A Fortran-Keras Deep Learning Bridge for Scientific Computing

Implementing artificial neural networks is commonly achieved via high-level programming languages such as Python and easy-to-use deep learning libraries such as Keras. These software libraries come preloaded with a variety of network architectures, provide autodifferentiation, and support GPUs for f...

Full description

Saved in:
Bibliographic Details
Published inScientific programming Vol. 2020; no. 2020; pp. 1 - 13
Main Authors Curcic, Milan, Linstead, Erik, Best, Natalie, Pritchard, Mike, Ott, Jordan, Baldi, Pierre
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Implementing artificial neural networks is commonly achieved via high-level programming languages such as Python and easy-to-use deep learning libraries such as Keras. These software libraries come preloaded with a variety of network architectures, provide autodifferentiation, and support GPUs for fast and efficient computation. As a result, a deep learning practitioner will favor training a neural network model in Python, where these tools are readily available. However, many large-scale scientific computation projects are written in Fortran, making it difficult to integrate with modern deep learning methods. To alleviate this problem, we introduce a software library, the Fortran-Keras Bridge (FKB). This two-way bridge connects environments where deep learning resources are plentiful with those where they are scarce. The paper describes several unique features offered by FKB, such as customizable layers, loss functions, and network ensembles. The paper concludes with a case study that applies FKB to address open questions about the robustness of an experimental approach to global climate simulation, in which subgrid physics are outsourced to deep neural network emulators. In this context, FKB enables a hyperparameter search of one hundred plus candidate models of subgrid cloud and radiation physics, initially implemented in Keras, to be transferred and used in Fortran. Such a process allows the model’s emergent behavior to be assessed, i.e., when fit imperfections are coupled to explicit planetary-scale fluid dynamics. The results reveal a previously unrecognized strong relationship between offline validation error and online performance, in which the choice of the optimizer proves unexpectedly critical. This in turn reveals many new neural network architectures that produce considerable improvements in climate model stability including some with reduced error, for an especially challenging training dataset.
AbstractList Implementing artificial neural networks is commonly achieved via high-level programming languages such as Python and easy-to-use deep learning libraries such as Keras. These software libraries come preloaded with a variety of network architectures, provide autodifferentiation, and support GPUs for fast and efficient computation. As a result, a deep learning practitioner will favor training a neural network model in Python, where these tools are readily available. However, many large-scale scientific computation projects are written in Fortran, making it difficult to integrate with modern deep learning methods. To alleviate this problem, we introduce a software library, the Fortran-Keras Bridge (FKB). This two-way bridge connects environments where deep learning resources are plentiful with those where they are scarce. The paper describes several unique features offered by FKB, such as customizable layers, loss functions, and network ensembles. The paper concludes with a case study that applies FKB to address open questions about the robustness of an experimental approach to global climate simulation, in which subgrid physics are outsourced to deep neural network emulators. In this context, FKB enables a hyperparameter search of one hundred plus candidate models of subgrid cloud and radiation physics, initially implemented in Keras, to be transferred and used in Fortran. Such a process allows the model’s emergent behavior to be assessed, i.e., when fit imperfections are coupled to explicit planetary-scale fluid dynamics. The results reveal a previously unrecognized strong relationship between offline validation error and online performance, in which the choice of the optimizer proves unexpectedly critical. This in turn reveals many new neural network architectures that produce considerable improvements in climate model stability including some with reduced error, for an especially challenging training dataset.
Author Ott, Jordan
Linstead, Erik
Pritchard, Mike
Baldi, Pierre
Best, Natalie
Curcic, Milan
Author_xml – sequence: 1
  fullname: Curcic, Milan
– sequence: 2
  fullname: Linstead, Erik
– sequence: 3
  fullname: Best, Natalie
– sequence: 4
  fullname: Pritchard, Mike
– sequence: 5
  fullname: Ott, Jordan
– sequence: 6
  fullname: Baldi, Pierre
BookMark eNqFkM1Lw0AQxRepYK3ePEvAo8bu7EeyOXio1apY8KCCt7DZTOqWdhM3KeJ_75YUBEGcywzM781j3iEZuNohISdALwGkHDPK6FhtC2CPDEGlMs4gexuEmUoVZ0yIA3LYtktKQQGlQ3I1iWa177x28SN63UY3iE00R-2ddYvo2ttygVFV--jZWHSdrayJpvW62XRhf0T2K71q8XjXR-R1dvsyvY_nT3cP08k8NoIlXQypYQgiAY2pAc5RFKWhilMlEs4lF6pSKBkrZZoUBUootcK0KFSpgCW85CNy1t9tfP2xwbbLl_XGu2CZh5eo4IIrFqiLnjK-bluPVd54u9b-KweabwPKtwHlu4ACzn7hxna6s7ULcdjVX6LzXvRuXak_7X8Wpz2NgcFK_9CMZjwA33q8fq4
CitedBy_id crossref_primary_10_1029_2021MS002817
crossref_primary_10_1029_2021GL095043
crossref_primary_10_2151_jmsj_2023_005
crossref_primary_10_1098_rsta_2020_0093
crossref_primary_10_1029_2022GL098174
crossref_primary_10_5194_gmd_17_4017_2024
crossref_primary_10_1029_2024MS004405
crossref_primary_10_1029_2021MS002477
crossref_primary_10_1088_1748_9326_ac0eb0
crossref_primary_10_1029_2022MS003309
crossref_primary_10_1029_2021GH000570
crossref_primary_10_1007_s42979_021_00651_3
crossref_primary_10_1093_jcde_qwad103
crossref_primary_10_5194_gmd_16_199_2023
crossref_primary_10_1021_acs_energyfuels_2c03766
crossref_primary_10_5194_gmd_14_4401_2021
crossref_primary_10_1002_gamm_202100002
crossref_primary_10_1029_2024JD042019
crossref_primary_10_5194_gmd_15_3923_2022
crossref_primary_10_5194_gmd_16_6433_2023
crossref_primary_10_1098_rsta_2020_0083
crossref_primary_10_1029_2023GL106776
crossref_primary_10_5194_gmd_14_7425_2021
crossref_primary_10_1017_S0022377822001180
crossref_primary_10_1098_rsta_2020_0086
crossref_primary_10_1098_rsta_2020_0089
crossref_primary_10_5194_hess_26_4773_2022
crossref_primary_10_1029_2020WR029328
crossref_primary_10_5194_gmd_18_1917_2025
crossref_primary_10_1038_s41598_022_09041_y
crossref_primary_10_1029_2020MS002385
crossref_primary_10_1029_2021MS002521
crossref_primary_10_1029_2023JD039202
crossref_primary_10_5194_gmd_18_1809_2025
crossref_primary_10_1029_2023MS003697
crossref_primary_10_1029_2020GL091363
crossref_primary_10_1029_2020MS002203
crossref_primary_10_1029_2023MS003795
crossref_primary_10_1029_2021MS002921
crossref_primary_10_1029_2022MS003034
crossref_primary_10_1029_2022MS003474
crossref_primary_10_1029_2023GL106580
Cites_doi 10.1175/BAMS-D-15-00308.1
10.1002/2018GL077004
10.1017/jfm.2016.615
10.1029/2018MS001603
10.1145/3323057.3323059
10.5194/acp-4-143-2004
10.1029/2019MS001829
10.1016/j.cpc.2010.04.018
10.1029/2018gl078510
10.1038/s42256-019-0070-z
10.1016/j.neunet.2014.09.003
10.1175/BAMS-D-12-00121.1
10.1002/2014MS000340
10.1093/rpd/nci354.eprint
10.6028/jres.120.009
10.1175/2007jcli1630.1
10.1029/2019MS001896
10.1002/jcc.540040211
10.1109/JSTARS.2019.2920234
10.1175/2009jas3081.1
10.1145/2629500
10.1073/pnas.1814058116
10.1029/2018gl078202
10.1016/j.jcp.2018.10.045
10.1109/MCSE.2014.80
10.1186/s40537-019-0198-z
10.1073/pnas.1810286115
10.1016/j.artint.2014.02.004
10.1175/1520-0469(2001)058<0978:ccpwtl>2.0.co;2
10.1175/jas3453.1
ContentType Journal Article
Copyright Copyright © 2020 Jordan Ott et al.
Copyright © 2020 Jordan Ott et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2020 Jordan Ott et al.
– notice: Copyright © 2020 Jordan Ott et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1155/2020/8888811
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database


CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Chemistry
Physics
EISSN 1875-919X
Editor Acacio Sanchez, Manuel E.
Editor_xml – sequence: 1
  givenname: Manuel E.
  surname: Acacio Sanchez
  fullname: Acacio Sanchez, Manuel E.
EndPage 13
ExternalDocumentID 10_1155_2020_8888811
1209311
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: NSF NRT
  grantid: 1633631
– fundername: National Science Foundation
  grantid: OAC-1835863; AGS-1734164; ACI-1548562
GroupedDBID .4S
.DC
0R~
24P
4.4
5VS
AAFNC
AAFWJ
AAJEY
ABDBF
ABEFU
ABJNI
ABUBZ
ACGFS
ACPQW
ADBBV
ADJCN
ADZMO
AENEX
AFRHK
AGIAB
AHFXO
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BCNDV
CAG
COF
DU5
EAD
EAP
EBS
EDO
EJD
EMK
EPL
EST
ESX
FEDTE
GROUPED_DOAJ
H13
HZ~
I-F
IAO
IHR
IL9
IOS
IPNFZ
KQ8
MET
MIO
MK~
ML~
MV1
NGNOM
O9-
OK1
RHX
RIG
TUS
VOH
RHU
RHW
AAYXX
ACCMX
CITATION
7SC
7SP
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c426t-17c2e1461ae7c133e4bdc0830846335348f8e522d576bbe51da8e7bb8d81263d3
IEDL.DBID RHX
ISSN 1058-9244
IngestDate Fri Jul 25 09:29:05 EDT 2025
Thu Apr 24 23:11:15 EDT 2025
Tue Jul 01 02:50:04 EDT 2025
Sun Jun 02 18:55:03 EDT 2024
Tue Nov 26 16:45:10 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2020
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-17c2e1461ae7c133e4bdc0830846335348f8e522d576bbe51da8e7bb8d81263d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8752-4664
OpenAccessLink https://dx.doi.org/10.1155/2020/8888811
PQID 2440434382
PQPubID 2046410
PageCount 13
ParticipantIDs proquest_journals_2440434382
crossref_primary_10_1155_2020_8888811
crossref_citationtrail_10_1155_2020_8888811
hindawi_primary_10_1155_2020_8888811
emarefa_primary_1209311
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: New York
PublicationTitle Scientific programming
PublicationYear 2020
Publisher Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
– name: John Wiley & Sons, Inc
References 44
66
67
46
(49) 2020
(24) 2019; 27
48
27
(23) 2019; 11
(16) 2017; 3
(32) 2004; 1
(21) 2013; 94
(31) 2012
(19) 2017
(10) 2018; 155
(50) 2012; 1
51
(26) 2012; 117
11
55
(56) 2014; 15
34
35
14
(22) 2019; 11
(6) 2019; 6
15
37
59
38
(4) 2019; 12
39
(65) 2014; 6
(12) 2016; 529
(3) 2015; 61
(29) 1996; 79
(5) 2017; 5
(2) 2012
9
(47) Dec.2003
(58) 2018
60
61
62
(28) 2015
41
63
References_xml – ident: 27
  doi: 10.1175/BAMS-D-15-00308.1
– volume: 1
  year: 2004
  ident: 32
  publication-title: International Journal on Finite Volumes 1
– ident: 37
  doi: 10.1002/2018GL077004
– year: 2017
  ident: 19
– volume: 529
  year: 2016
  ident: 12
  publication-title: Nature
– ident: 38
  doi: 10.1017/jfm.2016.615
– volume: 11
  start-page: 2089
  year: 2019
  ident: 22
  publication-title: Journal of Advances in Modeling Earth Systems
  doi: 10.1029/2018MS001603
– ident: 46
  doi: 10.1145/3323057.3323059
– ident: 48
  doi: 10.5194/acp-4-143-2004
– volume: 1
  start-page: 2951
  year: 2012
  ident: 50
  publication-title: Advances in Neural Information Processing Systems
– volume: 11
  start-page: 3691
  year: 2019
  ident: 23
  publication-title: Journal of Advances in Modeling Earth Systems
  doi: 10.1029/2019MS001829
– volume: 79
  start-page: 565
  volume-title: Abaqus
  year: 1996
  ident: 29
– ident: 35
  doi: 10.1016/j.cpc.2010.04.018
– ident: 51
  doi: 10.1029/2018gl078510
– volume: 155
  year: 2018
  ident: 10
  publication-title: Gastroenterology
– volume: 117
  year: 2012
  ident: 26
  publication-title: Journal of Geophysical Research: Oceans
– volume: 3
  year: 2017
  ident: 16
  publication-title: Science Advances
– ident: 11
  doi: 10.1038/s42256-019-0070-z
– year: 2018
  ident: 58
– volume: 27
  year: 2019
  ident: 24
  publication-title: Scientific Notes of Climate Modelling Center
– volume: 61
  start-page: 85
  year: 2015
  ident: 3
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.09.003
– volume: 94
  start-page: 1339
  year: 2013
  ident: 21
  publication-title: Bulletin of the American Meteorological Society
  doi: 10.1175/BAMS-D-12-00121.1
– volume: 6
  start-page: 723
  year: 2014
  ident: 65
  publication-title: Journal of Advances in Modeling Earth Systems
  doi: 10.1002/2014MS000340
– ident: 39
  doi: 10.1093/rpd/nci354.eprint
– ident: 44
  doi: 10.6028/jres.120.009
– year: Dec.2003
  ident: 47
– volume: 5
  start-page: 8
  year: 2017
  ident: 5
  publication-title: IEEE Geoscience and Remote Sensing Magazine
– year: 2020
  ident: 49
  publication-title: SoftwareX
– ident: 60
  doi: 10.1175/2007jcli1630.1
– ident: 63
  doi: 10.1029/2019MS001896
– ident: 34
  doi: 10.1002/jcc.540040211
– volume: 15
  start-page: 1929
  year: 2014
  ident: 56
  publication-title: The Journal of Machine Learning Research
– volume: 12
  start-page: 3056
  year: 2019
  ident: 4
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2019.2920234
– ident: 62
  doi: 10.1175/2009jas3081.1
– ident: 9
  doi: 10.1145/2629500
– start-page: 1097
  year: 2012
  ident: 2
  publication-title: Advances in Neural Information Processing Systems
– ident: 15
  doi: 10.1073/pnas.1814058116
– ident: 66
  doi: 10.1029/2018gl078202
– ident: 14
  doi: 10.1016/j.jcp.2018.10.045
– ident: 67
  doi: 10.1109/MCSE.2014.80
– volume: 6
  start-page: 35
  year: 2019
  ident: 6
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-019-0198-z
– year: 2012
  ident: 31
– ident: 41
  doi: 10.1073/pnas.1810286115
– year: 2015
  ident: 28
– ident: 55
  doi: 10.1016/j.artint.2014.02.004
– ident: 59
  doi: 10.1175/1520-0469(2001)058<0978:ccpwtl>2.0.co;2
– ident: 61
  doi: 10.1175/jas3453.1
SSID ssj0018100
Score 2.4575937
Snippet Implementing artificial neural networks is commonly achieved via high-level programming languages such as Python and easy-to-use deep learning libraries such...
SourceID proquest
crossref
hindawi
emarefa
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Application programming interface
Artificial neural networks
Chemistry
Climate models
Computational fluid dynamics
Computer architecture
Computer simulation
Deep learning
Dosimetry
Earthquakes
Emulators
Error reduction
Fluid dynamics
FORTRAN
High level languages
Laboratories
Libraries
Machine learning
Mechanics
Molecular physics
Neural networks
Partial differential equations
Physics
Popularity
Programming languages
Simulation
Software
Training
Weather forecasting
Title A Fortran-Keras Deep Learning Bridge for Scientific Computing
URI https://search.emarefa.net/detail/BIM-1209311
https://dx.doi.org/10.1155/2020/8888811
https://www.proquest.com/docview/2440434382
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA62UPDivlRryaGeJDiTbcaDh7qUoiAeLPQ2TDYVtJZOxb_vy0ymokV0TjMkeYeXZL7vy_IeQj1nTJJInpPYuYhwQx1JQXkQx6g2mgrlbHnK904OR_xmLMYhSFKxvIUPaOfleXSa-sff4W3AAPOifDhebBaA8SrogIC5C3BVn2__0fYb8rTsaw4vAEetJy9-P56XfsYlwgw20Fqghrhf9eUmWrGTLbRep13AYRZuo_M-HgBpBpAht3aWF_jK2ikOgVIf8UV5BQsDGa2alIeBcGUGynfQaHD9cDkkIQsC0YCecxInmlqffTu3iQZFabkyGohTBMyBMcF46lILLMqAclDKitjkqU2USg1gt2SG7aLm5G1i9xGWgmnHmE8uJrkWNFdxnkrpgCVYJiPeRie1hzIdQoT7TBUvWSkVhMi8P7PgzzY6XtSeVqExfqm3F5z9VY1GZ8yX9ILz_zDQqXsmCzOsyKgPbMj8NubB_6wcolX_WS2fdFBzPnu3R0Ao5qqLGpTfd8tB9QnEd77q
linkProvider Hindawi Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fortran-Keras+Deep+Learning+Bridge+for+Scientific+Computing&rft.jtitle=Scientific+programming&rft.au=Curcic%2C+Milan&rft.au=Linstead%2C+Erik&rft.au=Best%2C+Natalie&rft.au=Pritchard%2C+Mike&rft.date=2020&rft.pub=Hindawi+Publishing+Corporation&rft.issn=1058-9244&rft.eissn=1875-919X&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1155%2F2020%2F8888811&rft.externalDBID=ADJCN&rft.externalDocID=1209311
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-9244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-9244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-9244&client=summon