Influence of normalizing and tempering temperatures on the creep properties of P92 steel

P92 steel is used as a piping material in ultra super critical power plants that can be operated at steam temperatures up to 650°C. The changes in the martensitic microstructure of P92 steel must be evaluated thoroughly before it is put into actual service. In this study, indigenously developed P92...

Full description

Saved in:
Bibliographic Details
Published inHigh temperature materials and processes Vol. 39; no. 1; pp. 178 - 188
Main Authors Maddi, Lakshmiprasad, Ballal, Atul Ramesh, Peshwe, Dilip Ramkrishna, Mathew, M. D.
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 01.01.2020
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:P92 steel is used as a piping material in ultra super critical power plants that can be operated at steam temperatures up to 650°C. The changes in the martensitic microstructure of P92 steel must be evaluated thoroughly before it is put into actual service. In this study, indigenously developed P92 steel was used. The steel was subjected to normalizing and tempering heat treatments in the range of 1,040–1,060°C and 740–780°C. The changes in the microstructure were evaluated and creep-rupture properties were studied at test temperatures of 600 and 650°C. Although normalizing temperatures influenced the microstructure and creep strength marginally, the change in tempering temperatures led to significant changes. The creep rupture strength at 600°C was influenced largely by the changes in the dislocation substructure, while the precipitation of Laves phases was a significant observation made for 650°C test temperature. Proposed mechanisms for the microstructural evolution and its consequences on the rupture life are discussed in this study.
ISSN:0334-6455
2191-0324
DOI:10.1515/htmp-2020-0033