Knee-Loading Predictions with Neural Networks Improve Finite Element Modeling Classifications of Knee Osteoarthritis: Data from the Osteoarthritis Initiative
Physics-based modeling methods have the potential to investigate the mechanical factors associated with knee osteoarthritis (OA) and predict the future radiographic condition of the joint. However, it remains unclear what level of detail is optimal in these methods to achieve accurate prediction res...
Saved in:
Published in | Annals of biomedical engineering Vol. 52; no. 9; pp. 2569 - 2583 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.09.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0090-6964 1573-9686 1573-9686 |
DOI | 10.1007/s10439-024-03549-2 |
Cover
Loading…
Abstract | Physics-based modeling methods have the potential to investigate the mechanical factors associated with knee osteoarthritis (OA) and predict the future radiographic condition of the joint. However, it remains unclear what level of detail is optimal in these methods to achieve accurate prediction results in cohort studies. In this work, we extended a template-based finite element (FE) method to include the lateral and medial compartments of the tibiofemoral joint and simulated the mechanical responses of 97 knees under three conditions of gait loading. Furthermore, the effects of variations in cartilage thickness and failure equation on predicted cartilage degeneration were investigated. Our results showed that using neural network-based estimations of peak knee loading provided classification performances of 0.70 (AUC,
p
< 0.05) in distinguishing between knees that developed severe OA or mild OA and knees that did not develop OA eight years after a healthy radiographic baseline. However, FE models incorporating subject-specific femoral and tibial cartilage thickness did not improve this classification performance, suggesting there exists an optimal point between personalized loading and geometry for discrimination purposes. In summary, we proposed a modeling framework that streamlines the rapid generation of individualized knee models achieving promising classification performance while avoiding motion capture and cartilage image segmentation. |
---|---|
AbstractList | Physics-based modeling methods have the potential to investigate the mechanical factors associated with knee osteoarthritis (OA) and predict the future radiographic condition of the joint. However, it remains unclear what level of detail is optimal in these methods to achieve accurate prediction results in cohort studies. In this work, we extended a template-based finite element (FE) method to include the lateral and medial compartments of the tibiofemoral joint and simulated the mechanical responses of 97 knees under three conditions of gait loading. Furthermore, the effects of variations in cartilage thickness and failure equation on predicted cartilage degeneration were investigated. Our results showed that using neural network-based estimations of peak knee loading provided classification performances of 0.70 (AUC, p < 0.05) in distinguishing between knees that developed severe OA or mild OA and knees that did not develop OA eight years after a healthy radiographic baseline. However, FE models incorporating subject-specific femoral and tibial cartilage thickness did not improve this classification performance, suggesting there exists an optimal point between personalized loading and geometry for discrimination purposes. In summary, we proposed a modeling framework that streamlines the rapid generation of individualized knee models achieving promising classification performance while avoiding motion capture and cartilage image segmentation.Physics-based modeling methods have the potential to investigate the mechanical factors associated with knee osteoarthritis (OA) and predict the future radiographic condition of the joint. However, it remains unclear what level of detail is optimal in these methods to achieve accurate prediction results in cohort studies. In this work, we extended a template-based finite element (FE) method to include the lateral and medial compartments of the tibiofemoral joint and simulated the mechanical responses of 97 knees under three conditions of gait loading. Furthermore, the effects of variations in cartilage thickness and failure equation on predicted cartilage degeneration were investigated. Our results showed that using neural network-based estimations of peak knee loading provided classification performances of 0.70 (AUC, p < 0.05) in distinguishing between knees that developed severe OA or mild OA and knees that did not develop OA eight years after a healthy radiographic baseline. However, FE models incorporating subject-specific femoral and tibial cartilage thickness did not improve this classification performance, suggesting there exists an optimal point between personalized loading and geometry for discrimination purposes. In summary, we proposed a modeling framework that streamlines the rapid generation of individualized knee models achieving promising classification performance while avoiding motion capture and cartilage image segmentation. Physics-based modeling methods have the potential to investigate the mechanical factors associated with knee osteoarthritis (OA) and predict the future radiographic condition of the joint. However, it remains unclear what level of detail is optimal in these methods to achieve accurate prediction results in cohort studies. In this work, we extended a template-based finite element (FE) method to include the lateral and medial compartments of the tibiofemoral joint and simulated the mechanical responses of 97 knees under three conditions of gait loading. Furthermore, the effects of variations in cartilage thickness and failure equation on predicted cartilage degeneration were investigated. Our results showed that using neural network-based estimations of peak knee loading provided classification performances of 0.70 (AUC, p < 0.05) in distinguishing between knees that developed severe OA or mild OA and knees that did not develop OA eight years after a healthy radiographic baseline. However, FE models incorporating subject-specific femoral and tibial cartilage thickness did not improve this classification performance, suggesting there exists an optimal point between personalized loading and geometry for discrimination purposes. In summary, we proposed a modeling framework that streamlines the rapid generation of individualized knee models achieving promising classification performance while avoiding motion capture and cartilage image segmentation. Physics-based modeling methods have the potential to investigate the mechanical factors associated with knee osteoarthritis (OA) and predict the future radiographic condition of the joint. However, it remains unclear what level of detail is optimal in these methods to achieve accurate prediction results in cohort studies. In this work, we extended a template-based finite element (FE) method to include the lateral and medial compartments of the tibiofemoral joint and simulated the mechanical responses of 97 knees under three conditions of gait loading. Furthermore, the effects of variations in cartilage thickness and failure equation on predicted cartilage degeneration were investigated. Our results showed that using neural network-based estimations of peak knee loading provided classification performances of 0.70 (AUC, p < 0.05) in distinguishing between knees that developed severe OA or mild OA and knees that did not develop OA eight years after a healthy radiographic baseline. However, FE models incorporating subject-specific femoral and tibial cartilage thickness did not improve this classification performance, suggesting there exists an optimal point between personalized loading and geometry for discrimination purposes. In summary, we proposed a modeling framework that streamlines the rapid generation of individualized knee models achieving promising classification performance while avoiding motion capture and cartilage image segmentation. |
Author | Turunen, Mikael J. Korhonen, Rami K. Mononen, Mika E. García, José J. Lavikainen, Jere Paz, Alexander |
Author_xml | – sequence: 1 givenname: Alexander orcidid: 0000-0002-5804-4781 surname: Paz fullname: Paz, Alexander email: alexander.paz@uef.fi organization: Department of Technical Physics, University of Eastern Finland, Escuela de Ingeniería Civil y Geomática, Universidad del Valle – sequence: 2 givenname: Jere surname: Lavikainen fullname: Lavikainen, Jere organization: Department of Technical Physics, University of Eastern Finland, Diagnostic Imaging Center, Wellbeing Services County of North Savo – sequence: 3 givenname: Mikael J. surname: Turunen fullname: Turunen, Mikael J. organization: Department of Technical Physics, University of Eastern Finland, Science Service Center, Kuopio University Hospital, Wellbeing Services County of North Savo – sequence: 4 givenname: José J. surname: García fullname: García, José J. organization: Escuela de Ingeniería Civil y Geomática, Universidad del Valle – sequence: 5 givenname: Rami K. orcidid: 0000-0002-3486-7855 surname: Korhonen fullname: Korhonen, Rami K. organization: Department of Technical Physics, University of Eastern Finland – sequence: 6 givenname: Mika E. surname: Mononen fullname: Mononen, Mika E. organization: Department of Technical Physics, University of Eastern Finland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38842728$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks9u1DAQxi1URLeFF-CALHHhEup_SWwuCC0tXbFQDnC2nGSy65LYi-1sxcPwrnhJKdADpznMb76ZT_OdoCPnHSD0lJKXlJD6LFIiuCoIEwXhpVAFe4AWtKx5oSpZHaEFIYoUlarEMTqJ8ZoQSiUvH6FjLqVgNZML9OO9AyjW3nTWbfCnAJ1tk_Uu4hubtvgjTMEMuaQbH75GvBp3we8BX1hnE-DzAUZwCX_wHQwHgeVgYrS9bc0s4nt8WICvYgJvQtoGm2x8hd-aZHAf_IjT9n4Xr7K2zQJ7eIwe9maI8OS2nqIvF-efl5fF-urdavlmXbSCVakQjRGCl1W22hhlTC2NNKRvatn3pIWWsK7mUhHOmpYBlLxnkrKuFKaDugHKT9HrWXc3NSN0bfaUbetdsKMJ37U3Vv_bcXarN36vKeVMCVJnhRe3CsF_myAmPdrYwjAYB36KmpOqZDWVRGb0-T302k_BZX-ZUryqVal4pp79fdLdLb9flwE2A23wMQbo7xBK9CEfes6HzvnQv_KhWR7i81DMsNtA-LP7P1M_ASdLwTc |
Cites_doi | 10.1186/ar1962 10.1002/jor.25338 10.1007/s004290050291 10.2307/2531595 10.1115/1.4005694 10.1038/s41598-022-15585-w 10.1302/0301-620X.99B6.BJJ-2016-0713.R1 10.1016/j.joca.2012.05.013 10.1007/s10439-018-02184-y 10.3899/jrheum.170571 10.1136/ard.41.5.508 10.1007/s10439-023-03252-8 10.3389/fpubh.2022.911863 10.1002/acr.21606 10.1007/s10439-023-03278-y 10.1080/10255842.2014.899588 10.1016/j.jbiomech.2013.11.003 10.1002/jor.20936 10.1016/j.medengphy.2019.02.009 10.1016/j.jbiomech.2022.111390 10.1016/j.jbiomech.2018.09.009 10.1016/j.knee.2019.06.002 10.1016/j.abb.2016.02.008 10.1097/01.PHM.0000056987.33630.56 10.1080/10255842.2019.1661393 10.7717/peerj.9676 10.1115/1.1339819 10.1016/0021-9290(76)90004-X 10.1136/ard.37.1.58 10.1038/s41598-023-35832-y 10.1080/10255842.2022.2117548 10.1002/acr.22778 10.1097/BOR.0000000000000161 10.1016/j.jbiomech.2021.110439 10.1016/j.joca.2014.11.006 10.3389/fbioe.2020.00093 10.1002/jor.25285 10.1016/j.jbiomech.2010.08.005 10.1007/s10439-022-02941-0 10.1016/S0736-0266(02)00201-2 10.1016/S0268-0033(97)85881-0 10.1136/ard.2004.021253 10.3389/fspor.2022.904924 10.1097/JTO.0b013e3181ec173d 10.1016/j.joca.2011.05.004 10.1007/s10237-024-01822-w 10.1093/bmb/lds038 10.4178/epih.e2022088 10.1186/s12891-016-0879-0 10.1115/1.4038330 10.1115/1.3118773 10.1002/jor.25358 10.1016/j.exger.2023.112102 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7X7 7XB 88E 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K9. KR7 L6V L7M LK8 L~C L~D M0S M1P M7P M7S P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 5PM |
DOI | 10.1007/s10439-024-03549-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Health & Medical Collection (Alumni) Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1573-9686 |
EndPage | 2583 |
ExternalDocumentID | PMC11329407 38842728 10_1007_s10439_024_03549_2 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Sigrid Juséliuksen Säätiö funderid: http://dx.doi.org/10.13039/501100006306 – fundername: Research Council of Finland grantid: 324529; 352666; 328920; 324994 – fundername: Doctoral Programme in Science, Forestry, and Technology, University of Eastern Finland – fundername: University of Eastern Finland (including Kuopio University Hospital) – fundername: Pohjois-Savon Rahasto funderid: http://dx.doi.org/10.13039/501100005432 – fundername: Research Council of Finland grantid: 352666 – fundername: Research Council of Finland grantid: 324529 – fundername: Research Council of Finland grantid: 328920 – fundername: Research Council of Finland grantid: 324994 |
GroupedDBID | --- -4W -56 -5G -BR -DZ -EM -Y2 -~C -~X .86 .GJ .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6J9 6NX 78A 7X7 85S 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADYPR ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L6V L7B LAK LK8 LLZTM M1P M4Y M7P M7S MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 PF0 PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UKR UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WJK WK6 WK8 YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8N Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZMTXR ZOVNA ZY4 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7XB 8BQ 8FD 8FK ABRTQ AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c426t-4ba44356696ba9aa78a8a0fb78ff0cec02d7389032bc2ee53f2812d54ade7be13 |
IEDL.DBID | U2A |
ISSN | 0090-6964 1573-9686 |
IngestDate | Thu Aug 21 18:34:50 EDT 2025 Mon Jul 21 10:02:56 EDT 2025 Tue Sep 02 03:17:54 EDT 2025 Wed Feb 19 02:04:02 EST 2025 Tue Jul 01 00:38:25 EDT 2025 Fri Feb 21 02:38:34 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Cartilage Finite element modeling Knee osteoarthritis Neural networks |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-4ba44356696ba9aa78a8a0fb78ff0cec02d7389032bc2ee53f2812d54ade7be13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Associate Editor Joel Stitzel oversaw the review of this article. |
ORCID | 0000-0002-3486-7855 0000-0002-5804-4781 |
OpenAccessLink | https://link.springer.com/10.1007/s10439-024-03549-2 |
PMID | 38842728 |
PQID | 3093679593 |
PQPubID | 54090 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11329407 proquest_miscellaneous_3065271808 proquest_journals_3093679593 pubmed_primary_38842728 crossref_primary_10_1007_s10439_024_03549_2 springer_journals_10_1007_s10439_024_03549_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: United States – name: New York |
PublicationSubtitle | The Journal of the Biomedical Engineering Society |
PublicationTitle | Annals of biomedical engineering |
PublicationTitleAbbrev | Ann Biomed Eng |
PublicationTitleAlternate | Ann Biomed Eng |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Wesseling, Van Rossom, Jonkers, Henak (CR53) 2019; 22 Chen, Chen, Pei, Lew, Wong, Tang (CR7) 2003; 82 Huang, Hull, Howell (CR18) 2003; 21 Weightman, Chappell, Jenkins (CR52) 1978; 37 Lampen, Su, Chan, Yan (CR25) 2023; 41 Wluka, Forbes, Wang, Hanna, Jones, Cicuttini (CR55) 2006; 8 Mononen, Paz, Liukkonen, Turunen (CR36) 2023; 13 Ramazanian, Fu, Sohn, Taunton, Maradit (CR44) 2023; 11 Segal, Kern, Anderson, Niu, Lynch, Guermazi, Torner, Brown, Nevitt (CR50) 2012; 20 Dhaher, Kwon, Barry (CR11) 2010; 43 CR32 Lavikainen, Stenroth, Alkjær, Korhonen, Henriksen, Mononen (CR27) 2022; 2022 Clouthier, Smith, Vignos, Thelen, Deluzio, Rainbow (CR9) 2019; 66 Hall, Laslett, Martel-Pelletier, Pelletier, Abram, Ding, Cicuttini, Jones (CR16) 2016; 17 Van Rossom, Wesseling, Smith, Thelen, Vanwanseele, Dieter, Jonkers (CR45) 2019; 26 Paz, García, Korhonen, Mononen (CR41) 2023; 51 Weightman (CR51) 1976; 9 Burton, Myers, Rullkoetter (CR6) 2021; 123 CR5 Allen, Golightly (CR3) 2015; 27 Mononen, Liukkonen, Korhonen (CR35) 2019; 47 Mandrekar (CR33) 2010; 5 Maas, Ellis, Ateshian, Weiss (CR31) 2012; 134 Gilbert, Chen, Hutchinson, Choi, Voigt, Warren, Maher (CR14) 2014; 47 Segal, Anderson, Iyer, Baker, Torner, Lynch, Felson, Lewis, Brown (CR49) 2009; 27 Halilaj, Rajagopal, Fiterau, Hicks, Hastie, Delp (CR15) 2018; 81 Nuño, Ahmed (CR39) 2001; 123 DeLong, DeLong, Clarke-Pearson (CR10) 1988; 44 Aitken, Westermann, Bartschat, Meyer, Brouillette, Glass, Clohisy, Willey, Goetz (CR2) 2022; 40 Liukkonen, Mononen, Vartiainen, Kaukinen, Bragge, Suomalainen, Malo, Venesmaa, Käkelä, Pihlajamäki, Karjalainen, Arokoski, Korhonen (CR30) 2018; 140 Miller, Krupenevich (CR34) 2020; 8 Mootanah, Imhauser, Reisse, Carpanen, Walker, Koff, Lenhoff, Rozbruch, Fragomen, Dewan, Kirane, Cheah, Dowell, Hillstrom, Imhauser, Reisse, Carpanen, Walker, Koff (CR37) 2014; 17 Ebrahimi, Turkiewicz, Finnilä, Saarakkala, Englund, Korhonen, Tanska (CR12) 2022; 145 Jahangir, Mohammadi, Mononen, Hirvasniemi, Suomalainen, Saarakkala, Korhonen, Tanska (CR21) 2022; 50 Saito, Nakamura, Tanaka, Watanabe, Narimatsu, Chung (CR46) 2022; 4 Kutzner, Bender, Dymke, Duda, von Roth, Bergmann (CR24) 2017; 99 Eckstein, Tieschky, Faber, Englmeier, Reiser (CR13) 1999; 200 Ateshian, Rajan, Chahine, Canal, Hung (CR4) 2009; 131 CR17 Pradsgaard, Hørlyck, Spannow, Heuck, Herlin (CR43) 2019; 46 Yao, Crockett, Souza, Day, Wilcox, Jones (CR56) 2024 Khan, Chou, Aitken, McBride, Ding, Blizzard, Pelletier, Martel-Pelletier, Cicuttini, Jones (CR20) 2016; 68 Wise, Niu, Yang, Lane, Harvey, Felson, Hietpas, Nevitt, Sharma, Torner, Lewis, Zhang (CR54) 2012; 64 Hunter, Guermazi, Lo, Grainger, Conaghan, Boudreau, Roemer (CR19) 2011; 19 Litwic, Edwards, Dennison, Cooper (CR29) 2013; 105 Li, Wang, Chubinskaya, Schoeberl, Florine, Kopesky, Grodzinsky (CR28) 2015; 23 Adam, Eckstein, Milz, Schulte, Becker, Putz (CR1) 1998; 13 Parodi, Verda, Bagnasco, Muselli (CR40) 2022; 44 Schneider, Rooks, Besier (CR48) 2022; 12 Paz, Orozco, Tanska, García, Korhonen, Mononen (CR42) 2023; 26 Kempson (CR23) 1982; 41 Cicuttini, Jones, Forbes, Wluka (CR8) 2004; 63 Mukherjee, Nazemi, Jonkers, Geris (CR38) 2020; 8 Lavikainen, Stenroth, Alkjær, Karjalainen, Korhonen, Mononen (CR26) 2023; 51 Kar, Smith, Gardiner, Li, Wang, Grodzinsky (CR22) 2016; 594 Schantz, Olsson, Eriksson, Rosdahl (CR47) 2022; 10 KD Allen (3549_CR3) 2015; 27 M Wesseling (3549_CR53) 2019; 22 S Jahangir (3549_CR21) 2022; 50 A Paz (3549_CR41) 2023; 51 3549_CR17 R Mootanah (3549_CR37) 2014; 17 B Weightman (3549_CR52) 1978; 37 A Paz (3549_CR42) 2023; 26 AE Wluka (3549_CR55) 2006; 8 ME Mononen (3549_CR36) 2023; 13 B Weightman (3549_CR51) 1976; 9 HD Aitken (3549_CR2) 2022; 40 MK Liukkonen (3549_CR30) 2018; 140 ER DeLong (3549_CR10) 1988; 44 N Nuño (3549_CR39) 2001; 123 F Eckstein (3549_CR13) 1999; 200 GA Ateshian (3549_CR4) 2009; 131 S Kar (3549_CR22) 2016; 594 FM Cicuttini (3549_CR8) 2004; 63 J Lavikainen (3549_CR26) 2023; 51 MTY Schneider (3549_CR48) 2022; 12 GE Kempson (3549_CR23) 1982; 41 SA Maas (3549_CR31) 2012; 134 C Adam (3549_CR1) 1998; 13 NA Segal (3549_CR50) 2012; 20 DØ Pradsgaard (3549_CR43) 2019; 46 3549_CR32 J Hall (3549_CR16) 2016; 17 E Halilaj (3549_CR15) 2018; 81 J Yao (3549_CR56) 2024 J Lavikainen (3549_CR27) 2022; 2022 I Kutzner (3549_CR24) 2017; 99 RH Miller (3549_CR34) 2020; 8 S Mukherjee (3549_CR38) 2020; 8 Y Saito (3549_CR46) 2022; 4 Y Li (3549_CR28) 2015; 23 DJ Hunter (3549_CR19) 2011; 19 P Schantz (3549_CR47) 2022; 10 3549_CR5 T Ramazanian (3549_CR44) 2023; 11 BL Wise (3549_CR54) 2012; 64 M Ebrahimi (3549_CR12) 2022; 145 S Gilbert (3549_CR14) 2014; 47 HI Khan (3549_CR20) 2016; 68 ME Mononen (3549_CR35) 2019; 47 S Parodi (3549_CR40) 2022; 44 NA Segal (3549_CR49) 2009; 27 N Lampen (3549_CR25) 2023; 41 A Litwic (3549_CR29) 2013; 105 WS Burton (3549_CR6) 2021; 123 A Huang (3549_CR18) 2003; 21 AL Clouthier (3549_CR9) 2019; 66 JN Mandrekar (3549_CR33) 2010; 5 S Van Rossom (3549_CR45) 2019; 26 CPC Chen (3549_CR7) 2003; 82 YY Dhaher (3549_CR11) 2010; 43 |
References_xml | – volume: 8 start-page: 1 year: 2006 end-page: 9 ident: CR55 article-title: Knee cartilage loss in symptomatic knee osteoarthritis over 4.5 years publication-title: Arthritis Res. Ther. doi: 10.1186/ar1962 – volume: 41 start-page: 72 year: 2023 end-page: 83 ident: CR25 article-title: Finite element modeling with subject-specific mechanical properties to assess knee osteoarthritis initiation and progression publication-title: J. Orthop. Res. doi: 10.1002/jor.25338 – volume: 200 start-page: 419 year: 1999 end-page: 424 ident: CR13 article-title: Functional analysis of articular cartilage deformation, recovery, and fluid flow following dynamic exercise in vivo publication-title: Anat. Embryol. (Berl) doi: 10.1007/s004290050291 – volume: 44 start-page: 837 year: 1988 ident: CR10 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 – volume: 134 start-page: 1 year: 2012 end-page: 10 ident: CR31 article-title: FEBio: finite elements for biomechanics publication-title: J. Biomech. Eng. doi: 10.1115/1.4005694 – volume: 12 start-page: 1 year: 2022 end-page: 10 ident: CR48 article-title: Cartilage thickness and bone shape variations as a function of sex, height, body mass, and age in young adult knees publication-title: Sci. Rep. doi: 10.1038/s41598-022-15585-w – volume: 99 start-page: 779 year: 2017 end-page: 787 ident: CR24 article-title: Mediolateral force distribution at the knee joint shifts across activities and is driven by tibiofemoral alignment publication-title: Bone Jt. J. doi: 10.1302/0301-620X.99B6.BJJ-2016-0713.R1 – volume: 20 start-page: 1120 year: 2012 end-page: 1126 ident: CR50 article-title: Elevated tibiofemoral articular contact stress predicts risk for bone marrow lesions and cartilage damage at 30 months publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2012.05.013 – volume: 47 start-page: 813 year: 2019 end-page: 825 ident: CR35 article-title: Utilizing atlas-based modeling to predict knee joint cartilage degeneration: data from the osteoarthritis initiative publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-018-02184-y – volume: 46 start-page: 301 year: 2019 end-page: 308 ident: CR43 article-title: A comparison of radiographic joint space width measurements versus ultrasonographic assessment of cartilage thickness in children with juvenile idiopathic arthritis publication-title: J. Rheumatol. doi: 10.3899/jrheum.170571 – volume: 41 start-page: 508 year: 1982 end-page: 511 ident: CR23 article-title: Relationship between the tensile properties of articular cartilage from the human knee and age publication-title: Ann. Rheum. Dis. doi: 10.1136/ard.41.5.508 – volume: 51 start-page: 2192 year: 2023 end-page: 2203 ident: CR41 article-title: Towards a transferable modeling method of the knee to distinguish between future healthy joints from osteoarthritic joints: data from the osteoarthritis initiative publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-023-03252-8 – volume: 10 start-page: 911863 year: 2022 ident: CR47 article-title: Perspectives on exercise intensity, volume, step characteristics and health outcomes in walking for transport publication-title: Front. Public Heal. doi: 10.3389/fpubh.2022.911863 – volume: 64 start-page: 847 year: 2012 end-page: 852 ident: CR54 article-title: Patterns of compartment involvement in tibiofemoral osteoarthritis in men and women and in whites and African Americans publication-title: Arthritis Care Res. doi: 10.1002/acr.21606 – volume: 51 start-page: 2479 year: 2023 end-page: 2489 ident: CR26 article-title: Prediction of knee joint compartmental loading maxima utilizing simple subject characteristics and neural networks publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-023-03278-y – volume: 17 start-page: 1502 year: 2014 end-page: 1517 ident: CR37 article-title: Development and validation of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis publication-title: Comput. Methods Biomech. Biomed. Engin. doi: 10.1080/10255842.2014.899588 – volume: 47 start-page: 2006 year: 2014 end-page: 2012 ident: CR14 article-title: Dynamic contact mechanics on the tibial plateau of the human knee during activities of daily living publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.11.003 – volume: 27 start-page: 1562 year: 2009 end-page: 1568 ident: CR49 article-title: Baseline articular contact stress levels predict incident symptomatic knee osteoarthritis development in the MOST cohort publication-title: J. Orthop. Res. doi: 10.1002/jor.20936 – ident: CR32 – volume: 66 start-page: 47 year: 2019 end-page: 55 ident: CR9 article-title: The effect of articular geometry features identified using statistical shape modelling on knee biomechanics publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2019.02.009 – volume: 145 year: 2022 ident: CR12 article-title: Associations of human femoral condyle cartilage structure and composition with viscoelastic and constituent-specific material properties at different stages of osteoarthritis publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2022.111390 – volume: 81 start-page: 1 year: 2018 end-page: 11 ident: CR15 article-title: Machine learning in human movement biomechanics: best practices, common pitfalls, and new opportunities publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2018.09.009 – ident: CR5 – volume: 26 start-page: 813 year: 2019 end-page: 823 ident: CR45 article-title: The influence of knee joint geometry and alignment on the tibiofemoral load distribution: a computational study publication-title: Knee doi: 10.1016/j.knee.2019.06.002 – volume: 594 start-page: 37 year: 2016 end-page: 53 ident: CR22 article-title: Modeling IL-1 induced degradation of articular cartilage publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2016.02.008 – volume: 82 start-page: 307 year: 2003 end-page: 312 ident: CR7 article-title: Sagittal plane loading response during gait in different age groups and in people with knee osteoarthritis publication-title: Am. J. Phys. Med. Rehabil. doi: 10.1097/01.PHM.0000056987.33630.56 – volume: 22 start-page: 1323 year: 2019 end-page: 1333 ident: CR53 article-title: Subject-specific geometry affects acetabular contact pressure during gait more than subject-specific loading patterns publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2019.1661393 – volume: 8 start-page: e9676 year: 2020 ident: CR34 article-title: Medial knee cartilage is unlikely to withstand a lifetime of running without positive adaptation: a theoretical biomechanical model of failure phenomena publication-title: PeerJ doi: 10.7717/peerj.9676 – volume: 123 start-page: 18 year: 2001 end-page: 26 ident: CR39 article-title: Sagittal profile of the femoral condyles and its application to femorotibial contact analysis publication-title: J. Biomech. Eng. doi: 10.1115/1.1339819 – volume: 9 start-page: 193 year: 1976 end-page: 200 ident: CR51 article-title: Tensile fatigue of human articular cartilage publication-title: J. Biomech. doi: 10.1016/0021-9290(76)90004-X – volume: 11 start-page: 1 year: 2023 end-page: 10 ident: CR44 article-title: Prediction models for knee osteoarthritis: review of current models and future directions publication-title: Arch. Bone Jt. Surg. – volume: 37 start-page: 58 year: 1978 end-page: 63 ident: CR52 article-title: A second study of tensile fatigue properties of human articular cartilage publication-title: Ann. Rheum. Dis. doi: 10.1136/ard.37.1.58 – volume: 13 start-page: 1 year: 2023 end-page: 12 ident: CR36 article-title: Atlas-based finite element analyses with simpler constitutive models predict personalized progression of knee osteoarthritis: data from the osteoarthritis initiative publication-title: Sci. Rep. doi: 10.1038/s41598-023-35832-y – volume: 26 start-page: 1353 year: 2023 end-page: 1367 ident: CR42 article-title: A novel knee joint model in FEBio with inhomogeneous fibril-reinforced biphasic cartilage simulating tissue mechanical responses during gait: data from the osteoarthritis initiative publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2022.2117548 – volume: 68 start-page: 958 year: 2016 end-page: 964 ident: CR20 article-title: Correlation between changes in global knee structures assessed by magnetic resonance imaging and radiographic osteoarthritis changes over ten years in a midlife cohort publication-title: Arthritis Care Res. doi: 10.1002/acr.22778 – volume: 27 start-page: 276 year: 2015 end-page: 283 ident: CR3 article-title: Epidemiology of osteoarthritis: state of the evidence publication-title: Curr. Opin. Rheumatol. doi: 10.1097/BOR.0000000000000161 – volume: 123 year: 2021 ident: CR6 article-title: Machine learning for rapid estimation of lower extremity muscle and joint loading during activities of daily living publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2021.110439 – volume: 23 start-page: 266 year: 2015 end-page: 274 ident: CR28 article-title: Effects of insulin-like growth factor-1 and dexamethasone on cytokine-challenged cartilage: relevance to post-traumatic osteoarthritis publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2014.11.006 – volume: 8 start-page: 1 year: 2020 end-page: 20 ident: CR38 article-title: Use of computational modeling to study joint degeneration: a review publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00093 – volume: 2022 start-page: 1 year: 2022 ident: CR27 article-title: Prediction of knee joint loading from subject characteristics using machine learning publication-title: ORS Annu. Meet. – volume: 40 start-page: 2632 year: 2022 end-page: 2645 ident: CR2 article-title: Chronically elevated contact stress exposure correlates with intra-articular cartilage degeneration in patients with concurrent acetabular dysplasia and femoroacetabular impingement publication-title: J. Orthop. Res. doi: 10.1002/jor.25285 – volume: 43 start-page: 3118 year: 2010 end-page: 3125 ident: CR11 article-title: The effect of connective tissue material uncertainties on knee joint mechanics under isolated loading conditions publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.08.005 – volume: 50 start-page: 666 year: 2022 end-page: 679 ident: CR21 article-title: Rapid X-ray-based 3-D finite element modeling of medial knee joint cartilage biomechanics during walking publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-022-02941-0 – volume: 21 start-page: 459 year: 2003 end-page: 464 ident: CR18 article-title: The level of compressive load affects conclusions from statistical analyses to determine whether a lateral meniscal autograft restores tibial contact pressure to normal: a study in human cadaveric knees publication-title: J. Orthop. Res. doi: 10.1016/S0736-0266(02)00201-2 – volume: 13 start-page: 1 year: 1998 end-page: 10 ident: CR1 article-title: The distribution of cartilage thickness in the knee-joints of old-aged individuals measurement by A-mode ultrasound publication-title: Clin. Biomech. doi: 10.1016/S0268-0033(97)85881-0 – volume: 63 start-page: 1124 year: 2004 end-page: 1127 ident: CR8 article-title: Rate of cartilage loss at two years predicts subsequent total knee arthroplasty: a prospective study publication-title: Ann. Rheum. Dis. doi: 10.1136/ard.2004.021253 – volume: 4 start-page: 904924 year: 2022 ident: CR46 article-title: Evaluation of the validity and reliability of the 10-meter walk test using a smartphone application among Japanese older adults publication-title: Front. Sport. Act. Living doi: 10.3389/fspor.2022.904924 – ident: CR17 – volume: 5 start-page: 1315 year: 2010 end-page: 1316 ident: CR33 article-title: Receiver operating characteristic curve in diagnostic test assessment publication-title: J. Thorac. Oncol. doi: 10.1097/JTO.0b013e3181ec173d – volume: 19 start-page: 990 year: 2011 end-page: 1002 ident: CR19 article-title: Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score) publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2011.05.004 – year: 2024 ident: CR56 article-title: Effect of meniscus modelling assumptions in a static tibiofemoral finite element model: importance of geometry over material publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-024-01822-w – volume: 105 start-page: 185 year: 2013 end-page: 199 ident: CR29 article-title: Epidemiology and burden of osteoarthritis publication-title: Br. Med. Bull. doi: 10.1093/bmb/lds038 – volume: 44 year: 2022 ident: CR40 article-title: The clinical meaning of the area under a receiver operating characteristic curve for the evaluation of the performance of disease markers publication-title: Epidemiol. Health doi: 10.4178/epih.e2022088 – volume: 17 start-page: 1 year: 2016 end-page: 11 ident: CR16 article-title: Change in knee structure and change in tibiofemoral joint space width: a five year longitudinal population-based study publication-title: BMC Musculoskelet. Disord. doi: 10.1186/s12891-016-0879-0 – volume: 140 start-page: 041008 year: 2018 ident: CR30 article-title: Evaluation of the effect of bariatric surgery-induced weight loss on knee gait and cartilage degeneration publication-title: J. Biomech. Eng. doi: 10.1115/1.4038330 – volume: 131 start-page: 612 year: 2009 end-page: 615 ident: CR4 article-title: Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena publication-title: J. Biomech. Eng. doi: 10.1115/1.3118773 – volume: 13 start-page: 1 year: 1998 ident: 3549_CR1 publication-title: Clin. Biomech. doi: 10.1016/S0268-0033(97)85881-0 – volume: 105 start-page: 185 year: 2013 ident: 3549_CR29 publication-title: Br. Med. Bull. doi: 10.1093/bmb/lds038 – volume: 51 start-page: 2192 year: 2023 ident: 3549_CR41 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-023-03252-8 – volume: 47 start-page: 2006 year: 2014 ident: 3549_CR14 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.11.003 – volume: 23 start-page: 266 year: 2015 ident: 3549_CR28 publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2014.11.006 – volume: 22 start-page: 1323 year: 2019 ident: 3549_CR53 publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2019.1661393 – volume: 594 start-page: 37 year: 2016 ident: 3549_CR22 publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2016.02.008 – volume: 20 start-page: 1120 year: 2012 ident: 3549_CR50 publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2012.05.013 – volume: 26 start-page: 1353 year: 2023 ident: 3549_CR42 publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2022.2117548 – volume: 8 start-page: e9676 year: 2020 ident: 3549_CR34 publication-title: PeerJ doi: 10.7717/peerj.9676 – volume: 123 year: 2021 ident: 3549_CR6 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2021.110439 – volume: 26 start-page: 813 year: 2019 ident: 3549_CR45 publication-title: Knee doi: 10.1016/j.knee.2019.06.002 – volume: 200 start-page: 419 year: 1999 ident: 3549_CR13 publication-title: Anat. Embryol. (Berl) doi: 10.1007/s004290050291 – volume: 21 start-page: 459 year: 2003 ident: 3549_CR18 publication-title: J. Orthop. Res. doi: 10.1016/S0736-0266(02)00201-2 – volume: 8 start-page: 1 year: 2020 ident: 3549_CR38 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00093 – volume: 4 start-page: 904924 year: 2022 ident: 3549_CR46 publication-title: Front. Sport. Act. Living doi: 10.3389/fspor.2022.904924 – volume: 37 start-page: 58 year: 1978 ident: 3549_CR52 publication-title: Ann. Rheum. Dis. doi: 10.1136/ard.37.1.58 – volume: 40 start-page: 2632 year: 2022 ident: 3549_CR2 publication-title: J. Orthop. Res. doi: 10.1002/jor.25285 – ident: 3549_CR17 doi: 10.1002/jor.25358 – volume: 82 start-page: 307 year: 2003 ident: 3549_CR7 publication-title: Am. J. Phys. Med. Rehabil. doi: 10.1097/01.PHM.0000056987.33630.56 – volume: 41 start-page: 508 year: 1982 ident: 3549_CR23 publication-title: Ann. Rheum. Dis. doi: 10.1136/ard.41.5.508 – volume: 27 start-page: 276 year: 2015 ident: 3549_CR3 publication-title: Curr. Opin. Rheumatol. doi: 10.1097/BOR.0000000000000161 – volume: 10 start-page: 911863 year: 2022 ident: 3549_CR47 publication-title: Front. Public Heal. doi: 10.3389/fpubh.2022.911863 – volume: 63 start-page: 1124 year: 2004 ident: 3549_CR8 publication-title: Ann. Rheum. Dis. doi: 10.1136/ard.2004.021253 – volume: 44 year: 2022 ident: 3549_CR40 publication-title: Epidemiol. Health doi: 10.4178/epih.e2022088 – volume: 43 start-page: 3118 year: 2010 ident: 3549_CR11 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.08.005 – volume: 99 start-page: 779 year: 2017 ident: 3549_CR24 publication-title: Bone Jt. J. doi: 10.1302/0301-620X.99B6.BJJ-2016-0713.R1 – volume: 11 start-page: 1 year: 2023 ident: 3549_CR44 publication-title: Arch. Bone Jt. Surg. – volume: 41 start-page: 72 year: 2023 ident: 3549_CR25 publication-title: J. Orthop. Res. doi: 10.1002/jor.25338 – volume: 2022 start-page: 1 year: 2022 ident: 3549_CR27 publication-title: ORS Annu. Meet. – ident: 3549_CR32 – volume: 13 start-page: 1 year: 2023 ident: 3549_CR36 publication-title: Sci. Rep. doi: 10.1038/s41598-023-35832-y – volume: 19 start-page: 990 year: 2011 ident: 3549_CR19 publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2011.05.004 – volume: 123 start-page: 18 year: 2001 ident: 3549_CR39 publication-title: J. Biomech. Eng. doi: 10.1115/1.1339819 – volume: 47 start-page: 813 year: 2019 ident: 3549_CR35 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-018-02184-y – volume: 66 start-page: 47 year: 2019 ident: 3549_CR9 publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2019.02.009 – volume: 12 start-page: 1 year: 2022 ident: 3549_CR48 publication-title: Sci. Rep. doi: 10.1038/s41598-022-15585-w – volume: 46 start-page: 301 year: 2019 ident: 3549_CR43 publication-title: J. Rheumatol. doi: 10.3899/jrheum.170571 – volume: 64 start-page: 847 year: 2012 ident: 3549_CR54 publication-title: Arthritis Care Res. doi: 10.1002/acr.21606 – volume: 140 start-page: 041008 year: 2018 ident: 3549_CR30 publication-title: J. Biomech. Eng. doi: 10.1115/1.4038330 – volume: 9 start-page: 193 year: 1976 ident: 3549_CR51 publication-title: J. Biomech. doi: 10.1016/0021-9290(76)90004-X – volume: 81 start-page: 1 year: 2018 ident: 3549_CR15 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2018.09.009 – volume: 27 start-page: 1562 year: 2009 ident: 3549_CR49 publication-title: J. Orthop. Res. doi: 10.1002/jor.20936 – volume: 5 start-page: 1315 year: 2010 ident: 3549_CR33 publication-title: J. Thorac. Oncol. doi: 10.1097/JTO.0b013e3181ec173d – volume: 17 start-page: 1502 year: 2014 ident: 3549_CR37 publication-title: Comput. Methods Biomech. Biomed. Engin. doi: 10.1080/10255842.2014.899588 – volume: 134 start-page: 1 year: 2012 ident: 3549_CR31 publication-title: J. Biomech. Eng. doi: 10.1115/1.4005694 – year: 2024 ident: 3549_CR56 publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-024-01822-w – volume: 68 start-page: 958 year: 2016 ident: 3549_CR20 publication-title: Arthritis Care Res. doi: 10.1002/acr.22778 – volume: 17 start-page: 1 year: 2016 ident: 3549_CR16 publication-title: BMC Musculoskelet. Disord. doi: 10.1186/s12891-016-0879-0 – volume: 51 start-page: 2479 year: 2023 ident: 3549_CR26 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-023-03278-y – volume: 8 start-page: 1 year: 2006 ident: 3549_CR55 publication-title: Arthritis Res. Ther. doi: 10.1186/ar1962 – volume: 145 year: 2022 ident: 3549_CR12 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2022.111390 – ident: 3549_CR5 doi: 10.1016/j.exger.2023.112102 – volume: 44 start-page: 837 year: 1988 ident: 3549_CR10 publication-title: Biometrics doi: 10.2307/2531595 – volume: 131 start-page: 612 year: 2009 ident: 3549_CR4 publication-title: J. Biomech. Eng. doi: 10.1115/1.3118773 – volume: 50 start-page: 666 year: 2022 ident: 3549_CR21 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-022-02941-0 |
SSID | ssj0011835 |
Score | 2.4329512 |
Snippet | Physics-based modeling methods have the potential to investigate the mechanical factors associated with knee osteoarthritis (OA) and predict the future... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2569 |
SubjectTerms | Aged Arthritis Biochemistry Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Cartilage Cartilage diseases Cartilage, Articular - diagnostic imaging Cartilage, Articular - physiopathology Classical Mechanics Classification Degeneration Female Finite Element Analysis Finite element method Gait - physiology Humans Image processing Image segmentation Joints (anatomy) Knee Knee Joint - diagnostic imaging Knee Joint - physiopathology Male Mechanical properties Middle Aged Modelling Models, Biological Motion capture Neural networks Neural Networks, Computer Neurodegeneration Original Original Article Osteoarthritis Osteoarthritis, Knee - classification Osteoarthritis, Knee - diagnostic imaging Osteoarthritis, Knee - physiopathology Predictions Thickness Weight-Bearing |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BkRAcEBQogYKMxA0sEjt2HC4IQVfl0cKBSnuLbMdWe0lKd_tz-K_MON5dthVcd6LNZr9x5v0NwCulovG-dbzV0fE6Ypxio0VdNtrrUAarFM0OHx3rw5P6y1zNc8JtkdsqV-_E9KLuR0858rdUsdO0GFu-P__FaWsUVVfzCo2bcIuoy6ilq5mvAy70nacFm2WLIVKr6zw0k0fn0BRztFC8lBgjcbFtmK55m9ebJq9UTpNBmt2He9mTZB8m6B_AjTDswt2_-AV34fZRrpw_hN9f8VP-bUwt8-zHBQmSyjHKxDLi6MAvO56awhdsyjUENjsjn5QdTE3mjDan0fw6S7s0qctoSvixMTK6AfuOSjOiNp4mrqR37JNdWkYjLAwdzStS9pkalxLx-CM4mR38_HjI82oG7tGkL3ntbI2OlsZ_1dnW2sZYY8voGhNj6YMvRd-gK1RK4bwIQcko0JPoVW370LhQycewM4xDeAKsaoKzulXCSVt7KRBG3coeQeurXpVVAa9XuHTnEwNHt-FaJhQ7RLFLKHaigP0VdF0-jYtuozsFvFyL8RxRccQOYbyka7QSaKhLU8DehPT6dtKYWjQCJWZLB9YXEEf3tmQ4O01c3RVG-y0GzQW8WanL5nf9-zGe_v8xnsEdkVSXet32YWd5cRmeo3O0dC_SCfgD5XEPFg priority: 102 providerName: ProQuest |
Title | Knee-Loading Predictions with Neural Networks Improve Finite Element Modeling Classifications of Knee Osteoarthritis: Data from the Osteoarthritis Initiative |
URI | https://link.springer.com/article/10.1007/s10439-024-03549-2 https://www.ncbi.nlm.nih.gov/pubmed/38842728 https://www.proquest.com/docview/3093679593 https://www.proquest.com/docview/3065271808 https://pubmed.ncbi.nlm.nih.gov/PMC11329407 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BJiF4QGPACNsqI_EGkRI7dhzeuq7dYGuZgErlKbITR9tLgtbuz-F_5c5JunWDB15iKWfl637O3fm-AN5LWemiyGyYqcqGSYV2iqkMYlmrQrnIGSkpd3g6U6fz5MtCLrqksGUf7d67JP2f-k6yGwrPEGVKGAm0akL88W5Lst0RxXM-XPsOEKRt34IMDaNMJV2qzN-vsSmOHuiYD0Ml7_lLvRia7MDzTn9kw5bhL-CRq3fh2Z2qgrvwZNr5y1_C7zM8G543PlCeXVwTwQON0f4ro8oceLFZGwq-ZO0Og2OTK9JE2bgNLWfUL42y1pnvoEmxRe02H2sqRjdgXxEqDWLw0ldI-sSOzcowSlxhqF7eo7LPFK7ky42_gvlk_GN0GnYNGcICBfkqTKxJUL1S-FWtyYxJtdEmqmyqqyoqXBHxMkUFKBLcFtw5KSqO-kMpE1O61LpYvIatuqndG2Bx6qxRmeRWmKQQPJNaZaJEppVxKaM4gA89X_Jfbd2N_LbCMnExRy7mnos5D-CgZ13ercFlTj5eRa3URQDv1mRcPeQSMbVrbmiOkhzFc6QD2Gs5vb6d0DrhKUeK3sDAegJV5t6k1FeXvkJ3jDZ-hqZyAB97uNw-179f4-3_Td-Hp9xDmSLeDmBrdX3jDlFFWtkBPE4XKR715GQA28Pj6fl3Gk9-no1xPBrPLr4hdaRGA792_gA7bhNT |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkE5ICiPBgoYCU4QkdixYyMhhGiXXfYBh1bqLTiJo_aSlO5WiB_DX-A3MuMku2wruPWaseJY801mxvMCeCFlpYvC5KFRVR4mFfoptrKIZa0K5SJnpaTa4elMDQ-Tz0fyaAN-97UwlFbZ_xP9j7psCrojf0MRO0WDscX70-8hTY2i6Go_QqOFxdj9_IEu2_zdaA_5-5Lzwf7Bx2HYTRUIC9RGizDJbYI2glJG5dZYm2qrbVTlqa6qqHBFxMsUtXgkeF5w56SoOCrBUia2dGnuYoHvvQbXEyEMSZQefFpGLVA82okJBl0yo5KuSKcr1UPVH6JGDCOBPlnI1xXhJev2cpLmhUitV4CDO3C7s1zZhxZqd2HD1dtw669-httwY9pF6u_BrzE-DSeNT9FnX8-I4CHO6OaXUU8QfNmsTUKfs_Zuw7HBCdnAbL9Namc0qY3q5Zmf3UlZTe0FI2sqRhuwLwjSBtF_7HszvWV7dmEZlcwwNGwvUNmIEqV8o_P7cHglTHsAm3VTux1gcepyq4zkubBJIbiRWhlRItPKuJRRHMCrni_ZadvxI1v1diYuZsjFzHMx4wHs9qzLOumfZyusBvB8SUa5pWCMrV1zTmuU5GgYRDqAhy2nl9sJrROecqToNQwsF1BP8HVKfXLse4PHMZ4InfQAXvdwWX3Xv4_x6P_HeAY3hwfTSTYZzcaPYYt7GFOe3S5sLs7O3RM0zBb5Uy8NDL5dtfj9AX8ITNI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIlVwQFD-FgoYCU5gNXFix0FCCLFdddl26YFKewt2Yqu9JKW7FeJheBGejhkn2WVbwa3XTOTEmhnPN54_gFdSel2WueW58panHv0U4w3KslalcpEzUlLt8OFU7R-nn2dytgG_-1oYSqvsz8RwUFdNSXfkuxSxUzQYO9n1XVrE0XD04ew7pwlSFGntx2m0IjJxP3-g-zZ_Px4ir18LMdr7-mmfdxMGeImWacFTa1LEC0rlyprcmEwbbSJvM-19VLoyElWGFj1KhC2FczLxAg1iJVNTucy6OMF1b8DNLJEx6Vg2Wzp7iNvb4Z5Rju5ZrtKuYKcr20MYwNE68ihB_4yLdaN4BeleTdi8FLUNxnB0F-50KJZ9bMXuHmy4ehtu_9XbcBu2Druo_X34NcGn_KAJ6frs6JwIQdwZ3QIz6g-Ci03bhPQ5a-85HBudEh5me22CO6OpbVQ7z8IcT8pwai8bWeMZfYB9QYFtUBNOQp-md2xoFoZR-QxDkHuJysaUNBWanj-A42th2kPYrJvaPQYWZ84alUthE5OWicilVnlSIdOquJJRPIA3PV-Ks7b7R7Hq80xcLJCLReBiIQaw07Ou6E6CebGS2wG8XJJRhykwY2rXXNA7SgoECZEewKOW08vPJVqnIhNI0WsysHyB-oOvU-rTk9AnPI5xR-iwD-BtLy6r__r3Np78fxsvYAsVrzgYTydP4ZYIUkwpdzuwuTi_cM8Qoy3s86AMDL5dt_b9AcKsUP8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knee-Loading+Predictions+with+Neural+Networks+Improve+Finite+Element+Modeling+Classifications+of+Knee+Osteoarthritis%3A+Data+from+the+Osteoarthritis+Initiative&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Paz%2C+Alexander&rft.au=Lavikainen%2C+Jere&rft.au=Turunen%2C+Mikael+J.&rft.au=Garc%C3%ADa%2C+Jos%C3%A9+J.&rft.date=2024-09-01&rft.pub=Springer+International+Publishing&rft.issn=0090-6964&rft.eissn=1573-9686&rft.volume=52&rft.issue=9&rft.spage=2569&rft.epage=2583&rft_id=info:doi/10.1007%2Fs10439-024-03549-2&rft_id=info%3Apmid%2F38842728&rft.externalDocID=PMC11329407 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon |