A Fortran-Keras Deep Learning Bridge for Scientific Computing
Implementing artificial neural networks is commonly achieved via high-level programming languages such as Python and easy-to-use deep learning libraries such as Keras. These software libraries come preloaded with a variety of network architectures, provide autodifferentiation, and support GPUs for f...
Saved in:
Published in | Scientific programming Vol. 2020; no. 2020; pp. 1 - 13 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
2020
Hindawi John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Implementing artificial neural networks is commonly achieved via high-level programming languages such as Python and easy-to-use deep learning libraries such as Keras. These software libraries come preloaded with a variety of network architectures, provide autodifferentiation, and support GPUs for fast and efficient computation. As a result, a deep learning practitioner will favor training a neural network model in Python, where these tools are readily available. However, many large-scale scientific computation projects are written in Fortran, making it difficult to integrate with modern deep learning methods. To alleviate this problem, we introduce a software library, the Fortran-Keras Bridge (FKB). This two-way bridge connects environments where deep learning resources are plentiful with those where they are scarce. The paper describes several unique features offered by FKB, such as customizable layers, loss functions, and network ensembles. The paper concludes with a case study that applies FKB to address open questions about the robustness of an experimental approach to global climate simulation, in which subgrid physics are outsourced to deep neural network emulators. In this context, FKB enables a hyperparameter search of one hundred plus candidate models of subgrid cloud and radiation physics, initially implemented in Keras, to be transferred and used in Fortran. Such a process allows the model’s emergent behavior to be assessed, i.e., when fit imperfections are coupled to explicit planetary-scale fluid dynamics. The results reveal a previously unrecognized strong relationship between offline validation error and online performance, in which the choice of the optimizer proves unexpectedly critical. This in turn reveals many new neural network architectures that produce considerable improvements in climate model stability including some with reduced error, for an especially challenging training dataset. |
---|---|
AbstractList | Implementing artificial neural networks is commonly achieved via high-level programming languages such as Python and easy-to-use deep learning libraries such as Keras. These software libraries come preloaded with a variety of network architectures, provide autodifferentiation, and support GPUs for fast and efficient computation. As a result, a deep learning practitioner will favor training a neural network model in Python, where these tools are readily available. However, many large-scale scientific computation projects are written in Fortran, making it difficult to integrate with modern deep learning methods. To alleviate this problem, we introduce a software library, the Fortran-Keras Bridge (FKB). This two-way bridge connects environments where deep learning resources are plentiful with those where they are scarce. The paper describes several unique features offered by FKB, such as customizable layers, loss functions, and network ensembles. The paper concludes with a case study that applies FKB to address open questions about the robustness of an experimental approach to global climate simulation, in which subgrid physics are outsourced to deep neural network emulators. In this context, FKB enables a hyperparameter search of one hundred plus candidate models of subgrid cloud and radiation physics, initially implemented in Keras, to be transferred and used in Fortran. Such a process allows the model’s emergent behavior to be assessed, i.e., when fit imperfections are coupled to explicit planetary-scale fluid dynamics. The results reveal a previously unrecognized strong relationship between offline validation error and online performance, in which the choice of the optimizer proves unexpectedly critical. This in turn reveals many new neural network architectures that produce considerable improvements in climate model stability including some with reduced error, for an especially challenging training dataset. |
Author | Ott, Jordan Linstead, Erik Pritchard, Mike Baldi, Pierre Best, Natalie Curcic, Milan |
Author_xml | – sequence: 1 fullname: Curcic, Milan – sequence: 2 fullname: Linstead, Erik – sequence: 3 fullname: Best, Natalie – sequence: 4 fullname: Pritchard, Mike – sequence: 5 fullname: Ott, Jordan – sequence: 6 fullname: Baldi, Pierre |
BookMark | eNqFkM1Lw0AQxRepYK3ePEvAo8bu7EeyOXio1apY8KCCt7DZTOqWdhM3KeJ_75YUBEGcywzM781j3iEZuNohISdALwGkHDPK6FhtC2CPDEGlMs4gexuEmUoVZ0yIA3LYtktKQQGlQ3I1iWa177x28SN63UY3iE00R-2ddYvo2ttygVFV--jZWHSdrayJpvW62XRhf0T2K71q8XjXR-R1dvsyvY_nT3cP08k8NoIlXQypYQgiAY2pAc5RFKWhilMlEs4lF6pSKBkrZZoUBUootcK0KFSpgCW85CNy1t9tfP2xwbbLl_XGu2CZh5eo4IIrFqiLnjK-bluPVd54u9b-KweabwPKtwHlu4ACzn7hxna6s7ULcdjVX6LzXvRuXak_7X8Wpz2NgcFK_9CMZjwA33q8fq4 |
CitedBy_id | crossref_primary_10_1029_2021MS002817 crossref_primary_10_1029_2021GL095043 crossref_primary_10_2151_jmsj_2023_005 crossref_primary_10_1098_rsta_2020_0093 crossref_primary_10_1029_2022GL098174 crossref_primary_10_5194_gmd_17_4017_2024 crossref_primary_10_1029_2024MS004405 crossref_primary_10_1029_2021MS002477 crossref_primary_10_1088_1748_9326_ac0eb0 crossref_primary_10_1029_2022MS003309 crossref_primary_10_1029_2021GH000570 crossref_primary_10_1007_s42979_021_00651_3 crossref_primary_10_1093_jcde_qwad103 crossref_primary_10_5194_gmd_16_199_2023 crossref_primary_10_1021_acs_energyfuels_2c03766 crossref_primary_10_5194_gmd_14_4401_2021 crossref_primary_10_1002_gamm_202100002 crossref_primary_10_1029_2024JD042019 crossref_primary_10_5194_gmd_15_3923_2022 crossref_primary_10_5194_gmd_16_6433_2023 crossref_primary_10_1098_rsta_2020_0083 crossref_primary_10_1029_2023GL106776 crossref_primary_10_5194_gmd_14_7425_2021 crossref_primary_10_1017_S0022377822001180 crossref_primary_10_1098_rsta_2020_0086 crossref_primary_10_1098_rsta_2020_0089 crossref_primary_10_5194_hess_26_4773_2022 crossref_primary_10_1029_2020WR029328 crossref_primary_10_5194_gmd_18_1917_2025 crossref_primary_10_1038_s41598_022_09041_y crossref_primary_10_1029_2020MS002385 crossref_primary_10_1029_2021MS002521 crossref_primary_10_1029_2023JD039202 crossref_primary_10_5194_gmd_18_1809_2025 crossref_primary_10_1029_2023MS003697 crossref_primary_10_1029_2020GL091363 crossref_primary_10_1029_2020MS002203 crossref_primary_10_1029_2023MS003795 crossref_primary_10_1029_2021MS002921 crossref_primary_10_1029_2022MS003034 crossref_primary_10_1029_2022MS003474 crossref_primary_10_1029_2023GL106580 |
Cites_doi | 10.1175/BAMS-D-15-00308.1 10.1002/2018GL077004 10.1017/jfm.2016.615 10.1029/2018MS001603 10.1145/3323057.3323059 10.5194/acp-4-143-2004 10.1029/2019MS001829 10.1016/j.cpc.2010.04.018 10.1029/2018gl078510 10.1038/s42256-019-0070-z 10.1016/j.neunet.2014.09.003 10.1175/BAMS-D-12-00121.1 10.1002/2014MS000340 10.1093/rpd/nci354.eprint 10.6028/jres.120.009 10.1175/2007jcli1630.1 10.1029/2019MS001896 10.1002/jcc.540040211 10.1109/JSTARS.2019.2920234 10.1175/2009jas3081.1 10.1145/2629500 10.1073/pnas.1814058116 10.1029/2018gl078202 10.1016/j.jcp.2018.10.045 10.1109/MCSE.2014.80 10.1186/s40537-019-0198-z 10.1073/pnas.1810286115 10.1016/j.artint.2014.02.004 10.1175/1520-0469(2001)058<0978:ccpwtl>2.0.co;2 10.1175/jas3453.1 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Jordan Ott et al. Copyright © 2020 Jordan Ott et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2020 Jordan Ott et al. – notice: Copyright © 2020 Jordan Ott et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0 |
DBID | ADJCN AHFXO RHU RHW RHX AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1155/2020/8888811 |
DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Chemistry Physics |
EISSN | 1875-919X |
Editor | Acacio Sanchez, Manuel E. |
Editor_xml | – sequence: 1 givenname: Manuel E. surname: Acacio Sanchez fullname: Acacio Sanchez, Manuel E. |
EndPage | 13 |
ExternalDocumentID | 10_1155_2020_8888811 1209311 |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: NSF NRT grantid: 1633631 – fundername: National Science Foundation grantid: OAC-1835863; AGS-1734164; ACI-1548562 |
GroupedDBID | .4S .DC 0R~ 24P 4.4 5VS AAFNC AAFWJ AAJEY ABDBF ABEFU ABJNI ABUBZ ACGFS ACPQW ADBBV ADJCN ADZMO AENEX AFRHK AGIAB AHFXO ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF BCNDV CAG COF DU5 EAD EAP EBS EDO EJD EMK EPL EST ESX FEDTE GROUPED_DOAJ H13 HZ~ I-F IAO IHR IL9 IOS IPNFZ KQ8 MET MIO MK~ ML~ MV1 NGNOM O9- OK1 RHX RIG TUS VOH RHU RHW AAYXX ACCMX CITATION 7SC 7SP 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c426t-17c2e1461ae7c133e4bdc0830846335348f8e522d576bbe51da8e7bb8d81263d3 |
IEDL.DBID | RHX |
ISSN | 1058-9244 |
IngestDate | Fri Jul 25 09:29:05 EDT 2025 Thu Apr 24 23:11:15 EDT 2025 Tue Jul 01 02:50:04 EDT 2025 Sun Jun 02 18:55:03 EDT 2024 Tue Nov 26 16:45:10 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2020 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-17c2e1461ae7c133e4bdc0830846335348f8e522d576bbe51da8e7bb8d81263d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8752-4664 |
OpenAccessLink | https://dx.doi.org/10.1155/2020/8888811 |
PQID | 2440434382 |
PQPubID | 2046410 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2440434382 crossref_primary_10_1155_2020_8888811 crossref_citationtrail_10_1155_2020_8888811 hindawi_primary_10_1155_2020_8888811 emarefa_primary_1209311 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-00-00 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Cairo, Egypt |
PublicationPlace_xml | – name: Cairo, Egypt – name: New York |
PublicationTitle | Scientific programming |
PublicationYear | 2020 |
Publisher | Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi – name: John Wiley & Sons, Inc |
References | 44 66 67 46 (49) 2020 (24) 2019; 27 48 27 (23) 2019; 11 (16) 2017; 3 (32) 2004; 1 (21) 2013; 94 (31) 2012 (19) 2017 (10) 2018; 155 (50) 2012; 1 51 (26) 2012; 117 11 55 (56) 2014; 15 34 35 14 (22) 2019; 11 (6) 2019; 6 15 37 59 38 (4) 2019; 12 39 (65) 2014; 6 (12) 2016; 529 (3) 2015; 61 (29) 1996; 79 (5) 2017; 5 (2) 2012 9 (47) Dec.2003 (58) 2018 60 61 62 (28) 2015 41 63 |
References_xml | – ident: 27 doi: 10.1175/BAMS-D-15-00308.1 – volume: 1 year: 2004 ident: 32 publication-title: International Journal on Finite Volumes 1 – ident: 37 doi: 10.1002/2018GL077004 – year: 2017 ident: 19 – volume: 529 year: 2016 ident: 12 publication-title: Nature – ident: 38 doi: 10.1017/jfm.2016.615 – volume: 11 start-page: 2089 year: 2019 ident: 22 publication-title: Journal of Advances in Modeling Earth Systems doi: 10.1029/2018MS001603 – ident: 46 doi: 10.1145/3323057.3323059 – ident: 48 doi: 10.5194/acp-4-143-2004 – volume: 1 start-page: 2951 year: 2012 ident: 50 publication-title: Advances in Neural Information Processing Systems – volume: 11 start-page: 3691 year: 2019 ident: 23 publication-title: Journal of Advances in Modeling Earth Systems doi: 10.1029/2019MS001829 – volume: 79 start-page: 565 volume-title: Abaqus year: 1996 ident: 29 – ident: 35 doi: 10.1016/j.cpc.2010.04.018 – ident: 51 doi: 10.1029/2018gl078510 – volume: 155 year: 2018 ident: 10 publication-title: Gastroenterology – volume: 117 year: 2012 ident: 26 publication-title: Journal of Geophysical Research: Oceans – volume: 3 year: 2017 ident: 16 publication-title: Science Advances – ident: 11 doi: 10.1038/s42256-019-0070-z – year: 2018 ident: 58 – volume: 27 year: 2019 ident: 24 publication-title: Scientific Notes of Climate Modelling Center – volume: 61 start-page: 85 year: 2015 ident: 3 publication-title: Neural Networks doi: 10.1016/j.neunet.2014.09.003 – volume: 94 start-page: 1339 year: 2013 ident: 21 publication-title: Bulletin of the American Meteorological Society doi: 10.1175/BAMS-D-12-00121.1 – volume: 6 start-page: 723 year: 2014 ident: 65 publication-title: Journal of Advances in Modeling Earth Systems doi: 10.1002/2014MS000340 – ident: 39 doi: 10.1093/rpd/nci354.eprint – ident: 44 doi: 10.6028/jres.120.009 – year: Dec.2003 ident: 47 – volume: 5 start-page: 8 year: 2017 ident: 5 publication-title: IEEE Geoscience and Remote Sensing Magazine – year: 2020 ident: 49 publication-title: SoftwareX – ident: 60 doi: 10.1175/2007jcli1630.1 – ident: 63 doi: 10.1029/2019MS001896 – ident: 34 doi: 10.1002/jcc.540040211 – volume: 15 start-page: 1929 year: 2014 ident: 56 publication-title: The Journal of Machine Learning Research – volume: 12 start-page: 3056 year: 2019 ident: 4 publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2019.2920234 – ident: 62 doi: 10.1175/2009jas3081.1 – ident: 9 doi: 10.1145/2629500 – start-page: 1097 year: 2012 ident: 2 publication-title: Advances in Neural Information Processing Systems – ident: 15 doi: 10.1073/pnas.1814058116 – ident: 66 doi: 10.1029/2018gl078202 – ident: 14 doi: 10.1016/j.jcp.2018.10.045 – ident: 67 doi: 10.1109/MCSE.2014.80 – volume: 6 start-page: 35 year: 2019 ident: 6 publication-title: Journal of Big Data doi: 10.1186/s40537-019-0198-z – year: 2012 ident: 31 – ident: 41 doi: 10.1073/pnas.1810286115 – year: 2015 ident: 28 – ident: 55 doi: 10.1016/j.artint.2014.02.004 – ident: 59 doi: 10.1175/1520-0469(2001)058<0978:ccpwtl>2.0.co;2 – ident: 61 doi: 10.1175/jas3453.1 |
SSID | ssj0018100 |
Score | 2.4575937 |
Snippet | Implementing artificial neural networks is commonly achieved via high-level programming languages such as Python and easy-to-use deep learning libraries such... |
SourceID | proquest crossref hindawi emarefa |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Application programming interface Artificial neural networks Chemistry Climate models Computational fluid dynamics Computer architecture Computer simulation Deep learning Dosimetry Earthquakes Emulators Error reduction Fluid dynamics FORTRAN High level languages Laboratories Libraries Machine learning Mechanics Molecular physics Neural networks Partial differential equations Physics Popularity Programming languages Simulation Software Training Weather forecasting |
Title | A Fortran-Keras Deep Learning Bridge for Scientific Computing |
URI | https://search.emarefa.net/detail/BIM-1209311 https://dx.doi.org/10.1155/2020/8888811 https://www.proquest.com/docview/2440434382 |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA62UPDivlRryaGeJDiTbcaDh7qUoiAeLPQ2TDYVtJZOxb_vy0ymokV0TjMkeYeXZL7vy_IeQj1nTJJInpPYuYhwQx1JQXkQx6g2mgrlbHnK904OR_xmLMYhSFKxvIUPaOfleXSa-sff4W3AAPOifDhebBaA8SrogIC5C3BVn2__0fYb8rTsaw4vAEetJy9-P56XfsYlwgw20Fqghrhf9eUmWrGTLbRep13AYRZuo_M-HgBpBpAht3aWF_jK2ikOgVIf8UV5BQsDGa2alIeBcGUGynfQaHD9cDkkIQsC0YCecxInmlqffTu3iQZFabkyGohTBMyBMcF46lILLMqAclDKitjkqU2USg1gt2SG7aLm5G1i9xGWgmnHmE8uJrkWNFdxnkrpgCVYJiPeRie1hzIdQoT7TBUvWSkVhMi8P7PgzzY6XtSeVqExfqm3F5z9VY1GZ8yX9ILz_zDQqXsmCzOsyKgPbMj8NubB_6wcolX_WS2fdFBzPnu3R0Ao5qqLGpTfd8tB9QnEd77q |
linkProvider | Hindawi Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fortran-Keras+Deep+Learning+Bridge+for+Scientific+Computing&rft.jtitle=Scientific+programming&rft.au=Curcic%2C+Milan&rft.au=Linstead%2C+Erik&rft.au=Best%2C+Natalie&rft.au=Pritchard%2C+Mike&rft.date=2020&rft.pub=Hindawi+Publishing+Corporation&rft.issn=1058-9244&rft.eissn=1875-919X&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1155%2F2020%2F8888811&rft.externalDBID=ADJCN&rft.externalDocID=1209311 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-9244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-9244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-9244&client=summon |