: 837
  year: 1988
  ident: CR10
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 134
  start-page: 1
  year: 2012
  end-page: 10
  ident: CR31
  article-title: FEBio: finite elements for biomechanics
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4005694
– volume: 12
  start-page: 1
  year: 2022
  end-page: 10
  ident: CR48
  article-title: Cartilage thickness and bone shape variations as a function of sex, height, body mass, and age in young adult knees
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-15585-w
– volume: 99
  start-page: 779
  year: 2017
  end-page: 787
  ident: CR24
  article-title: Mediolateral force distribution at the knee joint shifts across activities and is driven by tibiofemoral alignment
  publication-title: Bone Jt. J.
  doi: 10.1302/0301-620X.99B6.BJJ-2016-0713.R1
– volume: 20
  start-page: 1120
  year: 2012
  end-page: 1126
  ident: CR50
  article-title: Elevated tibiofemoral articular contact stress predicts risk for bone marrow lesions and cartilage damage at 30 months
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2012.05.013
– volume: 47
  start-page: 813
  year: 2019
  end-page: 825
  ident: CR35
  article-title: Utilizing atlas-based modeling to predict knee joint cartilage degeneration: data from the osteoarthritis initiative
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-018-02184-y
– volume: 46
  start-page: 301
  year: 2019
  end-page: 308
  ident: CR43
  article-title: A comparison of radiographic joint space width measurements versus ultrasonographic assessment of cartilage thickness in children with juvenile idiopathic arthritis
  publication-title: J. Rheumatol.
  doi: 10.3899/jrheum.170571
– volume: 41
  start-page: 508
  year: 1982
  end-page: 511
  ident: CR23
  article-title: Relationship between the tensile properties of articular cartilage from the human knee and age
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/ard.41.5.508
– volume: 51
  start-page: 2192
  year: 2023
  end-page: 2203
  ident: CR41
  article-title: Towards a transferable modeling method of the knee to distinguish between future healthy joints from osteoarthritic joints: data from the osteoarthritis initiative
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-023-03252-8
– volume: 10
  start-page: 911863
  year: 2022
  ident: CR47
  article-title: Perspectives on exercise intensity, volume, step characteristics and health outcomes in walking for transport
  publication-title: Front. Public Heal.
  doi: 10.3389/fpubh.2022.911863
– volume: 64
  start-page: 847
  year: 2012
  end-page: 852
  ident: CR54
  article-title: Patterns of compartment involvement in tibiofemoral osteoarthritis in men and women and in whites and African Americans
  publication-title: Arthritis Care Res.
  doi: 10.1002/acr.21606
– volume: 51
  start-page: 2479
  year: 2023
  end-page: 2489
  ident: CR26
  article-title: Prediction of knee joint compartmental loading maxima utilizing simple subject characteristics and neural networks
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-023-03278-y
– volume: 17
  start-page: 1502
  year: 2014
  end-page: 1517
  ident: CR37
  article-title: Development and validation of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis
  publication-title: Comput. Methods Biomech. Biomed. Engin.
  doi: 10.1080/10255842.2014.899588
– volume: 47
  start-page: 2006
  year: 2014
  end-page: 2012
  ident: CR14
  article-title: Dynamic contact mechanics on the tibial plateau of the human knee during activities of daily living
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.11.003
– volume: 27
  start-page: 1562
  year: 2009
  end-page: 1568
  ident: CR49
  article-title: Baseline articular contact stress levels predict incident symptomatic knee osteoarthritis development in the MOST cohort
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.20936
– ident: CR32
– volume: 66
  start-page: 47
  year: 2019
  end-page: 55
  ident: CR9
  article-title: The effect of articular geometry features identified using statistical shape modelling on knee biomechanics
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2019.02.009
– volume: 145
  year: 2022
  ident: CR12
  article-title: Associations of human femoral condyle cartilage structure and composition with viscoelastic and constituent-specific material properties at different stages of osteoarthritis
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2022.111390
– volume: 81
  start-page: 1
  year: 2018
  end-page: 11
  ident: CR15
  article-title: Machine learning in human movement biomechanics: best practices, common pitfalls, and new opportunities
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2018.09.009
– ident: CR5
– volume: 26
  start-page: 813
  year: 2019
  end-page: 823
  ident: CR45
  article-title: The influence of knee joint geometry and alignment on the tibiofemoral load distribution: a computational study
  publication-title: Knee
  doi: 10.1016/j.knee.2019.06.002
– volume: 594
  start-page: 37
  year: 2016
  end-page: 53
  ident: CR22
  article-title: Modeling IL-1 induced degradation of articular cartilage
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2016.02.008
– volume: 82
  start-page: 307
  year: 2003
  end-page: 312
  ident: CR7
  article-title: Sagittal plane loading response during gait in different age groups and in people with knee osteoarthritis
  publication-title: Am. J. Phys. Med. Rehabil.
  doi: 10.1097/01.PHM.0000056987.33630.56
– volume: 22
  start-page: 1323
  year: 2019
  end-page: 1333
  ident: CR53
  article-title: Subject-specific geometry affects acetabular contact pressure during gait more than subject-specific loading patterns
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2019.1661393
– volume: 8
  start-page: e9676
  year: 2020
  ident: CR34
  article-title: Medial knee cartilage is unlikely to withstand a lifetime of running without positive adaptation: a theoretical biomechanical model of failure phenomena
  publication-title: PeerJ
  doi: 10.7717/peerj.9676
– volume: 123
  start-page: 18
  year: 2001
  end-page: 26
  ident: CR39
  article-title: Sagittal profile of the femoral condyles and its application to femorotibial contact analysis
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1339819
– volume: 9
  start-page: 193
  year: 1976
  end-page: 200
  ident: CR51
  article-title: Tensile fatigue of human articular cartilage
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(76)90004-X
– volume: 11
  start-page: 1
  year: 2023
  end-page: 10
  ident: CR44
  article-title: Prediction models for knee osteoarthritis: review of current models and future directions
  publication-title: Arch. Bone Jt. Surg.
– volume: 37
  start-page: 58
  year: 1978
  end-page: 63
  ident: CR52
  article-title: A second study of tensile fatigue properties of human articular cartilage
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/ard.37.1.58
– volume: 13
  start-page: 1
  year: 2023
  end-page: 12
  ident: CR36
  article-title: Atlas-based finite element analyses with simpler constitutive models predict personalized progression of knee osteoarthritis: data from the osteoarthritis initiative
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-35832-y
– volume: 26
  start-page: 1353
  year: 2023
  end-page: 1367
  ident: CR42
  article-title: A novel knee joint model in FEBio with inhomogeneous fibril-reinforced biphasic cartilage simulating tissue mechanical responses during gait: data from the osteoarthritis initiative
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2022.2117548
– volume: 68
  start-page: 958
  year: 2016
  end-page: 964
  ident: CR20
  article-title: Correlation between changes in global knee structures assessed by magnetic resonance imaging and radiographic osteoarthritis changes over ten years in a midlife cohort
  publication-title: Arthritis Care Res.
  doi: 10.1002/acr.22778
– volume: 27
  start-page: 276
  year: 2015
  end-page: 283
  ident: CR3
  article-title: Epidemiology of osteoarthritis: state of the evidence
  publication-title: Curr. Opin. Rheumatol.
  doi: 10.1097/BOR.0000000000000161
– volume: 123
  year: 2021
  ident: CR6
  article-title: Machine learning for rapid estimation of lower extremity muscle and joint loading during activities of daily living
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2021.110439
– volume: 23
  start-page: 266
  year: 2015
  end-page: 274
  ident: CR28
  article-title: Effects of insulin-like growth factor-1 and dexamethasone on cytokine-challenged cartilage: relevance to post-traumatic osteoarthritis
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2014.11.006
– volume: 8
  start-page: 1
  year: 2020
  end-page: 20
  ident: CR38
  article-title: Use of computational modeling to study joint degeneration: a review
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00093
– volume: 2022
  start-page: 1
  year: 2022
  ident: CR27
  article-title: Prediction of knee joint loading from subject characteristics using machine learning
  publication-title: ORS Annu. Meet.
– volume: 40
  start-page: 2632
  year: 2022
  end-page: 2645
  ident: CR2
  article-title: Chronically elevated contact stress exposure correlates with intra-articular cartilage degeneration in patients with concurrent acetabular dysplasia and femoroacetabular impingement
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.25285
– volume: 43
  start-page: 3118
  year: 2010
  end-page: 3125
  ident: CR11
  article-title: The effect of connective tissue material uncertainties on knee joint mechanics under isolated loading conditions
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.08.005
– volume: 50
  start-page: 666
  year: 2022
  end-page: 679
  ident: CR21
  article-title: Rapid X-ray-based 3-D finite element modeling of medial knee joint cartilage biomechanics during walking
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-022-02941-0
– volume: 21
  start-page: 459
  year: 2003
  end-page: 464
  ident: CR18
  article-title: The level of compressive load affects conclusions from statistical analyses to determine whether a lateral meniscal autograft restores tibial contact pressure to normal: a study in human cadaveric knees
  publication-title: J. Orthop. Res.
  doi: 10.1016/S0736-0266(02)00201-2
– volume: 13
  start-page: 1
  year: 1998
  end-page: 10
  ident: CR1
  article-title: The distribution of cartilage thickness in the knee-joints of old-aged individuals measurement by A-mode ultrasound
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(97)85881-0
– volume: 63
  start-page: 1124
  year: 2004
  end-page: 1127
  ident: CR8
  article-title: Rate of cartilage loss at two years predicts subsequent total knee arthroplasty: a prospective study
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/ard.2004.021253
– volume: 4
  start-page: 904924
  year: 2022
  ident: CR46
  article-title: Evaluation of the validity and reliability of the 10-meter walk test using a smartphone application among Japanese older adults
  publication-title: Front. Sport. Act. Living
  doi: 10.3389/fspor.2022.904924
– ident: CR17
– volume: 5
  start-page: 1315
  year: 2010
  end-page: 1316
  ident: CR33
  article-title: Receiver operating characteristic curve in diagnostic test assessment
  publication-title: J. Thorac. Oncol.
  doi: 10.1097/JTO.0b013e3181ec173d
– volume: 19
  start-page: 990
  year: 2011
  end-page: 1002
  ident: CR19
  article-title: Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score)
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2011.05.004
– year: 2024
  ident: CR56
  article-title: Effect of meniscus modelling assumptions in a static tibiofemoral finite element model: importance of geometry over material
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-024-01822-w
– volume: 105
  start-page: 185
  year: 2013
  end-page: 199
  ident: CR29
  article-title: Epidemiology and burden of osteoarthritis
  publication-title: Br. Med. Bull.
  doi: 10.1093/bmb/lds038
– volume: 44
  year: 2022
  ident: CR40
  article-title: The clinical meaning of the area under a receiver operating characteristic curve for the evaluation of the performance of disease markers
  publication-title: Epidemiol. Health
  doi: 10.4178/epih.e2022088
– volume: 17
  start-page: 1
  year: 2016
  end-page: 11
  ident: CR16
  article-title: Change in knee structure and change in tibiofemoral joint space width: a five year longitudinal population-based study
  publication-title: BMC Musculoskelet. Disord.
  doi: 10.1186/s12891-016-0879-0
– volume: 140
  start-page: 041008
  year: 2018
  ident: CR30
  article-title: Evaluation of the effect of bariatric surgery-induced weight loss on knee gait and cartilage degeneration
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4038330
– volume: 131
  start-page: 612
  year: 2009
  end-page: 615
  ident: CR4
  article-title: Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3118773
– volume: 13
  start-page: 1
  year: 1998
  ident: 3549_CR1
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(97)85881-0
– volume: 105
  start-page: 185
  year: 2013
  ident: 3549_CR29
  publication-title: Br. Med. Bull.
  doi: 10.1093/bmb/lds038
– volume: 51
  start-page: 2192
  year: 2023
  ident: 3549_CR41
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-023-03252-8
– volume: 47
  start-page: 2006
  year: 2014
  ident: 3549_CR14
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.11.003
– volume: 23
  start-page: 266
  year: 2015
  ident: 3549_CR28
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2014.11.006
– volume: 22
  start-page: 1323
  year: 2019
  ident: 3549_CR53
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2019.1661393
– volume: 594
  start-page: 37
  year: 2016
  ident: 3549_CR22
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2016.02.008
– volume: 20
  start-page: 1120
  year: 2012
  ident: 3549_CR50
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2012.05.013
– volume: 26
  start-page: 1353
  year: 2023
  ident: 3549_CR42
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2022.2117548
– volume: 8
  start-page: e9676
  year: 2020
  ident: 3549_CR34
  publication-title: PeerJ
  doi: 10.7717/peerj.9676
– volume: 123
  year: 2021
  ident: 3549_CR6
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2021.110439
– volume: 26
  start-page: 813
  year: 2019
  ident: 3549_CR45
  publication-title: Knee
  doi: 10.1016/j.knee.2019.06.002
– volume: 200
  start-page: 419
  year: 1999
  ident: 3549_CR13
  publication-title: Anat. Embryol. (Berl)
  doi: 10.1007/s004290050291
– volume: 21
  start-page: 459
  year: 2003
  ident: 3549_CR18
  publication-title: J. Orthop. Res.
  doi: 10.1016/S0736-0266(02)00201-2
– volume: 8
  start-page: 1
  year: 2020
  ident: 3549_CR38
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00093
– volume: 4
  start-page: 904924
  year: 2022
  ident: 3549_CR46
  publication-title: Front. Sport. Act. Living
  doi: 10.3389/fspor.2022.904924
– volume: 37
  start-page: 58
  year: 1978
  ident: 3549_CR52
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/ard.37.1.58
– volume: 40
  start-page: 2632
  year: 2022
  ident: 3549_CR2
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.25285
– ident: 3549_CR17
  doi: 10.1002/jor.25358
– volume: 82
  start-page: 307
  year: 2003
  ident: 3549_CR7
  publication-title: Am. J. Phys. Med. Rehabil.
  doi: 10.1097/01.PHM.0000056987.33630.56
– volume: 41
  start-page: 508
  year: 1982
  ident: 3549_CR23
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/ard.41.5.508
– volume: 27
  start-page: 276
  year: 2015
  ident: 3549_CR3
  publication-title: Curr. Opin. Rheumatol.
  doi: 10.1097/BOR.0000000000000161
– volume: 10
  start-page: 911863
  year: 2022
  ident: 3549_CR47
  publication-title: Front. Public Heal.
  doi: 10.3389/fpubh.2022.911863
– volume: 63
  start-page: 1124
  year: 2004
  ident: 3549_CR8
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/ard.2004.021253
– volume: 44
  year: 2022
  ident: 3549_CR40
  publication-title: Epidemiol. Health
  doi: 10.4178/epih.e2022088
– volume: 43
  start-page: 3118
  year: 2010
  ident: 3549_CR11
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.08.005
– volume: 99
  start-page: 779
  year: 2017
  ident: 3549_CR24
  publication-title: Bone Jt. J.
  doi: 10.1302/0301-620X.99B6.BJJ-2016-0713.R1
– volume: 11
  start-page: 1
  year: 2023
  ident: 3549_CR44
  publication-title: Arch. Bone Jt. Surg.
– volume: 41
  start-page: 72
  year: 2023
  ident: 3549_CR25
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.25338
– volume: 2022
  start-page: 1
  year: 2022
  ident: 3549_CR27
  publication-title: ORS Annu. Meet.
– ident: 3549_CR32
– volume: 13
  start-page: 1
  year: 2023
  ident: 3549_CR36
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-35832-y
– volume: 19
  start-page: 990
  year: 2011
  ident: 3549_CR19
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2011.05.004
– volume: 123
  start-page: 18
  year: 2001
  ident: 3549_CR39
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1339819
– volume: 47
  start-page: 813
  year: 2019
  ident: 3549_CR35
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-018-02184-y
– volume: 66
  start-page: 47
  year: 2019
  ident: 3549_CR9
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2019.02.009
– volume: 12
  start-page: 1
  year: 2022
  ident: 3549_CR48
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-15585-w
– volume: 46
  start-page: 301
  year: 2019
  ident: 3549_CR43
  publication-title: J. Rheumatol.
  doi: 10.3899/jrheum.170571
– volume: 64
  start-page: 847
  year: 2012
  ident: 3549_CR54
  publication-title: Arthritis Care Res.
  doi: 10.1002/acr.21606
– volume: 140
  start-page: 041008
  year: 2018
  ident: 3549_CR30
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4038330
– volume: 9
  start-page: 193
  year: 1976
  ident: 3549_CR51
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(76)90004-X
– volume: 81
  start-page: 1
  year: 2018
  ident: 3549_CR15
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2018.09.009
– volume: 27
  start-page: 1562
  year: 2009
  ident: 3549_CR49
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.20936
– volume: 5
  start-page: 1315
  year: 2010
  ident: 3549_CR33
  publication-title: J. Thorac. Oncol.
  doi: 10.1097/JTO.0b013e3181ec173d
– volume: 17
  start-page: 1502
  year: 2014
  ident: 3549_CR37
  publication-title: Comput. Methods Biomech. Biomed. Engin.
  doi: 10.1080/10255842.2014.899588
– volume: 134
  start-page: 1
  year: 2012
  ident: 3549_CR31
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4005694
– year: 2024
  ident: 3549_CR56
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-024-01822-w
– volume: 68
  start-page: 958
  year: 2016
  ident: 3549_CR20
  publication-title: Arthritis Care Res.
  doi: 10.1002/acr.22778
– volume: 17
  start-page: 1
  year: 2016
  ident: 3549_CR16
  publication-title: BMC Musculoskelet. Disord.
  doi: 10.1186/s12891-016-0879-0
– volume: 51
  start-page: 2479
  year: 2023
  ident: 3549_CR26
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-023-03278-y
– volume: 8
  start-page: 1
  year: 2006
  ident: 3549_CR55
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/ar1962
– volume: 145
  year: 2022
  ident: 3549_CR12
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2022.111390
– ident: 3549_CR5
  doi: 10.1016/j.exger.2023.112102
– volume: 44
  start-page: 837
  year: 1988
  ident: 3549_CR10
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 131
  start-page: 612
  year: 2009
  ident: 3549_CR4
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3118773
– volume: 50
  start-page: 666
  year: 2022
  ident: 3549_CR21
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-022-02941-0
SSID ssj0011835
Score 2.4329512
Snippet Physics-based modeling methods have the potential to investigate the mechanical factors associated with knee osteoarthritis (OA) and predict the future...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2569
SubjectTerms Aged
Arthritis
Biochemistry
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Cartilage
Cartilage diseases
Cartilage, Articular - diagnostic imaging
Cartilage, Articular - physiopathology
Classical Mechanics
Classification
Degeneration
Female
Finite Element Analysis
Finite element method
Gait - physiology
Humans
Image processing
Image segmentation
Joints (anatomy)
Knee
Knee Joint - diagnostic imaging
Knee Joint - physiopathology
Male
Mechanical properties
Middle Aged
Modelling
Models, Biological
Motion capture
Neural networks
Neural Networks, Computer
Neurodegeneration
Original
Original Article
Osteoarthritis
Osteoarthritis, Knee - classification
Osteoarthritis, Knee - diagnostic imaging
Osteoarthritis, Knee - physiopathology
Predictions
Thickness
Weight-Bearing
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BkRAcEBQogYKMxA0sEjt2HC4IQVfl0cKBSnuLbMdWe0lKd_tz-K_MON5dthVcd6LNZr9x5v0NwCulovG-dbzV0fE6Ypxio0VdNtrrUAarFM0OHx3rw5P6y1zNc8JtkdsqV-_E9KLuR0858rdUsdO0GFu-P__FaWsUVVfzCo2bcIuoy6ilq5mvAy70nacFm2WLIVKr6zw0k0fn0BRztFC8lBgjcbFtmK55m9ebJq9UTpNBmt2He9mTZB8m6B_AjTDswt2_-AV34fZRrpw_hN9f8VP-bUwt8-zHBQmSyjHKxDLi6MAvO56awhdsyjUENjsjn5QdTE3mjDan0fw6S7s0qctoSvixMTK6AfuOSjOiNp4mrqR37JNdWkYjLAwdzStS9pkalxLx-CM4mR38_HjI82oG7tGkL3ntbI2OlsZ_1dnW2sZYY8voGhNj6YMvRd-gK1RK4bwIQcko0JPoVW370LhQycewM4xDeAKsaoKzulXCSVt7KRBG3coeQeurXpVVAa9XuHTnEwNHt-FaJhQ7RLFLKHaigP0VdF0-jYtuozsFvFyL8RxRccQOYbyka7QSaKhLU8DehPT6dtKYWjQCJWZLB9YXEEf3tmQ4O01c3RVG-y0GzQW8WanL5nf9-zGe_v8xnsEdkVSXet32YWd5cRmeo3O0dC_SCfgD5XEPFg
  priority: 102
  providerName: ProQuest
Title Knee-Loading Predictions with Neural Networks Improve Finite Element Modeling Classifications of Knee Osteoarthritis: Data from the Osteoarthritis Initiative
URI https://link.springer.com/article/10.1007/s10439-024-03549-2
https://www.ncbi.nlm.nih.gov/pubmed/38842728
https://www.proquest.com/docview/3093679593
https://www.proquest.com/docview/3065271808
https://pubmed.ncbi.nlm.nih.gov/PMC11329407
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BJiF4QGPACNsqI_EGkRI7dhzeuq7dYGuZgErlKbITR9tLgtbuz-F_5c5JunWDB15iKWfl637O3fm-AN5LWemiyGyYqcqGSYV2iqkMYlmrQrnIGSkpd3g6U6fz5MtCLrqksGUf7d67JP2f-k6yGwrPEGVKGAm0akL88W5Lst0RxXM-XPsOEKRt34IMDaNMJV2qzN-vsSmOHuiYD0Ml7_lLvRia7MDzTn9kw5bhL-CRq3fh2Z2qgrvwZNr5y1_C7zM8G543PlCeXVwTwQON0f4ro8oceLFZGwq-ZO0Og2OTK9JE2bgNLWfUL42y1pnvoEmxRe02H2sqRjdgXxEqDWLw0ldI-sSOzcowSlxhqF7eo7LPFK7ky42_gvlk_GN0GnYNGcICBfkqTKxJUL1S-FWtyYxJtdEmqmyqqyoqXBHxMkUFKBLcFtw5KSqO-kMpE1O61LpYvIatuqndG2Bx6qxRmeRWmKQQPJNaZaJEppVxKaM4gA89X_Jfbd2N_LbCMnExRy7mnos5D-CgZ13ercFlTj5eRa3URQDv1mRcPeQSMbVrbmiOkhzFc6QD2Gs5vb6d0DrhKUeK3sDAegJV5t6k1FeXvkJ3jDZ-hqZyAB97uNw-179f4-3_Td-Hp9xDmSLeDmBrdX3jDlFFWtkBPE4XKR715GQA28Pj6fl3Gk9-no1xPBrPLr4hdaRGA792_gA7bhNT
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkE5ICiPBgoYCU4QkdixYyMhhGiXXfYBh1bqLTiJo_aSlO5WiB_DX-A3MuMku2wruPWaseJY801mxvMCeCFlpYvC5KFRVR4mFfoptrKIZa0K5SJnpaTa4elMDQ-Tz0fyaAN-97UwlFbZ_xP9j7psCrojf0MRO0WDscX70-8hTY2i6Go_QqOFxdj9_IEu2_zdaA_5-5Lzwf7Bx2HYTRUIC9RGizDJbYI2glJG5dZYm2qrbVTlqa6qqHBFxMsUtXgkeF5w56SoOCrBUia2dGnuYoHvvQbXEyEMSZQefFpGLVA82okJBl0yo5KuSKcr1UPVH6JGDCOBPlnI1xXhJev2cpLmhUitV4CDO3C7s1zZhxZqd2HD1dtw669-httwY9pF6u_BrzE-DSeNT9FnX8-I4CHO6OaXUU8QfNmsTUKfs_Zuw7HBCdnAbL9Namc0qY3q5Zmf3UlZTe0FI2sqRhuwLwjSBtF_7HszvWV7dmEZlcwwNGwvUNmIEqV8o_P7cHglTHsAm3VTux1gcepyq4zkubBJIbiRWhlRItPKuJRRHMCrni_ZadvxI1v1diYuZsjFzHMx4wHs9qzLOumfZyusBvB8SUa5pWCMrV1zTmuU5GgYRDqAhy2nl9sJrROecqToNQwsF1BP8HVKfXLse4PHMZ4InfQAXvdwWX3Xv4_x6P_HeAY3hwfTSTYZzcaPYYt7GFOe3S5sLs7O3RM0zBb5Uy8NDL5dtfj9AX8ITNI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIlVwQFD-FgoYCU5gNXFix0FCCLFdddl26YFKewt2Yqu9JKW7FeJheBGejhkn2WVbwa3XTOTEmhnPN54_gFdSel2WueW58panHv0U4w3KslalcpEzUlLt8OFU7R-nn2dytgG_-1oYSqvsz8RwUFdNSXfkuxSxUzQYO9n1XVrE0XD04ew7pwlSFGntx2m0IjJxP3-g-zZ_Px4ir18LMdr7-mmfdxMGeImWacFTa1LEC0rlyprcmEwbbSJvM-19VLoyElWGFj1KhC2FczLxAg1iJVNTucy6OMF1b8DNLJEx6Vg2Wzp7iNvb4Z5Rju5ZrtKuYKcr20MYwNE68ihB_4yLdaN4BeleTdi8FLUNxnB0F-50KJZ9bMXuHmy4ehtu_9XbcBu2Druo_X34NcGn_KAJ6frs6JwIQdwZ3QIz6g-Ci03bhPQ5a-85HBudEh5me22CO6OpbVQ7z8IcT8pwai8bWeMZfYB9QYFtUBNOQp-md2xoFoZR-QxDkHuJysaUNBWanj-A42th2kPYrJvaPQYWZ84alUthE5OWicilVnlSIdOquJJRPIA3PV-Ks7b7R7Hq80xcLJCLReBiIQaw07Ou6E6CebGS2wG8XJJRhykwY2rXXNA7SgoECZEewKOW08vPJVqnIhNI0WsysHyB-oOvU-rTk9AnPI5xR-iwD-BtLy6r__r3Np78fxsvYAsVrzgYTydP4ZYIUkwpdzuwuTi_cM8Qoy3s86AMDL5dt_b9AcKsUP8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knee-Loading+Predictions+with+Neural+Networks+Improve+Finite+Element+Modeling+Classifications+of+Knee+Osteoarthritis%3A+Data+from+the+Osteoarthritis+Initiative&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Paz%2C+Alexander&rft.au=Lavikainen%2C+Jere&rft.au=Turunen%2C+Mikael+J.&rft.au=Garc%C3%ADa%2C+Jos%C3%A9+J.&rft.date=2024-09-01&rft.pub=Springer+International+Publishing&rft.issn=0090-6964&rft.eissn=1573-9686&rft.volume=52&rft.issue=9&rft.spage=2569&rft.epage=2583&rft_id=info:doi/10.1007%2Fs10439-024-03549-2&rft_id=info%3Apmid%2F38842728&rft.externalDocID=PMC11329407
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon