Large eddy simulation of turbomachinery flows using a high-order implicit residual smoothing scheme

HIGHLIGHTS•A novel 4th-order accurate implicit residual smoothing scheme (IRS4) is investigated.•Global CPU time reduced by a factor 3÷5 compared to an explicit scheme.•Solution accuracy is preserved if the CFL number is less than 10.•IRS4 is applied to the LES of the VKI LS-89 turbine cascade.•IRS4...

Full description

Saved in:
Bibliographic Details
Published inComputers & fluids Vol. 198; p. 104395
Main Authors Hoarau, J.-Ch, Cinnella, P., Gloerfelt, X.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 15.02.2020
Elsevier BV
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract HIGHLIGHTS•A novel 4th-order accurate implicit residual smoothing scheme (IRS4) is investigated.•Global CPU time reduced by a factor 3÷5 compared to an explicit scheme.•Solution accuracy is preserved if the CFL number is less than 10.•IRS4 is applied to the LES of the VKI LS-89 turbine cascade.•IRS4 is a good strategy for relaxing stability constraints in LES of complex flows. A recently developed fourth-order accurate implicit residual smoothing scheme (IRS4) is investigated for the large eddy simulation of turbomachinery flows, characterized by moderate to high Reynolds numbers and subject to severe constraints on the maximum allowable time step if an explicit scheme is used. For structured multi-block meshes, the proposed approach leads to the inversion of a scalar pentadiagonal system by mesh direction, which can be done very efficiently. On the other hand, applying IRS4 at each stage of an explicit Runge–Kutta time scheme allows to increase the time step by a factor 5 to 10, leading to substantial savings in terms of overall computational time. With respect to standard second-order fully implicit approaches, the IRS4 does not require approximate linearization and factorization procedures nor inner Newton-Raphson subiterations. As a consequence, it represents a better cost-accuracy compromise for the numerical simulations of turbulent flows where the maximum time step is controlled by the lifetime of the smallest resolved turbulent structures. Numerical results for the well-documented high-pressure VKI LS-89 planar turbine cascade illustrate the potential of IRS4 for significantly reducing the overall cost of turbomachinery large eddy simulations, while preserving an accuracy similar to the explicit solver even for sensitive quantities like the heat transfer coefficient and the turbulent kinetic energy field.
AbstractList HIGHLIGHTS•A novel 4th-order accurate implicit residual smoothing scheme (IRS4) is investigated.•Global CPU time reduced by a factor 3÷5 compared to an explicit scheme.•Solution accuracy is preserved if the CFL number is less than 10.•IRS4 is applied to the LES of the VKI LS-89 turbine cascade.•IRS4 is a good strategy for relaxing stability constraints in LES of complex flows. A recently developed fourth-order accurate implicit residual smoothing scheme (IRS4) is investigated for the large eddy simulation of turbomachinery flows, characterized by moderate to high Reynolds numbers and subject to severe constraints on the maximum allowable time step if an explicit scheme is used. For structured multi-block meshes, the proposed approach leads to the inversion of a scalar pentadiagonal system by mesh direction, which can be done very efficiently. On the other hand, applying IRS4 at each stage of an explicit Runge–Kutta time scheme allows to increase the time step by a factor 5 to 10, leading to substantial savings in terms of overall computational time. With respect to standard second-order fully implicit approaches, the IRS4 does not require approximate linearization and factorization procedures nor inner Newton-Raphson subiterations. As a consequence, it represents a better cost-accuracy compromise for the numerical simulations of turbulent flows where the maximum time step is controlled by the lifetime of the smallest resolved turbulent structures. Numerical results for the well-documented high-pressure VKI LS-89 planar turbine cascade illustrate the potential of IRS4 for significantly reducing the overall cost of turbomachinery large eddy simulations, while preserving an accuracy similar to the explicit solver even for sensitive quantities like the heat transfer coefficient and the turbulent kinetic energy field.
A recently developed fourth-order accurate implicit residual smoothing scheme (IRS4) is investigated for the large eddy simulation of turbomachinery flows, characterized by moderate to high Reynolds numbers and subject to severe constraints on the maximum allowable time step if an explicit scheme is used. For structured multi-block meshes, the proposed approach leads to the inversion of a scalar pentadiagonal system by mesh direction, which can be done very efficiently. On the other hand, applying IRS4 at each stage of an explicit Runge–Kutta time scheme allows to increase the time step by a factor 5 to 10, leading to substantial savings in terms of overall computational time. With respect to standard second-order fully implicit approaches, the IRS4 does not require approximate linearization and factorization procedures nor inner Newton-Raphson subiterations. As a consequence, it represents a better cost-accuracy compromise for the numerical simulations of turbulent flows where the maximum time step is controlled by the lifetime of the smallest resolved turbulent structures. Numerical results for the well-documented high-pressure VKI LS-89 planar turbine cascade illustrate the potential of IRS4 for significantly reducing the overall cost of turbomachinery large eddy simulations, while preserving an accuracy similar to the explicit solver even for sensitive quantities like the heat transfer coefficient and the turbulent kinetic energy field.
ArticleNumber 104395
Author Cinnella, P.
Gloerfelt, X.
Hoarau, J.-Ch
Author_xml – sequence: 1
  givenname: J.-Ch
  surname: Hoarau
  fullname: Hoarau, J.-Ch
  email: jean-christophe.hoarau@ensam.eu
– sequence: 2
  givenname: P.
  orcidid: 0000-0001-9979-0783
  surname: Cinnella
  fullname: Cinnella, P.
  email: paola.cinnella@ensam.eu
– sequence: 3
  givenname: X.
  surname: Gloerfelt
  fullname: Gloerfelt, X.
  email: xavier.gloerfelt@ensam.eu
BackLink https://hal.science/hal-02463130$$DView record in HAL
BookMark eNqFkT1v2zAQhokiBeqk_Q0l0CmDHH5JNIcMRpA0AQx0aWeCIo8WDUl0SSmB_33oqu2QJdN94HkPd_deoosxjoDQV0rWlNDm5rC2cTj6fg5uzQhVpSu4qj-gFd1IVREp5AVaESLqSipOPqHLnA-k1JyJFbI7k_aAwbkTzmGYezOFOOLo8TSnNg7GdmGEdMK-jy8ZzzmMe2xwF_ZdFZODhMNw7IMNE06Qg5tNj_MQ49SdwWw7GOAz-uhNn-HL33iFfj3c_7x7rHY_vj_dbXeVFayZKiahVgYkIa3nzm8coWYjHFEts8Ckb0pmnWhlu6Gu8Uo5sBKEoJJKUhPHr9D1MrczvT6mMJh00tEE_bjd6XOPMNFwyskzLey3hT2m-HuGPOlDnNNY1tOMN4ozJeumULcLZVPMOYHX5dA_H5qSCb2mRJ890Af93wN99kAvHhS9fKP_t9b7yu2ihPKw5wBJZxtgtOBCAjtpF8O7M14Bqu6psw
CitedBy_id crossref_primary_10_1016_j_proci_2022_08_093
crossref_primary_10_1115_1_4049917
crossref_primary_10_1016_j_compfluid_2023_106138
crossref_primary_10_3390_en14030772
crossref_primary_10_1016_j_compfluid_2023_106067
crossref_primary_10_1080_14685248_2022_2037621
crossref_primary_10_1115_1_4064315
crossref_primary_10_1016_j_ecmx_2022_100338
Cites_doi 10.1243/095765003322315469
10.2514/1.B34314
10.1007/s10494-013-9485-5
10.2514/1.16335
10.29008/ETC2017-159
10.1007/s10494-018-0005-5
10.1016/j.jcp.2016.08.023
10.1016/j.compfluid.2012.07.019
10.1016/j.ijheatmasstransfer.2012.05.072
10.1002/fld.551
10.1115/1.4032435
10.1007/s10494-018-9956-9
10.1115/1.1539057
10.1007/3-540-11948-5_41
10.1115/1.3239900
10.1016/j.jcp.2003.09.003
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Feb 15, 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 15, 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
DOI 10.1016/j.compfluid.2019.104395
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0747
ExternalDocumentID oai_HAL_hal_02463130v1
10_1016_j_compfluid_2019_104395
S0045793019303536
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSW
SSZ
T5K
TN5
XPP
ZMT
~G-
29F
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
T9H
VH1
WUQ
7SC
7TB
7U5
8FD
EFKBS
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c426t-27e59ae700bf3df8d01a84d09b2ce27f609bcd4b7b81d6f99dec7e441717050d3
IEDL.DBID .~1
ISSN 0045-7930
IngestDate Wed Aug 13 07:42:20 EDT 2025
Fri Jul 25 05:22:12 EDT 2025
Thu Apr 24 23:01:26 EDT 2025
Tue Jul 01 02:21:30 EDT 2025
Fri Feb 23 02:49:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Turbomachinery
Implicit residual smoothing
LES
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-27e59ae700bf3df8d01a84d09b2ce27f609bcd4b7b81d6f99dec7e441717050d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9979-0783
0000-0002-2156-8282
OpenAccessLink https://hal.science/hal-02463130
PQID 2369329756
PQPubID 2045265
ParticipantIDs hal_primary_oai_HAL_hal_02463130v1
proquest_journals_2369329756
crossref_citationtrail_10_1016_j_compfluid_2019_104395
crossref_primary_10_1016_j_compfluid_2019_104395
elsevier_sciencedirect_doi_10_1016_j_compfluid_2019_104395
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-15
PublicationDateYYYYMMDD 2020-02-15
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers & fluids
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Pichler, Kopriva, Laskowski, Michelassi, Sandberg (bib0007) 2016; GT2016-49712
Content, Outtier, Cinnella (bib0027) 2013; AIAA Paper 2013–2423
Bhaskaran, Lele (bib0003) 2010; 11
Pogorelov, Meinke, Schröder (bib0010) 2019; 102
Outtier, Content, Cinnella, Michel (bib0028) 2013; 2013–2439
Arnone, Pacciani (bib0032) 1997; 490
Lerat, Sidès, Daru (bib0013) 1982; vol. 170
Aubard, Stefanin Volpiani, Gloerfelt, Robinet (bib0024) 2013; 91
Kiock, Lehthaus, Baines, Sieverding (bib0030) 1986; 108
Rubino, De Palma, Pascazio, Napolitano (bib0031) 2009
Sieverding, Richard, Desse (bib0035) 2003; 125
Rizzetta, Visbal, Blaisdell (bib0018) 2003; 42
Segui, Gicquel, Duchaine, de Laborderie (bib0009) 2017
Chicheportiche, Gloerfelt (bib0029) 2012; 68
Collado, Gourdain, Duchaine, Gicquel (bib0006) 2012; 55
Marty, Lantos, Michel, Bonneau (bib0011) 2015; GT2015-42134
Blazek, Kroll, Rossow (bib0015) 1992
Jameson, Schmidt, Turkel (bib0022) 1981
Wheeler, Sandberg, Sandham, Pichler, Michelassi, Laskowski (bib0008) 2016; 138
Gloerfelt, Cinnella (bib0025) 2019; 103
Marin Perez (bib0023) 2013
Arts, Lambert de Rouvroit, Rutherford (bib0016) 1990
Gourdain, Gicquel, Collado (bib0005) 2012; 28
Michel, Cinnella, Lerat (bib0034) 2011; 27
Michelassi, Wissink, Rodi (bib0002) 2003; 217
Implicit large eddy simulation: computing turbulent fluid dynamics (bib0019) 2007
Rezgui, Cinnella, Lerat (bib0020) 2005; 30
Bogey, Bailly (bib0026) 2004; 194
Cinnella, Congedo (bib0021) 2005; 43
Wilcox (bib0001) 2006
Grimich, Michel, Cinnella, Lerat (bib0033) 2014; vol. 99
Jameson, Baker (bib0014) 1983; 83–1929
Bhaskaran, Lele (bib0004) 2011; 2011–3266
Cinnella, Content (bib0012) 2016; 326
Gourdain, Gicquel, Fransen, Collado, Arts (bib0017) 2011; GT2011-46518
Pogorelov (10.1016/j.compfluid.2019.104395_bib0010) 2019; 102
Marty (10.1016/j.compfluid.2019.104395_bib0011) 2015; GT2015-42134
Collado (10.1016/j.compfluid.2019.104395_bib0006) 2012; 55
Michel (10.1016/j.compfluid.2019.104395_bib0034) 2011; 27
Jameson (10.1016/j.compfluid.2019.104395_bib0014) 1983; 83–1929
Gourdain (10.1016/j.compfluid.2019.104395_bib0005) 2012; 28
Jameson (10.1016/j.compfluid.2019.104395_bib0022) 1981
Kiock (10.1016/j.compfluid.2019.104395_bib0030) 1986; 108
Rubino (10.1016/j.compfluid.2019.104395_bib0031) 2009
Wilcox (10.1016/j.compfluid.2019.104395_bib0001) 2006
Bhaskaran (10.1016/j.compfluid.2019.104395_bib0003) 2010; 11
Rizzetta (10.1016/j.compfluid.2019.104395_bib0018) 2003; 42
Pichler (10.1016/j.compfluid.2019.104395_bib0007) 2016; GT2016-49712
Michelassi (10.1016/j.compfluid.2019.104395_bib0002) 2003; 217
Cinnella (10.1016/j.compfluid.2019.104395_bib0012) 2016; 326
Chicheportiche (10.1016/j.compfluid.2019.104395_bib0029) 2012; 68
Gourdain (10.1016/j.compfluid.2019.104395_bib0017) 2011; GT2011-46518
Cinnella (10.1016/j.compfluid.2019.104395_bib0021) 2005; 43
Lerat (10.1016/j.compfluid.2019.104395_bib0013) 1982; vol. 170
Content (10.1016/j.compfluid.2019.104395_bib0027) 2013; AIAA Paper 2013–2423
Grimich (10.1016/j.compfluid.2019.104395_bib0033) 2014; vol. 99
Marin Perez (10.1016/j.compfluid.2019.104395_bib0023) 2013
Rezgui (10.1016/j.compfluid.2019.104395_bib0020) 2005; 30
Gloerfelt (10.1016/j.compfluid.2019.104395_bib0025) 2019; 103
Arts (10.1016/j.compfluid.2019.104395_bib0016) 1990
Segui (10.1016/j.compfluid.2019.104395_bib0009) 2017
Arnone (10.1016/j.compfluid.2019.104395_bib0032) 1997; 490
Bhaskaran (10.1016/j.compfluid.2019.104395_bib0004) 2011; 2011–3266
Aubard (10.1016/j.compfluid.2019.104395_bib0024) 2013; 91
Bogey (10.1016/j.compfluid.2019.104395_bib0026) 2004; 194
Sieverding (10.1016/j.compfluid.2019.104395_bib0035) 2003; 125
Implicit large eddy simulation: computing turbulent fluid dynamics (10.1016/j.compfluid.2019.104395_bib0019) 2007
Outtier (10.1016/j.compfluid.2019.104395_bib0028) 2013; 2013–2439
Blazek (10.1016/j.compfluid.2019.104395_bib0015) 1992
Wheeler (10.1016/j.compfluid.2019.104395_sbref0008) 2016; 138
References_xml – year: 1992
  ident: bib0015
  article-title: A comparison of several implicit residual smoothing methods
  publication-title: ICFD Conference on numerical methods for fluid dynamics
– year: 1990
  ident: bib0016
  article-title: Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade: a test case for inviscid and viscous flow computations
  publication-title: VKI Training center for experimental aerodynamics technical note 174
– volume: vol. 99
  start-page: 37
  year: 2014
  end-page: 58
  ident: bib0033
  article-title: Finite volume formulation of a third-order residual-based compact scheme for unsteady flow computations
  publication-title: High order nonlinear numerical schemes for evolutionary PDEs
– volume: 194
  start-page: 194
  year: 2004
  end-page: 214
  ident: bib0026
  article-title: A family of low dispersive and low dissipative explicit schemes for flow and noise computations
  publication-title: J Comput Phys
– volume: 103
  start-page: 55
  year: 2019
  end-page: 91
  ident: bib0025
  article-title: Large eddy simulation requirements for the flow over periodic hills
  publication-title: Flow Turbul Combust
– volume: 108
  start-page: 277
  year: 1986
  end-page: 284
  ident: bib0030
  article-title: The transonic flow through a plane turbine cascade as measured in four european wind tunnels
  publication-title: J Eng Gas Turb Power
– volume: vol. 170
  start-page: 343
  year: 1982
  end-page: 349
  ident: bib0013
  article-title: An implicit finite-volume method for solving the Euler equations
  publication-title: Lecture Notes in Physics
– volume: 11
  year: 2010
  ident: bib0003
  article-title: Large eddy simulation of free-stream turbulence effects on heat transfer to a high-pressure turbine cascade
  publication-title: J Turbul
– volume: 28
  start-page: 423
  year: 2012
  end-page: 433
  ident: bib0005
  article-title: RANS and LES for the heat transfer prediction in turbine guide vane
  publication-title: J Propul Power
– year: 2017
  ident: bib0009
  article-title: LES of the LS89 cascade: influence of inflow turbulence on the flow predictions
  publication-title: European conference on turbomachinery fluid dynamics & thermodynamics
– volume: GT2015-42134
  year: 2015
  ident: bib0011
  article-title: LES and hybrid RANS/LES simulations of turbomachinery flows using high-order methods
  publication-title: ASME turbo expo conference
– start-page: 101
  year: 2009
  end-page: 106
  ident: bib0031
  article-title: Solution of the steady Euler equations using fluctuation splitting schemes on quadrilateral elements
  publication-title: Computational fluid dynamics
– volume: 27
  start-page: 2
  year: 2011
  end-page: 15
  ident: bib0034
  article-title: Multiblock residual-based compact schemes for the computation of complex turbomachinery flows
  publication-title: Int J Eng SystModell Simul
– volume: 102
  start-page: 189
  year: 2019
  end-page: 220
  ident: bib0010
  article-title: Large-eddy simulation of the unsteady full 3D rim seal flow in a one-stage axial-flow turbine
  publication-title: Flow Turbul Combust
– volume: 55
  start-page: 5754
  year: 2012
  end-page: 5768
  ident: bib0006
  article-title: Effects of free-stream turbulence on high pressure turbine blade heat transfer predicted by structured and unstructured LES
  publication-title: Int J Heat Mass Transf
– year: 1981
  ident: bib0022
  article-title: Numerical solution of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes
  publication-title: AIAA Paper
– volume: 42
  start-page: 665
  year: 2003
  end-page: 693
  ident: bib0018
  article-title: A time-implicit high-order compact differencing and filtering scheme for large-eddy simulation
  publication-title: Int J Numer Methods Fluids
– volume: 217
  start-page: 403
  year: 2003
  end-page: 411
  ident: bib0002
  article-title: Direct numerical simulation, large eddy simulation and unsteady Reynolds-averaged Navier–Stokes simulations of periodic unsteady flow in a low-pressure turbine cascade: a comparison
  publication-title: Proc Inst MechEng Part A
– volume: GT2016-49712
  year: 2016
  ident: bib0007
  article-title: Highly resolved LES of a linear HPT vane cascade using structured and unstructured codes
  publication-title: ASME Turbo expo conference
– volume: 125
  start-page: 298
  year: 2003
  end-page: 309
  ident: bib0035
  article-title: Turbine blade trailing edge flow characteristics at high subsonic outlet Mach number
  publication-title: J Turbomach
– volume: 138
  year: 2016
  ident: bib0008
  article-title: Direct numerical simulations of a high-pressure turbine vane
  publication-title: Journal of Turbomachinery
– volume: 2013–2439
  year: 2013
  ident: bib0028
  article-title: The high-order dynamic computational laboratory for CFD research and applications
  publication-title: AIAA Paper
– year: 2007
  ident: bib0019
– volume: GT2011-46518
  start-page: 1773
  year: 2011
  end-page: 1785
  ident: bib0017
  article-title: Application of RANS and LES to the prediction of flows in high pressure turbine components
  publication-title: ASME Turbo expo conference
– volume: 30
  start-page: 875
  year: 2005
  end-page: 901
  ident: bib0020
  article-title: Third-order accurate finite volume schemes for Euler computations on curvilinear meshes
  publication-title: Comput Fluids
– volume: 68
  start-page: 112
  year: 2012
  end-page: 133
  ident: bib0029
  article-title: Study of interpolation methods for high-accuracy computations on overlapping grids
  publication-title: Comput Fluids
– volume: 43
  start-page: 2458
  year: 2005
  end-page: 2461
  ident: bib0021
  article-title: Aerodynamic performance of transonic Bethe-Zel’dovich-Thompson flows past an airfoil
  publication-title: AIAA J
– volume: 91
  start-page: 497
  year: 2013
  end-page: 518
  ident: bib0024
  article-title: Comparison of subgrid-scale viscosity models and selective filtering strategy for large-eddy simulations
  publication-title: Flow Turbul Combust.
– volume: 490
  start-page: 358
  year: 1997
  end-page: 363
  ident: bib0032
  article-title: Numerical investigation on wake shedding in a turbine rotor blade
  publication-title: Fifteenth international conference on numerical methods in fluid dynamics
– year: 2013
  ident: bib0023
  publication-title: Hybrid RANS-LES simulations of turbulent flows in aerodynamics using high-order schemes
– volume: 2011–3266
  year: 2011
  ident: bib0004
  article-title: Heat transfer prediction in high pressure turbine cascade with free-stream turbulence using LES
  publication-title: AIAA Paper
– year: 2006
  ident: bib0001
  article-title: Turbulence modeling for CFD
– volume: 83–1929
  year: 1983
  ident: bib0014
  article-title: Solution of the Euler equations for complex configurations
  publication-title: AIAA Paper
– volume: 326
  start-page: 1
  year: 2016
  end-page: 29
  ident: bib0012
  article-title: High-order implicit residual smoothing time scheme for direct and large eddy simulations of compressible flows
  publication-title: J Comput Phys
– volume: AIAA Paper 2013–2423
  year: 2013
  ident: bib0027
  article-title: Coupled/uncoupled solutions of RANS equations using a Jacobian-free Newton-Krylov method
  publication-title: 21st AIAA Computational fluid dynamics conference
– volume: GT2011-46518
  start-page: 1773
  year: 2011
  ident: 10.1016/j.compfluid.2019.104395_bib0017
  article-title: Application of RANS and LES to the prediction of flows in high pressure turbine components
– volume: GT2016-49712
  year: 2016
  ident: 10.1016/j.compfluid.2019.104395_bib0007
  article-title: Highly resolved LES of a linear HPT vane cascade using structured and unstructured codes
– volume: 217
  start-page: 403
  issue: 4
  year: 2003
  ident: 10.1016/j.compfluid.2019.104395_bib0002
  article-title: Direct numerical simulation, large eddy simulation and unsteady Reynolds-averaged Navier–Stokes simulations of periodic unsteady flow in a low-pressure turbine cascade: a comparison
  publication-title: Proc Inst MechEng Part A
  doi: 10.1243/095765003322315469
– volume: 28
  start-page: 423
  year: 2012
  ident: 10.1016/j.compfluid.2019.104395_bib0005
  article-title: RANS and LES for the heat transfer prediction in turbine guide vane
  publication-title: J Propul Power
  doi: 10.2514/1.B34314
– volume: 91
  start-page: 497
  issue: 3
  year: 2013
  ident: 10.1016/j.compfluid.2019.104395_bib0024
  article-title: Comparison of subgrid-scale viscosity models and selective filtering strategy for large-eddy simulations
  publication-title: Flow Turbul Combust.
  doi: 10.1007/s10494-013-9485-5
– volume: 43
  start-page: 2458
  issue: 11
  year: 2005
  ident: 10.1016/j.compfluid.2019.104395_bib0021
  article-title: Aerodynamic performance of transonic Bethe-Zel’dovich-Thompson flows past an airfoil
  publication-title: AIAA J
  doi: 10.2514/1.16335
– year: 2017
  ident: 10.1016/j.compfluid.2019.104395_bib0009
  article-title: LES of the LS89 cascade: influence of inflow turbulence on the flow predictions
  doi: 10.29008/ETC2017-159
– volume: 103
  start-page: 55
  issue: 1
  year: 2019
  ident: 10.1016/j.compfluid.2019.104395_bib0025
  article-title: Large eddy simulation requirements for the flow over periodic hills
  publication-title: Flow Turbul Combust
  doi: 10.1007/s10494-018-0005-5
– year: 2006
  ident: 10.1016/j.compfluid.2019.104395_bib0001
– volume: 326
  start-page: 1
  year: 2016
  ident: 10.1016/j.compfluid.2019.104395_bib0012
  article-title: High-order implicit residual smoothing time scheme for direct and large eddy simulations of compressible flows
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2016.08.023
– volume: 68
  start-page: 112
  year: 2012
  ident: 10.1016/j.compfluid.2019.104395_bib0029
  article-title: Study of interpolation methods for high-accuracy computations on overlapping grids
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2012.07.019
– volume: 11
  issue: 6
  year: 2010
  ident: 10.1016/j.compfluid.2019.104395_bib0003
  article-title: Large eddy simulation of free-stream turbulence effects on heat transfer to a high-pressure turbine cascade
  publication-title: J Turbul
– volume: 55
  start-page: 5754
  issue: 21
  year: 2012
  ident: 10.1016/j.compfluid.2019.104395_bib0006
  article-title: Effects of free-stream turbulence on high pressure turbine blade heat transfer predicted by structured and unstructured LES
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2012.05.072
– volume: 42
  start-page: 665
  issue: 6
  year: 2003
  ident: 10.1016/j.compfluid.2019.104395_bib0018
  article-title: A time-implicit high-order compact differencing and filtering scheme for large-eddy simulation
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.551
– year: 2013
  ident: 10.1016/j.compfluid.2019.104395_bib0023
– volume: 138
  issue: 7
  year: 2016
  ident: 10.1016/j.compfluid.2019.104395_sbref0008
  article-title: Direct numerical simulations of a high-pressure turbine vane
  publication-title: Journal of Turbomachinery
  doi: 10.1115/1.4032435
– volume: 2011–3266
  year: 2011
  ident: 10.1016/j.compfluid.2019.104395_bib0004
  article-title: Heat transfer prediction in high pressure turbine cascade with free-stream turbulence using LES
– year: 1981
  ident: 10.1016/j.compfluid.2019.104395_bib0022
  article-title: Numerical solution of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes
– volume: 102
  start-page: 189
  issue: 1
  year: 2019
  ident: 10.1016/j.compfluid.2019.104395_bib0010
  article-title: Large-eddy simulation of the unsteady full 3D rim seal flow in a one-stage axial-flow turbine
  publication-title: Flow Turbul Combust
  doi: 10.1007/s10494-018-9956-9
– volume: 2013–2439
  year: 2013
  ident: 10.1016/j.compfluid.2019.104395_bib0028
  article-title: The high-order dynamic computational laboratory for CFD research and applications
– volume: 30
  start-page: 875
  issue: 7–8
  year: 2005
  ident: 10.1016/j.compfluid.2019.104395_bib0020
  article-title: Third-order accurate finite volume schemes for Euler computations on curvilinear meshes
  publication-title: Comput Fluids
– volume: GT2015-42134
  year: 2015
  ident: 10.1016/j.compfluid.2019.104395_bib0011
  article-title: LES and hybrid RANS/LES simulations of turbomachinery flows using high-order methods
– volume: 490
  start-page: 358
  year: 1997
  ident: 10.1016/j.compfluid.2019.104395_bib0032
  article-title: Numerical investigation on wake shedding in a turbine rotor blade
– start-page: 101
  year: 2009
  ident: 10.1016/j.compfluid.2019.104395_bib0031
  article-title: Solution of the steady Euler equations using fluctuation splitting schemes on quadrilateral elements
– volume: vol. 99
  start-page: 37
  year: 2014
  ident: 10.1016/j.compfluid.2019.104395_bib0033
  article-title: Finite volume formulation of a third-order residual-based compact scheme for unsteady flow computations
– volume: 83–1929
  year: 1983
  ident: 10.1016/j.compfluid.2019.104395_bib0014
  article-title: Solution of the Euler equations for complex configurations
– volume: 125
  start-page: 298
  issue: 2
  year: 2003
  ident: 10.1016/j.compfluid.2019.104395_bib0035
  article-title: Turbine blade trailing edge flow characteristics at high subsonic outlet Mach number
  publication-title: J Turbomach
  doi: 10.1115/1.1539057
– volume: AIAA Paper 2013–2423
  year: 2013
  ident: 10.1016/j.compfluid.2019.104395_bib0027
  article-title: Coupled/uncoupled solutions of RANS equations using a Jacobian-free Newton-Krylov method
– volume: vol. 170
  start-page: 343
  year: 1982
  ident: 10.1016/j.compfluid.2019.104395_bib0013
  article-title: An implicit finite-volume method for solving the Euler equations
  doi: 10.1007/3-540-11948-5_41
– volume: 108
  start-page: 277
  issue: 2
  year: 1986
  ident: 10.1016/j.compfluid.2019.104395_bib0030
  article-title: The transonic flow through a plane turbine cascade as measured in four european wind tunnels
  publication-title: J Eng Gas Turb Power
  doi: 10.1115/1.3239900
– volume: 194
  start-page: 194
  issue: 1
  year: 2004
  ident: 10.1016/j.compfluid.2019.104395_bib0026
  article-title: A family of low dispersive and low dissipative explicit schemes for flow and noise computations
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2003.09.003
– year: 1990
  ident: 10.1016/j.compfluid.2019.104395_bib0016
  article-title: Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade: a test case for inviscid and viscous flow computations
– volume: 27
  start-page: 2
  issue: 1–2
  year: 2011
  ident: 10.1016/j.compfluid.2019.104395_bib0034
  article-title: Multiblock residual-based compact schemes for the computation of complex turbomachinery flows
  publication-title: Int J Eng SystModell Simul
– year: 1992
  ident: 10.1016/j.compfluid.2019.104395_bib0015
  article-title: A comparison of several implicit residual smoothing methods
– year: 2007
  ident: 10.1016/j.compfluid.2019.104395_bib0019
SSID ssj0004324
Score 2.3357563
Snippet HIGHLIGHTS•A novel 4th-order accurate implicit residual smoothing scheme (IRS4) is investigated.•Global CPU time reduced by a factor 3÷5 compared to an...
A recently developed fourth-order accurate implicit residual smoothing scheme (IRS4) is investigated for the large eddy simulation of turbomachinery flows,...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104395
SubjectTerms Computational fluid dynamics
Computer simulation
Computing time
Cost control
Engineering Sciences
Finite element method
Fluids mechanics
Heat transfer coefficients
Implicit residual smoothing
Kinetic energy
Large eddy simulation
LES
Mechanics
Runge-Kutta method
Smoothing
Turbines
Turbomachinery
Vortices
Title Large eddy simulation of turbomachinery flows using a high-order implicit residual smoothing scheme
URI https://dx.doi.org/10.1016/j.compfluid.2019.104395
https://www.proquest.com/docview/2369329756
https://hal.science/hal-02463130
Volume 198
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxELUovbSHqi2tSAnIqrguOLbXu-YWoaK0RZyKxM3yZ7soyUYktMqF387MfgSoKnHobWWttdbM7Lyx_PyGkEPPeYJdRcgCDzaT1olMA8xl0WvAB2kZC43a54WaXMpvV_nVFjnt78IgrbLL_W1Ob7J1N3LcWfN4UVV4x1fmEF1Qo0AazgXKbktZYJQf3T3QPFBxrj1lRmlGwZ5wvJC2naa3FUqGjjSedwpsNPFvhHrxC6mSf2XsBobO3pI3Xf1Ix-0S35GtOH9PXj9SFdwh_hzZ3TSGsKbLatb156J1ogAvrp419Ml4s6ZpWv9ZUmS-_6SWonBx1ihx0qqhmVcrCnvx5rIWXc5qcCm-CLvhOIsfyOXZlx-nk6zrpZB5wOBVxouYaxsLxlwSIZWBjWwpA9OO-8iLpODJB-kKBwWsSlqH6IuI_clQb4cF8ZFsz-t53CU0qTSSKZfRCy19KktbCquscs7Zgis3IKq3n_Gd0Dj2u5ianlF2bTaGN2h40xp-QNhm4qLV2nh-yknvIPMkbAwgwvOTP4NLN59Coe3J-NzgGFQuSgC8_x4NyLD3uOl-76XhQkHdq4tcffqfBeyRVxy379hfJh-S7dXNbdyHGmflDpogPiAvx1-_Ty7uAQf3_bU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELXa7QE4ID7FlgIW4ho1aztOzG1VUaV02VMr9Wb5E1LtbqruFtR_35nEWShC6oFbZMVKNOPMm1HevCHkk2MsQlXhM8-8yYSxPFMAc1lwCvBBmDz3ndrnXNbn4utFcbFDjoZeGKRVptjfx_QuWqeVw2TNw6umwR5fUcDpghwFwnDB5S7ZQ3WqYkT2pien9fx3eyRnvRizQHVGnt-jeSFzOy5uGlQNnSj85clx1sS_QWr3B7Il_wraHRIdPyNPUwpJp_1bPic7YfWCPPlDWPAlcTMkeNPg_S1dN8s0oou2kQLC2HbZMSjD9S2Ni_bXmiL5_Ts1FLWLs06MkzYd07zZUCjHu34tul624FW8EQrisAyvyPnxl7OjOkvjFDIHMLzJWBkKZUKZ5zZyHyufT0wlfK4sc4GVUcKV88KWFnJYGZXywZUBR5Sh5E7u-WsyWrWr8IbQKONExEIEx5VwsapMxY000lprSibtmMjBftolrXEcebHQA6nsUm8Nr9Hwujf8mOTbjVe93MbDWz4PDtL3To4GUHh480dw6fZRqLVdT2ca1yB5kRwQ_udkTA4Gj-v0ha814xJSX1UWcv9_XuADeVSffZvp2cn89C15zLCax3EzxQEZba5vwjtIeTb2fTrSd7BWAHU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+eddy+simulation+of+turbomachinery+flows+using+a+high-order+implicit+residual+smoothing+scheme&rft.jtitle=Computers+%26+fluids&rft.au=Hoarau%2C+Jean-Christophe&rft.au=Cinnella%2C+Paola&rft.au=Gloerfelt%2C+Xavier&rft.date=2020-02-15&rft.pub=Elsevier&rft.issn=0045-7930&rft.eissn=1879-0747&rft.volume=198&rft_id=info:doi/10.1016%2Fj.compfluid.2019.104395&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02463130v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon