Identifying multiple plant diseases using digital image processing

The gap between the current capabilities of image-based methods for automatic plant disease identification and the real-world needs is still wide. Although advances have been made on the subject, most methods are still not robust enough to deal with a wide variety of diseases and plant species. This...

Full description

Saved in:
Bibliographic Details
Published inBiosystems engineering Vol. 147; pp. 104 - 116
Main Authors Barbedo, Jayme Garcia Arnal, Koenigkan, Luciano Vieira, Santos, Thiago Teixeira
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The gap between the current capabilities of image-based methods for automatic plant disease identification and the real-world needs is still wide. Although advances have been made on the subject, most methods are still not robust enough to deal with a wide variety of diseases and plant species. This paper proposes a method for disease identification, based on colour transformations, colour histograms and a pairwise-based classification system. Its performance was tested using a large database containing images of symptoms belonging to 82 different biotic and abiotic stresses, affecting the leaves of 12 different plant species. The wide variety of images used in the tests made it possible to carry out an in-depth investigation about the main advantages and limitations of the proposed algorithm. A comparison with other algorithms is also presented, and some possible solutions for the main challenges that still prevent this kind of tool to be adopted in practice. •An algorithm for identifying multiple plant diseases is proposed.•It is based on image processing applied to conventional colour images.•It does not depend on any input or response from the user.•Tests considered 12 plant species and 82 diseases.•Accuracy varied between 40% and 80% for the plant species considered.
AbstractList The gap between the current capabilities of image-based methods for automatic plant disease identification and the real-world needs is still wide. Although advances have been made on the subject, most methods are still not robust enough to deal with a wide variety of diseases and plant species. This paper proposes a method for disease identification, based on colour transformations, colour histograms and a pairwise-based classification system. Its performance was tested using a large database containing images of symptoms belonging to 82 different biotic and abiotic stresses, affecting the leaves of 12 different plant species. The wide variety of images used in the tests made it possible to carry out an in-depth investigation about the main advantages and limitations of the proposed algorithm. A comparison with other algorithms is also presented, and some possible solutions for the main challenges that still prevent this kind of tool to be adopted in practice. •An algorithm for identifying multiple plant diseases is proposed.•It is based on image processing applied to conventional colour images.•It does not depend on any input or response from the user.•Tests considered 12 plant species and 82 diseases.•Accuracy varied between 40% and 80% for the plant species considered.
The gap between the current capabilities of image-based methods for automatic plant disease identification and the real-world needs is still wide. Although advances have been made on the subject, most methods are still not robust enough to deal with a wide variety of diseases and plant species. This paper proposes a method for disease identification, based on colour transformations, colour histograms and a pairwise-based classification system. Its performance was tested using a large database containing images of symptoms belonging to 82 different biotic and abiotic stresses, affecting the leaves of 12 different plant species. The wide variety of images used in the tests made it possible to carry out an in-depth investigation about the main advantages and limitations of the proposed algorithm. A comparison with other algorithms is also presented, and some possible solutions for the main challenges that still prevent this kind of tool to be adopted in practice.
Author Barbedo, Jayme Garcia Arnal
Koenigkan, Luciano Vieira
Santos, Thiago Teixeira
Author_xml – sequence: 1
  givenname: Jayme Garcia Arnal
  orcidid: 0000-0002-1156-8270
  surname: Barbedo
  fullname: Barbedo, Jayme Garcia Arnal
  email: jayme.barbedo@embrapa.br
– sequence: 2
  givenname: Luciano Vieira
  surname: Koenigkan
  fullname: Koenigkan, Luciano Vieira
– sequence: 3
  givenname: Thiago Teixeira
  surname: Santos
  fullname: Santos, Thiago Teixeira
BookMark eNqNkUtLAzEUhYMo2Fb_w4AbNx3zmFdwVUvVQsGNrkMmuVNSppk6NyP035tSEXQ1q4Sc754bzpmSS995IOSO0ZRRVjzs0tp1eMQAewS_TXl8TKlIKeMXZMJyUc5zxuXl753RazJF3FHK8jIrJuRpbcEH1xyd3yb7oQ3u0EJyaLUPiXUIGgGTAU-qdVsXdJu4vd5GpO8M4Em4IVeNbhFuf84Z-XhevS9f55u3l_VysZmbjBdhLmpW51VFG7AZZBXjmRVRkbXUhtmG1zYTnDMtZFbXkpayBNMUXOea84ZDLWbk_uwbV38OgEHtHRpo41-hG1CxShRFIanMRqA8zznPGR2B0qqkrKxkRBdn1PQdYg-NMjGQ4Dofeu1axag6taJ26k8r6tSKokLFVqLH4z-PQx8D7Y8jp1fnaYg5fznoFRoH3oB1PZigbOdG-XwD_420oA
CitedBy_id crossref_primary_10_1002_jsfa_10987
crossref_primary_10_1007_s10462_024_11100_x
crossref_primary_10_1016_j_inpa_2019_09_002
crossref_primary_10_1007_s00521_022_07587_6
crossref_primary_10_1007_s12652_019_01591_w
crossref_primary_10_1007_s12652_021_03406_3
crossref_primary_10_32604_cmc_2021_012431
crossref_primary_10_17660_ActaHortic_2021_1325_3
crossref_primary_10_1111_exsy_12885
crossref_primary_10_1016_j_compag_2019_105162
crossref_primary_10_1007_s11042_023_14541_8
crossref_primary_10_1016_j_aiia_2020_01_002
crossref_primary_10_3390_applmech3030049
crossref_primary_10_46604_ijeti_2021_7346
crossref_primary_10_1007_s00521_019_04634_7
crossref_primary_10_1007_s41348_024_01019_4
crossref_primary_10_1007_s10462_024_10809_z
crossref_primary_10_1155_2021_5541859
crossref_primary_10_1002_cpe_7625
crossref_primary_10_1109_ACCESS_2024_3439410
crossref_primary_10_15625_2525_2518_18914
crossref_primary_10_3389_fpls_2024_1360113
crossref_primary_10_1007_s13313_020_00697_6
crossref_primary_10_32604_cmc_2022_020017
crossref_primary_10_3390_plants10122643
crossref_primary_10_1007_s00607_018_0638_1
crossref_primary_10_1007_s11042_022_13144_z
crossref_primary_10_1007_s11042_024_18208_w
crossref_primary_10_3389_fpls_2021_621168
crossref_primary_10_1002_aps3_11559
crossref_primary_10_1007_s11042_023_17098_8
crossref_primary_10_1016_j_inpa_2018_07_002
crossref_primary_10_1109_LSENS_2022_3161595
crossref_primary_10_1007_s11042_022_12147_0
crossref_primary_10_1016_j_asoc_2020_106128
crossref_primary_10_3390_s20154091
crossref_primary_10_3390_s22072696
crossref_primary_10_1007_s42452_021_04694_2
crossref_primary_10_1016_j_compag_2022_107340
crossref_primary_10_1002_jemt_23320
crossref_primary_10_1088_1742_6596_1764_1_012061
crossref_primary_10_3389_fpls_2018_01962
crossref_primary_10_1080_00051144_2020_1728911
crossref_primary_10_1080_13682199_2020_1865652
crossref_primary_10_1016_j_eja_2024_127384
crossref_primary_10_1109_ACCESS_2018_2800685
crossref_primary_10_46604_ijeti_2021_8244
crossref_primary_10_1007_s11119_020_09782_8
crossref_primary_10_1016_j_atech_2021_100010
crossref_primary_10_1007_s11042_024_19860_y
crossref_primary_10_3390_f14020415
crossref_primary_10_1007_s10333_024_00990_w
crossref_primary_10_1016_j_compag_2020_105527
crossref_primary_10_1002_jsfa_9943
crossref_primary_10_1007_s44187_025_00338_1
crossref_primary_10_19053_01211129_v30_n58_2021_13495
crossref_primary_10_1016_j_compag_2022_107255
crossref_primary_10_1109_ACCESS_2021_3120379
crossref_primary_10_1186_s13007_020_00695_1
crossref_primary_10_2174_1573401318666211227103001
crossref_primary_10_1016_j_compag_2019_105060
crossref_primary_10_1038_s41598_019_40066_y
crossref_primary_10_5424_sjar_2019173_14762
crossref_primary_10_1016_j_heliyon_2024_e32405
crossref_primary_10_13005_bpj_2861
crossref_primary_10_3390_agronomy14102327
crossref_primary_10_1007_s11042_023_17610_0
crossref_primary_10_1016_j_suscom_2022_100695
crossref_primary_10_7161_omuanajas_987368
crossref_primary_10_1007_s11831_019_09324_0
crossref_primary_10_1016_j_compag_2025_109950
crossref_primary_10_1038_s41598_018_31899_0
crossref_primary_10_1007_s40858_019_00274_3
crossref_primary_10_1007_s11227_021_04245_x
crossref_primary_10_1007_s41348_022_00583_x
crossref_primary_10_1109_ACCESS_2024_3433495
crossref_primary_10_1016_j_inpa_2019_11_001
crossref_primary_10_1088_2631_8695_ad59f6
crossref_primary_10_1007_s11831_018_9255_6
crossref_primary_10_1049_iet_ipr_2018_6210
crossref_primary_10_3390_biology11121732
crossref_primary_10_1109_ACCESS_2021_3138050
crossref_primary_10_1002_agj2_21070
crossref_primary_10_1007_s11760_023_02735_4
crossref_primary_10_1016_j_compag_2020_105342
crossref_primary_10_32604_cmc_2021_016825
crossref_primary_10_1016_j_eswa_2022_118117
crossref_primary_10_1109_ACCESS_2020_3001652
crossref_primary_10_1016_j_atech_2023_100195
crossref_primary_10_3390_inventions6020029
crossref_primary_10_1016_j_measurement_2024_114682
crossref_primary_10_3390_rs13122397
crossref_primary_10_1016_j_compag_2022_107449
crossref_primary_10_1109_TMECH_2017_2760866
Cites_doi 10.1186/1746-4811-8-3
10.1016/j.biosystemseng.2015.03.007
10.1016/j.biosystemseng.2008.09.018
10.1016/j.biosystemseng.2014.11.013
10.1007/s11119-009-9124-2
10.1007/s11120-007-9278-6
10.1016/j.compag.2015.05.020
10.1094/PDIS-03-14-0290-RE
10.1016/j.compag.2009.01.003
10.1016/j.compag.2014.03.001
10.1016/j.biosystemseng.2015.01.003
10.1016/j.compag.2013.11.001
10.1016/j.compag.2012.09.014
10.1016/j.biosystemseng.2013.05.010
10.1016/j.compag.2014.07.010
10.1016/j.compag.2012.11.001
10.1016/j.biosystemseng.2016.01.017
ContentType Journal Article
Copyright 2016 IAgrE
Copyright_xml – notice: 2016 IAgrE
DBID AAYXX
CITATION
7ST
C1K
SOI
7TB
8FD
FR3
KR7
7S9
L.6
DOI 10.1016/j.biosystemseng.2016.03.012
DatabaseName CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Environment Abstracts
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 1537-5129
EndPage 116
ExternalDocumentID 10_1016_j_biosystemseng_2016_03_012
S153751101530266X
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CAG
CBWCG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSA
SST
SSZ
T5K
UHS
UNMZH
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
C1K
SOI
7TB
8FD
FR3
KR7
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c426t-3b1b5880fed4e48124d3c429b9ac1df2bd43221a394bb90797ecf62a5a22f2eb3
IEDL.DBID .~1
ISSN 1537-5110
IngestDate Tue Aug 05 10:28:19 EDT 2025
Fri Jul 11 00:55:32 EDT 2025
Thu Jul 10 23:23:39 EDT 2025
Tue Jul 01 01:10:59 EDT 2025
Thu Apr 24 22:57:08 EDT 2025
Fri Feb 23 02:23:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Automatic disease recognition
Visible symptoms
Colour transformations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-3b1b5880fed4e48124d3c429b9ac1df2bd43221a394bb90797ecf62a5a22f2eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1156-8270
PQID 1808701789
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_1836669094
proquest_miscellaneous_1825522510
proquest_miscellaneous_1808701789
crossref_citationtrail_10_1016_j_biosystemseng_2016_03_012
crossref_primary_10_1016_j_biosystemseng_2016_03_012
elsevier_sciencedirect_doi_10_1016_j_biosystemseng_2016_03_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2016
2016-07-00
20160701
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: July 2016
PublicationDecade 2010
PublicationTitle Biosystems engineering
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cerutti, Tougne, Mille, Vacavant, Coquin (bib8) 2011
Clément, Verfaille, Lormel, Jaloux (bib9) 2015; 133
Grand-Brochier, Vacavant, Cerutti, Bianchi, Tougne (bib10) 2013
Lins, Belasque, Marcassa (bib14) 2009; 10
Zhou, Kaneko, Tanaka, Kayamori, Shimizu (bib22) 2015; 116
Barbedo (bib1) 2013; 2
Polder, van der Heijden, van Doorn, Baltissen (bib18) 2014; 117
Jackson (bib11) 1999
Barbedo, Tibola, Fernandes (bib4) 2015; 131
Belin, Rousseau, Boureau, Caffier (bib6) 2013; 90
Pourreza, Lee, Etxeberria, Banerjee (bib19) 2015; 130
Kuckenberg, Tartachnyk, Noga (bib13) 2009; 103
Park, Fürnkranz (bib23) 2007
Bauriegel, Giebel, Herppich (bib5) 2010; 83
Kruse, Prats-Montalbán, Indahl, Kvaal, Ferrer, Futsaether (bib12) 2014; 108
Zhang, Yuan, Pu, Loraamm, Yang, Wang (bib21) 2014; 100
Camargo, Smith (bib7) 2009; 66
Barbedo (bib2) 2014; 98
Barbedo (bib3) 2016; 144
Rodríguez-Moreno, Pineda, Soukupová, Macho, Beuzón, Barón (bib20) 2008; 96
Oberti, Marchi, Tirelli, Calcante, Iriti, Borghese (bib16) 2014; 104
Mahlein, Steiner, Hillnhütter, Dehne, Oerke (bib15) 2012; 8
Phadikar, Sil, Das (bib17) 2013; 90
Camargo (10.1016/j.biosystemseng.2016.03.012_bib7) 2009; 66
Barbedo (10.1016/j.biosystemseng.2016.03.012_bib3) 2016; 144
Belin (10.1016/j.biosystemseng.2016.03.012_bib6) 2013; 90
Barbedo (10.1016/j.biosystemseng.2016.03.012_bib4) 2015; 131
Zhang (10.1016/j.biosystemseng.2016.03.012_bib21) 2014; 100
Zhou (10.1016/j.biosystemseng.2016.03.012_bib22) 2015; 116
Phadikar (10.1016/j.biosystemseng.2016.03.012_bib17) 2013; 90
Kruse (10.1016/j.biosystemseng.2016.03.012_bib12) 2014; 108
Park (10.1016/j.biosystemseng.2016.03.012_bib23) 2007
Grand-Brochier (10.1016/j.biosystemseng.2016.03.012_bib10) 2013
Oberti (10.1016/j.biosystemseng.2016.03.012_bib16) 2014; 104
Rodríguez-Moreno (10.1016/j.biosystemseng.2016.03.012_bib20) 2008; 96
Clément (10.1016/j.biosystemseng.2016.03.012_bib9) 2015; 133
Polder (10.1016/j.biosystemseng.2016.03.012_bib18) 2014; 117
Bauriegel (10.1016/j.biosystemseng.2016.03.012_bib5) 2010; 83
Mahlein (10.1016/j.biosystemseng.2016.03.012_bib15) 2012; 8
Barbedo (10.1016/j.biosystemseng.2016.03.012_bib1) 2013; 2
Barbedo (10.1016/j.biosystemseng.2016.03.012_bib2) 2014; 98
Jackson (10.1016/j.biosystemseng.2016.03.012_bib11) 1999
Kuckenberg (10.1016/j.biosystemseng.2016.03.012_bib13) 2009; 103
Cerutti (10.1016/j.biosystemseng.2016.03.012_bib8) 2011
Pourreza (10.1016/j.biosystemseng.2016.03.012_bib19) 2015; 130
Lins (10.1016/j.biosystemseng.2016.03.012_bib14) 2009; 10
References_xml – volume: 66
  start-page: 121
  year: 2009
  end-page: 125
  ident: bib7
  article-title: Image pattern classification for the identification of disease causing agents in plants
  publication-title: Computers and Electronics in Agriculture
– year: 2011
  ident: bib8
  article-title: Guiding active contours for tree leaf segmentation and identification
  publication-title: Proceedings of the Conference on multilingual and multimodal information access evaluation (CLEF)
– year: 1999
  ident: bib11
  article-title: Introduction to expert systems
– volume: 90
  start-page: 76
  year: 2013
  end-page: 85
  ident: bib17
  article-title: Rice diseases classification using feature selection and rule generation techniques
  publication-title: Computers and Electronics in Agriculture
– volume: 8
  start-page: 3
  year: 2012
  ident: bib15
  article-title: Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases
  publication-title: Plant methods
– volume: 144
  start-page: 52
  year: 2016
  end-page: 60
  ident: bib3
  article-title: A review on the main challenges in automatic plant disease identification based on visible range images
  publication-title: Biosystems Engineering
– volume: 10
  start-page: 319
  year: 2009
  end-page: 330
  ident: bib14
  article-title: Detection of citrus canker in citrus plants using laser induced fluorescence spectroscopy
  publication-title: Precision Agriculture
– year: 2013
  ident: bib10
  article-title: Comparative study of segmentation methods for tree leaves extraction
  publication-title: Proceedings of the International workshop on video and image ground truth in computer vision applications
– volume: 96
  start-page: 27
  year: 2008
  end-page: 35
  ident: bib20
  article-title: Early detection of bean infection by Pseudomonas syringae in asymptomatic leaf areas using chlorophyll fluorescence imaging
  publication-title: Photosynthesis Research
– volume: 83
  start-page: 196
  year: 2010
  end-page: 203
  ident: bib5
  article-title: Rapid Fusarium head blight detection on winter wheat ears using chlorophyll fluorescence imaging
  publication-title: Journal of Applied Botany and Food Quality
– volume: 117
  start-page: 35
  year: 2014
  end-page: 42
  ident: bib18
  article-title: Automatic detection of tulip breaking virus (TBV) in tulip fields using machine vision
  publication-title: Biosystems Engineering
– volume: 133
  start-page: 128
  year: 2015
  end-page: 140
  ident: bib9
  article-title: A new colour vision system to quantify automatically foliar discolouration caused by insect pests feeding on leaf cells
  publication-title: Biosystems Engineering
– volume: 103
  start-page: 121
  year: 2009
  end-page: 128
  ident: bib13
  article-title: Detection and differentiation of nitrogen-deficiency, powdery mildew and leaf rust at wheat leaf and canopy level by laser-induced chlorophyll fluorescence
  publication-title: Biosystems Engineering
– volume: 131
  start-page: 65
  year: 2015
  end-page: 76
  ident: bib4
  article-title: Detecting Fusarium head blight in wheat kernels using hyperspectral imaging
  publication-title: Biosystems Engineering
– volume: 104
  start-page: 1
  year: 2014
  end-page: 8
  ident: bib16
  article-title: Automatic detection of powdery mildew on grapevine leaves by image analysis: optimal view-angle range to increase the sensitivity
  publication-title: Computers and Electronics in Agriculture
– start-page: 658
  year: 2007
  end-page: 665
  ident: bib23
  article-title: Efficient pairwise classification
  publication-title: Proceedings of the 17th European Conference on Machine Learning (ECML-07)
– volume: 116
  start-page: 65
  year: 2015
  end-page: 79
  ident: bib22
  article-title: Image-based field monitoring of Cercospora leaf spot in sugar beet by robust template matching and pattern recognition
  publication-title: Computers and Electronics in Agriculture
– volume: 2
  year: 2013
  ident: bib1
  article-title: Digital image processing techniques for detecting, quantifying and classifying plant diseases
  publication-title: SpringerPlus
– volume: 130
  start-page: 13
  year: 2015
  end-page: 22
  ident: bib19
  article-title: An evaluation of a vision-based sensor performance in Huanglongbing disease identification
  publication-title: Biosystems Engineering
– volume: 100
  start-page: 79
  year: 2014
  end-page: 87
  ident: bib21
  article-title: Comparison between wavelet spectral features and conventional spectral features in detecting yellow rust for winter wheat
  publication-title: Computers and Electronics in Agriculture
– volume: 108
  start-page: 155
  year: 2014
  end-page: 165
  ident: bib12
  article-title: Pixel classification methods for identifying and quantifying leaf surface injury from digital images
  publication-title: Computers and Electronics in Agriculture
– volume: 98
  start-page: 1709
  year: 2014
  end-page: 1716
  ident: bib2
  article-title: An automatic method to detect and measure leaf disease symptoms using digital image processing
  publication-title: Plant Disease
– volume: 90
  start-page: 159
  year: 2013
  end-page: 163
  ident: bib6
  article-title: Thermography versus chlorophyll fluorescence imaging for detection and quantification of apple scab
  publication-title: Computers and Electronics in Agriculture
– volume: 8
  start-page: 3
  issue: 1
  year: 2012
  ident: 10.1016/j.biosystemseng.2016.03.012_bib15
  article-title: Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases
  publication-title: Plant methods
  doi: 10.1186/1746-4811-8-3
– volume: 133
  start-page: 128
  year: 2015
  ident: 10.1016/j.biosystemseng.2016.03.012_bib9
  article-title: A new colour vision system to quantify automatically foliar discolouration caused by insect pests feeding on leaf cells
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2015.03.007
– volume: 103
  start-page: 121
  issue: 2
  year: 2009
  ident: 10.1016/j.biosystemseng.2016.03.012_bib13
  article-title: Detection and differentiation of nitrogen-deficiency, powdery mildew and leaf rust at wheat leaf and canopy level by laser-induced chlorophyll fluorescence
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2008.09.018
– volume: 130
  start-page: 13
  year: 2015
  ident: 10.1016/j.biosystemseng.2016.03.012_bib19
  article-title: An evaluation of a vision-based sensor performance in Huanglongbing disease identification
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2014.11.013
– volume: 2
  issue: 660
  year: 2013
  ident: 10.1016/j.biosystemseng.2016.03.012_bib1
  article-title: Digital image processing techniques for detecting, quantifying and classifying plant diseases
  publication-title: SpringerPlus
– volume: 10
  start-page: 319
  year: 2009
  ident: 10.1016/j.biosystemseng.2016.03.012_bib14
  article-title: Detection of citrus canker in citrus plants using laser induced fluorescence spectroscopy
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-009-9124-2
– volume: 96
  start-page: 27
  year: 2008
  ident: 10.1016/j.biosystemseng.2016.03.012_bib20
  article-title: Early detection of bean infection by Pseudomonas syringae in asymptomatic leaf areas using chlorophyll fluorescence imaging
  publication-title: Photosynthesis Research
  doi: 10.1007/s11120-007-9278-6
– year: 1999
  ident: 10.1016/j.biosystemseng.2016.03.012_bib11
– year: 2011
  ident: 10.1016/j.biosystemseng.2016.03.012_bib8
  article-title: Guiding active contours for tree leaf segmentation and identification
– volume: 116
  start-page: 65
  year: 2015
  ident: 10.1016/j.biosystemseng.2016.03.012_bib22
  article-title: Image-based field monitoring of Cercospora leaf spot in sugar beet by robust template matching and pattern recognition
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2015.05.020
– volume: 98
  start-page: 1709
  year: 2014
  ident: 10.1016/j.biosystemseng.2016.03.012_bib2
  article-title: An automatic method to detect and measure leaf disease symptoms using digital image processing
  publication-title: Plant Disease
  doi: 10.1094/PDIS-03-14-0290-RE
– volume: 66
  start-page: 121
  year: 2009
  ident: 10.1016/j.biosystemseng.2016.03.012_bib7
  article-title: Image pattern classification for the identification of disease causing agents in plants
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2009.01.003
– volume: 104
  start-page: 1
  year: 2014
  ident: 10.1016/j.biosystemseng.2016.03.012_bib16
  article-title: Automatic detection of powdery mildew on grapevine leaves by image analysis: optimal view-angle range to increase the sensitivity
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2014.03.001
– volume: 131
  start-page: 65
  year: 2015
  ident: 10.1016/j.biosystemseng.2016.03.012_bib4
  article-title: Detecting Fusarium head blight in wheat kernels using hyperspectral imaging
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2015.01.003
– volume: 83
  start-page: 196
  issue: 2
  year: 2010
  ident: 10.1016/j.biosystemseng.2016.03.012_bib5
  article-title: Rapid Fusarium head blight detection on winter wheat ears using chlorophyll fluorescence imaging
  publication-title: Journal of Applied Botany and Food Quality
– volume: 100
  start-page: 79
  year: 2014
  ident: 10.1016/j.biosystemseng.2016.03.012_bib21
  article-title: Comparison between wavelet spectral features and conventional spectral features in detecting yellow rust for winter wheat
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2013.11.001
– volume: 90
  start-page: 159
  year: 2013
  ident: 10.1016/j.biosystemseng.2016.03.012_bib6
  article-title: Thermography versus chlorophyll fluorescence imaging for detection and quantification of apple scab
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2012.09.014
– volume: 117
  start-page: 35
  year: 2014
  ident: 10.1016/j.biosystemseng.2016.03.012_bib18
  article-title: Automatic detection of tulip breaking virus (TBV) in tulip fields using machine vision
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2013.05.010
– volume: 108
  start-page: 155
  year: 2014
  ident: 10.1016/j.biosystemseng.2016.03.012_bib12
  article-title: Pixel classification methods for identifying and quantifying leaf surface injury from digital images
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2014.07.010
– volume: 90
  start-page: 76
  year: 2013
  ident: 10.1016/j.biosystemseng.2016.03.012_bib17
  article-title: Rice diseases classification using feature selection and rule generation techniques
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2012.11.001
– year: 2013
  ident: 10.1016/j.biosystemseng.2016.03.012_bib10
  article-title: Comparative study of segmentation methods for tree leaves extraction
– start-page: 658
  year: 2007
  ident: 10.1016/j.biosystemseng.2016.03.012_bib23
  article-title: Efficient pairwise classification
– volume: 144
  start-page: 52
  year: 2016
  ident: 10.1016/j.biosystemseng.2016.03.012_bib3
  article-title: A review on the main challenges in automatic plant disease identification based on visible range images
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2016.01.017
SSID ssj0015746
Score 2.4822545
Snippet The gap between the current capabilities of image-based methods for automatic plant disease identification and the real-world needs is still wide. Although...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104
SubjectTerms abiotic stress
Algorithms
Automatic disease recognition
Color
Colour
Colour transformations
digital images
Diseases
image analysis
leaves
Plant diseases
plant diseases and disorders
Plants (organisms)
Visible symptoms
Title Identifying multiple plant diseases using digital image processing
URI https://dx.doi.org/10.1016/j.biosystemseng.2016.03.012
https://www.proquest.com/docview/1808701789
https://www.proquest.com/docview/1825522510
https://www.proquest.com/docview/1836669094
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA5FQfQgrliXMqLXsZNJZokHoRZLVexFC72FZCYpI3U6dLn6232ZpVrBUvCYycsQXvK25HsvCF1LR2JJiLY9LHybxoTZEjwDOwwj5odxzBxtDvRfen63T58G3qCG2lUujIFVlrq_0Om5ti6_NEtuNrMkab6CrAbgLoA9IxBI-AOTwU4Ds8tvPhcwD-wFRYYRENuGegtdfWO8ZDIuCiZPVTo0OC8_r3iK3b-s1C99nRuhzh7aLb1Hq1VMcB_VVHqAdlrDSVlBQ0HrR4XBQ3RfJOLmyUxWBR60shHw0yrvZqaWwb4PoTk0D4hYyQeoGCsrEgig4wj1Ow9v7a5dPptgR2BuZzYB7nsgllrFVFFjwGMCPUwyEeFYuzKmIMVYEEalhNiYBSrSvis84braheD6GG2k41SdICvUUrtCKeIoTaUmoTF0UmHlhlqIANfRbcUmHpU1xc3TFiNegcfe-RKPueExdwgHHtcRXQzOitIa6w27q9aDL-0UDkZgvR9cVqvIQZbMBYlI1Xg-5Th0QH3hIGSraCAIAyWInVU0BKJCBpHz6X8ne4a2TasACJ-jjdlkri7ADZrJRr7PG2iz9fjc7X0Ba48MXw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90gh8P4id-W9HXsqbpV3wQpihVt724wd5C0iZjot1w8__30qZ-gSL42CYp4ZL73V3zuwvAmfQkkZRqNyQicoOcMleiZ-AmScaiJM-Zp80P_U43SvvB3SAczMFVnQtjaJUW-ytML9HavmlaaTYno1HzAXU1RncB7RnFQCIazMOCqU4VNmChdXufdt8PE8K4SjLC_q4ZsAinHzQvORpXNZOnqhgaqldUFj0l_k-G6htkl3boZg1WrQPptKo5rsOcKjZgpTV8sUU0FD59KjK4CZdVLm6Zz-TU_EFn8oQidezxzNQx9PchPg7NHSLO6BlRxplUOQTYsAX9m-veVeramxPcDC3uzKW4ACFqplZ5oAJjw3OKLUwykZFc-zIPUJGJoCyQEsNjFqtMR74Ihe9rH-PrbWgU40LtgJNoqX2hFPWUDqSmibF1UhHlJ1qImOzCeS0mntmy4uZ2iyde88ce-RcZcyNj7lGOMt6F4H3wpKqu8bdhF_V68C-bhaMd-NsHTupV5KhO5oxEFGr8OuUk8RDBSJyw3_pgHIY4SLzf-lAMDBkGz3v_newxLKW9Tpu3b7v3-7BsWiq-8AE0Zi-v6hC9opk8srv-DYY9DxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+multiple+plant+diseases+using+digital+image+processing&rft.jtitle=Biosystems+engineering&rft.au=Barbedo%2C+Jayme+Garcia+Arnal&rft.au=Koenigkan%2C+Luciano+Vieira&rft.au=Santos%2C+Thiago+Teixeira&rft.date=2016-07-01&rft.issn=1537-5110&rft.volume=147+p.104-116&rft.spage=104&rft.epage=116&rft_id=info:doi/10.1016%2Fj.biosystemseng.2016.03.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-5110&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-5110&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-5110&client=summon