Automated screening of computed tomography using weakly supervised anomaly detection

Background Current artificial intelligence studies for supporting CT screening tasks depend on either supervised learning or detecting anomalies. However, the former involves a heavy annotation workload owing to requiring many slice-wise annotations (ground truth labels); the latter is promising, bu...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for computer assisted radiology and surgery Vol. 18; no. 11; pp. 2001 - 2012
Main Authors Hibi, Atsuhiro, Cusimano, Michael D., Bilbily, Alexander, Krishnan, Rahul G., Tyrrell, Pascal N.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Current artificial intelligence studies for supporting CT screening tasks depend on either supervised learning or detecting anomalies. However, the former involves a heavy annotation workload owing to requiring many slice-wise annotations (ground truth labels); the latter is promising, but while it reduces the annotation workload, it often suffers from lower performance. This study presents a novel weakly supervised anomaly detection (WSAD) algorithm trained based on scan-wise normal and anomalous annotations to provide better performance than conventional methods while reducing annotation workload . Methods Based on surveillance video anomaly detection methodology, feature vectors representing each CT slice were trained on an AR-Net-based convolutional network using a dynamic multiple-instance learning loss and a center loss function. The following two publicly available CT datasets were retrospectively analyzed: the RSNA brain hemorrhage dataset (normal scans: 12,862; scans with intracranial hematoma: 8882) and COVID-CT set (normal scans: 282; scans with COVID-19: 95). Results Anomaly scores of each slice were successfully predicted despite inaccessibility to any slice-wise annotations. Slice-level area under the curve (AUC), sensitivity, specificity, and accuracy from the brain CT dataset were 0.89, 0.85, 0.78, and 0.79, respectively. The proposed method reduced the number of annotations in the brain dataset by 97.1% compared to an ordinary slice-level supervised learning method. Conclusion This study demonstrated a significant annotation reduction in identifying anomalous CT slices compared to a supervised learning approach. The effectiveness of the proposed WSAD algorithm was verified through higher AUC than existing anomaly detection techniques.
AbstractList Background Current artificial intelligence studies for supporting CT screening tasks depend on either supervised learning or detecting anomalies. However, the former involves a heavy annotation workload owing to requiring many slice-wise annotations (ground truth labels); the latter is promising, but while it reduces the annotation workload, it often suffers from lower performance. This study presents a novel weakly supervised anomaly detection (WSAD) algorithm trained based on scan-wise normal and anomalous annotations to provide better performance than conventional methods while reducing annotation workload . Methods Based on surveillance video anomaly detection methodology, feature vectors representing each CT slice were trained on an AR-Net-based convolutional network using a dynamic multiple-instance learning loss and a center loss function. The following two publicly available CT datasets were retrospectively analyzed: the RSNA brain hemorrhage dataset (normal scans: 12,862; scans with intracranial hematoma: 8882) and COVID-CT set (normal scans: 282; scans with COVID-19: 95). Results Anomaly scores of each slice were successfully predicted despite inaccessibility to any slice-wise annotations. Slice-level area under the curve (AUC), sensitivity, specificity, and accuracy from the brain CT dataset were 0.89, 0.85, 0.78, and 0.79, respectively. The proposed method reduced the number of annotations in the brain dataset by 97.1% compared to an ordinary slice-level supervised learning method. Conclusion This study demonstrated a significant annotation reduction in identifying anomalous CT slices compared to a supervised learning approach. The effectiveness of the proposed WSAD algorithm was verified through higher AUC than existing anomaly detection techniques.
BACKGROUNDCurrent artificial intelligence studies for supporting CT screening tasks depend on either supervised learning or detecting anomalies. However, the former involves a heavy annotation workload owing to requiring many slice-wise annotations (ground truth labels); the latter is promising, but while it reduces the annotation workload, it often suffers from lower performance. This study presents a novel weakly supervised anomaly detection (WSAD) algorithm trained based on scan-wise normal and anomalous annotations to provide better performance than conventional methods while reducing annotation workload. METHODSBased on surveillance video anomaly detection methodology, feature vectors representing each CT slice were trained on an AR-Net-based convolutional network using a dynamic multiple-instance learning loss and a center loss function. The following two publicly available CT datasets were retrospectively analyzed: the RSNA brain hemorrhage dataset (normal scans: 12,862; scans with intracranial hematoma: 8882) and COVID-CT set (normal scans: 282; scans with COVID-19: 95). RESULTSAnomaly scores of each slice were successfully predicted despite inaccessibility to any slice-wise annotations. Slice-level area under the curve (AUC), sensitivity, specificity, and accuracy from the brain CT dataset were 0.89, 0.85, 0.78, and 0.79, respectively. The proposed method reduced the number of annotations in the brain dataset by 97.1% compared to an ordinary slice-level supervised learning method. CONCLUSIONThis study demonstrated a significant annotation reduction in identifying anomalous CT slices compared to a supervised learning approach. The effectiveness of the proposed WSAD algorithm was verified through higher AUC than existing anomaly detection techniques.
Current artificial intelligence studies for supporting CT screening tasks depend on either supervised learning or detecting anomalies. However, the former involves a heavy annotation workload owing to requiring many slice-wise annotations (ground truth labels); the latter is promising, but while it reduces the annotation workload, it often suffers from lower performance. This study presents a novel weakly supervised anomaly detection (WSAD) algorithm trained based on scan-wise normal and anomalous annotations to provide better performance than conventional methods while reducing annotation workload. Based on surveillance video anomaly detection methodology, feature vectors representing each CT slice were trained on an AR-Net-based convolutional network using a dynamic multiple-instance learning loss and a center loss function. The following two publicly available CT datasets were retrospectively analyzed: the RSNA brain hemorrhage dataset (normal scans: 12,862; scans with intracranial hematoma: 8882) and COVID-CT set (normal scans: 282; scans with COVID-19: 95). Anomaly scores of each slice were successfully predicted despite inaccessibility to any slice-wise annotations. Slice-level area under the curve (AUC), sensitivity, specificity, and accuracy from the brain CT dataset were 0.89, 0.85, 0.78, and 0.79, respectively. The proposed method reduced the number of annotations in the brain dataset by 97.1% compared to an ordinary slice-level supervised learning method. This study demonstrated a significant annotation reduction in identifying anomalous CT slices compared to a supervised learning approach. The effectiveness of the proposed WSAD algorithm was verified through higher AUC than existing anomaly detection techniques.
Author Cusimano, Michael D.
Tyrrell, Pascal N.
Krishnan, Rahul G.
Bilbily, Alexander
Hibi, Atsuhiro
Author_xml – sequence: 1
  givenname: Atsuhiro
  surname: Hibi
  fullname: Hibi, Atsuhiro
  organization: Institute of Medical Science, University of Toronto, Department of Medical Imaging, University of Toronto
– sequence: 2
  givenname: Michael D.
  surname: Cusimano
  fullname: Cusimano, Michael D.
  organization: Division of Neurosurgery, St Michael’s Hospital, University of Toronto
– sequence: 3
  givenname: Alexander
  surname: Bilbily
  fullname: Bilbily, Alexander
  organization: Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre
– sequence: 4
  givenname: Rahul G.
  surname: Krishnan
  fullname: Krishnan, Rahul G.
  organization: Department of Computer Science, University of Toronto, Department of Laboratory Medicine and Pathobiology, University of Toronto
– sequence: 5
  givenname: Pascal N.
  orcidid: 0000-0003-2277-3824
  surname: Tyrrell
  fullname: Tyrrell, Pascal N.
  email: pascal.tyrrell@utoronto.ca
  organization: Institute of Medical Science, University of Toronto, Department of Medical Imaging, University of Toronto, Department of Statistical Sciences, University of Toronto
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37247113$$D View this record in MEDLINE/PubMed
BookMark eNp9kUlPxSAUhYnROP8BF6aJGzdVpgJdGWOcEhM3uiaU3j6rLVRoNe_fy_M5L1wQyD0fh3s5W2jVeQcI7RF8RDCWx5GQgqscU5ZWKYqcr6BNogTJBafl6o_zBtqK8RFjXkhWrKMNJimXhLBNdHc6jb43I9RZtAHAtW6W-Sazvh-mRTWpfhbM8DDPprgQX8E8dfMsTgOElzYmxLjkkEo1jGDH1rsdtNaYLsLux76N7i_O786u8pvby-uz05vccirGnBFWY4XLSnCJVVlR1vCSgQEOpFa1LSUwVtSCidpKISqZ2m-aQlSCNqJUwLbRydJ3mKoeagtuDKbTQ2h7E-bam1b_Vlz7oGf-RRNMqeBMJYfDD4fgnyeIo-7baKHrjAM_RU0VxYwtviqhB3_QRz8Fl-ZLlCwLRagqEkWXlA0-xgDNVzcE60VqepmaTqnp99Q0T5f2f87xdeUzpgSwJRCT5GYQvt_-x_YNNnmlyQ
Cites_doi 10.1186/s13244-020-00925-z
10.1016/j.nicl.2021.102785
10.3390/s20195611
10.1016/j.neucom.2018.12.085
10.1016/j.media.2020.101952
10.1007/s11604-022-01249-2
10.1001/jama.2021.0377
10.1148/ryai.2020190211
10.1016/j.neunet.2021.12.008
10.1016/j.media.2022.102475
10.1007/s10489-021-02782-9
10.1016/j.cmpb.2022.106731
10.1016/j.bspc.2021.102588
10.1007/s10278-020-00388-0
10.1109/ACCESS.2021.3102740
10.1007/s40042-021-00202-2
10.1007/s00330-020-06915-5
10.1177/0846537120913033
10.1109/ACSSC.2003.1292216
10.1109/ICCV.2015.510
10.1109/CVPR.2017.502
10.1109/ICME46284.2020.9102722
10.1109/CVPR.2009.5206848
10.1109/isbi45749.2020.9098405
10.1109/CVPR.2016.90
10.48550/arXiv.2211.15924
10.1109/CVPR.2018.00684
10.1109/CVPR.2018.00745
ContentType Journal Article
Copyright CARS 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. CARS.
Copyright_xml – notice: CARS 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. CARS.
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1007/s11548-023-02965-4
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1861-6429
EndPage 2012
ExternalDocumentID 10_1007_s11548_023_02965_4
37247113
Genre Journal Article
GrantInformation_xml – fundername: Nippon Steel Corporation
  grantid: 509533
  funderid: http://dx.doi.org/10.13039/100020330
– fundername: Nippon Steel Corporation
  grantid: 509533
– fundername: ;
  grantid: 509533
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANXM
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETCA
AETLH
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKMHD
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ARMRJ
ASPBG
AVWKF
AVXWI
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P2P
P9S
PF0
PT4
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z7Y
Z82
Z83
Z87
Z88
ZMTXR
ZOVNA
~A9
AACDK
AAJBT
AASML
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c426t-313d0809b647089b23f493eae4e1d8dc97e335d636dc766b7457ff56b62f698e3
IEDL.DBID U2A
ISSN 1861-6429
1861-6410
IngestDate Tue Sep 17 21:30:12 EDT 2024
Fri Oct 25 05:57:50 EDT 2024
Mon Nov 04 11:37:32 EST 2024
Thu Sep 12 18:19:59 EDT 2024
Sat Sep 28 08:16:41 EDT 2024
Sat Dec 16 12:03:18 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords COVID-19
Traumatic brain injury
Computed tomography
Artificial intelligence
Anomaly detection
Machine learning
Language English
License 2023. CARS.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-313d0809b647089b23f493eae4e1d8dc97e335d636dc766b7457ff56b62f698e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2277-3824
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10226438
PMID 37247113
PQID 2879581285
PQPubID 2043910
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10226438
proquest_miscellaneous_2820337113
proquest_journals_2879581285
crossref_primary_10_1007_s11548_023_02965_4
pubmed_primary_37247113
springer_journals_10_1007_s11548_023_02965_4
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: Heidelberg
PublicationSubtitle A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy
PublicationTitle International journal for computer assisted radiology and surgery
PublicationTitleAbbrev Int J CARS
PublicationTitleAlternate Int J Comput Assist Radiol Surg
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Pinaya, Tudosiu, Gray, Rees, Nachev, Ourselin, Cardoso (CR32) 2022; 79
He, Gan, Li, Rekik, Yin, Ji, Gao, Wang, Zhang, Shen (CR24) 2022; 14
Akkus, Kostandy, Philbrick, Erickson (CR13) 2020; 392
CR19
Kim, Koo, Lee, Yoon, Sohn (CR6) 2021; 79
CR18
Nakao, Hanaoka, Nomura, Hayashi, Abe (CR8) 2022
Davies (CR15) 2017
Hassan, Ren, Zhou, Khan, Pan, Zhao, Huang (CR26) 2022; 218
CR35
CR34
Wang, Shen, Yang, Lan, Xu, Wang, Zhang, Han (CR36) 2021; 32
Chen, You, Zhang, Xi, Le (CR7) 2022; 147
CR10
CR31
Rahimzadeh, Attar, Sakhaei (CR12) 2021; 68
Phaphuangwittayakul, Guo, Ying, Dawod, Angkurawaranon, Angkurawaranon (CR16) 2021
Mushtaq, Shahroz, Aseere, Shah, Majeed, Shehzad, Samad (CR5) 2021; 9
Liu, Pang (CR14) 2020; 33
CR29
CR28
CR9
CR27
Flanders, Prevedello, Shih, Halabi, Lungren, Kalpathy-Cramer, Ball, Mongan, Stein, Kitamura, Choudhary, Cala, Coelho, Mogensen, Moron, Lincoln, Miller, Ikuta, Zohrabian, McDonnell, Shah, Joyner, Agarwal, Lee, Nath (CR11) 2020; 2
Granacher (CR3) 2015
CR23
CR22
CR21
CR20
Jonas, Reuland, Reddy, Nagle, Clark, Weber, Enyioha, Malo, Brenner, Armstrong, Coker-Schwimmer, Middleton, Voisin, Harris (CR1) 2021; 325
Dai, Zhang, Yu, Xu, Chen, Luo, Zhang, Liang, Wu, Lei, Lin (CR2) 2020; 71
Burduja, Ionescu, Verga (CR17) 2020; 20
Ghorbel, Aldahbdooh, Hamidouche, Albarqouni (CR33) 2022; 69
Bruls, Kwee (CR4) 2020; 11
Wu, Pan, Teng, Xu, Feng, Chen (CR25) 2020; 30
Baur, Denner, Wiestler, Navab, Albarqouni (CR30) 2021; 69
AE Flanders (2965_CR11) 2020; 2
Z Akkus (2965_CR13) 2020; 392
C Baur (2965_CR30) 2021; 69
RP Granacher (2965_CR3) 2015
2965_CR9
WHL Pinaya (2965_CR32) 2022; 79
ER Davies (2965_CR15) 2017
K He (2965_CR24) 2022; 14
2965_CR27
L Chen (2965_CR7) 2022; 147
2965_CR28
X Wang (2965_CR36) 2021; 32
M Burduja (2965_CR17) 2020; 20
2965_CR29
2965_CR22
2965_CR23
C Liu (2965_CR14) 2020; 33
DE Jonas (2965_CR1) 2021; 325
2965_CR20
2965_CR21
M Rahimzadeh (2965_CR12) 2021; 68
A Phaphuangwittayakul (2965_CR16) 2021
WC Dai (2965_CR2) 2020; 71
2965_CR19
H Hassan (2965_CR26) 2022; 218
2965_CR18
2965_CR34
2965_CR35
RJM Bruls (2965_CR4) 2020; 11
KH Kim (2965_CR6) 2021; 79
MF Mushtaq (2965_CR5) 2021; 9
2965_CR31
2965_CR10
T Nakao (2965_CR8) 2022
J Wu (2965_CR25) 2020; 30
A Ghorbel (2965_CR33) 2022; 69
References_xml – volume: 11
  start-page: 121
  year: 2020
  ident: CR4
  article-title: Workload for radiologists during on-call hours: dramatic increase in the past 15 years
  publication-title: Insights Imaging
  doi: 10.1186/s13244-020-00925-z
  contributor:
    fullname: Kwee
– volume: 69
  start-page: 101952
  year: 2022
  ident: CR33
  article-title: Transformer based models for unsupervised anomaly segmentation in brain MR images
  publication-title: Med Image Anal
  contributor:
    fullname: Albarqouni
– ident: CR22
– ident: CR18
– volume: 14
  start-page: 1
  year: 2022
  end-page: 23
  ident: CR24
  article-title: Transformers in medical image analysis: a review
  publication-title: Intell Med
  contributor:
    fullname: Shen
– volume: 32
  start-page: 102785
  year: 2021
  ident: CR36
  article-title: A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2021.102785
  contributor:
    fullname: Han
– volume: 20
  start-page: 1
  year: 2020
  end-page: 21
  ident: CR17
  article-title: Accurate and efficient intracranial hemorrhage detection and subtype classification in 3D CT scans with convolutional and long short-term memory neural networks
  publication-title: Sens Switz
  doi: 10.3390/s20195611
  contributor:
    fullname: Verga
– volume: 392
  start-page: 189
  year: 2020
  end-page: 195
  ident: CR13
  article-title: Robust brain extraction tool for CT head images
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.12.085
  contributor:
    fullname: Erickson
– volume: 69
  start-page: 101952
  year: 2021
  ident: CR30
  article-title: Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2020.101952
  contributor:
    fullname: Albarqouni
– ident: CR10
– year: 2022
  ident: CR8
  article-title: Anomaly detection in chest 18F-FDG PET/CT by Bayesian deep learning
  publication-title: Jpn J Radiol
  doi: 10.1007/s11604-022-01249-2
  contributor:
    fullname: Abe
– volume: 325
  start-page: 971
  year: 2021
  end-page: 987
  ident: CR1
  article-title: Screening for lung cancer with low-dose computed tomography: updated evidence report and systematic review for the US Preventive Services Task Force
  publication-title: J Am Med Assoc: JAMA
  doi: 10.1001/jama.2021.0377
  contributor:
    fullname: Harris
– ident: CR35
– ident: CR29
– year: 2017
  ident: CR15
  publication-title: Computer vision, fifth edition: principles, algorithms, applications, learning
  contributor:
    fullname: Davies
– volume: 2
  start-page: 190211
  year: 2020
  ident: CR11
  article-title: Construction of a machine learning dataset through collaboration: The RSNA 2019 brain CT hemorrhage challenge
  publication-title: Radiol Artif Intell
  doi: 10.1148/ryai.2020190211
  contributor:
    fullname: Nath
– ident: CR27
– ident: CR23
– ident: CR21
– ident: CR19
– volume: 147
  start-page: 53
  year: 2022
  end-page: 62
  ident: CR7
  article-title: UTRAD: anomaly detection and localization with U-Transformer
  publication-title: Neural Netw Off J Int Neural Netw Soc
  doi: 10.1016/j.neunet.2021.12.008
  contributor:
    fullname: Le
– volume: 79
  start-page: 102475
  year: 2022
  ident: CR32
  article-title: Unsupervised brain imaging 3D anomaly detection and segmentation with transformers
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102475
  contributor:
    fullname: Cardoso
– year: 2021
  ident: CR16
  article-title: An optimal deep learning framework for multi-type hemorrhagic lesions detection and quantification in head CT images for traumatic brain injury
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02782-9
  contributor:
    fullname: Angkurawaranon
– volume: 218
  start-page: 106731
  year: 2022
  ident: CR26
  article-title: Supervised and weakly supervised deep learning models for COVID-19 CT diagnosis: a systematic review
  publication-title: Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2022.106731
  contributor:
    fullname: Huang
– year: 2015
  ident: CR3
  publication-title: Traumatic brain injury: methods for clinical and forensic neuropsychiatric assessment
  contributor:
    fullname: Granacher
– volume: 68
  start-page: 102588
  year: 2021
  ident: CR12
  article-title: A fully automated deep learning-based network for detecting COVID-19 from a new and large lung CT scan dataset
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102588
  contributor:
    fullname: Sakhaei
– ident: CR31
– ident: CR9
– volume: 33
  start-page: 1465
  year: 2020
  end-page: 1478
  ident: CR14
  article-title: Extracting lungs from CT images via deep convolutional neural network based segmentation and two-pass contour refinement
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-020-00388-0
  contributor:
    fullname: Pang
– ident: CR34
– volume: 9
  start-page: 113901
  year: 2021
  end-page: 113916
  ident: CR5
  article-title: BHCNet: neural network-based brain hemorrhage classification using head CT scan
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3102740
  contributor:
    fullname: Samad
– ident: CR28
– volume: 79
  start-page: 321
  year: 2021
  end-page: 327
  ident: CR6
  article-title: Cerebral hemorrhage detection and localization with medical imaging for cerebrovascular disease diagnosis and treatment using explainable deep learning
  publication-title: J Korean Phys Soc
  doi: 10.1007/s40042-021-00202-2
  contributor:
    fullname: Sohn
– ident: CR20
– volume: 30
  start-page: 5455
  year: 2020
  end-page: 5462
  ident: CR25
  article-title: Interpretation of CT signs of 2019 novel coronavirus (COVID-19) pneumonia
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06915-5
  contributor:
    fullname: Chen
– volume: 71
  start-page: 195
  year: 2020
  end-page: 200
  ident: CR2
  article-title: CT imaging and differential diagnosis of COVID-19
  publication-title: Can Assoc Radiol J
  doi: 10.1177/0846537120913033
  contributor:
    fullname: Lin
– volume: 69
  start-page: 101952
  year: 2022
  ident: 2965_CR33
  publication-title: Med Image Anal
  contributor:
    fullname: A Ghorbel
– volume: 392
  start-page: 189
  year: 2020
  ident: 2965_CR13
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.12.085
  contributor:
    fullname: Z Akkus
– ident: 2965_CR28
– volume: 20
  start-page: 1
  year: 2020
  ident: 2965_CR17
  publication-title: Sens Switz
  doi: 10.3390/s20195611
  contributor:
    fullname: M Burduja
– ident: 2965_CR34
  doi: 10.1109/ACSSC.2003.1292216
– volume: 33
  start-page: 1465
  year: 2020
  ident: 2965_CR14
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-020-00388-0
  contributor:
    fullname: C Liu
– volume-title: Traumatic brain injury: methods for clinical and forensic neuropsychiatric assessment
  year: 2015
  ident: 2965_CR3
  contributor:
    fullname: RP Granacher
– ident: 2965_CR22
– ident: 2965_CR18
  doi: 10.1109/ICCV.2015.510
– volume: 79
  start-page: 321
  year: 2021
  ident: 2965_CR6
  publication-title: J Korean Phys Soc
  doi: 10.1007/s40042-021-00202-2
  contributor:
    fullname: KH Kim
– volume: 11
  start-page: 121
  year: 2020
  ident: 2965_CR4
  publication-title: Insights Imaging
  doi: 10.1186/s13244-020-00925-z
  contributor:
    fullname: RJM Bruls
– volume: 2
  start-page: 190211
  year: 2020
  ident: 2965_CR11
  publication-title: Radiol Artif Intell
  doi: 10.1148/ryai.2020190211
  contributor:
    fullname: AE Flanders
– volume: 79
  start-page: 102475
  year: 2022
  ident: 2965_CR32
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102475
  contributor:
    fullname: WHL Pinaya
– volume: 71
  start-page: 195
  year: 2020
  ident: 2965_CR2
  publication-title: Can Assoc Radiol J
  doi: 10.1177/0846537120913033
  contributor:
    fullname: WC Dai
– volume: 147
  start-page: 53
  year: 2022
  ident: 2965_CR7
  publication-title: Neural Netw Off J Int Neural Netw Soc
  doi: 10.1016/j.neunet.2021.12.008
  contributor:
    fullname: L Chen
– ident: 2965_CR19
  doi: 10.1109/CVPR.2017.502
– volume: 30
  start-page: 5455
  year: 2020
  ident: 2965_CR25
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06915-5
  contributor:
    fullname: J Wu
– ident: 2965_CR10
  doi: 10.1109/ICME46284.2020.9102722
– volume-title: Computer vision, fifth edition: principles, algorithms, applications, learning
  year: 2017
  ident: 2965_CR15
  contributor:
    fullname: ER Davies
– ident: 2965_CR21
  doi: 10.1109/CVPR.2009.5206848
– volume: 14
  start-page: 1
  year: 2022
  ident: 2965_CR24
  publication-title: Intell Med
  contributor:
    fullname: K He
– volume: 218
  start-page: 106731
  year: 2022
  ident: 2965_CR26
  publication-title: Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2022.106731
  contributor:
    fullname: H Hassan
– ident: 2965_CR29
  doi: 10.1109/isbi45749.2020.9098405
– volume: 32
  start-page: 102785
  year: 2021
  ident: 2965_CR36
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2021.102785
  contributor:
    fullname: X Wang
– ident: 2965_CR20
  doi: 10.1109/CVPR.2016.90
– ident: 2965_CR23
– ident: 2965_CR27
  doi: 10.48550/arXiv.2211.15924
– ident: 2965_CR9
  doi: 10.1109/CVPR.2018.00684
– volume: 325
  start-page: 971
  year: 2021
  ident: 2965_CR1
  publication-title: J Am Med Assoc: JAMA
  doi: 10.1001/jama.2021.0377
  contributor:
    fullname: DE Jonas
– year: 2021
  ident: 2965_CR16
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02782-9
  contributor:
    fullname: A Phaphuangwittayakul
– volume: 68
  start-page: 102588
  year: 2021
  ident: 2965_CR12
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102588
  contributor:
    fullname: M Rahimzadeh
– volume: 9
  start-page: 113901
  year: 2021
  ident: 2965_CR5
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3102740
  contributor:
    fullname: MF Mushtaq
– year: 2022
  ident: 2965_CR8
  publication-title: Jpn J Radiol
  doi: 10.1007/s11604-022-01249-2
  contributor:
    fullname: T Nakao
– volume: 69
  start-page: 101952
  year: 2021
  ident: 2965_CR30
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2020.101952
  contributor:
    fullname: C Baur
– ident: 2965_CR31
– ident: 2965_CR35
  doi: 10.1109/CVPR.2018.00745
SSID ssj0045735
Score 2.3521276
Snippet Background Current artificial intelligence studies for supporting CT screening tasks depend on either supervised learning or detecting anomalies. However, the...
Current artificial intelligence studies for supporting CT screening tasks depend on either supervised learning or detecting anomalies. However, the former...
BackgroundCurrent artificial intelligence studies for supporting CT screening tasks depend on either supervised learning or detecting anomalies. However, the...
BACKGROUNDCurrent artificial intelligence studies for supporting CT screening tasks depend on either supervised learning or detecting anomalies. However, the...
SourceID pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2001
SubjectTerms Algorithms
Annotations
Anomalies
Artificial intelligence
Brain
Computed tomography
Computer Imaging
Computer Science
Datasets
Ground truth
Health Informatics
Hemorrhage
Imaging
Machine learning
Medicine
Medicine & Public Health
Original
Original Article
Pattern Recognition and Graphics
Radiology
Screening
Supervised learning
Surgery
Vision
Workload
Workloads
Title Automated screening of computed tomography using weakly supervised anomaly detection
URI https://link.springer.com/article/10.1007/s11548-023-02965-4
https://www.ncbi.nlm.nih.gov/pubmed/37247113
https://www.proquest.com/docview/2879581285
https://search.proquest.com/docview/2820337113
https://pubmed.ncbi.nlm.nih.gov/PMC10226438
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LSsNAcNAWxIuP-orWsoI3DbTZRzbHItWi1FML9RSS7K6KkhabIv69s3m01OrBQy7Z2d1kZncezAvgksbM86LYuHHAucuQ47mRNNRViQhiK-CUsrnDg0fRH7H7MR8v87jzYPfKI5kz6mWum1WuXRQx-AQC192EOrfl0PAQj7xuxX4Z9ykvs2N-n7cqgdbUyvXoyB8u0lzy3O7BTqkykm5B433Y0GkDdqt2DKS8nQ3YGpR-8gMYdufZBHVRrQiyBTRVcWEyMSQpJimCo2WtamIj35_Jp47e3r_IbD61zGOGIFGKK-ArpbM8XCs9hNFtb3jTd8v-CW6CcjdD9koVKoSIc-a3ZRB71LCA6kgz3VFSJYGvKeVKUKESX4jYR9wZw0UsPCMCqekR1NJJqk-AtJlvqO0YGyUBo9LISLZNh3E0t9Ai474DVxVOw2lRJiNcFkS2FAiRAmFOgZA50KzQHpZXZhZ6tu05qhuSO3CxGMbDbj0YUaoncwvjtSnFPakDxwWVFttR32PFiFyh3wLAFtJeHUlfX_KC2tbqRc1MOnBdkXr5XX__xun_wM9g2_aqLxIZm1DLPub6HDWaLG5BvXv39NBr5Sf5G_248JA
link.rule.ids 230,315,783,787,888,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1JTsMwcARFAi4sZQsUMBI3iFTiJc6xQqACbU-t1FuUxDYgUIJoKsTvGWdpVZYDh1zisZ3M2LNoNoBzGjPPi2LjxgHnLkOO50bSUFclIoitgFPK5g73B6I7YvdjPq6SwiZ1tHvtkiw49TzZzWrXLsoYfAKBCy_Diq2vbivmj7xOzX8Z9ymv0mN-n7cogn7olT_DI7_5SAvRc7sFG5XOSDolkbdhSadN2Kz7MZDqejZhtV85yndg2JnmGSqjWhHkC2ir4sIkMyQpJymCo1WxamJD3x_Jh45eXj_JZPpmuccEQaIUV8BXSudFvFa6C6Pbm-F1160aKLgJIiZH_koVaoSIdOa3ZRB71LCA6kgzfaWkSgJfU8qVoEIlvhCxj7gzhotYeEYEUtM9aKRZqg-AtJlvqG0ZGyUBo9LISLbNFeNob6FJxn0HLmqchm9lnYxwXhHZUiBECoQFBULmQKtGe1jdmUno2b7nqG9I7sDZbBhPu3VhRKnOphbGa1OKe1IH9ksqzbajvsfKEblAvxmAraS9OJI-PxUVta3Zi6qZdOCyJvX8u_7-jcP_gZ_CWnfY74W9u8HDEazbxvVlVmMLGvn7VB-jepPHJ8Vp_gI8G_JX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VRUJc2JbSErptjcQNAkv8iHNctSyUl3oAiZ4iO7bbCpRdsYkQ_PqO89jtAj1UHHKJx5nYHs98I8-MAbaoZlGktAt1wnnIUOOFSjoamkwk2hs4Y3zu8Nm5OLpkx1f86q8s_iravT2SrHMafJWmvNgbG7c3S3zzSDtEe4NPIpDJAiwyXxmpA4uDwx8nB602ZjymvEmWeb7nvEF6gjKfBks-OjGtDNGwC6odQh1_cr1bFno3e3hU3fElY3wNKw1KJYNarN7AK5uvQre9AYI0CmEVls6ao_m3cDEoixHCX2sIaiL0jpEvGTmS1Z0MwdamPDbxwfY_yZ1V1zf3ZFKOvb6aIInK8Qv4ytiiihDL1-ByeHDx5ShsrmwIMzT1BWp0ahCD4jKzuC8THVHHEmqVZXbfSJMlsaWUG0GFyWIhdIzr4xwXWkROJNLSd9DJR7ldB9JnsaP-klqVJYxKJ5Xsu33G0cNDJ5DHAWy365aO68oc6awGs5-7FOcureYuZQH02qVNm106SSN_0zoiHMkD2Jw24_7yhyYqt6PS00R9SpEnDeB9LQlTdjSOWN0i52RkSuBrd8-35L9_VTW8vaONYFAGsNNKwuy__j2Mjf8j_wxL378O09Nv5ycfYDnyslSlUfagU9yW9iPiqUJ_arbMHxa1GEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+screening+of+computed+tomography+using+weakly+supervised+anomaly+detection&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Hibi+Atsuhiro&rft.au=Cusimano%2C+Michael+D&rft.au=Bilbily+Alexander&rft.au=Krishnan%2C+Rahul+G&rft.date=2023-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1861-6410&rft.eissn=1861-6429&rft.volume=18&rft.issue=11&rft.spage=2001&rft.epage=2012&rft_id=info:doi/10.1007%2Fs11548-023-02965-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6429&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6429&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6429&client=summon