Large eddy simulation of turbomachinery flows using a high-order implicit residual smoothing scheme
HIGHLIGHTS•A novel 4th-order accurate implicit residual smoothing scheme (IRS4) is investigated.•Global CPU time reduced by a factor 3÷5 compared to an explicit scheme.•Solution accuracy is preserved if the CFL number is less than 10.•IRS4 is applied to the LES of the VKI LS-89 turbine cascade.•IRS4...
Saved in:
Published in | Computers & fluids Vol. 198; p. 104395 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
15.02.2020
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | HIGHLIGHTS•A novel 4th-order accurate implicit residual smoothing scheme (IRS4) is investigated.•Global CPU time reduced by a factor 3÷5 compared to an explicit scheme.•Solution accuracy is preserved if the CFL number is less than 10.•IRS4 is applied to the LES of the VKI LS-89 turbine cascade.•IRS4 is a good strategy for relaxing stability constraints in LES of complex flows.
A recently developed fourth-order accurate implicit residual smoothing scheme (IRS4) is investigated for the large eddy simulation of turbomachinery flows, characterized by moderate to high Reynolds numbers and subject to severe constraints on the maximum allowable time step if an explicit scheme is used. For structured multi-block meshes, the proposed approach leads to the inversion of a scalar pentadiagonal system by mesh direction, which can be done very efficiently. On the other hand, applying IRS4 at each stage of an explicit Runge–Kutta time scheme allows to increase the time step by a factor 5 to 10, leading to substantial savings in terms of overall computational time. With respect to standard second-order fully implicit approaches, the IRS4 does not require approximate linearization and factorization procedures nor inner Newton-Raphson subiterations. As a consequence, it represents a better cost-accuracy compromise for the numerical simulations of turbulent flows where the maximum time step is controlled by the lifetime of the smallest resolved turbulent structures. Numerical results for the well-documented high-pressure VKI LS-89 planar turbine cascade illustrate the potential of IRS4 for significantly reducing the overall cost of turbomachinery large eddy simulations, while preserving an accuracy similar to the explicit solver even for sensitive quantities like the heat transfer coefficient and the turbulent kinetic energy field. |
---|---|
AbstractList | HIGHLIGHTS•A novel 4th-order accurate implicit residual smoothing scheme (IRS4) is investigated.•Global CPU time reduced by a factor 3÷5 compared to an explicit scheme.•Solution accuracy is preserved if the CFL number is less than 10.•IRS4 is applied to the LES of the VKI LS-89 turbine cascade.•IRS4 is a good strategy for relaxing stability constraints in LES of complex flows.
A recently developed fourth-order accurate implicit residual smoothing scheme (IRS4) is investigated for the large eddy simulation of turbomachinery flows, characterized by moderate to high Reynolds numbers and subject to severe constraints on the maximum allowable time step if an explicit scheme is used. For structured multi-block meshes, the proposed approach leads to the inversion of a scalar pentadiagonal system by mesh direction, which can be done very efficiently. On the other hand, applying IRS4 at each stage of an explicit Runge–Kutta time scheme allows to increase the time step by a factor 5 to 10, leading to substantial savings in terms of overall computational time. With respect to standard second-order fully implicit approaches, the IRS4 does not require approximate linearization and factorization procedures nor inner Newton-Raphson subiterations. As a consequence, it represents a better cost-accuracy compromise for the numerical simulations of turbulent flows where the maximum time step is controlled by the lifetime of the smallest resolved turbulent structures. Numerical results for the well-documented high-pressure VKI LS-89 planar turbine cascade illustrate the potential of IRS4 for significantly reducing the overall cost of turbomachinery large eddy simulations, while preserving an accuracy similar to the explicit solver even for sensitive quantities like the heat transfer coefficient and the turbulent kinetic energy field. A recently developed fourth-order accurate implicit residual smoothing scheme (IRS4) is investigated for the large eddy simulation of turbomachinery flows, characterized by moderate to high Reynolds numbers and subject to severe constraints on the maximum allowable time step if an explicit scheme is used. For structured multi-block meshes, the proposed approach leads to the inversion of a scalar pentadiagonal system by mesh direction, which can be done very efficiently. On the other hand, applying IRS4 at each stage of an explicit Runge–Kutta time scheme allows to increase the time step by a factor 5 to 10, leading to substantial savings in terms of overall computational time. With respect to standard second-order fully implicit approaches, the IRS4 does not require approximate linearization and factorization procedures nor inner Newton-Raphson subiterations. As a consequence, it represents a better cost-accuracy compromise for the numerical simulations of turbulent flows where the maximum time step is controlled by the lifetime of the smallest resolved turbulent structures. Numerical results for the well-documented high-pressure VKI LS-89 planar turbine cascade illustrate the potential of IRS4 for significantly reducing the overall cost of turbomachinery large eddy simulations, while preserving an accuracy similar to the explicit solver even for sensitive quantities like the heat transfer coefficient and the turbulent kinetic energy field. |
ArticleNumber | 104395 |
Author | Cinnella, P. Gloerfelt, X. Hoarau, J.-Ch |
Author_xml | – sequence: 1 givenname: J.-Ch surname: Hoarau fullname: Hoarau, J.-Ch email: jean-christophe.hoarau@ensam.eu – sequence: 2 givenname: P. orcidid: 0000-0001-9979-0783 surname: Cinnella fullname: Cinnella, P. email: paola.cinnella@ensam.eu – sequence: 3 givenname: X. surname: Gloerfelt fullname: Gloerfelt, X. email: xavier.gloerfelt@ensam.eu |
BackLink | https://hal.science/hal-02463130$$DView record in HAL |
BookMark | eNqFkT1v2zAQhokiBeqk_Q0l0CmDHH5JNIcMRpA0AQx0aWeCIo8WDUl0SSmB_33oqu2QJdN94HkPd_deoosxjoDQV0rWlNDm5rC2cTj6fg5uzQhVpSu4qj-gFd1IVREp5AVaESLqSipOPqHLnA-k1JyJFbI7k_aAwbkTzmGYezOFOOLo8TSnNg7GdmGEdMK-jy8ZzzmMe2xwF_ZdFZODhMNw7IMNE06Qg5tNj_MQ49SdwWw7GOAz-uhNn-HL33iFfj3c_7x7rHY_vj_dbXeVFayZKiahVgYkIa3nzm8coWYjHFEts8Ckb0pmnWhlu6Gu8Uo5sBKEoJJKUhPHr9D1MrczvT6mMJh00tEE_bjd6XOPMNFwyskzLey3hT2m-HuGPOlDnNNY1tOMN4ozJeumULcLZVPMOYHX5dA_H5qSCb2mRJ890Af93wN99kAvHhS9fKP_t9b7yu2ihPKw5wBJZxtgtOBCAjtpF8O7M14Bqu6psw |
CitedBy_id | crossref_primary_10_1016_j_proci_2022_08_093 crossref_primary_10_1115_1_4049917 crossref_primary_10_1016_j_compfluid_2023_106138 crossref_primary_10_3390_en14030772 crossref_primary_10_1016_j_compfluid_2023_106067 crossref_primary_10_1080_14685248_2022_2037621 crossref_primary_10_1115_1_4064315 crossref_primary_10_1016_j_ecmx_2022_100338 |
Cites_doi | 10.1243/095765003322315469 10.2514/1.B34314 10.1007/s10494-013-9485-5 10.2514/1.16335 10.29008/ETC2017-159 10.1007/s10494-018-0005-5 10.1016/j.jcp.2016.08.023 10.1016/j.compfluid.2012.07.019 10.1016/j.ijheatmasstransfer.2012.05.072 10.1002/fld.551 10.1115/1.4032435 10.1007/s10494-018-9956-9 10.1115/1.1539057 10.1007/3-540-11948-5_41 10.1115/1.3239900 10.1016/j.jcp.2003.09.003 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Feb 15, 2020 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Feb 15, 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D 1XC VOOES |
DOI | 10.1016/j.compfluid.2019.104395 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0747 |
ExternalDocumentID | oai_HAL_hal_02463130v1 10_1016_j_compfluid_2019_104395 S0045793019303536 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABAOU ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSW SSZ T5K TN5 XPP ZMT ~G- 29F 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH T9H VH1 WUQ 7SC 7TB 7U5 8FD EFKBS FR3 H8D JQ2 KR7 L7M L~C L~D 1XC VOOES |
ID | FETCH-LOGICAL-c426t-27e59ae700bf3df8d01a84d09b2ce27f609bcd4b7b81d6f99dec7e441717050d3 |
IEDL.DBID | .~1 |
ISSN | 0045-7930 |
IngestDate | Wed Aug 13 07:42:20 EDT 2025 Fri Jul 25 05:22:12 EDT 2025 Thu Apr 24 23:01:26 EDT 2025 Tue Jul 01 02:21:30 EDT 2025 Fri Feb 23 02:49:14 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Turbomachinery Implicit residual smoothing LES |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-27e59ae700bf3df8d01a84d09b2ce27f609bcd4b7b81d6f99dec7e441717050d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9979-0783 0000-0002-2156-8282 |
OpenAccessLink | https://hal.science/hal-02463130 |
PQID | 2369329756 |
PQPubID | 2045265 |
ParticipantIDs | hal_primary_oai_HAL_hal_02463130v1 proquest_journals_2369329756 crossref_citationtrail_10_1016_j_compfluid_2019_104395 crossref_primary_10_1016_j_compfluid_2019_104395 elsevier_sciencedirect_doi_10_1016_j_compfluid_2019_104395 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-15 |
PublicationDateYYYYMMDD | 2020-02-15 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computers & fluids |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier |
References | Pichler, Kopriva, Laskowski, Michelassi, Sandberg (bib0007) 2016; GT2016-49712 Content, Outtier, Cinnella (bib0027) 2013; AIAA Paper 2013–2423 Bhaskaran, Lele (bib0003) 2010; 11 Pogorelov, Meinke, Schröder (bib0010) 2019; 102 Outtier, Content, Cinnella, Michel (bib0028) 2013; 2013–2439 Arnone, Pacciani (bib0032) 1997; 490 Lerat, Sidès, Daru (bib0013) 1982; vol. 170 Aubard, Stefanin Volpiani, Gloerfelt, Robinet (bib0024) 2013; 91 Kiock, Lehthaus, Baines, Sieverding (bib0030) 1986; 108 Rubino, De Palma, Pascazio, Napolitano (bib0031) 2009 Sieverding, Richard, Desse (bib0035) 2003; 125 Rizzetta, Visbal, Blaisdell (bib0018) 2003; 42 Segui, Gicquel, Duchaine, de Laborderie (bib0009) 2017 Chicheportiche, Gloerfelt (bib0029) 2012; 68 Collado, Gourdain, Duchaine, Gicquel (bib0006) 2012; 55 Marty, Lantos, Michel, Bonneau (bib0011) 2015; GT2015-42134 Blazek, Kroll, Rossow (bib0015) 1992 Jameson, Schmidt, Turkel (bib0022) 1981 Wheeler, Sandberg, Sandham, Pichler, Michelassi, Laskowski (bib0008) 2016; 138 Gloerfelt, Cinnella (bib0025) 2019; 103 Marin Perez (bib0023) 2013 Arts, Lambert de Rouvroit, Rutherford (bib0016) 1990 Gourdain, Gicquel, Collado (bib0005) 2012; 28 Michel, Cinnella, Lerat (bib0034) 2011; 27 Michelassi, Wissink, Rodi (bib0002) 2003; 217 Implicit large eddy simulation: computing turbulent fluid dynamics (bib0019) 2007 Rezgui, Cinnella, Lerat (bib0020) 2005; 30 Bogey, Bailly (bib0026) 2004; 194 Cinnella, Congedo (bib0021) 2005; 43 Wilcox (bib0001) 2006 Grimich, Michel, Cinnella, Lerat (bib0033) 2014; vol. 99 Jameson, Baker (bib0014) 1983; 83–1929 Bhaskaran, Lele (bib0004) 2011; 2011–3266 Cinnella, Content (bib0012) 2016; 326 Gourdain, Gicquel, Fransen, Collado, Arts (bib0017) 2011; GT2011-46518 Pogorelov (10.1016/j.compfluid.2019.104395_bib0010) 2019; 102 Marty (10.1016/j.compfluid.2019.104395_bib0011) 2015; GT2015-42134 Collado (10.1016/j.compfluid.2019.104395_bib0006) 2012; 55 Michel (10.1016/j.compfluid.2019.104395_bib0034) 2011; 27 Jameson (10.1016/j.compfluid.2019.104395_bib0014) 1983; 83–1929 Gourdain (10.1016/j.compfluid.2019.104395_bib0005) 2012; 28 Jameson (10.1016/j.compfluid.2019.104395_bib0022) 1981 Kiock (10.1016/j.compfluid.2019.104395_bib0030) 1986; 108 Rubino (10.1016/j.compfluid.2019.104395_bib0031) 2009 Wilcox (10.1016/j.compfluid.2019.104395_bib0001) 2006 Bhaskaran (10.1016/j.compfluid.2019.104395_bib0003) 2010; 11 Rizzetta (10.1016/j.compfluid.2019.104395_bib0018) 2003; 42 Pichler (10.1016/j.compfluid.2019.104395_bib0007) 2016; GT2016-49712 Michelassi (10.1016/j.compfluid.2019.104395_bib0002) 2003; 217 Cinnella (10.1016/j.compfluid.2019.104395_bib0012) 2016; 326 Chicheportiche (10.1016/j.compfluid.2019.104395_bib0029) 2012; 68 Gourdain (10.1016/j.compfluid.2019.104395_bib0017) 2011; GT2011-46518 Cinnella (10.1016/j.compfluid.2019.104395_bib0021) 2005; 43 Lerat (10.1016/j.compfluid.2019.104395_bib0013) 1982; vol. 170 Content (10.1016/j.compfluid.2019.104395_bib0027) 2013; AIAA Paper 2013–2423 Grimich (10.1016/j.compfluid.2019.104395_bib0033) 2014; vol. 99 Marin Perez (10.1016/j.compfluid.2019.104395_bib0023) 2013 Rezgui (10.1016/j.compfluid.2019.104395_bib0020) 2005; 30 Gloerfelt (10.1016/j.compfluid.2019.104395_bib0025) 2019; 103 Arts (10.1016/j.compfluid.2019.104395_bib0016) 1990 Segui (10.1016/j.compfluid.2019.104395_bib0009) 2017 Arnone (10.1016/j.compfluid.2019.104395_bib0032) 1997; 490 Bhaskaran (10.1016/j.compfluid.2019.104395_bib0004) 2011; 2011–3266 Aubard (10.1016/j.compfluid.2019.104395_bib0024) 2013; 91 Bogey (10.1016/j.compfluid.2019.104395_bib0026) 2004; 194 Sieverding (10.1016/j.compfluid.2019.104395_bib0035) 2003; 125 Implicit large eddy simulation: computing turbulent fluid dynamics (10.1016/j.compfluid.2019.104395_bib0019) 2007 Outtier (10.1016/j.compfluid.2019.104395_bib0028) 2013; 2013–2439 Blazek (10.1016/j.compfluid.2019.104395_bib0015) 1992 Wheeler (10.1016/j.compfluid.2019.104395_sbref0008) 2016; 138 |
References_xml | – year: 1992 ident: bib0015 article-title: A comparison of several implicit residual smoothing methods publication-title: ICFD Conference on numerical methods for fluid dynamics – year: 1990 ident: bib0016 article-title: Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade: a test case for inviscid and viscous flow computations publication-title: VKI Training center for experimental aerodynamics technical note 174 – volume: vol. 99 start-page: 37 year: 2014 end-page: 58 ident: bib0033 article-title: Finite volume formulation of a third-order residual-based compact scheme for unsteady flow computations publication-title: High order nonlinear numerical schemes for evolutionary PDEs – volume: 194 start-page: 194 year: 2004 end-page: 214 ident: bib0026 article-title: A family of low dispersive and low dissipative explicit schemes for flow and noise computations publication-title: J Comput Phys – volume: 103 start-page: 55 year: 2019 end-page: 91 ident: bib0025 article-title: Large eddy simulation requirements for the flow over periodic hills publication-title: Flow Turbul Combust – volume: 108 start-page: 277 year: 1986 end-page: 284 ident: bib0030 article-title: The transonic flow through a plane turbine cascade as measured in four european wind tunnels publication-title: J Eng Gas Turb Power – volume: vol. 170 start-page: 343 year: 1982 end-page: 349 ident: bib0013 article-title: An implicit finite-volume method for solving the Euler equations publication-title: Lecture Notes in Physics – volume: 11 year: 2010 ident: bib0003 article-title: Large eddy simulation of free-stream turbulence effects on heat transfer to a high-pressure turbine cascade publication-title: J Turbul – volume: 28 start-page: 423 year: 2012 end-page: 433 ident: bib0005 article-title: RANS and LES for the heat transfer prediction in turbine guide vane publication-title: J Propul Power – year: 2017 ident: bib0009 article-title: LES of the LS89 cascade: influence of inflow turbulence on the flow predictions publication-title: European conference on turbomachinery fluid dynamics & thermodynamics – volume: GT2015-42134 year: 2015 ident: bib0011 article-title: LES and hybrid RANS/LES simulations of turbomachinery flows using high-order methods publication-title: ASME turbo expo conference – start-page: 101 year: 2009 end-page: 106 ident: bib0031 article-title: Solution of the steady Euler equations using fluctuation splitting schemes on quadrilateral elements publication-title: Computational fluid dynamics – volume: 27 start-page: 2 year: 2011 end-page: 15 ident: bib0034 article-title: Multiblock residual-based compact schemes for the computation of complex turbomachinery flows publication-title: Int J Eng SystModell Simul – volume: 102 start-page: 189 year: 2019 end-page: 220 ident: bib0010 article-title: Large-eddy simulation of the unsteady full 3D rim seal flow in a one-stage axial-flow turbine publication-title: Flow Turbul Combust – volume: 55 start-page: 5754 year: 2012 end-page: 5768 ident: bib0006 article-title: Effects of free-stream turbulence on high pressure turbine blade heat transfer predicted by structured and unstructured LES publication-title: Int J Heat Mass Transf – year: 1981 ident: bib0022 article-title: Numerical solution of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes publication-title: AIAA Paper – volume: 42 start-page: 665 year: 2003 end-page: 693 ident: bib0018 article-title: A time-implicit high-order compact differencing and filtering scheme for large-eddy simulation publication-title: Int J Numer Methods Fluids – volume: 217 start-page: 403 year: 2003 end-page: 411 ident: bib0002 article-title: Direct numerical simulation, large eddy simulation and unsteady Reynolds-averaged Navier–Stokes simulations of periodic unsteady flow in a low-pressure turbine cascade: a comparison publication-title: Proc Inst MechEng Part A – volume: GT2016-49712 year: 2016 ident: bib0007 article-title: Highly resolved LES of a linear HPT vane cascade using structured and unstructured codes publication-title: ASME Turbo expo conference – volume: 125 start-page: 298 year: 2003 end-page: 309 ident: bib0035 article-title: Turbine blade trailing edge flow characteristics at high subsonic outlet Mach number publication-title: J Turbomach – volume: 138 year: 2016 ident: bib0008 article-title: Direct numerical simulations of a high-pressure turbine vane publication-title: Journal of Turbomachinery – volume: 2013–2439 year: 2013 ident: bib0028 article-title: The high-order dynamic computational laboratory for CFD research and applications publication-title: AIAA Paper – year: 2007 ident: bib0019 – volume: GT2011-46518 start-page: 1773 year: 2011 end-page: 1785 ident: bib0017 article-title: Application of RANS and LES to the prediction of flows in high pressure turbine components publication-title: ASME Turbo expo conference – volume: 30 start-page: 875 year: 2005 end-page: 901 ident: bib0020 article-title: Third-order accurate finite volume schemes for Euler computations on curvilinear meshes publication-title: Comput Fluids – volume: 68 start-page: 112 year: 2012 end-page: 133 ident: bib0029 article-title: Study of interpolation methods for high-accuracy computations on overlapping grids publication-title: Comput Fluids – volume: 43 start-page: 2458 year: 2005 end-page: 2461 ident: bib0021 article-title: Aerodynamic performance of transonic Bethe-Zel’dovich-Thompson flows past an airfoil publication-title: AIAA J – volume: 91 start-page: 497 year: 2013 end-page: 518 ident: bib0024 article-title: Comparison of subgrid-scale viscosity models and selective filtering strategy for large-eddy simulations publication-title: Flow Turbul Combust. – volume: 490 start-page: 358 year: 1997 end-page: 363 ident: bib0032 article-title: Numerical investigation on wake shedding in a turbine rotor blade publication-title: Fifteenth international conference on numerical methods in fluid dynamics – year: 2013 ident: bib0023 publication-title: Hybrid RANS-LES simulations of turbulent flows in aerodynamics using high-order schemes – volume: 2011–3266 year: 2011 ident: bib0004 article-title: Heat transfer prediction in high pressure turbine cascade with free-stream turbulence using LES publication-title: AIAA Paper – year: 2006 ident: bib0001 article-title: Turbulence modeling for CFD – volume: 83–1929 year: 1983 ident: bib0014 article-title: Solution of the Euler equations for complex configurations publication-title: AIAA Paper – volume: 326 start-page: 1 year: 2016 end-page: 29 ident: bib0012 article-title: High-order implicit residual smoothing time scheme for direct and large eddy simulations of compressible flows publication-title: J Comput Phys – volume: AIAA Paper 2013–2423 year: 2013 ident: bib0027 article-title: Coupled/uncoupled solutions of RANS equations using a Jacobian-free Newton-Krylov method publication-title: 21st AIAA Computational fluid dynamics conference – volume: GT2011-46518 start-page: 1773 year: 2011 ident: 10.1016/j.compfluid.2019.104395_bib0017 article-title: Application of RANS and LES to the prediction of flows in high pressure turbine components – volume: GT2016-49712 year: 2016 ident: 10.1016/j.compfluid.2019.104395_bib0007 article-title: Highly resolved LES of a linear HPT vane cascade using structured and unstructured codes – volume: 217 start-page: 403 issue: 4 year: 2003 ident: 10.1016/j.compfluid.2019.104395_bib0002 article-title: Direct numerical simulation, large eddy simulation and unsteady Reynolds-averaged Navier–Stokes simulations of periodic unsteady flow in a low-pressure turbine cascade: a comparison publication-title: Proc Inst MechEng Part A doi: 10.1243/095765003322315469 – volume: 28 start-page: 423 year: 2012 ident: 10.1016/j.compfluid.2019.104395_bib0005 article-title: RANS and LES for the heat transfer prediction in turbine guide vane publication-title: J Propul Power doi: 10.2514/1.B34314 – volume: 91 start-page: 497 issue: 3 year: 2013 ident: 10.1016/j.compfluid.2019.104395_bib0024 article-title: Comparison of subgrid-scale viscosity models and selective filtering strategy for large-eddy simulations publication-title: Flow Turbul Combust. doi: 10.1007/s10494-013-9485-5 – volume: 43 start-page: 2458 issue: 11 year: 2005 ident: 10.1016/j.compfluid.2019.104395_bib0021 article-title: Aerodynamic performance of transonic Bethe-Zel’dovich-Thompson flows past an airfoil publication-title: AIAA J doi: 10.2514/1.16335 – year: 2017 ident: 10.1016/j.compfluid.2019.104395_bib0009 article-title: LES of the LS89 cascade: influence of inflow turbulence on the flow predictions doi: 10.29008/ETC2017-159 – volume: 103 start-page: 55 issue: 1 year: 2019 ident: 10.1016/j.compfluid.2019.104395_bib0025 article-title: Large eddy simulation requirements for the flow over periodic hills publication-title: Flow Turbul Combust doi: 10.1007/s10494-018-0005-5 – year: 2006 ident: 10.1016/j.compfluid.2019.104395_bib0001 – volume: 326 start-page: 1 year: 2016 ident: 10.1016/j.compfluid.2019.104395_bib0012 article-title: High-order implicit residual smoothing time scheme for direct and large eddy simulations of compressible flows publication-title: J Comput Phys doi: 10.1016/j.jcp.2016.08.023 – volume: 68 start-page: 112 year: 2012 ident: 10.1016/j.compfluid.2019.104395_bib0029 article-title: Study of interpolation methods for high-accuracy computations on overlapping grids publication-title: Comput Fluids doi: 10.1016/j.compfluid.2012.07.019 – volume: 11 issue: 6 year: 2010 ident: 10.1016/j.compfluid.2019.104395_bib0003 article-title: Large eddy simulation of free-stream turbulence effects on heat transfer to a high-pressure turbine cascade publication-title: J Turbul – volume: 55 start-page: 5754 issue: 21 year: 2012 ident: 10.1016/j.compfluid.2019.104395_bib0006 article-title: Effects of free-stream turbulence on high pressure turbine blade heat transfer predicted by structured and unstructured LES publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2012.05.072 – volume: 42 start-page: 665 issue: 6 year: 2003 ident: 10.1016/j.compfluid.2019.104395_bib0018 article-title: A time-implicit high-order compact differencing and filtering scheme for large-eddy simulation publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.551 – year: 2013 ident: 10.1016/j.compfluid.2019.104395_bib0023 – volume: 138 issue: 7 year: 2016 ident: 10.1016/j.compfluid.2019.104395_sbref0008 article-title: Direct numerical simulations of a high-pressure turbine vane publication-title: Journal of Turbomachinery doi: 10.1115/1.4032435 – volume: 2011–3266 year: 2011 ident: 10.1016/j.compfluid.2019.104395_bib0004 article-title: Heat transfer prediction in high pressure turbine cascade with free-stream turbulence using LES – year: 1981 ident: 10.1016/j.compfluid.2019.104395_bib0022 article-title: Numerical solution of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes – volume: 102 start-page: 189 issue: 1 year: 2019 ident: 10.1016/j.compfluid.2019.104395_bib0010 article-title: Large-eddy simulation of the unsteady full 3D rim seal flow in a one-stage axial-flow turbine publication-title: Flow Turbul Combust doi: 10.1007/s10494-018-9956-9 – volume: 2013–2439 year: 2013 ident: 10.1016/j.compfluid.2019.104395_bib0028 article-title: The high-order dynamic computational laboratory for CFD research and applications – volume: 30 start-page: 875 issue: 7–8 year: 2005 ident: 10.1016/j.compfluid.2019.104395_bib0020 article-title: Third-order accurate finite volume schemes for Euler computations on curvilinear meshes publication-title: Comput Fluids – volume: GT2015-42134 year: 2015 ident: 10.1016/j.compfluid.2019.104395_bib0011 article-title: LES and hybrid RANS/LES simulations of turbomachinery flows using high-order methods – volume: 490 start-page: 358 year: 1997 ident: 10.1016/j.compfluid.2019.104395_bib0032 article-title: Numerical investigation on wake shedding in a turbine rotor blade – start-page: 101 year: 2009 ident: 10.1016/j.compfluid.2019.104395_bib0031 article-title: Solution of the steady Euler equations using fluctuation splitting schemes on quadrilateral elements – volume: vol. 99 start-page: 37 year: 2014 ident: 10.1016/j.compfluid.2019.104395_bib0033 article-title: Finite volume formulation of a third-order residual-based compact scheme for unsteady flow computations – volume: 83–1929 year: 1983 ident: 10.1016/j.compfluid.2019.104395_bib0014 article-title: Solution of the Euler equations for complex configurations – volume: 125 start-page: 298 issue: 2 year: 2003 ident: 10.1016/j.compfluid.2019.104395_bib0035 article-title: Turbine blade trailing edge flow characteristics at high subsonic outlet Mach number publication-title: J Turbomach doi: 10.1115/1.1539057 – volume: AIAA Paper 2013–2423 year: 2013 ident: 10.1016/j.compfluid.2019.104395_bib0027 article-title: Coupled/uncoupled solutions of RANS equations using a Jacobian-free Newton-Krylov method – volume: vol. 170 start-page: 343 year: 1982 ident: 10.1016/j.compfluid.2019.104395_bib0013 article-title: An implicit finite-volume method for solving the Euler equations doi: 10.1007/3-540-11948-5_41 – volume: 108 start-page: 277 issue: 2 year: 1986 ident: 10.1016/j.compfluid.2019.104395_bib0030 article-title: The transonic flow through a plane turbine cascade as measured in four european wind tunnels publication-title: J Eng Gas Turb Power doi: 10.1115/1.3239900 – volume: 194 start-page: 194 issue: 1 year: 2004 ident: 10.1016/j.compfluid.2019.104395_bib0026 article-title: A family of low dispersive and low dissipative explicit schemes for flow and noise computations publication-title: J Comput Phys doi: 10.1016/j.jcp.2003.09.003 – year: 1990 ident: 10.1016/j.compfluid.2019.104395_bib0016 article-title: Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade: a test case for inviscid and viscous flow computations – volume: 27 start-page: 2 issue: 1–2 year: 2011 ident: 10.1016/j.compfluid.2019.104395_bib0034 article-title: Multiblock residual-based compact schemes for the computation of complex turbomachinery flows publication-title: Int J Eng SystModell Simul – year: 1992 ident: 10.1016/j.compfluid.2019.104395_bib0015 article-title: A comparison of several implicit residual smoothing methods – year: 2007 ident: 10.1016/j.compfluid.2019.104395_bib0019 |
SSID | ssj0004324 |
Score | 2.3357563 |
Snippet | HIGHLIGHTS•A novel 4th-order accurate implicit residual smoothing scheme (IRS4) is investigated.•Global CPU time reduced by a factor 3÷5 compared to an... A recently developed fourth-order accurate implicit residual smoothing scheme (IRS4) is investigated for the large eddy simulation of turbomachinery flows,... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104395 |
SubjectTerms | Computational fluid dynamics Computer simulation Computing time Cost control Engineering Sciences Finite element method Fluids mechanics Heat transfer coefficients Implicit residual smoothing Kinetic energy Large eddy simulation LES Mechanics Runge-Kutta method Smoothing Turbines Turbomachinery Vortices |
Title | Large eddy simulation of turbomachinery flows using a high-order implicit residual smoothing scheme |
URI | https://dx.doi.org/10.1016/j.compfluid.2019.104395 https://www.proquest.com/docview/2369329756 https://hal.science/hal-02463130 |
Volume | 198 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxELUovbSHqi2tSAnIqrguOLbXu-YWoaK0RZyKxM3yZ7soyUYktMqF387MfgSoKnHobWWttdbM7Lyx_PyGkEPPeYJdRcgCDzaT1olMA8xl0WvAB2kZC43a54WaXMpvV_nVFjnt78IgrbLL_W1Ob7J1N3LcWfN4UVV4x1fmEF1Qo0AazgXKbktZYJQf3T3QPFBxrj1lRmlGwZ5wvJC2naa3FUqGjjSedwpsNPFvhHrxC6mSf2XsBobO3pI3Xf1Ix-0S35GtOH9PXj9SFdwh_hzZ3TSGsKbLatb156J1ogAvrp419Ml4s6ZpWv9ZUmS-_6SWonBx1ihx0qqhmVcrCnvx5rIWXc5qcCm-CLvhOIsfyOXZlx-nk6zrpZB5wOBVxouYaxsLxlwSIZWBjWwpA9OO-8iLpODJB-kKBwWsSlqH6IuI_clQb4cF8ZFsz-t53CU0qTSSKZfRCy19KktbCquscs7Zgis3IKq3n_Gd0Dj2u5ianlF2bTaGN2h40xp-QNhm4qLV2nh-yknvIPMkbAwgwvOTP4NLN59Coe3J-NzgGFQuSgC8_x4NyLD3uOl-76XhQkHdq4tcffqfBeyRVxy379hfJh-S7dXNbdyHGmflDpogPiAvx1-_Ty7uAQf3_bU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELXa7QE4ID7FlgIW4ho1aztOzG1VUaV02VMr9Wb5E1LtbqruFtR_35nEWShC6oFbZMVKNOPMm1HevCHkk2MsQlXhM8-8yYSxPFMAc1lwCvBBmDz3ndrnXNbn4utFcbFDjoZeGKRVptjfx_QuWqeVw2TNw6umwR5fUcDpghwFwnDB5S7ZQ3WqYkT2pien9fx3eyRnvRizQHVGnt-jeSFzOy5uGlQNnSj85clx1sS_QWr3B7Il_wraHRIdPyNPUwpJp_1bPic7YfWCPPlDWPAlcTMkeNPg_S1dN8s0oou2kQLC2HbZMSjD9S2Ni_bXmiL5_Ts1FLWLs06MkzYd07zZUCjHu34tul624FW8EQrisAyvyPnxl7OjOkvjFDIHMLzJWBkKZUKZ5zZyHyufT0wlfK4sc4GVUcKV88KWFnJYGZXywZUBR5Sh5E7u-WsyWrWr8IbQKONExEIEx5VwsapMxY000lprSibtmMjBftolrXEcebHQA6nsUm8Nr9Hwujf8mOTbjVe93MbDWz4PDtL3To4GUHh480dw6fZRqLVdT2ca1yB5kRwQ_udkTA4Gj-v0ha814xJSX1UWcv9_XuADeVSffZvp2cn89C15zLCax3EzxQEZba5vwjtIeTb2fTrSd7BWAHU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+eddy+simulation+of+turbomachinery+flows+using+a+high-order+implicit+residual+smoothing+scheme&rft.jtitle=Computers+%26+fluids&rft.au=Hoarau%2C+Jean-Christophe&rft.au=Cinnella%2C+Paola&rft.au=Gloerfelt%2C+Xavier&rft.date=2020-02-15&rft.pub=Elsevier&rft.issn=0045-7930&rft.eissn=1879-0747&rft.volume=198&rft_id=info:doi/10.1016%2Fj.compfluid.2019.104395&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02463130v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon |