The formulation of dynamical contact problems with friction in the case of systems of rigid bodies and general discrete mechanical systems—Painlevé and Kane paradoxes revisited

The dynamics of mechanical systems with a finite number of degrees of freedom (discrete mechanical systems) is governed by the Lagrange equation which is a second-order differential equation on a Riemannian manifold (the configuration manifold). The handling of perfect (frictionless) unilateral cons...

Full description

Saved in:
Bibliographic Details
Published inZeitschrift für angewandte Mathematik und Physik Vol. 67; no. 4; pp. 1 - 34
Main Authors Charles, Alexandre, Ballard, Patrick
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.08.2016
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text
ISSN0044-2275
1420-9039
DOI10.1007/s00033-016-0688-1

Cover

Abstract The dynamics of mechanical systems with a finite number of degrees of freedom (discrete mechanical systems) is governed by the Lagrange equation which is a second-order differential equation on a Riemannian manifold (the configuration manifold). The handling of perfect (frictionless) unilateral constraints in this framework (that of Lagrange’s analytical dynamics) was undertaken by Schatzman and Moreau at the beginning of the 1980s. A mathematically sound and consistent evolution problem was obtained, paving the road for many subsequent theoretical investigations. In this general evolution problem, the only reaction force which is involved is a generalized reaction force, consistently with the virtual power philosophy of Lagrange. Surprisingly, such a general formulation was never derived in the case of frictional unilateral multibody dynamics. Instead, the paradigm of the Coulomb law applying to reaction forces in the real world is generally invoked. So far, this paradigm has only enabled to obtain a consistent evolution problem in only some very few specific examples and to suggest numerical algorithms to produce computational examples (numerical modeling). In particular, it is not clear what is the evolution problem underlying the computational examples. Moreover, some of the few specific cases in which this paradigm enables to write down a precise evolution problem are known to show paradoxes: the Painlevé paradox (indeterminacy) and the Kane paradox (increase in kinetic energy due to friction). In this paper, we follow Lagrange’s philosophy and formulate the frictional unilateral multibody dynamics in terms of the generalized reaction force and not in terms of the real-world reaction force. A general evolution problem that governs the dynamics is obtained for the first time. We prove that all the solutions are dissipative; that is, this new formulation is free of Kane paradox. We also prove that some indeterminacy of the Painlevé paradox is fixed in this formulation.
AbstractList The dynamics of mechanical systems with a finite number of degrees of freedom (discrete mechanical systems) is governed by the Lagrange equation which is a second-order differential equation on a Riemannian manifold (the configuration manifold). The handling of perfect (frictionless) unilateral constraints in this framework (that of Lagrange’s analytical dynamics) was undertaken by Schatzman and Moreau at the beginning of the 1980s. A mathematically sound and consistent evolution problem was obtained, paving the road for many subsequent theoretical investigations. In this general evolution problem, the only reaction force which is involved is a generalized reaction force, consistently with the virtual power philosophy of Lagrange. Surprisingly, such a general formulation was never derived in the case of frictional unilateral multibody dynamics. Instead, the paradigm of the Coulomb law applying to reaction forces in the real world is generally invoked. So far, this paradigm has only enabled to obtain a consistent evolution problem in only some very few specific examples and to suggest numerical algorithms to produce computational examples (numerical modeling). In particular, it is not clear what is the evolution problem underlying the computational examples. Moreover, some of the few specific cases in which this paradigm enables to write down a precise evolution problem are known to show paradoxes: the Painlevé paradox (indeterminacy) and the Kane paradox (increase in kinetic energy due to friction). In this paper, we follow Lagrange’s philosophy and formulate the frictional unilateral multibody dynamics in terms of the generalized reaction force and not in terms of the real-world reaction force. A general evolution problem that governs the dynamics is obtained for the first time. We prove that all the solutions are dissipative; that is, this new formulation is free of Kane paradox. We also prove that some indeterminacy of the Painlevé paradox is fixed in this formulation.
The dynamics of mechanical systems with a finite number of degrees of freedom (discrete mechanical systems) is governed by the Lagrange equation which is a second-order differential equation on a Riemannian manifold (the configuration manifold). The handling of perfect (frictionless) unilateral constraints in this framework (that of Lagrange's analytical dynamics) was undertaken by Schatzman and Moreau at the beginning of the 1980s. A mathematically sound and consistent evolution problem was obtained, paving the road for many subsequent theoretical investigations. In this general evolution problem, the only reaction force which is involved is a generalized reaction force, consistently with the virtual power philosophy of Lagrange. Surprisingly, such a general formulation was never derived in the case of frictional unilateral multibody dynamics. Instead, the paradigm of the Coulomb law applying to reaction forces in the real world is generally invoked. So far, this paradigm has only enabled to obtain a consistent evolution problem in only some very few specific examples and to suggest numerical algorithms to produce computational examples (numerical modeling). In particular, it is not clear what is the evolution problem underlying the computational examples. Moreover, some of the few specific cases in which this paradigm enables to write down a precise evolution problem are known to show paradoxes: the Painleve paradox (indeterminacy) and the Kane paradox (increase in kinetic energy due to friction). In this paper, we follow Lagrange's philosophy and formulate the frictional unilateral multibody dynamics in terms of the generalized reaction force and not in terms of the real-world reaction force. A general evolution problem that governs the dynamics is obtained for the first time. We prove that all the solutions are dissipative; that is, this new formulation is free of Kane paradox. We also prove that some indeterminacy of the Painleve paradox is fixed in this formulation.
The dynamics of mechanical systems with a finite number of degrees of freedom (discrete mechanical systems) is governed by the Lagrange equation which is a second-order differential equation on a Riemannian manifold (the configuration manifold). The handling of perfect (frictionless) unilateral constraints in this framework (that of Lagrange's analytical dynamics) was undertaken by Schatzman and Moreau at the beginning of the 1980s. A mathematically sound and consistent evolution problem was obtained, paving the road for many subsequent theoretical investigations. In this general evolution problem, the only reaction force which is involved is a generalized reaction force, consistently with the virtual power philosophy of Lagrange. Surprisingly, such a general formulation was never derived in the case of frictional unilateral multibody dynamics. Instead, the paradigm of the Coulomb law applying to reaction forces in the real world is generally invoked. So far, this paradigm has only enabled to obtain a consistent evolution problem in only some very few specific examples and to suggest numerical algorithms to produce computational examples (numerical modelling). In particular, it is not clear what is the evolution problem underlying the computational examples. Moreover, some of the few specific cases in which this paradigm enables to write down a precise evolution problem are known to show paradoxes: the Painlevé paradox (indeterminacy) and the Kane paradox (increase of kinetic energy due to friction). In this paper, we follow Lagrange's philosophy and formulate the frictional unilateral multibody dynamics in terms of the generalized reaction force and not in terms of the real world reaction force. A general evolution problem that governs the dynamics is obtained for the first time. We prove that all the solutions are dissipative, that is, this new formulation is free of Kane paradox. We also prove that some indeterminacy of the Painlevé paradox is fixed in this formulation. Mathematics Subject Classification (2010). 70F35, 70F40.
ArticleNumber 99
Author Ballard, Patrick
Charles, Alexandre
Author_xml – sequence: 1
  givenname: Alexandre
  surname: Charles
  fullname: Charles, Alexandre
  organization: Laboratoire de Mécanique et d’Acoustique, CNRS
– sequence: 2
  givenname: Patrick
  surname: Ballard
  fullname: Ballard, Patrick
  email: ballard@lma.cnrs-mrs.fr
  organization: Laboratoire de Mécanique et d’Acoustique, CNRS
BackLink https://hal.science/hal-02326946$$DView record in HAL
BookMark eNp9kU9u1DAUhyNUJKaFA7CzxAYWAdtJHGdZVUARI8GirK0X52XGVWIPtmfK7DgEl2DdI_QmnAQnqRCqBCtb1ve9P_6dZifWWcyy54y-ZpTWbwKltChyykROhZQ5e5StWMlp3tCiOclWlJZlznldPclOQ7hOdM1oscpur7ZIeufH_QDROEtcT7qjhdFoGIh2NoKOZOddO-AYyI2JW9J7o2fWWBKTriHg5IVjiBOUrt5sTEda1xkMBGxHNmjRp4qdCdpjRDKi3oKdu9x7v77_-AzGDni4-zk7H8Ei2YGHzn1LZTweTDARu6fZ4x6GgM_uz7Psy7u3VxeX-frT-w8X5-tcl1zEvJACkGpaVxw7XlVtDVCXuuNNLyWniKXmXFZCsr4BaLlA1sqaFa3se9FrWZxlr5a6WxjUzpsR_FE5MOryfK2mN8oLLppSHFhiXy5s-qqvewxRjWlTHIa0g9sHxaSklIuKiYS-eIBeu723aZOZknXZyKk5WyjtXQge-z8TMKqmyNUSuUqRqylyNQ1RP3C0iXOs0YMZ_mvyxQypi92g_2umf0q_AbJKxlo
CitedBy_id crossref_primary_10_1016_j_cma_2018_01_054
crossref_primary_10_1007_s11044_019_09719_8
crossref_primary_10_1002_nme_6278
crossref_primary_10_1007_s11044_018_09656_y
Cites_doi 10.1007/978-3-7091-2624-0_1
10.1016/0362-546X(78)90022-6
10.1007/s002050050129
10.1007/s11044-012-9316-9
10.1016/0022-0396(91)90150-8
10.1016/j.jde.2010.10.010
10.1007/s002050000105
10.1051/m2an/2013092
10.1016/S0045-7825(98)00383-1
10.1137/S0036144599360110
10.1098/rsta.2001.0854
10.1007/978-1-4757-4435-4_1
10.1016/0022-0396(85)90105-6
10.1007/s00205-010-0312-z
10.1063/1.2890382
ContentType Journal Article
Copyright Springer International Publishing 2016
Copyright Springer Science & Business Media 2016
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer International Publishing 2016
– notice: Copyright Springer Science & Business Media 2016
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
KR7
L7M
1XC
VOOES
DOI 10.1007/s00033-016-0688-1
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList

Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Physics
Philosophy
EISSN 1420-9039
EndPage 34
ExternalDocumentID oai_HAL_hal_02326946v1
10_1007_s00033_016_0688_1
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1SB
2.D
203
28-
29R
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFFNX
AFLOW
AFQWF
AFWTZ
AFZKB
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MBV
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF0
PQQKQ
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
ZMTXR
_50
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
7TB
7U5
8FD
FR3
KR7
L7M
1XC
VOOES
ID FETCH-LOGICAL-c426t-386ae0c0752ed255b7aa74cd29f8820ee4c2285681f9aab26e1b8713b8ff6fc83
IEDL.DBID AGYKE
ISSN 0044-2275
IngestDate Fri May 09 12:28:20 EDT 2025
Fri Sep 05 05:14:47 EDT 2025
Fri Jul 25 11:01:27 EDT 2025
Tue Jul 01 03:39:39 EDT 2025
Thu Apr 24 23:04:35 EDT 2025
Fri Feb 21 02:38:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 70F35
70F40
Formulation
Analytical dynamics
Contact
Dry friction
Cauchy problem
formulation
dry friction
analytical dynamics
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-386ae0c0752ed255b7aa74cd29f8820ee4c2285681f9aab26e1b8713b8ff6fc83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://hal.science/hal-02326946
PQID 1880874988
PQPubID 2043593
PageCount 34
ParticipantIDs hal_primary_oai_HAL_hal_02326946v1
proquest_miscellaneous_1880026516
proquest_journals_1880874988
crossref_primary_10_1007_s00033_016_0688_1
crossref_citationtrail_10_1007_s00033_016_0688_1
springer_journals_10_1007_s00033_016_0688_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-01
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationSubtitle Journal of Applied Mathematics and Physics / Journal de Mathématiques et de Physique appliquées
PublicationTitle Zeitschrift für angewandte Mathematik und Physik
PublicationTitleAbbrev Z. Angew. Math. Phys
PublicationYear 2016
Publisher Springer International Publishing
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer Verlag
References Glocker (CR6) 2013; 29
Percivale (CR22) 1985; 2
Ballard (CR1) 2000; 154
CR19
Stewart (CR25) 1998; 145
CR16
Paoli (CR20) 2011; 250
Moreau, Moreau, Panagiotopoulos (CR17) 1988
Ballard, Gao, Ogden (CR3) 2002
Michałovsky, Mróz (CR12) 1978; 30
Coulomb (CR5) 1821
Godbillon (CR7) 1969
Moreau (CR15) 1986; 302
Monteiro Marques (CR13) 1993
Moreau, Del Piero, Maceri (CR14) 1983
CR9
Charles, Ballard (CR4) 2014; 48
Ballard (CR2) 2001; 359
CR21
Percivale (CR23) 1991; 90
Lecornu (CR11) 1905; 140
Stewart (CR26) 2000; 42
Painlevé (CR18) 1895; 121
Kane, Levinson (CR10) 1985
Jean (CR8) 1999; 177
Schatzman (CR24) 1978; 2
688_CR9
J.J. Moreau (688_CR15) 1986; 302
688_CR19
L. Paoli (688_CR20) 2011; 250
J.J. Moreau (688_CR14) 1983
A. Coulomb (688_CR5) 1821
688_CR21
T.R. Kane (688_CR10) 1985
D.E. Stewart (688_CR26) 2000; 42
C. Godbillon (688_CR7) 1969
A. Charles (688_CR4) 2014; 48
M.D.P. Monteiro Marques (688_CR13) 1993
P. Painlevé (688_CR18) 1895; 121
M. Jean (688_CR8) 1999; 177
D. Percivale (688_CR22) 1985; 2
M. Schatzman (688_CR24) 1978; 2
D. Percivale (688_CR23) 1991; 90
J.J. Moreau (688_CR17) 1988
D.E. Stewart (688_CR25) 1998; 145
P. Ballard (688_CR1) 2000; 154
R. Michałovsky (688_CR12) 1978; 30
C. Glocker (688_CR6) 2013; 29
688_CR16
P. Ballard (688_CR2) 2001; 359
P. Ballard (688_CR3) 2002
L. Lecornu (688_CR11) 1905; 140
References_xml – year: 1821
  ident: CR5
  publication-title: Théorie des machines simples
– volume: 30
  start-page: 259
  issue: 3
  year: 1978
  end-page: 276
  ident: CR12
  article-title: Associated and non-associated sliding rules in contact friction problems
  publication-title: Arch. Mech.
– start-page: 1
  year: 1988
  end-page: 82
  ident: CR17
  article-title: Unilateral contact and dry friction in finite freedom dynamics
  publication-title: Non-smooth Mechanics and Applications
  doi: 10.1007/978-3-7091-2624-0_1
– volume: 2
  start-page: 355
  issue: 2
  year: 1978
  end-page: 373
  ident: CR24
  article-title: A class of nonlinear differential equations of second order in time
  publication-title: Nonlinear Anal. Theory Methods Appl.
  doi: 10.1016/0362-546X(78)90022-6
– ident: CR16
– start-page: 173
  year: 1983
  end-page: 221
  ident: CR14
  article-title: Standard inelastic shocks and the dynamics of unilateral constraints
  publication-title: Unilateral Problems in Structural Analysis
– volume: 145
  start-page: 215
  year: 1998
  end-page: 260
  ident: CR25
  article-title: Convergence of a time-stepping scheme for rigid-body dynamics and resolution of painlevé’s problem
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s002050050129
– volume: 29
  start-page: 77
  year: 2013
  end-page: 117
  ident: CR6
  article-title: Energetic consistency conditions for standard impacts, part i: Newton-type inequality impact laws and Kane’s example
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-012-9316-9
– volume: 302
  start-page: 799
  year: 1986
  end-page: 801
  ident: CR15
  article-title: Une formulation du contact à frottement sec ; application au calcul numérique
  publication-title: Comptes Rendus De l’académie Des Sciences (Paris), série II
– volume: 90
  start-page: 304
  year: 1991
  end-page: 315
  ident: CR23
  article-title: Uniqueness in the elastic bounce problem, ii
  publication-title: J. Differ. Equ.
  doi: 10.1016/0022-0396(91)90150-8
– ident: CR21
– volume: 140
  start-page: 847
  year: 1905
  end-page: 848
  ident: CR11
  article-title: Sur la loi de Coulomb
  publication-title: Comptes Rendus De l’a adémie Des Sciences)
– ident: CR19
– volume: 250
  start-page: 476
  year: 2011
  end-page: 514
  ident: CR20
  article-title: A proximal-like algorithm for vibro-impact problems with a non smooth set of constraints
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2010.10.010
– year: 1969
  ident: CR7
  publication-title: Géométrie Différentielle et Mécanique Analytique
– volume: 154
  start-page: 199
  year: 2000
  end-page: 274
  ident: CR1
  article-title: The dynamics of discrete mechanical systems with perfect unilateral constraints
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s002050000105
– volume: 48
  start-page: 1
  issue: 1
  year: 2014
  end-page: 25
  ident: CR4
  article-title: Existence and uniqueness of solutions to dynamical unilateral contact problems with Coulomb friction: the case of a collection of points
  publication-title: Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2013092
– volume: 177
  start-page: 235
  year: 1999
  end-page: 257
  ident: CR8
  article-title: The non-smooth contact dynamics method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(98)00383-1
– volume: 121
  start-page: 112
  year: 1895
  end-page: 115
  ident: CR18
  article-title: Sur les lois du frottement de glissement
  publication-title: Comptes Rendus De l’académie Des Sciences
– volume: 42
  start-page: 3
  issue: 1
  year: 2000
  end-page: 39
  ident: CR26
  article-title: Rigid-body dynamics with friction and impact
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144599360110
– volume: 359
  start-page: 2327
  year: 2001
  end-page: 2346
  ident: CR2
  article-title: Formulation and well-posedness of the dynamics of rigid-body systems with perfect unilateral constraints
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2001.0854
– start-page: 3
  year: 2002
  end-page: 87
  ident: CR3
  article-title: Dynamics of rigid bodies systems with unilateral or frictional constraints
  publication-title: Advances in Mechanics and Mathematics, Chap. 1, vol. 1
  doi: 10.1007/978-1-4757-4435-4_1
– ident: CR9
– volume: 2
  start-page: 206
  issue: 2
  year: 1985
  end-page: 215
  ident: CR22
  article-title: Uniqueness in the elastic bounce problem, i
  publication-title: J. Differ. Equ.
  doi: 10.1016/0022-0396(85)90105-6
– year: 1993
  ident: CR13
  publication-title: Differential Inclusions in Nonsmooth Mechanical Problems—Shocks and Dry Friction, Progress in Nonlinear Differential Equations and Their Applications, vol. 9
– year: 1985
  ident: CR10
  publication-title: Dynamics: Theory and Applications
– volume: 90
  start-page: 304
  year: 1991
  ident: 688_CR23
  publication-title: J. Differ. Equ.
  doi: 10.1016/0022-0396(91)90150-8
– volume: 121
  start-page: 112
  year: 1895
  ident: 688_CR18
  publication-title: Comptes Rendus De l’académie Des Sciences
– volume: 29
  start-page: 77
  year: 2013
  ident: 688_CR6
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-012-9316-9
– ident: 688_CR16
– volume-title: Géométrie Différentielle et Mécanique Analytique
  year: 1969
  ident: 688_CR7
– volume: 145
  start-page: 215
  year: 1998
  ident: 688_CR25
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s002050050129
– volume-title: Differential Inclusions in Nonsmooth Mechanical Problems—Shocks and Dry Friction, Progress in Nonlinear Differential Equations and Their Applications, vol. 9
  year: 1993
  ident: 688_CR13
– volume: 302
  start-page: 799
  year: 1986
  ident: 688_CR15
  publication-title: Comptes Rendus De l’académie Des Sciences (Paris), série II
– start-page: 1
  volume-title: Non-smooth Mechanics and Applications
  year: 1988
  ident: 688_CR17
  doi: 10.1007/978-3-7091-2624-0_1
– volume: 30
  start-page: 259
  issue: 3
  year: 1978
  ident: 688_CR12
  publication-title: Arch. Mech.
– start-page: 3
  volume-title: Advances in Mechanics and Mathematics, Chap. 1, vol. 1
  year: 2002
  ident: 688_CR3
  doi: 10.1007/978-1-4757-4435-4_1
– volume: 177
  start-page: 235
  year: 1999
  ident: 688_CR8
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(98)00383-1
– volume-title: Dynamics: Theory and Applications
  year: 1985
  ident: 688_CR10
– ident: 688_CR19
  doi: 10.1007/s00205-010-0312-z
– volume-title: Théorie des machines simples
  year: 1821
  ident: 688_CR5
– volume: 140
  start-page: 847
  year: 1905
  ident: 688_CR11
  publication-title: Comptes Rendus De l’a adémie Des Sciences)
– volume: 359
  start-page: 2327
  year: 2001
  ident: 688_CR2
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2001.0854
– volume: 42
  start-page: 3
  issue: 1
  year: 2000
  ident: 688_CR26
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144599360110
– volume: 250
  start-page: 476
  year: 2011
  ident: 688_CR20
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2010.10.010
– start-page: 173
  volume-title: Unilateral Problems in Structural Analysis
  year: 1983
  ident: 688_CR14
– ident: 688_CR9
– volume: 48
  start-page: 1
  issue: 1
  year: 2014
  ident: 688_CR4
  publication-title: Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2013092
– volume: 2
  start-page: 206
  issue: 2
  year: 1985
  ident: 688_CR22
  publication-title: J. Differ. Equ.
  doi: 10.1016/0022-0396(85)90105-6
– volume: 154
  start-page: 199
  year: 2000
  ident: 688_CR1
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s002050000105
– ident: 688_CR21
  doi: 10.1063/1.2890382
– volume: 2
  start-page: 355
  issue: 2
  year: 1978
  ident: 688_CR24
  publication-title: Nonlinear Anal. Theory Methods Appl.
  doi: 10.1016/0362-546X(78)90022-6
SSID ssj0007103
Score 2.1102042
Snippet The dynamics of mechanical systems with a finite number of degrees of freedom (discrete mechanical systems) is governed by the Lagrange equation which is a...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Differential equations
Dynamical systems
Dynamics
Engineering
Euler-Lagrange equation
Evolution
Evolutionary algorithms
Kinetic energy
Mathematical analysis
Mathematical Methods in Physics
Mathematical models
Mechanical systems
Mechanics
Numerical models
Paradoxes
Philosophy
Physics
Riemann manifold
Rigid structures
Rigid-body dynamics
Solid mechanics
Theoretical and Applied Mechanics
Title The formulation of dynamical contact problems with friction in the case of systems of rigid bodies and general discrete mechanical systems—Painlevé and Kane paradoxes revisited
URI https://link.springer.com/article/10.1007/s00033-016-0688-1
https://www.proquest.com/docview/1880874988
https://www.proquest.com/docview/1880026516
https://hal.science/hal-02326946
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEB7RVEhw4KeACJRqQZxAruyNf9bHCLVElCIOjVRO1np_SkWxUexUqKc-BC_BmUfom_RJmFmvrVABUm-OMzt2suPdbzwz3wC8lNaxdGWB4kYEcZLYQKbKBLkKE5tabUNXt7b_IZ3N43eHyaGv4276bPc-JOlW6qHYLXR9xxCiuEYpAbo860kkcjGC9enbT3s7wwKMm6YPLMcB51nSBzP_puSP7WjtMyVDriDNK8FRt-fs3oWD_m67VJMv28u23FZnV4gcr_lz7sEdj0HZtDOa-3DDVBtwe4WZED_tD3SuzQbcdHmiqnkAv9CsGOFc3_WL1Zbprqk9aqS8d6la5rvUNIze8jLqRORkjyuGSpnCjZPGdSTSDR1Sdy7NyppSGpmsNDvq2LAZFQ0vENezr4ZKlN1V_LjL8x8f5XF1Yk4vfroxe7IyjKjMdf0d1Sxc3TwC6ocw3905eDMLfN-HQCFeaIOJSKUJFYIZbjS6PGUmZRYrzXOL_kBoTKw4F8ScZnMpS56aqES_b1IKi-alxOQRjKq6Mo-BJTo3aAZZrq2KE53mSoZWTGQWcqtMlI8h7Ke_UJ4UnXpznBQDnbObp4IS4WieimgMr4Yh3zpGkP8Jv0CbGuSIy3s2fV_QOQRLVEWcnqLQZm9yhV9BmoJ48kQW50KM4fnwNT77FNDB_7NedjLoQydROobXvZWtqPjXXT25lvRTuMWdmVLW4yaM2sXSPEMk1pZb_snbgrU5n_4GR4Et_g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEB6VVgh6QKWACJSyIE6glZyNf9bHqKJK26Ti0Ei9Wev9KZWKjeK04shD8BI99xH6JjxJZ9ZrKyBA4hYns5PIs-v9NjPzfQDvlPMsXRnXwkoeJ4njKtWW5zpKXOqMi3zf2uw4nczjw9PkNPRxN121e5eS9E_qvtkt8rpjCFG8UArHI88GYgFJsgVzMe4fv7hlhrRyzIXIki6V-ScXv2xG9z5TKeQKzvwtNep3nP0teBSgIhu3sX0Ma7bahs0VAkG8mvWsq8023PflnLp5AjcYfUZwNIhzsdox02rPo0cqT1d6yYKYTMPoz1hGgkHe9rxi6JRp3N9oXMv13NBLEtEyrKyp8pCpyrCzlrSaUW_vAuE3-2Kpk9h_Sxj38_uPT-q8urBXt9d-zJGqLCPGcVN_QzcL396OuPcpzPc_nuxNeJBn4Bq39SUfyVTZSCPmENbgyaTMlMpibUTuELZH1sZaCEkEZy5XqhSpHZZ4PBuV0uEs0HL0DNarurLPgSUmtxivLDdOx4lJc60iJ0cqi4TTdpgPIOriVOjAXU4SGhdFz7rsQ1tQvRqFthgO4H0_5GtL3PEv47cY_N6OKLcn42lB7yGmoWbf9AqNdrq5UYSF3hREZyezOJdyAG_6j3GJUt4F72d92drgUTcZpgP40M2pFRd_-1Uv_sv6NTyYnMymxfTg-OglPBR-llOh4g6sLxeX9hWCp2W56xfLHa3aEzc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEB5BEagcEBQQgQIL4gRa1d74Z32MgCjQH_VApN6s9f6USsWuYrfqkYfgJTjzCLwJT8LMem0FBEjc8jM7TjKzntnMzPcBvFDOo3TlXAsreZKmjqtMW17oKHWZMy7yc2v7B9limbw_So8Cz2k7dLsPJcl-poFQmupu58y4nXHwLfIcZJiueNIUjsefa3g3jsnRl2I23ooxfIYSc8KFyNOhrPknFb8EpqsfqS1yLef8rUzqo8_8NtwKaSOb9Xa-A1dsvQU318AE8dn-iMDabsF139qp27vwDT2BUWoaiLpY45jpeehRI31vpTsWiGVaRn_MMiIP8rInNUOlTGOso3U97nNLD4lQy7CqoS5EpmrDjnsAa0ZzvitMxdknS1PF_iph3Y_PXw7VSX1qL75_9Wt2VW0ZoY-b5hLVrPyoO-bA92A5f_vh9YIHqgauMcR3fCozZSON-YewBk8pVa5UnmgjCocpfGRtooWQBHbmCqUqkdm4wqPatJIOPULL6X3YqJvaPgCWmsKivfLCOJ2kJiu0ipycqjwSTtu4mEA02KnUAcec6DROyxGB2Zu2pN41Mm0ZT-DluOSsB_H4l_BzNP4oR_Dbi9leSa9hfkODv9kFCm0PvlGGTd-WBG0n86SQcgLPxrdxu1INBn_P5ryXwWNvGmcTeDX41JqKv32qh_8l_RRuHL6Zl3vvDnYfwabwTk49i9uw0a3O7WPMo7rqid8rPwEMOBdz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+formulation+of+dynamical+contact+problems+with+friction+in+the+case+of+systems+of+rigid+bodies+and+general+discrete+mechanical+systems%E2%80%94Painlev%C3%A9+and+Kane+paradoxes+revisited&rft.jtitle=Zeitschrift+f%C3%BCr+angewandte+Mathematik+und+Physik&rft.au=Charles%2C+Alexandre&rft.au=Ballard%2C+Patrick&rft.date=2016-08-01&rft.pub=Springer+Verlag&rft.issn=0044-2275&rft.eissn=1420-9039&rft.volume=67&rft.issue=4&rft_id=info:doi/10.1007%2Fs00033-016-0688-1&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02326946v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2275&client=summon