One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction
[Display omitted] Waterproof and flame-retardant fabrics are widely utilized in many fields, such as automotive interiors, indoor decorations, outdoor clothing and tents. Herein, a facile one-pot sol-gel approach was developed to construct superhydrophobic and flame-retardant (SFR) coatings on cotto...
Saved in:
Published in | Journal of colloid and interface science Vol. 533; pp. 198 - 206 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Waterproof and flame-retardant fabrics are widely utilized in many fields, such as automotive interiors, indoor decorations, outdoor clothing and tents. Herein, a facile one-pot sol-gel approach was developed to construct superhydrophobic and flame-retardant (SFR) coatings on cotton fabrics. The cotton fabric was activated by O2 plasma and then immersed into the ethanol suspension containing tetraethoxysilane (TEOS), hydroxyl-terminated polydimethylsiloxane (HPDMS) and ammonium polyphosphate (APP). The hydrogen bonding interaction between APP and cellulose motivated the APP to attach to the cotton fibers during the initial stirring process. After the addition of ammonia, the in situ sol-gel reaction of TEOS and HPDMS was initiated to generate polydimethylsiloxane-silica hybrid (PDMS-silica). The micro-nano structured composite coating on cotton fabric was successfully fabricated by the PDMS-silica and APP. The SFR cotton fabric showed outstanding durability and self-cleaning ability with a water contact angle (WCA) above 160°. When exposed to fire, the SFR cotton fabric quickly charred to extinguish the fire by generating a dense intumescent char layer under the physical barrier effect of PDMS-silica and the intumescent flame-retardant effect of APP. This one-pot approach for fabricating SFR cotton fabric is simple, cost-effective and timesaving, demonstrating significant advantages in practical production. |
---|---|
AbstractList | Waterproof and flame-retardant fabrics are widely utilized in many fields, such as automotive interiors, indoor decorations, outdoor clothing and tents. Herein, a facile one-pot sol-gel approach was developed to construct superhydrophobic and flame-retardant (SFR) coatings on cotton fabrics. The cotton fabric was activated by O2 plasma and then immersed into the ethanol suspension containing tetraethoxysilane (TEOS), hydroxyl-terminated polydimethylsiloxane (HPDMS) and ammonium polyphosphate (APP). The hydrogen bonding interaction between APP and cellulose motivated the APP to attach to the cotton fibers during the initial stirring process. After the addition of ammonia, the in situ sol-gel reaction of TEOS and HPDMS was initiated to generate polydimethylsiloxane-silica hybrid (PDMS-silica). The micro-nano structured composite coating on cotton fabric was successfully fabricated by the PDMS-silica and APP. The SFR cotton fabric showed outstanding durability and self-cleaning ability with a water contact angle (WCA) above 160°. When exposed to fire, the SFR cotton fabric quickly charred to extinguish the fire by generating a dense intumescent char layer under the physical barrier effect of PDMS-silica and the intumescent flame-retardant effect of APP. This one-pot approach for fabricating SFR cotton fabric is simple, cost-effective and timesaving, demonstrating significant advantages in practical production.Waterproof and flame-retardant fabrics are widely utilized in many fields, such as automotive interiors, indoor decorations, outdoor clothing and tents. Herein, a facile one-pot sol-gel approach was developed to construct superhydrophobic and flame-retardant (SFR) coatings on cotton fabrics. The cotton fabric was activated by O2 plasma and then immersed into the ethanol suspension containing tetraethoxysilane (TEOS), hydroxyl-terminated polydimethylsiloxane (HPDMS) and ammonium polyphosphate (APP). The hydrogen bonding interaction between APP and cellulose motivated the APP to attach to the cotton fibers during the initial stirring process. After the addition of ammonia, the in situ sol-gel reaction of TEOS and HPDMS was initiated to generate polydimethylsiloxane-silica hybrid (PDMS-silica). The micro-nano structured composite coating on cotton fabric was successfully fabricated by the PDMS-silica and APP. The SFR cotton fabric showed outstanding durability and self-cleaning ability with a water contact angle (WCA) above 160°. When exposed to fire, the SFR cotton fabric quickly charred to extinguish the fire by generating a dense intumescent char layer under the physical barrier effect of PDMS-silica and the intumescent flame-retardant effect of APP. This one-pot approach for fabricating SFR cotton fabric is simple, cost-effective and timesaving, demonstrating significant advantages in practical production. Waterproof and flame-retardant fabrics are widely utilized in many fields, such as automotive interiors, indoor decorations, outdoor clothing and tents. Herein, a facile one-pot sol-gel approach was developed to construct superhydrophobic and flame-retardant (SFR) coatings on cotton fabrics. The cotton fabric was activated by O plasma and then immersed into the ethanol suspension containing tetraethoxysilane (TEOS), hydroxyl-terminated polydimethylsiloxane (HPDMS) and ammonium polyphosphate (APP). The hydrogen bonding interaction between APP and cellulose motivated the APP to attach to the cotton fibers during the initial stirring process. After the addition of ammonia, the in situ sol-gel reaction of TEOS and HPDMS was initiated to generate polydimethylsiloxane-silica hybrid (PDMS-silica). The micro-nano structured composite coating on cotton fabric was successfully fabricated by the PDMS-silica and APP. The SFR cotton fabric showed outstanding durability and self-cleaning ability with a water contact angle (WCA) above 160°. When exposed to fire, the SFR cotton fabric quickly charred to extinguish the fire by generating a dense intumescent char layer under the physical barrier effect of PDMS-silica and the intumescent flame-retardant effect of APP. This one-pot approach for fabricating SFR cotton fabric is simple, cost-effective and timesaving, demonstrating significant advantages in practical production. [Display omitted] Waterproof and flame-retardant fabrics are widely utilized in many fields, such as automotive interiors, indoor decorations, outdoor clothing and tents. Herein, a facile one-pot sol-gel approach was developed to construct superhydrophobic and flame-retardant (SFR) coatings on cotton fabrics. The cotton fabric was activated by O2 plasma and then immersed into the ethanol suspension containing tetraethoxysilane (TEOS), hydroxyl-terminated polydimethylsiloxane (HPDMS) and ammonium polyphosphate (APP). The hydrogen bonding interaction between APP and cellulose motivated the APP to attach to the cotton fibers during the initial stirring process. After the addition of ammonia, the in situ sol-gel reaction of TEOS and HPDMS was initiated to generate polydimethylsiloxane-silica hybrid (PDMS-silica). The micro-nano structured composite coating on cotton fabric was successfully fabricated by the PDMS-silica and APP. The SFR cotton fabric showed outstanding durability and self-cleaning ability with a water contact angle (WCA) above 160°. When exposed to fire, the SFR cotton fabric quickly charred to extinguish the fire by generating a dense intumescent char layer under the physical barrier effect of PDMS-silica and the intumescent flame-retardant effect of APP. This one-pot approach for fabricating SFR cotton fabric is simple, cost-effective and timesaving, demonstrating significant advantages in practical production. Waterproof and flame-retardant fabrics are widely utilized in many fields, such as automotive interiors, indoor decorations, outdoor clothing and tents. Herein, a facile one-pot sol-gel approach was developed to construct superhydrophobic and flame-retardant (SFR) coatings on cotton fabrics. The cotton fabric was activated by O₂ plasma and then immersed into the ethanol suspension containing tetraethoxysilane (TEOS), hydroxyl-terminated polydimethylsiloxane (HPDMS) and ammonium polyphosphate (APP). The hydrogen bonding interaction between APP and cellulose motivated the APP to attach to the cotton fibers during the initial stirring process. After the addition of ammonia, the in situ sol-gel reaction of TEOS and HPDMS was initiated to generate polydimethylsiloxane-silica hybrid (PDMS-silica). The micro-nano structured composite coating on cotton fabric was successfully fabricated by the PDMS-silica and APP. The SFR cotton fabric showed outstanding durability and self-cleaning ability with a water contact angle (WCA) above 160°. When exposed to fire, the SFR cotton fabric quickly charred to extinguish the fire by generating a dense intumescent char layer under the physical barrier effect of PDMS-silica and the intumescent flame-retardant effect of APP. This one-pot approach for fabricating SFR cotton fabric is simple, cost-effective and timesaving, demonstrating significant advantages in practical production. |
Author | Wu, Tongyi Lin, Dongmei Li, Hongqiang Lai, Xuejun Zeng, Xingrong |
Author_xml | – sequence: 1 givenname: Dongmei surname: Lin fullname: Lin, Dongmei – sequence: 2 givenname: Xingrong orcidid: 0000-0002-5130-1511 surname: Zeng fullname: Zeng, Xingrong email: psxrzeng@gmail.com – sequence: 3 givenname: Hongqiang surname: Li fullname: Li, Hongqiang – sequence: 4 givenname: Xuejun surname: Lai fullname: Lai, Xuejun – sequence: 5 givenname: Tongyi surname: Wu fullname: Wu, Tongyi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30165297$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT1rHDEQhkVwiM9O_kCKoDLNXkbS6mMhTTD5AoObpBZa7cjWZW91kXQG__toc06KFA4MDAzP8xbzXpCzJS1IyGsGWwZMvdttdz6WLQdmttBGwTOyYTDITjMQZ2QDwFk36EGfk4tSdgCMSTm8IOei6ZIPekN-3CzYHVKlwY05eldjWmgKtBwPmO8eppwOd2mMnrplomF2e-wyVpcnt1TqU-OX20Kb41OtbZ1iCr2PjpY0d7c404zOr7kvyfPg5oKvHvcl-f7p47erL931zeevVx-uO99zVbteTF64XmjZg0JwU-BiDBxcOwRlRimc4hPTUoteC6PlOIw4BjB9cEwKKS7J21PuIaefRyzV7mPxOM9uwXQsljOmjDZcD_9HYTBaGWXW1DeP6HHc42QPOe5dfrB_ftkAfgJ8TqVkDH8RBnYtzO7sWphdC7PQRkGTzD-Sj_V3CzW7OD-tvj-p2H55HzHb4iMuHqeY0Vc7pfiU_gso6LEa |
CitedBy_id | crossref_primary_10_1021_acsami_9b12370 crossref_primary_10_1002_marc_202400636 crossref_primary_10_1007_s10570_023_05540_x crossref_primary_10_1016_j_colsurfa_2021_127654 crossref_primary_10_1007_s10570_023_05586_x crossref_primary_10_1016_j_polymdegradstab_2022_109974 crossref_primary_10_1002_cbdv_202100793 crossref_primary_10_1016_j_apsusc_2019_144837 crossref_primary_10_1177_00405175211022628 crossref_primary_10_1039_D1TA06182H crossref_primary_10_1016_j_cej_2024_158500 crossref_primary_10_1016_j_jcis_2019_01_007 crossref_primary_10_1016_j_polymertesting_2022_107918 crossref_primary_10_1007_s10853_020_05364_1 crossref_primary_10_1016_j_polymdegradstab_2023_110572 crossref_primary_10_1016_j_cej_2020_127793 crossref_primary_10_1016_j_jallcom_2020_155210 crossref_primary_10_1039_C9TA05185F crossref_primary_10_1016_j_porgcoat_2023_107871 crossref_primary_10_1007_s10570_019_02751_z crossref_primary_10_1016_j_porgcoat_2022_107330 crossref_primary_10_1007_s10971_022_05750_y crossref_primary_10_1016_j_ijbiomac_2022_10_231 crossref_primary_10_1007_s10570_023_05306_5 crossref_primary_10_3389_fchem_2020_00578 crossref_primary_10_1039_D4SU00674G crossref_primary_10_1016_j_mtcomm_2020_101318 crossref_primary_10_1007_s12221_021_0003_4 crossref_primary_10_1016_j_carbpol_2020_117531 crossref_primary_10_1039_C9NJ06268H crossref_primary_10_1088_2053_1591_ac5074 crossref_primary_10_1016_j_surfin_2021_101455 crossref_primary_10_1002_app_56888 crossref_primary_10_1016_j_apsusc_2023_158616 crossref_primary_10_1016_j_surfin_2022_102282 crossref_primary_10_1016_j_apsusc_2023_157862 crossref_primary_10_1016_j_porgcoat_2022_107242 crossref_primary_10_1016_j_cej_2019_122988 crossref_primary_10_1007_s11998_019_00269_4 crossref_primary_10_1021_acssuschemeng_0c03920 crossref_primary_10_1007_s10570_022_04892_0 crossref_primary_10_1016_j_ijbiomac_2024_135733 crossref_primary_10_1016_j_indcrop_2024_120324 crossref_primary_10_1039_D0MH01293A crossref_primary_10_1016_j_cis_2024_103090 crossref_primary_10_1177_0040517519849452 crossref_primary_10_1016_j_cej_2024_151084 crossref_primary_10_1016_j_porgcoat_2021_106635 crossref_primary_10_1039_C9NJ01318K crossref_primary_10_1007_s10570_022_04477_x crossref_primary_10_1016_j_indcrop_2022_115856 crossref_primary_10_1021_acssuschemeng_9b05523 crossref_primary_10_1039_C9SM01912J crossref_primary_10_1007_s10570_020_03064_2 crossref_primary_10_1016_j_compositesb_2020_107901 crossref_primary_10_1002_admi_202200435 crossref_primary_10_3390_ma16217015 crossref_primary_10_3390_ma17112701 crossref_primary_10_1016_j_colsurfa_2022_129586 crossref_primary_10_1016_j_ijbiomac_2023_127889 crossref_primary_10_1016_j_colsurfa_2022_128379 crossref_primary_10_1039_D0PY00860E crossref_primary_10_1016_j_porgcoat_2023_107656 crossref_primary_10_3390_polym14153071 crossref_primary_10_1021_acsami_3c04598 crossref_primary_10_1007_s11998_024_01016_0 crossref_primary_10_1007_s10570_019_02811_4 crossref_primary_10_1016_j_matchemphys_2020_123656 crossref_primary_10_1007_s10570_021_04293_9 crossref_primary_10_1016_j_porgcoat_2023_108192 crossref_primary_10_1016_j_cej_2023_144376 crossref_primary_10_1016_j_indcrop_2023_117050 crossref_primary_10_1039_D0MA00211A crossref_primary_10_1016_j_mtcomm_2024_110581 crossref_primary_10_1007_s10570_020_03256_w crossref_primary_10_3390_nano14231900 crossref_primary_10_1016_j_jciso_2022_100059 crossref_primary_10_1155_2023_1619577 crossref_primary_10_1039_C9NJ02240F crossref_primary_10_1021_acssuschemeng_9b04294 crossref_primary_10_1016_j_indcrop_2025_120861 crossref_primary_10_1016_j_porgcoat_2021_106217 crossref_primary_10_1002_EXP_20230046 crossref_primary_10_1007_s10971_024_06429_2 crossref_primary_10_1007_s42765_023_00297_1 crossref_primary_10_1016_j_jclepro_2022_131524 crossref_primary_10_1021_acsami_2c16343 crossref_primary_10_1021_acsami_3c12590 crossref_primary_10_3390_ma16010052 crossref_primary_10_1007_s10570_022_04566_x crossref_primary_10_1016_j_porgcoat_2024_108861 crossref_primary_10_1016_j_indcrop_2024_119083 crossref_primary_10_1177_00405175241232141 crossref_primary_10_1007_s00339_021_04836_8 crossref_primary_10_1016_j_ijbiomac_2024_133521 crossref_primary_10_1007_s10570_021_03931_6 crossref_primary_10_1002_app_53858 crossref_primary_10_1007_s10971_022_05729_9 crossref_primary_10_1016_j_porgcoat_2022_106726 crossref_primary_10_1016_j_jmst_2022_05_036 crossref_primary_10_1016_j_polymdegradstab_2023_110269 crossref_primary_10_31466_kfbd_1183521 crossref_primary_10_1016_j_polymdegradstab_2022_110086 crossref_primary_10_1021_acs_langmuir_2c02248 crossref_primary_10_1021_acssuschemeng_4c09671 crossref_primary_10_1016_j_cej_2025_161287 crossref_primary_10_1039_D2NJ05478G crossref_primary_10_1007_s10570_024_06121_2 crossref_primary_10_1016_j_eurpolymj_2022_111075 crossref_primary_10_1039_D0RA10565A crossref_primary_10_1016_j_conbuildmat_2020_121042 crossref_primary_10_1021_acsami_0c13229 crossref_primary_10_3390_molecules29225306 crossref_primary_10_12677_NAT_2023_131004 crossref_primary_10_1016_j_porgcoat_2022_106999 crossref_primary_10_1016_j_seppur_2023_126185 crossref_primary_10_1016_j_indcrop_2022_115934 crossref_primary_10_1016_j_colsurfa_2020_125684 crossref_primary_10_1007_s10570_024_06172_5 crossref_primary_10_1007_s10570_023_05218_4 crossref_primary_10_1016_j_polymdegradstab_2021_109700 crossref_primary_10_1007_s10570_020_03281_9 crossref_primary_10_1002_smtd_202401621 crossref_primary_10_1016_j_compositesa_2025_108772 crossref_primary_10_1021_acsanm_3c01763 crossref_primary_10_1016_j_apsusc_2024_161255 crossref_primary_10_1007_s10570_020_03013_z crossref_primary_10_1007_s00289_022_04513_7 crossref_primary_10_1016_j_compositesa_2021_106751 crossref_primary_10_1016_j_jcis_2021_12_025 crossref_primary_10_1016_j_porgcoat_2021_106446 crossref_primary_10_1016_j_surfcoat_2024_130641 crossref_primary_10_1007_s10971_021_05483_4 crossref_primary_10_1016_j_chemosphere_2023_137892 crossref_primary_10_1007_s11998_019_00281_8 crossref_primary_10_1016_j_compositesb_2020_108264 crossref_primary_10_1016_j_ijbiomac_2024_132407 crossref_primary_10_1016_j_conbuildmat_2025_140384 crossref_primary_10_1016_j_porgcoat_2022_107066 crossref_primary_10_1016_j_colsurfa_2021_128107 crossref_primary_10_1177_15280837221116590 crossref_primary_10_1007_s10570_023_05543_8 crossref_primary_10_1016_j_compositesb_2023_111159 crossref_primary_10_1002_app_48609 crossref_primary_10_3390_polym14235314 crossref_primary_10_1016_j_jclepro_2020_124233 crossref_primary_10_1007_s10570_024_06263_3 crossref_primary_10_1002_bio_4024 crossref_primary_10_1007_s10570_020_03469_z crossref_primary_10_1002_smll_202304705 crossref_primary_10_1016_j_carbpol_2021_118058 crossref_primary_10_1016_j_indcrop_2022_115239 crossref_primary_10_1016_j_conbuildmat_2023_132881 crossref_primary_10_1016_j_conbuildmat_2024_136167 crossref_primary_10_1016_j_cej_2021_133688 crossref_primary_10_1063_5_0050644 crossref_primary_10_1016_j_jcis_2019_11_014 crossref_primary_10_1007_s10570_024_06177_0 crossref_primary_10_1016_j_cej_2021_130837 crossref_primary_10_1039_D3NJ03206J crossref_primary_10_1016_j_polymdegradstab_2023_110616 crossref_primary_10_1016_j_porgcoat_2024_108944 crossref_primary_10_1016_j_porgcoat_2020_105569 crossref_primary_10_1039_C9NJ00307J crossref_primary_10_1016_j_ijbiomac_2024_139279 crossref_primary_10_1007_s12221_022_0049_y crossref_primary_10_1080_00405000_2020_1801946 crossref_primary_10_1039_D3RA07931G crossref_primary_10_1007_s10973_020_09671_2 crossref_primary_10_1177_00405175211037189 crossref_primary_10_1002_pat_5487 crossref_primary_10_1007_s10570_019_02431_y crossref_primary_10_1016_j_matlet_2021_129307 crossref_primary_10_1016_j_mtchem_2023_101701 crossref_primary_10_1177_24723444221132310 crossref_primary_10_1007_s11431_023_2533_8 crossref_primary_10_1016_j_coco_2019_07_003 crossref_primary_10_1007_s10570_020_03057_1 crossref_primary_10_1002_app_52448 crossref_primary_10_1016_j_jcis_2019_07_056 crossref_primary_10_1016_j_apsusc_2025_162612 crossref_primary_10_1016_j_corsci_2022_110095 crossref_primary_10_1016_j_jobe_2024_110635 crossref_primary_10_1021_acsami_1c10482 crossref_primary_10_1016_j_chemosphere_2022_137148 crossref_primary_10_1021_acsanm_2c02017 crossref_primary_10_1021_acsami_0c18794 crossref_primary_10_1134_S1087659624600029 crossref_primary_10_1021_acsami_2c14709 crossref_primary_10_3390_polym14224871 crossref_primary_10_1016_j_cej_2020_125661 crossref_primary_10_1007_s10570_018_2193_5 crossref_primary_10_3390_polym14224994 crossref_primary_10_1016_j_polymer_2022_124835 crossref_primary_10_1016_j_ijbiomac_2024_134357 crossref_primary_10_1021_acs_langmuir_4c02001 crossref_primary_10_1016_j_ijbiomac_2024_135685 crossref_primary_10_1016_j_colsurfa_2022_130292 crossref_primary_10_1016_j_polymdegradstab_2021_109620 crossref_primary_10_1016_j_ces_2023_118941 crossref_primary_10_1016_j_colsurfa_2024_133881 crossref_primary_10_1016_j_jcis_2021_05_159 crossref_primary_10_3390_coatings9110753 crossref_primary_10_3390_coatings11030326 crossref_primary_10_1177_15589250211066095 crossref_primary_10_1016_j_ijbiomac_2021_11_149 crossref_primary_10_1007_s12221_022_4769_9 crossref_primary_10_1039_D4MH01684J crossref_primary_10_3390_ma17061416 crossref_primary_10_1016_j_jcis_2020_07_084 crossref_primary_10_1007_s10570_021_04005_3 crossref_primary_10_1016_j_fuel_2019_116853 crossref_primary_10_1007_s10570_021_03890_y crossref_primary_10_1016_j_polymdegradstab_2023_110408 crossref_primary_10_1016_j_bmt_2022_11_005 crossref_primary_10_1007_s10570_019_02576_w crossref_primary_10_1016_j_porgcoat_2021_106296 crossref_primary_10_1016_j_cej_2019_123537 crossref_primary_10_3390_polym11111829 crossref_primary_10_1016_j_compositesb_2024_111874 crossref_primary_10_1016_j_jece_2022_107580 crossref_primary_10_1080_25740881_2024_2363260 crossref_primary_10_1016_j_colsurfa_2021_126766 crossref_primary_10_1016_j_ijbiomac_2024_135679 crossref_primary_10_1177_15280837211028800 crossref_primary_10_3390_molecules28186628 crossref_primary_10_1002_app_48804 crossref_primary_10_1016_j_apsusc_2022_156193 crossref_primary_10_3390_fire7030069 crossref_primary_10_1016_j_jcis_2021_10_021 crossref_primary_10_2139_ssrn_4005123 crossref_primary_10_1007_s11998_022_00749_0 crossref_primary_10_1016_j_porgcoat_2023_107947 crossref_primary_10_1007_s10570_021_04208_8 crossref_primary_10_1002_marc_202200018 crossref_primary_10_1016_j_polymdegradstab_2022_110011 crossref_primary_10_1002_adem_202200699 crossref_primary_10_1016_j_indcrop_2024_118034 crossref_primary_10_1007_s10570_019_02608_5 crossref_primary_10_1016_j_colsurfa_2022_129647 crossref_primary_10_1016_j_polymdegradstab_2022_110115 crossref_primary_10_1134_S2070205121010068 crossref_primary_10_1007_s10570_019_02586_8 crossref_primary_10_1007_s10570_019_02503_z crossref_primary_10_1016_j_apsusc_2020_145323 crossref_primary_10_3390_coatings9120774 crossref_primary_10_1007_s10965_023_03707_5 crossref_primary_10_1007_s11998_022_00633_x crossref_primary_10_1007_s10570_021_03767_0 crossref_primary_10_1002_slct_201903370 crossref_primary_10_1007_s10570_022_04923_w crossref_primary_10_1016_j_jmrt_2022_10_151 crossref_primary_10_1049_bsb2_12034 crossref_primary_10_3390_coatings10040333 crossref_primary_10_1016_j_porgcoat_2019_105369 crossref_primary_10_1016_j_polymdegradstab_2022_109839 crossref_primary_10_1007_s10570_022_04558_x crossref_primary_10_1016_j_pmatsci_2020_100663 crossref_primary_10_1039_D2RA04873F crossref_primary_10_1016_j_ijbiomac_2024_133355 crossref_primary_10_1002_bio_4123 crossref_primary_10_1007_s10570_022_04436_6 crossref_primary_10_1016_j_jcis_2022_04_101 crossref_primary_10_1002_ppsc_201900404 crossref_primary_10_1016_j_indcrop_2023_116264 crossref_primary_10_1016_j_cej_2021_132854 crossref_primary_10_1016_j_cej_2022_134516 crossref_primary_10_1007_s10570_020_03235_1 crossref_primary_10_1088_2053_1591_ab8d64 crossref_primary_10_1016_j_polymer_2021_123761 crossref_primary_10_1016_j_ijbiomac_2023_126875 crossref_primary_10_1016_j_surfin_2024_104166 crossref_primary_10_1021_acsaenm_2c00080 crossref_primary_10_1038_s41467_025_58191_w crossref_primary_10_1016_j_porgcoat_2024_108440 crossref_primary_10_48130_emst_0025_0002 crossref_primary_10_1016_j_ijbiomac_2024_133347 crossref_primary_10_1021_acsami_0c12647 crossref_primary_10_1039_D4IM00048J crossref_primary_10_1016_j_pmatsci_2024_101232 crossref_primary_10_1016_j_porgcoat_2024_108566 crossref_primary_10_1007_s10570_023_05265_x crossref_primary_10_1016_j_surfin_2021_101238 crossref_primary_10_1177_09506608241266302 crossref_primary_10_1002_pat_5860 crossref_primary_10_1016_j_cej_2024_158515 crossref_primary_10_1021_acssuschemeng_9b05338 crossref_primary_10_3390_inorganics11070306 crossref_primary_10_1016_j_cej_2021_128474 crossref_primary_10_1007_s10570_023_05287_5 crossref_primary_10_1007_s10570_021_04212_y crossref_primary_10_1016_j_colsurfa_2021_127075 |
Cites_doi | 10.1016/j.cej.2017.03.058 10.1039/C7TA05112C 10.1021/cm011236k 10.1080/00986448808940254 10.1039/C6TA05441B 10.1016/j.polymer.2005.07.019 10.1016/j.cherd.2011.01.005 10.1021/acsami.7b02594 10.1016/j.cej.2017.03.006 10.1002/adma.201101871 10.1021/acsami.7b08920 10.1007/s10570-017-1550-0 10.1039/C7TA05599D 10.1016/j.jcis.2017.06.087 10.1021/acsami.7b09863 10.1007/s10570-018-1748-9 10.1039/c3nr34020a 10.1021/acsnano.5b00121 10.1007/s10570-016-0885-2 10.1039/C6TA10903A 10.1016/j.cej.2017.02.030 10.1039/C6NR01298A 10.1021/acsami.7b09587 10.1039/C6TA04420D 10.1016/j.polymdegradstab.2016.05.029 10.1016/j.jcis.2010.12.072 10.1021/acsami.5b02141 10.1177/073490419501300101 10.1039/C8TA00910D 10.1021/ie00073a003 10.1016/j.carbpol.2011.03.024 10.1039/c0jm03752d 10.1016/j.polymdegradstab.2012.11.017 10.1002/1099-1018(200011/12)24:6<265::AID-FAM747>3.0.CO;2-E 10.1016/j.cej.2017.10.006 10.1016/j.polymdegradstab.2011.02.019 10.1126/science.1207115 10.1016/j.jcis.2015.01.062 10.1002/app.12733 10.1021/acsnano.7b06590 10.1007/s10973-012-2494-0 10.1007/s10570-017-1577-2 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018. Published by Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018. Published by Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2018.08.060 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 206 |
ExternalDocumentID | 30165297 10_1016_j_jcis_2018_08_060 S0021979718309755 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- SCB SCE SEW SSH VH1 WUQ ZGI ZXP NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c426t-43dc3a4375406e0adf23bf20a754f68b53a62d17573473875b9bebf084fa15353 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 14:14:43 EDT 2025 Wed Jul 30 11:31:40 EDT 2025 Thu Apr 03 07:05:03 EDT 2025 Tue Jul 01 01:18:36 EDT 2025 Thu Apr 24 23:03:54 EDT 2025 Fri Feb 23 02:49:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Flame retardancy Cotton fabric Superhydrophobicity One-pot approach Sol-gel reaction |
Language | English |
License | Copyright © 2018. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-43dc3a4375406e0adf23bf20a754f68b53a62d17573473875b9bebf084fa15353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5130-1511 |
PMID | 30165297 |
PQID | 2098768685 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2116878279 proquest_miscellaneous_2098768685 pubmed_primary_30165297 crossref_primary_10_1016_j_jcis_2018_08_060 crossref_citationtrail_10_1016_j_jcis_2018_08_060 elsevier_sciencedirect_doi_10_1016_j_jcis_2018_08_060 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Li, Zhang, Wang, Men, Xue (b0130) 2017; 5 Xue, Zhang, Wei, Jia (b0055) 2016; 23 Dufour, Ouartassi, Bounaceur, Zoulalian (b0160) 2011; 89 Su, Li, Lai, Zhang, Wang, Liao, Zeng (b0095) 2017; 9 Bourbigot, Le Bras, Delobel (b0205) 1995; 13 Li, Zhang, Dufosse, Wang (b0210) 2018; 6 Zhang, Li, Lai, Su, Liang, Zeng (b0070) 2017; 316 Zhang, Horrocks (b0180) 2003; 90 Chen, Li, Li, Sun (b0065) 2015; 9 Mayergall, Knittel, Gutmann, Opwis (b0015) 2015; 7 Carosio, Laufer, Alongi, Camino, Grunlan (b0030) 2011; 96 Zhang, Williams, Shrestha, Nasir, Becher, Lofink, Santos, Patel, Peng, Sun (b0040) 2017; 505 Xie, Lai, Li, Zeng (b0145) 2016; 130 Liden, Berruti, Scott (b0165) 1988; 65 Qian, Xu, Du, Zhang, Li, Huang, Deng, Tu, Mol, Terryn (b0110) 2017; 5 Li, Kang, Tang, She, Yang, Zha (b0100) 2016; 8 Zanetti, Kashiwagi, Falqui, Camino (b0185) 2002; 14 Guo, Wen, Peng, Guo (b0080) 2017; 5 Wu, Gong, Li, Cao, Tang, Wu, Zhao, Zhang, Li, Gao (b0120) 2018; 12 Laufer, Carosio, Martinez, Camino, Grunlan (b0025) 2011; 356 Cao, Ge, Huang, Li, Deng, Zhang, Chen, Zhang, Al-Deyab, Lai (b0135) 2016; 4 Guo, Zhai, Xiao, An (b0075) 2015; 446 Guo, Xue, Jia, Ma (b0085) 2017; 320 Li, Mannen, Schulz, Grunlan (b0035) 2011; 21 Gao, Dong, Huang, Li, Li, Chen, Lai (b0115) 2017; 333 Alongi, Ciobanu, Malucelli (b0045) 2011; 85 Pethsangave, Khose, Wadekar, Some (b0005) 2017; 9 Deng, Mammen, Butt, Vollmer (b0090) 2012; 335 Li, Dong, Li, Zhang (b0125) 2016; 4 Sun, Qu, Li (b0155) 2013; 111 Kandola, Horrocks (b0200) 2000; 24 Zhang, Yan, Peng, Wang, Ding, Fang (b0020) 2013; 5 Sheng, Yue, Yu, Ding (b0105) 2017; 9 Chan, Si, Lee, Ng, Chen, Yu, Hu, Yuen, Xin, Fei (b0190) 2018; 25 Liu, Zhang, Cheng, Ren, Zhang, Ding (b0010) 2018; 25 Zope, Shini, Seah, Akunuri, Dasari (b0050) 2017; 9 Lin, Zeng, Li, Lai (b0060) 2018; 25 Scott, Piskorz, Bergougnou, Graham, Overend (b0170) 1988; 27 Li, Mannen, Morgan, Chang, Yang, Condon, Grunlan (b0175) 2011; 23 Qin, Zhang, Zhao, Hu, Yang (b0195) 2005; 46 Zahid, Heredia-Guerrero, Athanassiou, Bayer (b0150) 2017; 319 Alongi, Colleoni, Rosace, Malucelli (b0140) 2013; 98 Li (10.1016/j.jcis.2018.08.060_b0210) 2018; 6 Sun (10.1016/j.jcis.2018.08.060_b0155) 2013; 111 Chen (10.1016/j.jcis.2018.08.060_b0065) 2015; 9 Mayergall (10.1016/j.jcis.2018.08.060_b0015) 2015; 7 Guo (10.1016/j.jcis.2018.08.060_b0085) 2017; 320 Chan (10.1016/j.jcis.2018.08.060_b0190) 2018; 25 Zope (10.1016/j.jcis.2018.08.060_b0050) 2017; 9 Zhang (10.1016/j.jcis.2018.08.060_b0020) 2013; 5 Qian (10.1016/j.jcis.2018.08.060_b0110) 2017; 5 Carosio (10.1016/j.jcis.2018.08.060_b0030) 2011; 96 Deng (10.1016/j.jcis.2018.08.060_b0090) 2012; 335 Xie (10.1016/j.jcis.2018.08.060_b0145) 2016; 130 Li (10.1016/j.jcis.2018.08.060_b0100) 2016; 8 Wu (10.1016/j.jcis.2018.08.060_b0120) 2018; 12 Alongi (10.1016/j.jcis.2018.08.060_b0140) 2013; 98 Gao (10.1016/j.jcis.2018.08.060_b0115) 2017; 333 Sheng (10.1016/j.jcis.2018.08.060_b0105) 2017; 9 Pethsangave (10.1016/j.jcis.2018.08.060_b0005) 2017; 9 Zahid (10.1016/j.jcis.2018.08.060_b0150) 2017; 319 Liden (10.1016/j.jcis.2018.08.060_b0165) 1988; 65 Li (10.1016/j.jcis.2018.08.060_b0035) 2011; 21 Zhang (10.1016/j.jcis.2018.08.060_b0070) 2017; 316 Cao (10.1016/j.jcis.2018.08.060_b0135) 2016; 4 Scott (10.1016/j.jcis.2018.08.060_b0170) 1988; 27 Qin (10.1016/j.jcis.2018.08.060_b0195) 2005; 46 Lin (10.1016/j.jcis.2018.08.060_b0060) 2018; 25 Li (10.1016/j.jcis.2018.08.060_b0175) 2011; 23 Liu (10.1016/j.jcis.2018.08.060_b0010) 2018; 25 Li (10.1016/j.jcis.2018.08.060_b0125) 2016; 4 Li (10.1016/j.jcis.2018.08.060_b0130) 2017; 5 Dufour (10.1016/j.jcis.2018.08.060_b0160) 2011; 89 Guo (10.1016/j.jcis.2018.08.060_b0075) 2015; 446 Zhang (10.1016/j.jcis.2018.08.060_b0180) 2003; 90 Kandola (10.1016/j.jcis.2018.08.060_b0200) 2000; 24 Laufer (10.1016/j.jcis.2018.08.060_b0025) 2011; 356 Zhang (10.1016/j.jcis.2018.08.060_b0040) 2017; 505 Bourbigot (10.1016/j.jcis.2018.08.060_b0205) 1995; 13 Zanetti (10.1016/j.jcis.2018.08.060_b0185) 2002; 14 Xue (10.1016/j.jcis.2018.08.060_b0055) 2016; 23 Guo (10.1016/j.jcis.2018.08.060_b0080) 2017; 5 Su (10.1016/j.jcis.2018.08.060_b0095) 2017; 9 Alongi (10.1016/j.jcis.2018.08.060_b0045) 2011; 85 |
References_xml | – volume: 21 start-page: 3060 year: 2011 end-page: 3069 ident: b0035 article-title: Growth and fire protection behavior of POSS-based multilayer thin films publication-title: J. Mater. Chem. – volume: 5 start-page: 20277 year: 2017 end-page: 20288 ident: b0130 article-title: Environmentally safe, substrate-independent and repairable nanoporous coatings: large-scale preparation, high transparency and antifouling properties publication-title: J. Mater. Chem. A – volume: 98 start-page: 579 year: 2013 end-page: 589 ident: b0140 article-title: Phosphorus- and nitrogen-doped silica coatings for enhancing the flame retardancy of cotton: synergisms or additive effects publication-title: Polym. Degrad. Stab. – volume: 25 start-page: 843 year: 2018 end-page: 857 ident: b0190 article-title: A novel boron-nitrogen intumescent flame retardant coating on cotton with improved washing durability publication-title: Cellulose – volume: 27 start-page: 8 year: 1988 end-page: 15 ident: b0170 article-title: The role of temperature in the fast pyrolysis of cellulose and wood publication-title: Ind. Eng. Chem. Res. – volume: 356 start-page: 69 year: 2011 end-page: 77 ident: b0025 article-title: Growth and fire resistance of colloidal silica-polyelectrolyte thin film assemblies publication-title: J. Colloid Interf. Sci. – volume: 4 start-page: 12179 year: 2016 end-page: 12187 ident: b0135 article-title: Robust fluorine-free superhydrophobic PDMS-ormosil@fabric for highly effective self-cleaning and efficient oil-water separation publication-title: J. Mater. Chem. A – volume: 335 start-page: 67 year: 2012 end-page: 70 ident: b0090 article-title: Candle soot as a template for a transparent robust superamphiphobic coating publication-title: Science – volume: 333 start-page: 621 year: 2017 end-page: 629 ident: b0115 article-title: Rational construction of highly transparent superhydrophobic coatings based on a non-particle, fluorine-free and water-rich system for versatile oil-water separation publication-title: Chem. Eng. J. – volume: 320 start-page: 330 year: 2017 end-page: 341 ident: b0085 article-title: Mechanically durable superamphiphobic surfaces via synergistic hydrophobization and fluorination publication-title: Chem. Eng. J. – volume: 111 start-page: 1099 year: 2013 end-page: 1106 ident: b0155 article-title: Co-microencapsulate of ammonium polyphosphate and pentaerythritol in intumescent flame-retardant coatings publication-title: J. Therm. Anal. Calorim. – volume: 8 start-page: 7638 year: 2016 end-page: 7645 ident: b0100 article-title: Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation publication-title: Nanoscale – volume: 85 start-page: 599 year: 2011 end-page: 608 ident: b0045 article-title: Novel flame retardant finishing systems for cotton fabrics based on phosphorus-containing compounds and silica derived from sol-gel processes publication-title: Carbohydr. Polym. – volume: 316 start-page: 736 year: 2017 end-page: 743 ident: b0070 article-title: Thiolated graphene-based superhydrophobic sponges for oil-water separation publication-title: Chem. Eng. J. – volume: 9 start-page: 40782 year: 2017 end-page: 40791 ident: b0050 article-title: Development and evaluation of a water-based flame retardant spray coating for cotton fabrics publication-title: ACS Appl. Mater. Interf. – volume: 65 start-page: 207 year: 1988 end-page: 221 ident: b0165 article-title: A kinetic model for the production of liquids from the flash pyrolysis of biomass publication-title: Chem. Eng. Commun. – volume: 4 start-page: 13677 year: 2016 end-page: 13725 ident: b0125 article-title: Roles of silanes and silicones in forming superhydrophobic and superoleophobic materials publication-title: J. Mater. Chem. A – volume: 5 start-page: 3013 year: 2013 end-page: 3021 ident: b0020 article-title: Construction of flame retardant nanocoating on ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate publication-title: Nanoscale – volume: 505 start-page: 892 year: 2017 end-page: 899 ident: b0040 article-title: Flame retardant and hydrophobic coatings on cotton fabrics via sol-gel and self-assembly techniques publication-title: J. Colloid Interf. Sci. – volume: 23 start-page: 1471 year: 2016 end-page: 1480 ident: b0055 article-title: Fabrication of superhydrophobic cotton textiles with flame retardancy publication-title: Cellulose – volume: 9 start-page: 35319 year: 2017 end-page: 35324 ident: b0005 article-title: Deep eutectic solvent functionalized graphene composite as an extremely high potency flame retardant publication-title: ACS Appl. Mater. Interf. – volume: 6 start-page: 8488 year: 2018 end-page: 8498 ident: b0210 article-title: Ultrafine nickel nanocatalyst-engineering organic layered double hydroxide towards super-efficiently fire-safe epoxy resin via interfacial catalysis publication-title: J. Mater. Chem. A – volume: 24 start-page: 265 year: 2000 end-page: 275 ident: b0200 article-title: Complex char formation in flame-retarded fibre-intumescent combinations-IV. Mass loss and thermal barrier properties publication-title: Fire Mater. – volume: 319 start-page: 321 year: 2017 end-page: 332 ident: b0150 article-title: Robust water repellent treatment for woven cotton fabrics with eco-friendly polymers publication-title: Chem. Eng. J. – volume: 14 start-page: 881 year: 2002 end-page: 887 ident: b0185 article-title: Cone calorimeter combustion and gasification studies of polymer layered silicate nanocomposites publication-title: Chem. Mater. – volume: 90 start-page: 3165 year: 2003 end-page: 3172 ident: b0180 article-title: Substantive intumescence from phosphorylated 1, 3-propanediol derivatives substituted on to cellulose publication-title: J. Appl. Polym. Sci. – volume: 46 start-page: 8386 year: 2005 end-page: 8395 ident: b0195 article-title: Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene publication-title: Polymer – volume: 12 start-page: 416 year: 2018 end-page: 424 ident: b0120 article-title: Efficient flame detection and early warning sensors on combustible materials using hierarchical graphene oxide/silicone coatings publication-title: ACS Nano – volume: 5 start-page: 2355 year: 2017 end-page: 2364 ident: b0110 article-title: Dual-action smart coating with a self-healing superhydrophobic surface and anti-corrosion properties publication-title: J. Mater. Chem. A – volume: 446 start-page: 155 year: 2015 end-page: 162 ident: b0075 article-title: One-step fabrication of highly stable, superhydrophobic composites from controllable and low-cost PMHS/TEOS sols for efficient oil cleanup publication-title: J. Colloid Interf. Sci. – volume: 96 start-page: 745 year: 2011 end-page: 750 ident: b0030 article-title: Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric publication-title: Polym. Degrad. Stab. – volume: 89 start-page: 2136 year: 2011 end-page: 2146 ident: b0160 article-title: Modelling intra-particle phenomena of biomass pyrolysis publication-title: Chem. Eng. Res. Des. – volume: 25 start-page: 3135 year: 2018 end-page: 3149 ident: b0060 article-title: Facile fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via layer-by-layer assembly publication-title: Cellulose – volume: 9 start-page: 28089 year: 2017 end-page: 28099 ident: b0095 article-title: Vapor-liquid sol-gel approach to fabricating highly durable and robust superhydrophobic polydimethylsiloxane@silica surface on polyester textile for oil-water separation publication-title: ACS Appl. Mater. Interf. – volume: 9 start-page: 4070 year: 2015 end-page: 4076 ident: b0065 article-title: Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric publication-title: ACS Nano – volume: 25 start-page: 799 year: 2018 end-page: 811 ident: b0010 article-title: Durable flame retardant cellulosic fibers modified with novel, facile and efficient phytic acid-based finishing agent publication-title: Cellulose – volume: 5 start-page: 21866 year: 2017 end-page: 21874 ident: b0080 article-title: Simple one-pot approach toward robust and boiling-water resistant superhydrophobic cotton fabric and the application in oil/water separation publication-title: J. Mater. Chem. A – volume: 23 start-page: 3926 year: 2011 end-page: 3931 ident: b0175 article-title: Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric publication-title: Adv. Mater. – volume: 7 start-page: 9349 year: 2015 end-page: 9363 ident: b0015 article-title: Permanent flame retardant finishing of textiles by allyl-functionalized polyphosphazenes publication-title: ACS Appl. Mater. Interf. – volume: 9 start-page: 15139 year: 2017 end-page: 15147 ident: b0105 article-title: Robust fluorine-free superhydrophobic amino-silicone oil/SiO publication-title: ACS Appl. Mater. Interf. – volume: 13 start-page: 3 year: 1995 end-page: 22 ident: b0205 article-title: Fire degradation of an intumescent flame retardant polypropylene using the cone calorimeter publication-title: J. Fire Sci. – volume: 130 start-page: 68 year: 2016 end-page: 77 ident: b0145 article-title: Synthesis of a novel macromolecular charring agent with free-radical quenching capability and its synergism in flame retardant polypropylene publication-title: Polym. Degrad. Stab. – volume: 320 start-page: 330 year: 2017 ident: 10.1016/j.jcis.2018.08.060_b0085 article-title: Mechanically durable superamphiphobic surfaces via synergistic hydrophobization and fluorination publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.03.058 – volume: 5 start-page: 20277 year: 2017 ident: 10.1016/j.jcis.2018.08.060_b0130 article-title: Environmentally safe, substrate-independent and repairable nanoporous coatings: large-scale preparation, high transparency and antifouling properties publication-title: J. Mater. Chem. A doi: 10.1039/C7TA05112C – volume: 14 start-page: 881 year: 2002 ident: 10.1016/j.jcis.2018.08.060_b0185 article-title: Cone calorimeter combustion and gasification studies of polymer layered silicate nanocomposites publication-title: Chem. Mater. doi: 10.1021/cm011236k – volume: 65 start-page: 207 year: 1988 ident: 10.1016/j.jcis.2018.08.060_b0165 article-title: A kinetic model for the production of liquids from the flash pyrolysis of biomass publication-title: Chem. Eng. Commun. doi: 10.1080/00986448808940254 – volume: 4 start-page: 13677 year: 2016 ident: 10.1016/j.jcis.2018.08.060_b0125 article-title: Roles of silanes and silicones in forming superhydrophobic and superoleophobic materials publication-title: J. Mater. Chem. A doi: 10.1039/C6TA05441B – volume: 46 start-page: 8386 year: 2005 ident: 10.1016/j.jcis.2018.08.060_b0195 article-title: Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene publication-title: Polymer doi: 10.1016/j.polymer.2005.07.019 – volume: 89 start-page: 2136 year: 2011 ident: 10.1016/j.jcis.2018.08.060_b0160 article-title: Modelling intra-particle phenomena of biomass pyrolysis publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2011.01.005 – volume: 9 start-page: 15139 year: 2017 ident: 10.1016/j.jcis.2018.08.060_b0105 article-title: Robust fluorine-free superhydrophobic amino-silicone oil/SiO2 modification of electrospun polyacrylonitrile membranes for waterproof-breathable application publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.7b02594 – volume: 319 start-page: 321 year: 2017 ident: 10.1016/j.jcis.2018.08.060_b0150 article-title: Robust water repellent treatment for woven cotton fabrics with eco-friendly polymers publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.03.006 – volume: 23 start-page: 3926 year: 2011 ident: 10.1016/j.jcis.2018.08.060_b0175 article-title: Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric publication-title: Adv. Mater. doi: 10.1002/adma.201101871 – volume: 9 start-page: 28089 year: 2017 ident: 10.1016/j.jcis.2018.08.060_b0095 article-title: Vapor-liquid sol-gel approach to fabricating highly durable and robust superhydrophobic polydimethylsiloxane@silica surface on polyester textile for oil-water separation publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.7b08920 – volume: 25 start-page: 799 year: 2018 ident: 10.1016/j.jcis.2018.08.060_b0010 article-title: Durable flame retardant cellulosic fibers modified with novel, facile and efficient phytic acid-based finishing agent publication-title: Cellulose doi: 10.1007/s10570-017-1550-0 – volume: 5 start-page: 21866 year: 2017 ident: 10.1016/j.jcis.2018.08.060_b0080 article-title: Simple one-pot approach toward robust and boiling-water resistant superhydrophobic cotton fabric and the application in oil/water separation publication-title: J. Mater. Chem. A doi: 10.1039/C7TA05599D – volume: 505 start-page: 892 year: 2017 ident: 10.1016/j.jcis.2018.08.060_b0040 article-title: Flame retardant and hydrophobic coatings on cotton fabrics via sol-gel and self-assembly techniques publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2017.06.087 – volume: 9 start-page: 40782 year: 2017 ident: 10.1016/j.jcis.2018.08.060_b0050 article-title: Development and evaluation of a water-based flame retardant spray coating for cotton fabrics publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.7b09863 – volume: 25 start-page: 3135 year: 2018 ident: 10.1016/j.jcis.2018.08.060_b0060 article-title: Facile fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via layer-by-layer assembly publication-title: Cellulose doi: 10.1007/s10570-018-1748-9 – volume: 5 start-page: 3013 year: 2013 ident: 10.1016/j.jcis.2018.08.060_b0020 article-title: Construction of flame retardant nanocoating on ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate publication-title: Nanoscale doi: 10.1039/c3nr34020a – volume: 9 start-page: 4070 year: 2015 ident: 10.1016/j.jcis.2018.08.060_b0065 article-title: Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric publication-title: ACS Nano doi: 10.1021/acsnano.5b00121 – volume: 23 start-page: 1471 year: 2016 ident: 10.1016/j.jcis.2018.08.060_b0055 article-title: Fabrication of superhydrophobic cotton textiles with flame retardancy publication-title: Cellulose doi: 10.1007/s10570-016-0885-2 – volume: 5 start-page: 2355 year: 2017 ident: 10.1016/j.jcis.2018.08.060_b0110 article-title: Dual-action smart coating with a self-healing superhydrophobic surface and anti-corrosion properties publication-title: J. Mater. Chem. A doi: 10.1039/C6TA10903A – volume: 316 start-page: 736 year: 2017 ident: 10.1016/j.jcis.2018.08.060_b0070 article-title: Thiolated graphene-based superhydrophobic sponges for oil-water separation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.02.030 – volume: 8 start-page: 7638 year: 2016 ident: 10.1016/j.jcis.2018.08.060_b0100 article-title: Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation publication-title: Nanoscale doi: 10.1039/C6NR01298A – volume: 9 start-page: 35319 year: 2017 ident: 10.1016/j.jcis.2018.08.060_b0005 article-title: Deep eutectic solvent functionalized graphene composite as an extremely high potency flame retardant publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.7b09587 – volume: 4 start-page: 12179 year: 2016 ident: 10.1016/j.jcis.2018.08.060_b0135 article-title: Robust fluorine-free superhydrophobic PDMS-ormosil@fabric for highly effective self-cleaning and efficient oil-water separation publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04420D – volume: 130 start-page: 68 year: 2016 ident: 10.1016/j.jcis.2018.08.060_b0145 article-title: Synthesis of a novel macromolecular charring agent with free-radical quenching capability and its synergism in flame retardant polypropylene publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2016.05.029 – volume: 356 start-page: 69 year: 2011 ident: 10.1016/j.jcis.2018.08.060_b0025 article-title: Growth and fire resistance of colloidal silica-polyelectrolyte thin film assemblies publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2010.12.072 – volume: 7 start-page: 9349 year: 2015 ident: 10.1016/j.jcis.2018.08.060_b0015 article-title: Permanent flame retardant finishing of textiles by allyl-functionalized polyphosphazenes publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.5b02141 – volume: 13 start-page: 3 year: 1995 ident: 10.1016/j.jcis.2018.08.060_b0205 article-title: Fire degradation of an intumescent flame retardant polypropylene using the cone calorimeter publication-title: J. Fire Sci. doi: 10.1177/073490419501300101 – volume: 6 start-page: 8488 year: 2018 ident: 10.1016/j.jcis.2018.08.060_b0210 article-title: Ultrafine nickel nanocatalyst-engineering organic layered double hydroxide towards super-efficiently fire-safe epoxy resin via interfacial catalysis publication-title: J. Mater. Chem. A doi: 10.1039/C8TA00910D – volume: 27 start-page: 8 year: 1988 ident: 10.1016/j.jcis.2018.08.060_b0170 article-title: The role of temperature in the fast pyrolysis of cellulose and wood publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00073a003 – volume: 85 start-page: 599 year: 2011 ident: 10.1016/j.jcis.2018.08.060_b0045 article-title: Novel flame retardant finishing systems for cotton fabrics based on phosphorus-containing compounds and silica derived from sol-gel processes publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2011.03.024 – volume: 21 start-page: 3060 year: 2011 ident: 10.1016/j.jcis.2018.08.060_b0035 article-title: Growth and fire protection behavior of POSS-based multilayer thin films publication-title: J. Mater. Chem. doi: 10.1039/c0jm03752d – volume: 98 start-page: 579 year: 2013 ident: 10.1016/j.jcis.2018.08.060_b0140 article-title: Phosphorus- and nitrogen-doped silica coatings for enhancing the flame retardancy of cotton: synergisms or additive effects publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2012.11.017 – volume: 24 start-page: 265 year: 2000 ident: 10.1016/j.jcis.2018.08.060_b0200 article-title: Complex char formation in flame-retarded fibre-intumescent combinations-IV. Mass loss and thermal barrier properties publication-title: Fire Mater. doi: 10.1002/1099-1018(200011/12)24:6<265::AID-FAM747>3.0.CO;2-E – volume: 333 start-page: 621 year: 2017 ident: 10.1016/j.jcis.2018.08.060_b0115 article-title: Rational construction of highly transparent superhydrophobic coatings based on a non-particle, fluorine-free and water-rich system for versatile oil-water separation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.10.006 – volume: 96 start-page: 745 year: 2011 ident: 10.1016/j.jcis.2018.08.060_b0030 article-title: Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2011.02.019 – volume: 335 start-page: 67 year: 2012 ident: 10.1016/j.jcis.2018.08.060_b0090 article-title: Candle soot as a template for a transparent robust superamphiphobic coating publication-title: Science doi: 10.1126/science.1207115 – volume: 446 start-page: 155 year: 2015 ident: 10.1016/j.jcis.2018.08.060_b0075 article-title: One-step fabrication of highly stable, superhydrophobic composites from controllable and low-cost PMHS/TEOS sols for efficient oil cleanup publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2015.01.062 – volume: 90 start-page: 3165 year: 2003 ident: 10.1016/j.jcis.2018.08.060_b0180 article-title: Substantive intumescence from phosphorylated 1, 3-propanediol derivatives substituted on to cellulose publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.12733 – volume: 12 start-page: 416 year: 2018 ident: 10.1016/j.jcis.2018.08.060_b0120 article-title: Efficient flame detection and early warning sensors on combustible materials using hierarchical graphene oxide/silicone coatings publication-title: ACS Nano doi: 10.1021/acsnano.7b06590 – volume: 111 start-page: 1099 year: 2013 ident: 10.1016/j.jcis.2018.08.060_b0155 article-title: Co-microencapsulate of ammonium polyphosphate and pentaerythritol in intumescent flame-retardant coatings publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-012-2494-0 – volume: 25 start-page: 843 year: 2018 ident: 10.1016/j.jcis.2018.08.060_b0190 article-title: A novel boron-nitrogen intumescent flame retardant coating on cotton with improved washing durability publication-title: Cellulose doi: 10.1007/s10570-017-1577-2 |
SSID | ssj0011559 |
Score | 2.6611798 |
Snippet | [Display omitted]
Waterproof and flame-retardant fabrics are widely utilized in many fields, such as automotive interiors, indoor decorations, outdoor clothing... Waterproof and flame-retardant fabrics are widely utilized in many fields, such as automotive interiors, indoor decorations, outdoor clothing and tents.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 198 |
SubjectTerms | ammonia ammonium polyphosphates cellulose coatings contact angle cost effectiveness Cotton fabric durability ethanol Flame retardancy hydrogen bonding hydrophobicity lint cotton mixing One-pot approach oxygen polydimethylsiloxane Sol-gel reaction Superhydrophobicity |
Title | One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction |
URI | https://dx.doi.org/10.1016/j.jcis.2018.08.060 https://www.ncbi.nlm.nih.gov/pubmed/30165297 https://www.proquest.com/docview/2098768685 https://www.proquest.com/docview/2116878279 |
Volume | 533 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq9gAcKiivQqmMxA2ZxrHjx7FatVpAlAuVeoscx6YpVRJldytx4bczs05W9NA9cIqSzESWZzzzxZ4HIR8AlAenomCFtZ5Jr2HNCSuZF-BgvffaBUwU_nah5pfyy1VxtUNmUy4MhlWOtj_Z9LW1Hp-cjLN50jcN5vjCatMWjKvIrC4w0VxKjVr-6c8mzIPjsVsK8-AMqcfEmRTjdeMbLNnNTSrjmT3knB4Cn2sndP6U7I_okZ6mAT4jO6E9II9mU9O2A_Lkn_qCz8mv721gfbek0VXDuDlHu0gXqz4M17_roeuvu6rx1LU1jaAbgWH44VDDdFPfOQyJXlDgwQIOcEmfWdC7xlHQWfYz3FIAnevUiBfk8vzsx2zOxu4KzINXXjIpai-cxBa4mQqZq2MuqphnDh5EZapCOJXXgC60kFrAb01lq1DFzMjowEwW4iXZbbs2vCY0eF5HH7iOppbwypk6N557FbE6W8wOCZ-mtfRj6XHsgHFbTjFmNyWKokRRlNgWUwHPxw1PnwpvbKUuJmmV99SnBM-wle_9JNoSJIWHJa4N3QqJLDgKo0yxhYZzZQBiaXtIXiW92IxVYJ5YbvWb_xzZW_IY7mza7Tkiu8thFd4B_llWx2sFPyZ7p5-_zi_-Aip6BOQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcigcEJRXeRoJTsg0iRM_DhxQodrSB5dW6s04jt2mVEmU3QX1wp_iDzKzTlZw6B6Qeork2JE179jfzBDyBoJyb0XgrNDasdxJ0Dmuc-Y4OFjnnLQeE4UPj8TkJP9yWpyukd9jLgzCKgfbH236wloPI9sDNbe7usYcX9A2qcG48kTLYkRW7vurn_DfNv2w9wmY_DbLdj8f70zY0FqAOXBJM5bzynGbY__XRPjEViHjZcgSCwNBqLLgVmQVuFbJc8khpi916cuQqDxYsBHYKgLs_q0czAW2TXj_a4krSfGeL-JKUobbGzJ1IqjswtVYIzxVsW5ocp03vC7aXXi93Xvk7hCu0o-RIvfJmm82ycbO2CVuk9z5q6DhA_L9a-NZ185osGU_nAbSNtDpvPP9-VXVt915W9aO2qaiAYTRM8Q79hXwl7rWIgZ7SmENVoyAR_zMlP6oLQUlYWf-kkKUu8jFeEhOboTmj8h60zb-CaHepVVwPpVBVcCDwqoqUy51ImA5uJBskXQkq3FDrXNsuXFpRlDbhUFWGGSFwT6cAta8W67pYqWPlbOLkVvmH3k14IpWrns9stYAp_B2xja-neMkDZ5JCVWsmJOmQkFMJ_UWeRzlYrlXjolpmZZP_3Nnr8jG5PjwwBzsHe0_I7fhjY5HTc_J-qyf-xcQfM3Klwthp-TbTWvXH01SPxw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-pot+fabrication+of+superhydrophobic+and+flame-retardant+coatings+on+cotton+fabrics+via+sol-gel+reaction&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Lin%2C+Dongmei&rft.au=Zeng%2C+Xingrong&rft.au=Li%2C+Hongqiang&rft.au=Lai%2C+Xuejun&rft.date=2019-01-01&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=533&rft.spage=198&rft_id=info:doi/10.1016%2Fj.jcis.2018.08.060&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |