Identifying multiple plant diseases using digital image processing
The gap between the current capabilities of image-based methods for automatic plant disease identification and the real-world needs is still wide. Although advances have been made on the subject, most methods are still not robust enough to deal with a wide variety of diseases and plant species. This...
Saved in:
Published in | Biosystems engineering Vol. 147; pp. 104 - 116 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The gap between the current capabilities of image-based methods for automatic plant disease identification and the real-world needs is still wide. Although advances have been made on the subject, most methods are still not robust enough to deal with a wide variety of diseases and plant species. This paper proposes a method for disease identification, based on colour transformations, colour histograms and a pairwise-based classification system. Its performance was tested using a large database containing images of symptoms belonging to 82 different biotic and abiotic stresses, affecting the leaves of 12 different plant species. The wide variety of images used in the tests made it possible to carry out an in-depth investigation about the main advantages and limitations of the proposed algorithm. A comparison with other algorithms is also presented, and some possible solutions for the main challenges that still prevent this kind of tool to be adopted in practice.
•An algorithm for identifying multiple plant diseases is proposed.•It is based on image processing applied to conventional colour images.•It does not depend on any input or response from the user.•Tests considered 12 plant species and 82 diseases.•Accuracy varied between 40% and 80% for the plant species considered. |
---|---|
AbstractList | The gap between the current capabilities of image-based methods for automatic plant disease identification and the real-world needs is still wide. Although advances have been made on the subject, most methods are still not robust enough to deal with a wide variety of diseases and plant species. This paper proposes a method for disease identification, based on colour transformations, colour histograms and a pairwise-based classification system. Its performance was tested using a large database containing images of symptoms belonging to 82 different biotic and abiotic stresses, affecting the leaves of 12 different plant species. The wide variety of images used in the tests made it possible to carry out an in-depth investigation about the main advantages and limitations of the proposed algorithm. A comparison with other algorithms is also presented, and some possible solutions for the main challenges that still prevent this kind of tool to be adopted in practice.
•An algorithm for identifying multiple plant diseases is proposed.•It is based on image processing applied to conventional colour images.•It does not depend on any input or response from the user.•Tests considered 12 plant species and 82 diseases.•Accuracy varied between 40% and 80% for the plant species considered. The gap between the current capabilities of image-based methods for automatic plant disease identification and the real-world needs is still wide. Although advances have been made on the subject, most methods are still not robust enough to deal with a wide variety of diseases and plant species. This paper proposes a method for disease identification, based on colour transformations, colour histograms and a pairwise-based classification system. Its performance was tested using a large database containing images of symptoms belonging to 82 different biotic and abiotic stresses, affecting the leaves of 12 different plant species. The wide variety of images used in the tests made it possible to carry out an in-depth investigation about the main advantages and limitations of the proposed algorithm. A comparison with other algorithms is also presented, and some possible solutions for the main challenges that still prevent this kind of tool to be adopted in practice. |
Author | Barbedo, Jayme Garcia Arnal Koenigkan, Luciano Vieira Santos, Thiago Teixeira |
Author_xml | – sequence: 1 givenname: Jayme Garcia Arnal orcidid: 0000-0002-1156-8270 surname: Barbedo fullname: Barbedo, Jayme Garcia Arnal email: jayme.barbedo@embrapa.br – sequence: 2 givenname: Luciano Vieira surname: Koenigkan fullname: Koenigkan, Luciano Vieira – sequence: 3 givenname: Thiago Teixeira surname: Santos fullname: Santos, Thiago Teixeira |
BookMark | eNqNkUtLAzEUhYMo2Fb_w4AbNx3zmFdwVUvVQsGNrkMmuVNSppk6NyP035tSEXQ1q4Sc754bzpmSS995IOSO0ZRRVjzs0tp1eMQAewS_TXl8TKlIKeMXZMJyUc5zxuXl753RazJF3FHK8jIrJuRpbcEH1xyd3yb7oQ3u0EJyaLUPiXUIGgGTAU-qdVsXdJu4vd5GpO8M4Em4IVeNbhFuf84Z-XhevS9f55u3l_VysZmbjBdhLmpW51VFG7AZZBXjmRVRkbXUhtmG1zYTnDMtZFbXkpayBNMUXOea84ZDLWbk_uwbV38OgEHtHRpo41-hG1CxShRFIanMRqA8zznPGR2B0qqkrKxkRBdn1PQdYg-NMjGQ4Dofeu1axag6taJ26k8r6tSKokLFVqLH4z-PQx8D7Y8jp1fnaYg5fznoFRoH3oB1PZigbOdG-XwD_420oA |
CitedBy_id | crossref_primary_10_1002_jsfa_10987 crossref_primary_10_1007_s10462_024_11100_x crossref_primary_10_1016_j_inpa_2019_09_002 crossref_primary_10_1007_s00521_022_07587_6 crossref_primary_10_1007_s12652_019_01591_w crossref_primary_10_1007_s12652_021_03406_3 crossref_primary_10_32604_cmc_2021_012431 crossref_primary_10_17660_ActaHortic_2021_1325_3 crossref_primary_10_1111_exsy_12885 crossref_primary_10_1016_j_compag_2019_105162 crossref_primary_10_1007_s11042_023_14541_8 crossref_primary_10_1016_j_aiia_2020_01_002 crossref_primary_10_3390_applmech3030049 crossref_primary_10_46604_ijeti_2021_7346 crossref_primary_10_1007_s00521_019_04634_7 crossref_primary_10_1007_s41348_024_01019_4 crossref_primary_10_1007_s10462_024_10809_z crossref_primary_10_1155_2021_5541859 crossref_primary_10_1002_cpe_7625 crossref_primary_10_1109_ACCESS_2024_3439410 crossref_primary_10_15625_2525_2518_18914 crossref_primary_10_3389_fpls_2024_1360113 crossref_primary_10_1007_s13313_020_00697_6 crossref_primary_10_32604_cmc_2022_020017 crossref_primary_10_3390_plants10122643 crossref_primary_10_1007_s00607_018_0638_1 crossref_primary_10_1007_s11042_022_13144_z crossref_primary_10_1007_s11042_024_18208_w crossref_primary_10_3389_fpls_2021_621168 crossref_primary_10_1002_aps3_11559 crossref_primary_10_1007_s11042_023_17098_8 crossref_primary_10_1016_j_inpa_2018_07_002 crossref_primary_10_1109_LSENS_2022_3161595 crossref_primary_10_1007_s11042_022_12147_0 crossref_primary_10_1016_j_asoc_2020_106128 crossref_primary_10_3390_s20154091 crossref_primary_10_3390_s22072696 crossref_primary_10_1007_s42452_021_04694_2 crossref_primary_10_1016_j_compag_2022_107340 crossref_primary_10_1002_jemt_23320 crossref_primary_10_1088_1742_6596_1764_1_012061 crossref_primary_10_3389_fpls_2018_01962 crossref_primary_10_1080_00051144_2020_1728911 crossref_primary_10_1080_13682199_2020_1865652 crossref_primary_10_1016_j_eja_2024_127384 crossref_primary_10_1109_ACCESS_2018_2800685 crossref_primary_10_46604_ijeti_2021_8244 crossref_primary_10_1007_s11119_020_09782_8 crossref_primary_10_1016_j_atech_2021_100010 crossref_primary_10_1007_s11042_024_19860_y crossref_primary_10_3390_f14020415 crossref_primary_10_1007_s10333_024_00990_w crossref_primary_10_1016_j_compag_2020_105527 crossref_primary_10_1002_jsfa_9943 crossref_primary_10_1007_s44187_025_00338_1 crossref_primary_10_19053_01211129_v30_n58_2021_13495 crossref_primary_10_1016_j_compag_2022_107255 crossref_primary_10_1109_ACCESS_2021_3120379 crossref_primary_10_1186_s13007_020_00695_1 crossref_primary_10_2174_1573401318666211227103001 crossref_primary_10_1016_j_compag_2019_105060 crossref_primary_10_1038_s41598_019_40066_y crossref_primary_10_5424_sjar_2019173_14762 crossref_primary_10_1016_j_heliyon_2024_e32405 crossref_primary_10_13005_bpj_2861 crossref_primary_10_3390_agronomy14102327 crossref_primary_10_1007_s11042_023_17610_0 crossref_primary_10_1016_j_suscom_2022_100695 crossref_primary_10_7161_omuanajas_987368 crossref_primary_10_1007_s11831_019_09324_0 crossref_primary_10_1016_j_compag_2025_109950 crossref_primary_10_1038_s41598_018_31899_0 crossref_primary_10_1007_s40858_019_00274_3 crossref_primary_10_1007_s11227_021_04245_x crossref_primary_10_1007_s41348_022_00583_x crossref_primary_10_1109_ACCESS_2024_3433495 crossref_primary_10_1016_j_inpa_2019_11_001 crossref_primary_10_1088_2631_8695_ad59f6 crossref_primary_10_1007_s11831_018_9255_6 crossref_primary_10_1049_iet_ipr_2018_6210 crossref_primary_10_3390_biology11121732 crossref_primary_10_1109_ACCESS_2021_3138050 crossref_primary_10_1002_agj2_21070 crossref_primary_10_1007_s11760_023_02735_4 crossref_primary_10_1016_j_compag_2020_105342 crossref_primary_10_32604_cmc_2021_016825 crossref_primary_10_1016_j_eswa_2022_118117 crossref_primary_10_1109_ACCESS_2020_3001652 crossref_primary_10_1016_j_atech_2023_100195 crossref_primary_10_3390_inventions6020029 crossref_primary_10_1016_j_measurement_2024_114682 crossref_primary_10_3390_rs13122397 crossref_primary_10_1016_j_compag_2022_107449 crossref_primary_10_1109_TMECH_2017_2760866 |
Cites_doi | 10.1186/1746-4811-8-3 10.1016/j.biosystemseng.2015.03.007 10.1016/j.biosystemseng.2008.09.018 10.1016/j.biosystemseng.2014.11.013 10.1007/s11119-009-9124-2 10.1007/s11120-007-9278-6 10.1016/j.compag.2015.05.020 10.1094/PDIS-03-14-0290-RE 10.1016/j.compag.2009.01.003 10.1016/j.compag.2014.03.001 10.1016/j.biosystemseng.2015.01.003 10.1016/j.compag.2013.11.001 10.1016/j.compag.2012.09.014 10.1016/j.biosystemseng.2013.05.010 10.1016/j.compag.2014.07.010 10.1016/j.compag.2012.11.001 10.1016/j.biosystemseng.2016.01.017 |
ContentType | Journal Article |
Copyright | 2016 IAgrE |
Copyright_xml | – notice: 2016 IAgrE |
DBID | AAYXX CITATION 7ST C1K SOI 7TB 8FD FR3 KR7 7S9 L.6 |
DOI | 10.1016/j.biosystemseng.2016.03.012 |
DatabaseName | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Environment Abstracts Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Agriculture |
EISSN | 1537-5129 |
EndPage | 116 |
ExternalDocumentID | 10_1016_j_biosystemseng_2016_03_012 S153751101530266X |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CAG CBWCG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA K-O KOM LG5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSA SST SSZ T5K UHS UNMZH ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7ST C1K SOI 7TB 8FD FR3 KR7 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c426t-3b1b5880fed4e48124d3c429b9ac1df2bd43221a394bb90797ecf62a5a22f2eb3 |
IEDL.DBID | .~1 |
ISSN | 1537-5110 |
IngestDate | Tue Aug 05 10:28:19 EDT 2025 Fri Jul 11 00:55:32 EDT 2025 Thu Jul 10 23:23:39 EDT 2025 Tue Jul 01 01:10:59 EDT 2025 Thu Apr 24 22:57:08 EDT 2025 Fri Feb 23 02:23:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Automatic disease recognition Visible symptoms Colour transformations |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-3b1b5880fed4e48124d3c429b9ac1df2bd43221a394bb90797ecf62a5a22f2eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1156-8270 |
PQID | 1808701789 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1836669094 proquest_miscellaneous_1825522510 proquest_miscellaneous_1808701789 crossref_citationtrail_10_1016_j_biosystemseng_2016_03_012 crossref_primary_10_1016_j_biosystemseng_2016_03_012 elsevier_sciencedirect_doi_10_1016_j_biosystemseng_2016_03_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2016 2016-07-00 20160701 |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: July 2016 |
PublicationDecade | 2010 |
PublicationTitle | Biosystems engineering |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Cerutti, Tougne, Mille, Vacavant, Coquin (bib8) 2011 Clément, Verfaille, Lormel, Jaloux (bib9) 2015; 133 Grand-Brochier, Vacavant, Cerutti, Bianchi, Tougne (bib10) 2013 Lins, Belasque, Marcassa (bib14) 2009; 10 Zhou, Kaneko, Tanaka, Kayamori, Shimizu (bib22) 2015; 116 Barbedo (bib1) 2013; 2 Polder, van der Heijden, van Doorn, Baltissen (bib18) 2014; 117 Jackson (bib11) 1999 Barbedo, Tibola, Fernandes (bib4) 2015; 131 Belin, Rousseau, Boureau, Caffier (bib6) 2013; 90 Pourreza, Lee, Etxeberria, Banerjee (bib19) 2015; 130 Kuckenberg, Tartachnyk, Noga (bib13) 2009; 103 Park, Fürnkranz (bib23) 2007 Bauriegel, Giebel, Herppich (bib5) 2010; 83 Kruse, Prats-Montalbán, Indahl, Kvaal, Ferrer, Futsaether (bib12) 2014; 108 Zhang, Yuan, Pu, Loraamm, Yang, Wang (bib21) 2014; 100 Camargo, Smith (bib7) 2009; 66 Barbedo (bib2) 2014; 98 Barbedo (bib3) 2016; 144 Rodríguez-Moreno, Pineda, Soukupová, Macho, Beuzón, Barón (bib20) 2008; 96 Oberti, Marchi, Tirelli, Calcante, Iriti, Borghese (bib16) 2014; 104 Mahlein, Steiner, Hillnhütter, Dehne, Oerke (bib15) 2012; 8 Phadikar, Sil, Das (bib17) 2013; 90 Camargo (10.1016/j.biosystemseng.2016.03.012_bib7) 2009; 66 Barbedo (10.1016/j.biosystemseng.2016.03.012_bib3) 2016; 144 Belin (10.1016/j.biosystemseng.2016.03.012_bib6) 2013; 90 Barbedo (10.1016/j.biosystemseng.2016.03.012_bib4) 2015; 131 Zhang (10.1016/j.biosystemseng.2016.03.012_bib21) 2014; 100 Zhou (10.1016/j.biosystemseng.2016.03.012_bib22) 2015; 116 Phadikar (10.1016/j.biosystemseng.2016.03.012_bib17) 2013; 90 Kruse (10.1016/j.biosystemseng.2016.03.012_bib12) 2014; 108 Park (10.1016/j.biosystemseng.2016.03.012_bib23) 2007 Grand-Brochier (10.1016/j.biosystemseng.2016.03.012_bib10) 2013 Oberti (10.1016/j.biosystemseng.2016.03.012_bib16) 2014; 104 Rodríguez-Moreno (10.1016/j.biosystemseng.2016.03.012_bib20) 2008; 96 Clément (10.1016/j.biosystemseng.2016.03.012_bib9) 2015; 133 Polder (10.1016/j.biosystemseng.2016.03.012_bib18) 2014; 117 Bauriegel (10.1016/j.biosystemseng.2016.03.012_bib5) 2010; 83 Mahlein (10.1016/j.biosystemseng.2016.03.012_bib15) 2012; 8 Barbedo (10.1016/j.biosystemseng.2016.03.012_bib1) 2013; 2 Barbedo (10.1016/j.biosystemseng.2016.03.012_bib2) 2014; 98 Jackson (10.1016/j.biosystemseng.2016.03.012_bib11) 1999 Kuckenberg (10.1016/j.biosystemseng.2016.03.012_bib13) 2009; 103 Cerutti (10.1016/j.biosystemseng.2016.03.012_bib8) 2011 Pourreza (10.1016/j.biosystemseng.2016.03.012_bib19) 2015; 130 Lins (10.1016/j.biosystemseng.2016.03.012_bib14) 2009; 10 |
References_xml | – volume: 66 start-page: 121 year: 2009 end-page: 125 ident: bib7 article-title: Image pattern classification for the identification of disease causing agents in plants publication-title: Computers and Electronics in Agriculture – year: 2011 ident: bib8 article-title: Guiding active contours for tree leaf segmentation and identification publication-title: Proceedings of the Conference on multilingual and multimodal information access evaluation (CLEF) – year: 1999 ident: bib11 article-title: Introduction to expert systems – volume: 90 start-page: 76 year: 2013 end-page: 85 ident: bib17 article-title: Rice diseases classification using feature selection and rule generation techniques publication-title: Computers and Electronics in Agriculture – volume: 8 start-page: 3 year: 2012 ident: bib15 article-title: Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases publication-title: Plant methods – volume: 144 start-page: 52 year: 2016 end-page: 60 ident: bib3 article-title: A review on the main challenges in automatic plant disease identification based on visible range images publication-title: Biosystems Engineering – volume: 10 start-page: 319 year: 2009 end-page: 330 ident: bib14 article-title: Detection of citrus canker in citrus plants using laser induced fluorescence spectroscopy publication-title: Precision Agriculture – year: 2013 ident: bib10 article-title: Comparative study of segmentation methods for tree leaves extraction publication-title: Proceedings of the International workshop on video and image ground truth in computer vision applications – volume: 96 start-page: 27 year: 2008 end-page: 35 ident: bib20 article-title: Early detection of bean infection by Pseudomonas syringae in asymptomatic leaf areas using chlorophyll fluorescence imaging publication-title: Photosynthesis Research – volume: 83 start-page: 196 year: 2010 end-page: 203 ident: bib5 article-title: Rapid Fusarium head blight detection on winter wheat ears using chlorophyll fluorescence imaging publication-title: Journal of Applied Botany and Food Quality – volume: 117 start-page: 35 year: 2014 end-page: 42 ident: bib18 article-title: Automatic detection of tulip breaking virus (TBV) in tulip fields using machine vision publication-title: Biosystems Engineering – volume: 133 start-page: 128 year: 2015 end-page: 140 ident: bib9 article-title: A new colour vision system to quantify automatically foliar discolouration caused by insect pests feeding on leaf cells publication-title: Biosystems Engineering – volume: 103 start-page: 121 year: 2009 end-page: 128 ident: bib13 article-title: Detection and differentiation of nitrogen-deficiency, powdery mildew and leaf rust at wheat leaf and canopy level by laser-induced chlorophyll fluorescence publication-title: Biosystems Engineering – volume: 131 start-page: 65 year: 2015 end-page: 76 ident: bib4 article-title: Detecting Fusarium head blight in wheat kernels using hyperspectral imaging publication-title: Biosystems Engineering – volume: 104 start-page: 1 year: 2014 end-page: 8 ident: bib16 article-title: Automatic detection of powdery mildew on grapevine leaves by image analysis: optimal view-angle range to increase the sensitivity publication-title: Computers and Electronics in Agriculture – start-page: 658 year: 2007 end-page: 665 ident: bib23 article-title: Efficient pairwise classification publication-title: Proceedings of the 17th European Conference on Machine Learning (ECML-07) – volume: 116 start-page: 65 year: 2015 end-page: 79 ident: bib22 article-title: Image-based field monitoring of Cercospora leaf spot in sugar beet by robust template matching and pattern recognition publication-title: Computers and Electronics in Agriculture – volume: 2 year: 2013 ident: bib1 article-title: Digital image processing techniques for detecting, quantifying and classifying plant diseases publication-title: SpringerPlus – volume: 130 start-page: 13 year: 2015 end-page: 22 ident: bib19 article-title: An evaluation of a vision-based sensor performance in Huanglongbing disease identification publication-title: Biosystems Engineering – volume: 100 start-page: 79 year: 2014 end-page: 87 ident: bib21 article-title: Comparison between wavelet spectral features and conventional spectral features in detecting yellow rust for winter wheat publication-title: Computers and Electronics in Agriculture – volume: 108 start-page: 155 year: 2014 end-page: 165 ident: bib12 article-title: Pixel classification methods for identifying and quantifying leaf surface injury from digital images publication-title: Computers and Electronics in Agriculture – volume: 98 start-page: 1709 year: 2014 end-page: 1716 ident: bib2 article-title: An automatic method to detect and measure leaf disease symptoms using digital image processing publication-title: Plant Disease – volume: 90 start-page: 159 year: 2013 end-page: 163 ident: bib6 article-title: Thermography versus chlorophyll fluorescence imaging for detection and quantification of apple scab publication-title: Computers and Electronics in Agriculture – volume: 8 start-page: 3 issue: 1 year: 2012 ident: 10.1016/j.biosystemseng.2016.03.012_bib15 article-title: Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases publication-title: Plant methods doi: 10.1186/1746-4811-8-3 – volume: 133 start-page: 128 year: 2015 ident: 10.1016/j.biosystemseng.2016.03.012_bib9 article-title: A new colour vision system to quantify automatically foliar discolouration caused by insect pests feeding on leaf cells publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2015.03.007 – volume: 103 start-page: 121 issue: 2 year: 2009 ident: 10.1016/j.biosystemseng.2016.03.012_bib13 article-title: Detection and differentiation of nitrogen-deficiency, powdery mildew and leaf rust at wheat leaf and canopy level by laser-induced chlorophyll fluorescence publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2008.09.018 – volume: 130 start-page: 13 year: 2015 ident: 10.1016/j.biosystemseng.2016.03.012_bib19 article-title: An evaluation of a vision-based sensor performance in Huanglongbing disease identification publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2014.11.013 – volume: 2 issue: 660 year: 2013 ident: 10.1016/j.biosystemseng.2016.03.012_bib1 article-title: Digital image processing techniques for detecting, quantifying and classifying plant diseases publication-title: SpringerPlus – volume: 10 start-page: 319 year: 2009 ident: 10.1016/j.biosystemseng.2016.03.012_bib14 article-title: Detection of citrus canker in citrus plants using laser induced fluorescence spectroscopy publication-title: Precision Agriculture doi: 10.1007/s11119-009-9124-2 – volume: 96 start-page: 27 year: 2008 ident: 10.1016/j.biosystemseng.2016.03.012_bib20 article-title: Early detection of bean infection by Pseudomonas syringae in asymptomatic leaf areas using chlorophyll fluorescence imaging publication-title: Photosynthesis Research doi: 10.1007/s11120-007-9278-6 – year: 1999 ident: 10.1016/j.biosystemseng.2016.03.012_bib11 – year: 2011 ident: 10.1016/j.biosystemseng.2016.03.012_bib8 article-title: Guiding active contours for tree leaf segmentation and identification – volume: 116 start-page: 65 year: 2015 ident: 10.1016/j.biosystemseng.2016.03.012_bib22 article-title: Image-based field monitoring of Cercospora leaf spot in sugar beet by robust template matching and pattern recognition publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2015.05.020 – volume: 98 start-page: 1709 year: 2014 ident: 10.1016/j.biosystemseng.2016.03.012_bib2 article-title: An automatic method to detect and measure leaf disease symptoms using digital image processing publication-title: Plant Disease doi: 10.1094/PDIS-03-14-0290-RE – volume: 66 start-page: 121 year: 2009 ident: 10.1016/j.biosystemseng.2016.03.012_bib7 article-title: Image pattern classification for the identification of disease causing agents in plants publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2009.01.003 – volume: 104 start-page: 1 year: 2014 ident: 10.1016/j.biosystemseng.2016.03.012_bib16 article-title: Automatic detection of powdery mildew on grapevine leaves by image analysis: optimal view-angle range to increase the sensitivity publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2014.03.001 – volume: 131 start-page: 65 year: 2015 ident: 10.1016/j.biosystemseng.2016.03.012_bib4 article-title: Detecting Fusarium head blight in wheat kernels using hyperspectral imaging publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2015.01.003 – volume: 83 start-page: 196 issue: 2 year: 2010 ident: 10.1016/j.biosystemseng.2016.03.012_bib5 article-title: Rapid Fusarium head blight detection on winter wheat ears using chlorophyll fluorescence imaging publication-title: Journal of Applied Botany and Food Quality – volume: 100 start-page: 79 year: 2014 ident: 10.1016/j.biosystemseng.2016.03.012_bib21 article-title: Comparison between wavelet spectral features and conventional spectral features in detecting yellow rust for winter wheat publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2013.11.001 – volume: 90 start-page: 159 year: 2013 ident: 10.1016/j.biosystemseng.2016.03.012_bib6 article-title: Thermography versus chlorophyll fluorescence imaging for detection and quantification of apple scab publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2012.09.014 – volume: 117 start-page: 35 year: 2014 ident: 10.1016/j.biosystemseng.2016.03.012_bib18 article-title: Automatic detection of tulip breaking virus (TBV) in tulip fields using machine vision publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2013.05.010 – volume: 108 start-page: 155 year: 2014 ident: 10.1016/j.biosystemseng.2016.03.012_bib12 article-title: Pixel classification methods for identifying and quantifying leaf surface injury from digital images publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2014.07.010 – volume: 90 start-page: 76 year: 2013 ident: 10.1016/j.biosystemseng.2016.03.012_bib17 article-title: Rice diseases classification using feature selection and rule generation techniques publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2012.11.001 – year: 2013 ident: 10.1016/j.biosystemseng.2016.03.012_bib10 article-title: Comparative study of segmentation methods for tree leaves extraction – start-page: 658 year: 2007 ident: 10.1016/j.biosystemseng.2016.03.012_bib23 article-title: Efficient pairwise classification – volume: 144 start-page: 52 year: 2016 ident: 10.1016/j.biosystemseng.2016.03.012_bib3 article-title: A review on the main challenges in automatic plant disease identification based on visible range images publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2016.01.017 |
SSID | ssj0015746 |
Score | 2.4822545 |
Snippet | The gap between the current capabilities of image-based methods for automatic plant disease identification and the real-world needs is still wide. Although... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104 |
SubjectTerms | abiotic stress Algorithms Automatic disease recognition Color Colour Colour transformations digital images Diseases image analysis leaves Plant diseases plant diseases and disorders Plants (organisms) Visible symptoms |
Title | Identifying multiple plant diseases using digital image processing |
URI | https://dx.doi.org/10.1016/j.biosystemseng.2016.03.012 https://www.proquest.com/docview/1808701789 https://www.proquest.com/docview/1825522510 https://www.proquest.com/docview/1836669094 |
Volume | 147 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA5FQfQgrliXMqLXsZNJZokHoRZLVexFC72FZCYpI3U6dLn6232ZpVrBUvCYycsQXvK25HsvCF1LR2JJiLY9LHybxoTZEjwDOwwj5odxzBxtDvRfen63T58G3qCG2lUujIFVlrq_0Om5ti6_NEtuNrMkab6CrAbgLoA9IxBI-AOTwU4Ds8tvPhcwD-wFRYYRENuGegtdfWO8ZDIuCiZPVTo0OC8_r3iK3b-s1C99nRuhzh7aLb1Hq1VMcB_VVHqAdlrDSVlBQ0HrR4XBQ3RfJOLmyUxWBR60shHw0yrvZqaWwb4PoTk0D4hYyQeoGCsrEgig4wj1Ow9v7a5dPptgR2BuZzYB7nsgllrFVFFjwGMCPUwyEeFYuzKmIMVYEEalhNiYBSrSvis84braheD6GG2k41SdICvUUrtCKeIoTaUmoTF0UmHlhlqIANfRbcUmHpU1xc3TFiNegcfe-RKPueExdwgHHtcRXQzOitIa6w27q9aDL-0UDkZgvR9cVqvIQZbMBYlI1Xg-5Th0QH3hIGSraCAIAyWInVU0BKJCBpHz6X8ne4a2TasACJ-jjdlkri7ADZrJRr7PG2iz9fjc7X0Ba48MXw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90gh8P4id-W9HXsqbpV3wQpihVt724wd5C0iZjot1w8__30qZ-gSL42CYp4ZL73V3zuwvAmfQkkZRqNyQicoOcMleiZ-AmScaiJM-Zp80P_U43SvvB3SAczMFVnQtjaJUW-ytML9HavmlaaTYno1HzAXU1RncB7RnFQCIazMOCqU4VNmChdXufdt8PE8K4SjLC_q4ZsAinHzQvORpXNZOnqhgaqldUFj0l_k-G6htkl3boZg1WrQPptKo5rsOcKjZgpTV8sUU0FD59KjK4CZdVLm6Zz-TU_EFn8oQidezxzNQx9PchPg7NHSLO6BlRxplUOQTYsAX9m-veVeramxPcDC3uzKW4ACFqplZ5oAJjw3OKLUwykZFc-zIPUJGJoCyQEsNjFqtMR74Ihe9rH-PrbWgU40LtgJNoqX2hFPWUDqSmibF1UhHlJ1qImOzCeS0mntmy4uZ2iyde88ce-RcZcyNj7lGOMt6F4H3wpKqu8bdhF_V68C-bhaMd-NsHTupV5KhO5oxEFGr8OuUk8RDBSJyw3_pgHIY4SLzf-lAMDBkGz3v_newxLKW9Tpu3b7v3-7BsWiq-8AE0Zi-v6hC9opk8srv-DYY9DxA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+multiple+plant+diseases+using+digital+image+processing&rft.jtitle=Biosystems+engineering&rft.au=Barbedo%2C+Jayme+Garcia+Arnal&rft.au=Koenigkan%2C+Luciano+Vieira&rft.au=Santos%2C+Thiago+Teixeira&rft.date=2016-07-01&rft.issn=1537-5110&rft.volume=147+p.104-116&rft.spage=104&rft.epage=116&rft_id=info:doi/10.1016%2Fj.biosystemseng.2016.03.012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-5110&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-5110&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-5110&client=summon |