The formulation of dynamical contact problems with friction in the case of systems of rigid bodies and general discrete mechanical systems—Painlevé and Kane paradoxes revisited
The dynamics of mechanical systems with a finite number of degrees of freedom (discrete mechanical systems) is governed by the Lagrange equation which is a second-order differential equation on a Riemannian manifold (the configuration manifold). The handling of perfect (frictionless) unilateral cons...
Saved in:
Published in | Zeitschrift für angewandte Mathematik und Physik Vol. 67; no. 4; pp. 1 - 34 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.08.2016
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
ISSN | 0044-2275 1420-9039 |
DOI | 10.1007/s00033-016-0688-1 |
Cover
Abstract | The dynamics of mechanical systems with a finite number of degrees of freedom (discrete mechanical systems) is governed by the Lagrange equation which is a second-order differential equation on a Riemannian manifold (the configuration manifold). The handling of perfect (frictionless) unilateral constraints in this framework (that of Lagrange’s analytical dynamics) was undertaken by Schatzman and Moreau at the beginning of the 1980s. A mathematically sound and consistent evolution problem was obtained, paving the road for many subsequent theoretical investigations. In this general evolution problem, the only reaction force which is involved is a generalized reaction force, consistently with the virtual power philosophy of Lagrange. Surprisingly, such a general formulation was never derived in the case of frictional unilateral multibody dynamics. Instead, the paradigm of the Coulomb law applying to reaction forces in the real world is generally invoked. So far, this paradigm has only enabled to obtain a consistent evolution problem in only some very few specific examples and to suggest numerical algorithms to produce computational examples (numerical modeling). In particular, it is not clear what is the evolution problem underlying the computational examples. Moreover, some of the few specific cases in which this paradigm enables to write down a precise evolution problem are known to show paradoxes: the Painlevé paradox (indeterminacy) and the Kane paradox (increase in kinetic energy due to friction). In this paper, we follow Lagrange’s philosophy and formulate the frictional unilateral multibody dynamics in terms of the generalized reaction force and not in terms of the real-world reaction force. A general evolution problem that governs the dynamics is obtained for the first time. We prove that all the solutions are dissipative; that is, this new formulation is free of Kane paradox. We also prove that some indeterminacy of the Painlevé paradox is fixed in this formulation. |
---|---|
AbstractList | The dynamics of mechanical systems with a finite number of degrees of freedom (discrete mechanical systems) is governed by the Lagrange equation which is a second-order differential equation on a Riemannian manifold (the configuration manifold). The handling of perfect (frictionless) unilateral constraints in this framework (that of Lagrange’s analytical dynamics) was undertaken by Schatzman and Moreau at the beginning of the 1980s. A mathematically sound and consistent evolution problem was obtained, paving the road for many subsequent theoretical investigations. In this general evolution problem, the only reaction force which is involved is a generalized reaction force, consistently with the virtual power philosophy of Lagrange. Surprisingly, such a general formulation was never derived in the case of frictional unilateral multibody dynamics. Instead, the paradigm of the Coulomb law applying to reaction forces in the real world is generally invoked. So far, this paradigm has only enabled to obtain a consistent evolution problem in only some very few specific examples and to suggest numerical algorithms to produce computational examples (numerical modeling). In particular, it is not clear what is the evolution problem underlying the computational examples. Moreover, some of the few specific cases in which this paradigm enables to write down a precise evolution problem are known to show paradoxes: the Painlevé paradox (indeterminacy) and the Kane paradox (increase in kinetic energy due to friction). In this paper, we follow Lagrange’s philosophy and formulate the frictional unilateral multibody dynamics in terms of the generalized reaction force and not in terms of the real-world reaction force. A general evolution problem that governs the dynamics is obtained for the first time. We prove that all the solutions are dissipative; that is, this new formulation is free of Kane paradox. We also prove that some indeterminacy of the Painlevé paradox is fixed in this formulation. The dynamics of mechanical systems with a finite number of degrees of freedom (discrete mechanical systems) is governed by the Lagrange equation which is a second-order differential equation on a Riemannian manifold (the configuration manifold). The handling of perfect (frictionless) unilateral constraints in this framework (that of Lagrange's analytical dynamics) was undertaken by Schatzman and Moreau at the beginning of the 1980s. A mathematically sound and consistent evolution problem was obtained, paving the road for many subsequent theoretical investigations. In this general evolution problem, the only reaction force which is involved is a generalized reaction force, consistently with the virtual power philosophy of Lagrange. Surprisingly, such a general formulation was never derived in the case of frictional unilateral multibody dynamics. Instead, the paradigm of the Coulomb law applying to reaction forces in the real world is generally invoked. So far, this paradigm has only enabled to obtain a consistent evolution problem in only some very few specific examples and to suggest numerical algorithms to produce computational examples (numerical modeling). In particular, it is not clear what is the evolution problem underlying the computational examples. Moreover, some of the few specific cases in which this paradigm enables to write down a precise evolution problem are known to show paradoxes: the Painleve paradox (indeterminacy) and the Kane paradox (increase in kinetic energy due to friction). In this paper, we follow Lagrange's philosophy and formulate the frictional unilateral multibody dynamics in terms of the generalized reaction force and not in terms of the real-world reaction force. A general evolution problem that governs the dynamics is obtained for the first time. We prove that all the solutions are dissipative; that is, this new formulation is free of Kane paradox. We also prove that some indeterminacy of the Painleve paradox is fixed in this formulation. The dynamics of mechanical systems with a finite number of degrees of freedom (discrete mechanical systems) is governed by the Lagrange equation which is a second-order differential equation on a Riemannian manifold (the configuration manifold). The handling of perfect (frictionless) unilateral constraints in this framework (that of Lagrange's analytical dynamics) was undertaken by Schatzman and Moreau at the beginning of the 1980s. A mathematically sound and consistent evolution problem was obtained, paving the road for many subsequent theoretical investigations. In this general evolution problem, the only reaction force which is involved is a generalized reaction force, consistently with the virtual power philosophy of Lagrange. Surprisingly, such a general formulation was never derived in the case of frictional unilateral multibody dynamics. Instead, the paradigm of the Coulomb law applying to reaction forces in the real world is generally invoked. So far, this paradigm has only enabled to obtain a consistent evolution problem in only some very few specific examples and to suggest numerical algorithms to produce computational examples (numerical modelling). In particular, it is not clear what is the evolution problem underlying the computational examples. Moreover, some of the few specific cases in which this paradigm enables to write down a precise evolution problem are known to show paradoxes: the Painlevé paradox (indeterminacy) and the Kane paradox (increase of kinetic energy due to friction). In this paper, we follow Lagrange's philosophy and formulate the frictional unilateral multibody dynamics in terms of the generalized reaction force and not in terms of the real world reaction force. A general evolution problem that governs the dynamics is obtained for the first time. We prove that all the solutions are dissipative, that is, this new formulation is free of Kane paradox. We also prove that some indeterminacy of the Painlevé paradox is fixed in this formulation. Mathematics Subject Classification (2010). 70F35, 70F40. |
ArticleNumber | 99 |
Author | Ballard, Patrick Charles, Alexandre |
Author_xml | – sequence: 1 givenname: Alexandre surname: Charles fullname: Charles, Alexandre organization: Laboratoire de Mécanique et d’Acoustique, CNRS – sequence: 2 givenname: Patrick surname: Ballard fullname: Ballard, Patrick email: ballard@lma.cnrs-mrs.fr organization: Laboratoire de Mécanique et d’Acoustique, CNRS |
BackLink | https://hal.science/hal-02326946$$DView record in HAL |
BookMark | eNp9kU9u1DAUhyNUJKaFA7CzxAYWAdtJHGdZVUARI8GirK0X52XGVWIPtmfK7DgEl2DdI_QmnAQnqRCqBCtb1ve9P_6dZifWWcyy54y-ZpTWbwKltChyykROhZQ5e5StWMlp3tCiOclWlJZlznldPclOQ7hOdM1oscpur7ZIeufH_QDROEtcT7qjhdFoGIh2NoKOZOddO-AYyI2JW9J7o2fWWBKTriHg5IVjiBOUrt5sTEda1xkMBGxHNmjRp4qdCdpjRDKi3oKdu9x7v77_-AzGDni4-zk7H8Ei2YGHzn1LZTweTDARu6fZ4x6GgM_uz7Psy7u3VxeX-frT-w8X5-tcl1zEvJACkGpaVxw7XlVtDVCXuuNNLyWniKXmXFZCsr4BaLlA1sqaFa3se9FrWZxlr5a6WxjUzpsR_FE5MOryfK2mN8oLLppSHFhiXy5s-qqvewxRjWlTHIa0g9sHxaSklIuKiYS-eIBeu723aZOZknXZyKk5WyjtXQge-z8TMKqmyNUSuUqRqylyNQ1RP3C0iXOs0YMZ_mvyxQypi92g_2umf0q_AbJKxlo |
CitedBy_id | crossref_primary_10_1016_j_cma_2018_01_054 crossref_primary_10_1007_s11044_019_09719_8 crossref_primary_10_1002_nme_6278 crossref_primary_10_1007_s11044_018_09656_y |
Cites_doi | 10.1007/978-3-7091-2624-0_1 10.1016/0362-546X(78)90022-6 10.1007/s002050050129 10.1007/s11044-012-9316-9 10.1016/0022-0396(91)90150-8 10.1016/j.jde.2010.10.010 10.1007/s002050000105 10.1051/m2an/2013092 10.1016/S0045-7825(98)00383-1 10.1137/S0036144599360110 10.1098/rsta.2001.0854 10.1007/978-1-4757-4435-4_1 10.1016/0022-0396(85)90105-6 10.1007/s00205-010-0312-z 10.1063/1.2890382 |
ContentType | Journal Article |
Copyright | Springer International Publishing 2016 Copyright Springer Science & Business Media 2016 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Springer International Publishing 2016 – notice: Copyright Springer Science & Business Media 2016 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7TB 7U5 8FD FR3 KR7 L7M 1XC VOOES |
DOI | 10.1007/s00033-016-0688-1 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Civil Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Physics Philosophy |
EISSN | 1420-9039 |
EndPage | 34 |
ExternalDocumentID | oai_HAL_hal_02326946v1 10_1007_s00033_016_0688_1 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1SB 2.D 203 28- 29R 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFFNX AFLOW AFQWF AFWTZ AFZKB AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MBV N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9P PF0 PQQKQ PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 YLTOR Z45 ZMTXR _50 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ 7TB 7U5 8FD FR3 KR7 L7M 1XC VOOES |
ID | FETCH-LOGICAL-c426t-386ae0c0752ed255b7aa74cd29f8820ee4c2285681f9aab26e1b8713b8ff6fc83 |
IEDL.DBID | AGYKE |
ISSN | 0044-2275 |
IngestDate | Fri May 09 12:28:20 EDT 2025 Fri Sep 05 05:14:47 EDT 2025 Fri Jul 25 11:01:27 EDT 2025 Tue Jul 01 03:39:39 EDT 2025 Thu Apr 24 23:04:35 EDT 2025 Fri Feb 21 02:38:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | 70F35 70F40 Formulation Analytical dynamics Contact Dry friction Cauchy problem formulation dry friction analytical dynamics |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-386ae0c0752ed255b7aa74cd29f8820ee4c2285681f9aab26e1b8713b8ff6fc83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://hal.science/hal-02326946 |
PQID | 1880874988 |
PQPubID | 2043593 |
PageCount | 34 |
ParticipantIDs | hal_primary_oai_HAL_hal_02326946v1 proquest_miscellaneous_1880026516 proquest_journals_1880874988 crossref_primary_10_1007_s00033_016_0688_1 crossref_citationtrail_10_1007_s00033_016_0688_1 springer_journals_10_1007_s00033_016_0688_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-01 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationSubtitle | Journal of Applied Mathematics and Physics / Journal de Mathématiques et de Physique appliquées |
PublicationTitle | Zeitschrift für angewandte Mathematik und Physik |
PublicationTitleAbbrev | Z. Angew. Math. Phys |
PublicationYear | 2016 |
Publisher | Springer International Publishing Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer Verlag |
References | Glocker (CR6) 2013; 29 Percivale (CR22) 1985; 2 Ballard (CR1) 2000; 154 CR19 Stewart (CR25) 1998; 145 CR16 Paoli (CR20) 2011; 250 Moreau, Moreau, Panagiotopoulos (CR17) 1988 Ballard, Gao, Ogden (CR3) 2002 Michałovsky, Mróz (CR12) 1978; 30 Coulomb (CR5) 1821 Godbillon (CR7) 1969 Moreau (CR15) 1986; 302 Monteiro Marques (CR13) 1993 Moreau, Del Piero, Maceri (CR14) 1983 CR9 Charles, Ballard (CR4) 2014; 48 Ballard (CR2) 2001; 359 CR21 Percivale (CR23) 1991; 90 Lecornu (CR11) 1905; 140 Stewart (CR26) 2000; 42 Painlevé (CR18) 1895; 121 Kane, Levinson (CR10) 1985 Jean (CR8) 1999; 177 Schatzman (CR24) 1978; 2 688_CR9 J.J. Moreau (688_CR15) 1986; 302 688_CR19 L. Paoli (688_CR20) 2011; 250 J.J. Moreau (688_CR14) 1983 A. Coulomb (688_CR5) 1821 688_CR21 T.R. Kane (688_CR10) 1985 D.E. Stewart (688_CR26) 2000; 42 C. Godbillon (688_CR7) 1969 A. Charles (688_CR4) 2014; 48 M.D.P. Monteiro Marques (688_CR13) 1993 P. Painlevé (688_CR18) 1895; 121 M. Jean (688_CR8) 1999; 177 D. Percivale (688_CR22) 1985; 2 M. Schatzman (688_CR24) 1978; 2 D. Percivale (688_CR23) 1991; 90 J.J. Moreau (688_CR17) 1988 D.E. Stewart (688_CR25) 1998; 145 P. Ballard (688_CR1) 2000; 154 R. Michałovsky (688_CR12) 1978; 30 C. Glocker (688_CR6) 2013; 29 688_CR16 P. Ballard (688_CR2) 2001; 359 P. Ballard (688_CR3) 2002 L. Lecornu (688_CR11) 1905; 140 |
References_xml | – year: 1821 ident: CR5 publication-title: Théorie des machines simples – volume: 30 start-page: 259 issue: 3 year: 1978 end-page: 276 ident: CR12 article-title: Associated and non-associated sliding rules in contact friction problems publication-title: Arch. Mech. – start-page: 1 year: 1988 end-page: 82 ident: CR17 article-title: Unilateral contact and dry friction in finite freedom dynamics publication-title: Non-smooth Mechanics and Applications doi: 10.1007/978-3-7091-2624-0_1 – volume: 2 start-page: 355 issue: 2 year: 1978 end-page: 373 ident: CR24 article-title: A class of nonlinear differential equations of second order in time publication-title: Nonlinear Anal. Theory Methods Appl. doi: 10.1016/0362-546X(78)90022-6 – ident: CR16 – start-page: 173 year: 1983 end-page: 221 ident: CR14 article-title: Standard inelastic shocks and the dynamics of unilateral constraints publication-title: Unilateral Problems in Structural Analysis – volume: 145 start-page: 215 year: 1998 end-page: 260 ident: CR25 article-title: Convergence of a time-stepping scheme for rigid-body dynamics and resolution of painlevé’s problem publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s002050050129 – volume: 29 start-page: 77 year: 2013 end-page: 117 ident: CR6 article-title: Energetic consistency conditions for standard impacts, part i: Newton-type inequality impact laws and Kane’s example publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-012-9316-9 – volume: 302 start-page: 799 year: 1986 end-page: 801 ident: CR15 article-title: Une formulation du contact à frottement sec ; application au calcul numérique publication-title: Comptes Rendus De l’académie Des Sciences (Paris), série II – volume: 90 start-page: 304 year: 1991 end-page: 315 ident: CR23 article-title: Uniqueness in the elastic bounce problem, ii publication-title: J. Differ. Equ. doi: 10.1016/0022-0396(91)90150-8 – ident: CR21 – volume: 140 start-page: 847 year: 1905 end-page: 848 ident: CR11 article-title: Sur la loi de Coulomb publication-title: Comptes Rendus De l’a adémie Des Sciences) – ident: CR19 – volume: 250 start-page: 476 year: 2011 end-page: 514 ident: CR20 article-title: A proximal-like algorithm for vibro-impact problems with a non smooth set of constraints publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2010.10.010 – year: 1969 ident: CR7 publication-title: Géométrie Différentielle et Mécanique Analytique – volume: 154 start-page: 199 year: 2000 end-page: 274 ident: CR1 article-title: The dynamics of discrete mechanical systems with perfect unilateral constraints publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s002050000105 – volume: 48 start-page: 1 issue: 1 year: 2014 end-page: 25 ident: CR4 article-title: Existence and uniqueness of solutions to dynamical unilateral contact problems with Coulomb friction: the case of a collection of points publication-title: Math. Model. Numer. Anal. doi: 10.1051/m2an/2013092 – volume: 177 start-page: 235 year: 1999 end-page: 257 ident: CR8 article-title: The non-smooth contact dynamics method publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(98)00383-1 – volume: 121 start-page: 112 year: 1895 end-page: 115 ident: CR18 article-title: Sur les lois du frottement de glissement publication-title: Comptes Rendus De l’académie Des Sciences – volume: 42 start-page: 3 issue: 1 year: 2000 end-page: 39 ident: CR26 article-title: Rigid-body dynamics with friction and impact publication-title: SIAM Rev. doi: 10.1137/S0036144599360110 – volume: 359 start-page: 2327 year: 2001 end-page: 2346 ident: CR2 article-title: Formulation and well-posedness of the dynamics of rigid-body systems with perfect unilateral constraints publication-title: Philos. Trans. R. Soc. A doi: 10.1098/rsta.2001.0854 – start-page: 3 year: 2002 end-page: 87 ident: CR3 article-title: Dynamics of rigid bodies systems with unilateral or frictional constraints publication-title: Advances in Mechanics and Mathematics, Chap. 1, vol. 1 doi: 10.1007/978-1-4757-4435-4_1 – ident: CR9 – volume: 2 start-page: 206 issue: 2 year: 1985 end-page: 215 ident: CR22 article-title: Uniqueness in the elastic bounce problem, i publication-title: J. Differ. Equ. doi: 10.1016/0022-0396(85)90105-6 – year: 1993 ident: CR13 publication-title: Differential Inclusions in Nonsmooth Mechanical Problems—Shocks and Dry Friction, Progress in Nonlinear Differential Equations and Their Applications, vol. 9 – year: 1985 ident: CR10 publication-title: Dynamics: Theory and Applications – volume: 90 start-page: 304 year: 1991 ident: 688_CR23 publication-title: J. Differ. Equ. doi: 10.1016/0022-0396(91)90150-8 – volume: 121 start-page: 112 year: 1895 ident: 688_CR18 publication-title: Comptes Rendus De l’académie Des Sciences – volume: 29 start-page: 77 year: 2013 ident: 688_CR6 publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-012-9316-9 – ident: 688_CR16 – volume-title: Géométrie Différentielle et Mécanique Analytique year: 1969 ident: 688_CR7 – volume: 145 start-page: 215 year: 1998 ident: 688_CR25 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s002050050129 – volume-title: Differential Inclusions in Nonsmooth Mechanical Problems—Shocks and Dry Friction, Progress in Nonlinear Differential Equations and Their Applications, vol. 9 year: 1993 ident: 688_CR13 – volume: 302 start-page: 799 year: 1986 ident: 688_CR15 publication-title: Comptes Rendus De l’académie Des Sciences (Paris), série II – start-page: 1 volume-title: Non-smooth Mechanics and Applications year: 1988 ident: 688_CR17 doi: 10.1007/978-3-7091-2624-0_1 – volume: 30 start-page: 259 issue: 3 year: 1978 ident: 688_CR12 publication-title: Arch. Mech. – start-page: 3 volume-title: Advances in Mechanics and Mathematics, Chap. 1, vol. 1 year: 2002 ident: 688_CR3 doi: 10.1007/978-1-4757-4435-4_1 – volume: 177 start-page: 235 year: 1999 ident: 688_CR8 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(98)00383-1 – volume-title: Dynamics: Theory and Applications year: 1985 ident: 688_CR10 – ident: 688_CR19 doi: 10.1007/s00205-010-0312-z – volume-title: Théorie des machines simples year: 1821 ident: 688_CR5 – volume: 140 start-page: 847 year: 1905 ident: 688_CR11 publication-title: Comptes Rendus De l’a adémie Des Sciences) – volume: 359 start-page: 2327 year: 2001 ident: 688_CR2 publication-title: Philos. Trans. R. Soc. A doi: 10.1098/rsta.2001.0854 – volume: 42 start-page: 3 issue: 1 year: 2000 ident: 688_CR26 publication-title: SIAM Rev. doi: 10.1137/S0036144599360110 – volume: 250 start-page: 476 year: 2011 ident: 688_CR20 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2010.10.010 – start-page: 173 volume-title: Unilateral Problems in Structural Analysis year: 1983 ident: 688_CR14 – ident: 688_CR9 – volume: 48 start-page: 1 issue: 1 year: 2014 ident: 688_CR4 publication-title: Math. Model. Numer. Anal. doi: 10.1051/m2an/2013092 – volume: 2 start-page: 206 issue: 2 year: 1985 ident: 688_CR22 publication-title: J. Differ. Equ. doi: 10.1016/0022-0396(85)90105-6 – volume: 154 start-page: 199 year: 2000 ident: 688_CR1 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s002050000105 – ident: 688_CR21 doi: 10.1063/1.2890382 – volume: 2 start-page: 355 issue: 2 year: 1978 ident: 688_CR24 publication-title: Nonlinear Anal. Theory Methods Appl. doi: 10.1016/0362-546X(78)90022-6 |
SSID | ssj0007103 |
Score | 2.1102042 |
Snippet | The dynamics of mechanical systems with a finite number of degrees of freedom (discrete mechanical systems) is governed by the Lagrange equation which is a... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Differential equations Dynamical systems Dynamics Engineering Euler-Lagrange equation Evolution Evolutionary algorithms Kinetic energy Mathematical analysis Mathematical Methods in Physics Mathematical models Mechanical systems Mechanics Numerical models Paradoxes Philosophy Physics Riemann manifold Rigid structures Rigid-body dynamics Solid mechanics Theoretical and Applied Mechanics |
Title | The formulation of dynamical contact problems with friction in the case of systems of rigid bodies and general discrete mechanical systems—Painlevé and Kane paradoxes revisited |
URI | https://link.springer.com/article/10.1007/s00033-016-0688-1 https://www.proquest.com/docview/1880874988 https://www.proquest.com/docview/1880026516 https://hal.science/hal-02326946 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEB7RVEhw4KeACJRqQZxAruyNf9bHCLVElCIOjVRO1np_SkWxUexUqKc-BC_BmUfom_RJmFmvrVABUm-OMzt2suPdbzwz3wC8lNaxdGWB4kYEcZLYQKbKBLkKE5tabUNXt7b_IZ3N43eHyaGv4276bPc-JOlW6qHYLXR9xxCiuEYpAbo860kkcjGC9enbT3s7wwKMm6YPLMcB51nSBzP_puSP7WjtMyVDriDNK8FRt-fs3oWD_m67VJMv28u23FZnV4gcr_lz7sEdj0HZtDOa-3DDVBtwe4WZED_tD3SuzQbcdHmiqnkAv9CsGOFc3_WL1Zbprqk9aqS8d6la5rvUNIze8jLqRORkjyuGSpnCjZPGdSTSDR1Sdy7NyppSGpmsNDvq2LAZFQ0vENezr4ZKlN1V_LjL8x8f5XF1Yk4vfroxe7IyjKjMdf0d1Sxc3TwC6ocw3905eDMLfN-HQCFeaIOJSKUJFYIZbjS6PGUmZRYrzXOL_kBoTKw4F8ScZnMpS56aqES_b1IKi-alxOQRjKq6Mo-BJTo3aAZZrq2KE53mSoZWTGQWcqtMlI8h7Ke_UJ4UnXpznBQDnbObp4IS4WieimgMr4Yh3zpGkP8Jv0CbGuSIy3s2fV_QOQRLVEWcnqLQZm9yhV9BmoJ48kQW50KM4fnwNT77FNDB_7NedjLoQydROobXvZWtqPjXXT25lvRTuMWdmVLW4yaM2sXSPEMk1pZb_snbgrU5n_4GR4Et_g |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEB6VVgh6QKWACJSyIE6glZyNf9bHqKJK26Ti0Ei9Wev9KZWKjeK04shD8BI99xH6JjxJZ9ZrKyBA4hYns5PIs-v9NjPzfQDvlPMsXRnXwkoeJ4njKtWW5zpKXOqMi3zf2uw4nczjw9PkNPRxN121e5eS9E_qvtkt8rpjCFG8UArHI88GYgFJsgVzMe4fv7hlhrRyzIXIki6V-ScXv2xG9z5TKeQKzvwtNep3nP0teBSgIhu3sX0Ma7bahs0VAkG8mvWsq8023PflnLp5AjcYfUZwNIhzsdox02rPo0cqT1d6yYKYTMPoz1hGgkHe9rxi6JRp3N9oXMv13NBLEtEyrKyp8pCpyrCzlrSaUW_vAuE3-2Kpk9h_Sxj38_uPT-q8urBXt9d-zJGqLCPGcVN_QzcL396OuPcpzPc_nuxNeJBn4Bq39SUfyVTZSCPmENbgyaTMlMpibUTuELZH1sZaCEkEZy5XqhSpHZZ4PBuV0uEs0HL0DNarurLPgSUmtxivLDdOx4lJc60iJ0cqi4TTdpgPIOriVOjAXU4SGhdFz7rsQ1tQvRqFthgO4H0_5GtL3PEv47cY_N6OKLcn42lB7yGmoWbf9AqNdrq5UYSF3hREZyezOJdyAG_6j3GJUt4F72d92drgUTcZpgP40M2pFRd_-1Uv_sv6NTyYnMymxfTg-OglPBR-llOh4g6sLxeX9hWCp2W56xfLHa3aEzc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEB5BEagcEBQQgQIL4gRa1d74Z32MgCjQH_VApN6s9f6USsWuYrfqkYfgJTjzCLwJT8LMem0FBEjc8jM7TjKzntnMzPcBvFDOo3TlXAsreZKmjqtMW17oKHWZMy7yc2v7B9limbw_So8Cz2k7dLsPJcl-poFQmupu58y4nXHwLfIcZJiueNIUjsefa3g3jsnRl2I23ooxfIYSc8KFyNOhrPknFb8EpqsfqS1yLef8rUzqo8_8NtwKaSOb9Xa-A1dsvQU318AE8dn-iMDabsF139qp27vwDT2BUWoaiLpY45jpeehRI31vpTsWiGVaRn_MMiIP8rInNUOlTGOso3U97nNLD4lQy7CqoS5EpmrDjnsAa0ZzvitMxdknS1PF_iph3Y_PXw7VSX1qL75_9Wt2VW0ZoY-b5hLVrPyoO-bA92A5f_vh9YIHqgauMcR3fCozZSON-YewBk8pVa5UnmgjCocpfGRtooWQBHbmCqUqkdm4wqPatJIOPULL6X3YqJvaPgCWmsKivfLCOJ2kJiu0ipycqjwSTtu4mEA02KnUAcec6DROyxGB2Zu2pN41Mm0ZT-DluOSsB_H4l_BzNP4oR_Dbi9leSa9hfkODv9kFCm0PvlGGTd-WBG0n86SQcgLPxrdxu1INBn_P5ryXwWNvGmcTeDX41JqKv32qh_8l_RRuHL6Zl3vvDnYfwabwTk49i9uw0a3O7WPMo7rqid8rPwEMOBdz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+formulation+of+dynamical+contact+problems+with+friction+in+the+case+of+systems+of+rigid+bodies+and+general+discrete+mechanical+systems%E2%80%94Painlev%C3%A9+and+Kane+paradoxes+revisited&rft.jtitle=Zeitschrift+f%C3%BCr+angewandte+Mathematik+und+Physik&rft.au=Charles%2C+Alexandre&rft.au=Ballard%2C+Patrick&rft.date=2016-08-01&rft.pub=Springer+Verlag&rft.issn=0044-2275&rft.eissn=1420-9039&rft.volume=67&rft.issue=4&rft_id=info:doi/10.1007%2Fs00033-016-0688-1&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02326946v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2275&client=summon |