Near-Infrared Light Photovoltaic Detector Based on GaAs Nanocone Array/Monolayer Graphene Schottky Junction

Near infrared light photodiodes have been attracting increasing research interest due to their wide application in various fields. In this study, the fabrication of a new n‐type GaAs nanocone (GaAsNCs) array/monolayer graphene (MLG) Schottky junction is reported for NIR light detection. The NIR phot...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 24; no. 19; pp. 2794 - 2800
Main Authors Luo, Lin-Bao, Chen, Jing-Jing, Wang, Ming-Zheng, Hu, Han, Wu, Chun-Yan, Li, Qiang, Wang, Li, Huang, Jian-An, Liang, Feng-Xia
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Near infrared light photodiodes have been attracting increasing research interest due to their wide application in various fields. In this study, the fabrication of a new n‐type GaAs nanocone (GaAsNCs) array/monolayer graphene (MLG) Schottky junction is reported for NIR light detection. The NIR photodetector (NIRPD) shows obvious rectifying behavior with a turn‐on voltage of 0.6 V. Further device analysis reveals that the photovoltaic NIRPDs are highly sensitive to 850 nm light illumination, with a fast response speed and good spectral selectivity at zero bias voltage. It is also revealed that the NIRPD is capable of monitoring high‐switching frequency optical signals (∼2000 Hz) with a high relative balance. Theoretical simulations based on finite difference time domain (FDTD) analysis finds that the high device performance is partially associated with the optical property, which can trap most incident photons in an efficient way. It is expected that such a self‐driven NIRPD will have potential application in future optoelectronic devices. A new Schottky junction near‐infrared light photodetector is fabricated by coating a GaAs nanocone array with a monolayer graphene film, which shows high sensitivity to near‐infrared light irradiation, with good reproducibility, excellent selectivity, and rapid response speed.
AbstractList Near infrared light photodiodes have been attracting increasing research interest due to their wide application in various fields. In this study, the fabrication of a new n ‐type GaAs nanocone (GaAsNCs) array/monolayer graphene (MLG) Schottky junction is reported for NIR light detection. The NIR photodetector (NIRPD) shows obvious rectifying behavior with a turn‐on voltage of 0.6 V. Further device analysis reveals that the photovoltaic NIRPDs are highly sensitive to 850 nm light illumination, with a fast response speed and good spectral selectivity at zero bias voltage. It is also revealed that the NIRPD is capable of monitoring high‐switching frequency optical signals (∼2000 Hz) with a high relative balance. Theoretical simulations based on finite difference time domain (FDTD) analysis finds that the high device performance is partially associated with the optical property, which can trap most incident photons in an efficient way. It is expected that such a self‐driven NIRPD will have potential application in future optoelectronic devices.
Near infrared light photodiodes have been attracting increasing research interest due to their wide application in various fields. In this study, the fabrication of a new n‐type GaAs nanocone (GaAsNCs) array/monolayer graphene (MLG) Schottky junction is reported for NIR light detection. The NIR photodetector (NIRPD) shows obvious rectifying behavior with a turn‐on voltage of 0.6 V. Further device analysis reveals that the photovoltaic NIRPDs are highly sensitive to 850 nm light illumination, with a fast response speed and good spectral selectivity at zero bias voltage. It is also revealed that the NIRPD is capable of monitoring high‐switching frequency optical signals (∼2000 Hz) with a high relative balance. Theoretical simulations based on finite difference time domain (FDTD) analysis finds that the high device performance is partially associated with the optical property, which can trap most incident photons in an efficient way. It is expected that such a self‐driven NIRPD will have potential application in future optoelectronic devices. A new Schottky junction near‐infrared light photodetector is fabricated by coating a GaAs nanocone array with a monolayer graphene film, which shows high sensitivity to near‐infrared light irradiation, with good reproducibility, excellent selectivity, and rapid response speed.
Near infrared light photodiodes have been attracting increasing research interest due to their wide application in various fields. In this study, the fabrication of a new n-type GaAs nanocone (GaAsNCs) array/monolayer graphene (MLG) Schottky junction is reported for NIR light detection. The NIR photodetector (NIRPD) shows obvious rectifying behavior with a turn-on voltage of 0.6 V. Further device analysis reveals that the photovoltaic NIRPDs are highly sensitive to 850 nm light illumination, with a fast response speed and good spectral selectivity at zero bias voltage. It is also revealed that the NIRPD is capable of monitoring high-switching frequency optical signals (2000 Hz) with a high relative balance. Theoretical simulations based on finite difference time domain (FDTD) analysis finds that the high device performance is partially associated with the optical property, which can trap most incident photons in an efficient way. It is expected that such a self-driven NIRPD will have potential application in future optoelectronic devices. A new Schottky junction near-infrared light photodetector is fabricated by coating a GaAs nanocone array with a monolayer graphene film, which shows high sensitivity to near-infrared light irradiation, with good reproducibility, excellent selectivity, and rapid response speed.
Author Chen, Jing-Jing
Li, Qiang
Huang, Jian-An
Wang, Li
Luo, Lin-Bao
Hu, Han
Liang, Feng-Xia
Wu, Chun-Yan
Wang, Ming-Zheng
Author_xml – sequence: 1
  givenname: Lin-Bao
  surname: Luo
  fullname: Luo, Lin-Bao
  email: luolb@hfut.edu.cn
  organization: School of Electronic Science and Applied Physics and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, Anhui, PR China
– sequence: 2
  givenname: Jing-Jing
  surname: Chen
  fullname: Chen, Jing-Jing
  organization: School of Electronic Science and Applied Physics and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, Anhui, PR China
– sequence: 3
  givenname: Ming-Zheng
  surname: Wang
  fullname: Wang, Ming-Zheng
  organization: School of Electronic Science and Applied Physics and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, Anhui, PR China
– sequence: 4
  givenname: Han
  surname: Hu
  fullname: Hu, Han
  organization: School of Electronic Science and Applied Physics and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, Anhui, PR China
– sequence: 5
  givenname: Chun-Yan
  surname: Wu
  fullname: Wu, Chun-Yan
  organization: School of Electronic Science and Applied Physics and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, Anhui, PR China
– sequence: 6
  givenname: Qiang
  surname: Li
  fullname: Li, Qiang
  organization: School of Electronic Science and Applied Physics and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, Anhui, PR China
– sequence: 7
  givenname: Li
  surname: Wang
  fullname: Wang, Li
  organization: School of Electronic Science and Applied Physics and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, Anhui, PR China
– sequence: 8
  givenname: Jian-An
  surname: Huang
  fullname: Huang, Jian-An
  email: luolb@hfut.edu.cn
  organization: Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, PR China
– sequence: 9
  givenname: Feng-Xia
  surname: Liang
  fullname: Liang, Feng-Xia
  email: luolb@hfut.edu.cn
  organization: School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, Anhui, PR China
BookMark eNqFkE1PGzEURa0KpALttmsvu5lgjz22WYavARQCUiPKzvJ4bGIysVPbKcy_Z6KgqEKqWL0nvXOunu4h2PPBGwB-YDTCCJXHqrXLUYkwQYQw8QUcYIZZQVAp9nY7fvwKDlN6RghzTugBWEyNisW1t1FF08KJe5pneD8POfwNXVZOw3OTjc4hwlOVBiJ4WKtxglPlgx4egOMYVX98G3zoVG8irKNazc1w-KWHmLzo4c3a6-yC_wb2reqS-f4-j8Ds8mJ2dlVM7urrs_Gk0LRkoqANFUIY3eqyaohAvKVGM81MS05aRrGmvGwwsVpzizm2tNWN4ASLZgCsJUfg5zZ2FcOftUlZLl3SpuuUN2GdJK4opqjiJRtQukV1DClFY6V2WW1-zVG5TmIkN9XKTbVyV-2gjT5oq-iWKvb_F062wovrTP8JLcfnl7f_usXWdSmb152r4kIyTnglf09r-Tid1Q_V6YOckTd2Np81
CitedBy_id crossref_primary_10_1039_C5TC00449G
crossref_primary_10_1002_adom_202500289
crossref_primary_10_3390_nano9050799
crossref_primary_10_1007_s12274_019_2583_5
crossref_primary_10_1039_C6TC01083K
crossref_primary_10_1021_acsnano_4c09023
crossref_primary_10_1515_nanoph_2019_0094
crossref_primary_10_1016_j_carbon_2024_119529
crossref_primary_10_1021_acsami_1c11277
crossref_primary_10_1088_1361_6641_aa6819
crossref_primary_10_1016_j_mssp_2020_104989
crossref_primary_10_1002_adom_201700081
crossref_primary_10_1016_j_talanta_2020_120808
crossref_primary_10_3390_nano12183230
crossref_primary_10_1016_j_optmat_2021_111910
crossref_primary_10_1016_j_pmatsci_2021_100856
crossref_primary_10_1109_JSEN_2021_3120554
crossref_primary_10_1007_s10854_015_2981_8
crossref_primary_10_1002_adfm_201503905
crossref_primary_10_1016_j_sna_2020_112446
crossref_primary_10_1039_C8NR00594J
crossref_primary_10_1002_adma_202004412
crossref_primary_10_1016_j_synthmet_2018_03_016
crossref_primary_10_1364_OE_24_000134
crossref_primary_10_1002_adma_201502999
crossref_primary_10_1016_j_nantod_2018_02_009
crossref_primary_10_1021_acsnano_1c02007
crossref_primary_10_1109_TED_2022_3183184
crossref_primary_10_3390_ma15134396
crossref_primary_10_1016_j_matlet_2020_127910
crossref_primary_10_1016_j_mssp_2024_108605
crossref_primary_10_1039_C8NR00158H
crossref_primary_10_1039_C6TC04894C
crossref_primary_10_1016_j_mssp_2023_107331
crossref_primary_10_1016_j_mtphys_2022_100673
crossref_primary_10_1016_j_mssp_2025_109472
crossref_primary_10_1021_acs_nanolett_0c00232
crossref_primary_10_1039_D1MA00670C
crossref_primary_10_1016_j_vacuum_2021_110792
crossref_primary_10_1039_D0NR04974C
crossref_primary_10_3390_ma16041735
crossref_primary_10_1016_j_jlumin_2022_119280
crossref_primary_10_1039_C5NR09003B
crossref_primary_10_1007_s10853_020_05618_y
crossref_primary_10_1002_adfm_201800704
crossref_primary_10_1021_acsami_9b14679
crossref_primary_10_1039_C5TC01772F
crossref_primary_10_1051_epjap_2017160440
crossref_primary_10_1364_OE_24_025922
crossref_primary_10_1088_1361_6528_ac1a43
crossref_primary_10_1021_acsami_0c14996
crossref_primary_10_1016_j_nanoen_2023_108331
crossref_primary_10_1021_acsomega_8b03548
crossref_primary_10_1002_admi_202202208
crossref_primary_10_1002_ente_202300492
crossref_primary_10_3390_s18124163
crossref_primary_10_1002_adfm_202107992
crossref_primary_10_1039_D1TC00949D
crossref_primary_10_1109_TED_2015_2453399
crossref_primary_10_1039_D0TC04621C
crossref_primary_10_1039_D0NR06788A
crossref_primary_10_1002_adfm_202111970
crossref_primary_10_1088_1361_6641_acc3bc
crossref_primary_10_1039_C5TC01799H
crossref_primary_10_1088_2053_1591_ab49ab
crossref_primary_10_1002_admt_201700005
crossref_primary_10_1039_C8TC00498F
crossref_primary_10_1021_acsami_7b04616
crossref_primary_10_1063_5_0079006
crossref_primary_10_1002_adom_201500360
crossref_primary_10_1002_admt_202000643
crossref_primary_10_1002_agt2_529
crossref_primary_10_1063_1_4966899
crossref_primary_10_1039_D1NR00333J
crossref_primary_10_1021_acsami_5b08677
crossref_primary_10_1364_OL_44_002598
crossref_primary_10_1039_D0CP04250A
crossref_primary_10_3390_mi9070350
crossref_primary_10_1016_j_mtnano_2022_100295
crossref_primary_10_1039_C9NR01096C
crossref_primary_10_1002_adma_201602867
crossref_primary_10_1016_j_jallcom_2021_163439
crossref_primary_10_1002_adpr_202000134
crossref_primary_10_1007_s11433_014_5627_6
crossref_primary_10_1016_j_jpcs_2024_112421
crossref_primary_10_1063_5_0204248
crossref_primary_10_1088_0957_4484_27_48_48LT03
crossref_primary_10_1038_srep42484
crossref_primary_10_1063_5_0051885
crossref_primary_10_1016_j_ijleo_2021_166549
crossref_primary_10_2139_ssrn_4093979
crossref_primary_10_1155_2015_326384
crossref_primary_10_1088_0957_4484_26_21_215702
crossref_primary_10_1021_acs_jpcc_8b11652
crossref_primary_10_1021_acsomega_9b00267
crossref_primary_10_1002_adom_202200062
crossref_primary_10_1038_srep12320
crossref_primary_10_1002_admi_202102068
crossref_primary_10_1088_1742_6596_687_1_012080
crossref_primary_10_1364_OE_399505
crossref_primary_10_1002_adom_202200611
crossref_primary_10_1038_srep20343
crossref_primary_10_1039_C8TC05765F
crossref_primary_10_1039_C9TC00797K
crossref_primary_10_1016_j_apsusc_2023_156624
crossref_primary_10_1039_D1TC04290D
crossref_primary_10_1002_adom_201801272
crossref_primary_10_1007_s11051_016_3736_z
crossref_primary_10_1039_D0TC03872E
crossref_primary_10_1007_s11090_018_9945_8
crossref_primary_10_1021_acsami_2c05038
crossref_primary_10_1039_D4TC00215F
crossref_primary_10_1021_acs_jpcc_9b04260
crossref_primary_10_1002_pssr_202300465
crossref_primary_10_1088_2053_1591_aa69a2
crossref_primary_10_1039_C9NR04312H
crossref_primary_10_1021_acsami_6b06580
crossref_primary_10_1088_0957_4484_25_41_415401
crossref_primary_10_3390_mi14061226
crossref_primary_10_1021_acsanm_2c01039
crossref_primary_10_1002_admt_202200772
crossref_primary_10_1016_j_nanoen_2020_104544
crossref_primary_10_1116_6_0001570
crossref_primary_10_1039_D1QI00187F
crossref_primary_10_1557_mrs_2017_141
crossref_primary_10_1007_s00339_021_04705_4
crossref_primary_10_1016_j_physb_2018_02_010
crossref_primary_10_1021_acsanm_0c01258
crossref_primary_10_1063_5_0236154
crossref_primary_10_3390_electronics8121493
crossref_primary_10_1016_j_materresbull_2021_111382
crossref_primary_10_1021_acsami_3c13552
crossref_primary_10_1021_acsami_3c17477
crossref_primary_10_1063_1_4919727
crossref_primary_10_1039_D0RA04308G
crossref_primary_10_1007_s00339_020_04009_z
crossref_primary_10_1021_acsami_6b09943
crossref_primary_10_1002_adma_201902039
crossref_primary_10_1016_j_jlumin_2022_119477
crossref_primary_10_1039_C5TA03652F
crossref_primary_10_1016_j_optmat_2024_115183
crossref_primary_10_3390_cryst11101160
crossref_primary_10_1002_admt_202202126
crossref_primary_10_1002_adfm_201804712
crossref_primary_10_1002_adfm_202208807
crossref_primary_10_1039_D5TA00296F
crossref_primary_10_1088_1361_6528_ad4973
crossref_primary_10_1039_C5NR03308J
crossref_primary_10_1088_1674_1056_27_9_097104
crossref_primary_10_1016_j_sna_2021_112625
crossref_primary_10_1039_D2TC00438K
crossref_primary_10_1109_TED_2023_3248543
crossref_primary_10_1021_acs_chemrev_1c00735
crossref_primary_10_1088_1361_6641_ad7d2c
crossref_primary_10_1016_j_physleta_2021_127558
crossref_primary_10_1021_acsnano_6b01842
crossref_primary_10_1002_adfm_201705970
crossref_primary_10_1364_OE_23_004839
crossref_primary_10_1116_1_5114910
crossref_primary_10_1002_advs_202003713
crossref_primary_10_1039_C8RA07683A
crossref_primary_10_1002_adom_201701282
crossref_primary_10_1021_acs_nanolett_5b00906
crossref_primary_10_1088_1361_6528_aaa4d6
crossref_primary_10_1016_j_mtcomm_2020_101092
crossref_primary_10_1039_C5TC04410C
crossref_primary_10_1002_lpor_201500179
crossref_primary_10_1021_acsami_8b12009
crossref_primary_10_1364_PRJ_480612
crossref_primary_10_1002_smll_201502336
crossref_primary_10_1016_j_optmat_2022_113408
crossref_primary_10_1109_LED_2015_2478395
crossref_primary_10_1007_s11433_016_0402_y
crossref_primary_10_12677_APP_2018_82017
Cites_doi 10.1021/nl802636b
10.1002/adma.201101655
10.1021/nn301888e
10.1021/nl202732r
10.1126/science.1062340
10.1063/1.3491212
10.1063/1.4724208
10.1007/s11664-008-0534-0
10.1021/nl202708d
10.1103/PhysRevLett.96.157402
10.1021/nl0802178
10.1063/1.4773245
10.1021/nl303682j
10.1021/nl901110b
10.1117/12.502164
10.1109/3.958360
10.1021/nn300989g
10.1038/nphoton.2011.33
10.1039/c0jm02778b
10.1002/smll.201203188
10.1039/c2jm16632a
10.1002/adfm.200600351
10.1063/1.3459961
10.1021/nl204550q
10.1063/1.3120281
10.1039/c2nr30277b
10.1021/nl204414u
10.1063/1.3584871
10.1017/CBO9780511614255
10.1364/OE.19.006100
10.3390/s130405054
10.1002/smll.201203151
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7QQ
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201303368
DatabaseName Istex
CrossRef
Ceramic Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Ceramic Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 2800
ExternalDocumentID 10_1002_adfm_201303368
ADFM201303368
ark_67375_WNG_XNTGV5BV_T
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51172151; 21101051
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2011HGZJ0004; 2012HGCX0003; 2013HGCH0012
– fundername: China Postdoctoral Science Foundation
  funderid: 103471013
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QQ
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4268-4b4888ecdc25b3807d4ec6c6ed39d641c472b13fcc7f171f4dcb87318bd39ff3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Thu Jul 10 17:37:47 EDT 2025
Tue Jul 01 01:30:12 EDT 2025
Thu Apr 24 23:06:28 EDT 2025
Wed Jan 22 16:17:37 EST 2025
Wed Oct 30 09:48:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4268-4b4888ecdc25b3807d4ec6c6ed39d641c472b13fcc7f171f4dcb87318bd39ff3
Notes China Postdoctoral Science Foundation - No. 103471013
National Natural Science Foundation of China - No. 51172151; No. 21101051
Fundamental Research Funds for the Central Universities - No. 2011HGZJ0004; No. 2012HGCX0003; No. 2013HGCH0012
ark:/67375/WNG-XNTGV5BV-T
ArticleID:ADFM201303368
istex:A86042059D74A123212163E9B04F90D8628ABCE1
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1541405726
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1541405726
crossref_citationtrail_10_1002_adfm_201303368
crossref_primary_10_1002_adfm_201303368
wiley_primary_10_1002_adfm_201303368_ADFM201303368
istex_primary_ark_67375_WNG_XNTGV5BV_T
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References G. E. Bulman, D. R. Myers, J. J. Wiczer, L. R. Dawson, R. M. Biefeld, T. E. Zipperian, IEEE Electron. Devices Meet. 1984, 30, 719.
M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, R. Hillenbrand, Nat. Photonics 2011, 5, 283.
J. J. Hassan, M. A. Mahdi, S. J. Kasim, N. M. Ahmed, H. Abu Hassan, Z. Hassan, Appl. Phys. Lett. 2012, 101, 261108.
L. B. Luo, J. S. Jie, W. F. Zhang, Z. B. He, J. X. Wang, G. D. Yuan, W. J. Zhang, L. C. M. Wu, S. T. Lee, Appl. Phys. Lett. 2009, 94, 193101.
B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, T. Fukui, Nano Lett. 2009, 9, 112.
K. X. Z. Wang, Z. F. Yu, V. Liu, Y. Cui, S. H. Fan, Nano Lett. 2012, 12, 1616.
P. Senanayake, C. H. Hung, J. Shapiro, A. Lin, B. L. Liang, B. S. Williams, D. L. Huffaker, Nano Lett. 2011, 11, 5279.
J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. B. Luo, Y. K. Liu, J. A. Zapien, C. Surya, S. T. Lee, Appl. Phys. Lett. 2011, 98, 183108.
C. Downs, T. E. Vandervelde, Sensors 2013, 13, 5054.
A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, Y. Y. Proskuryakov, Appl. Phys. Lett. 2001, 89, 5676.
X. H. An, F. Z. Liu, Y. J. Jung, S. Kar, Nano Lett. 2013, 13, 909.
B. Desiatov, I. Goykhman, U. Levy, Nano Lett. 2009, 9, 3381.
Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, S. T. Lee, Adv. Funct. Mater. 2007, 17, 1795.
J. A. Czaban, D. A. Thompson, R. R. LaPierre, Nano Lett. 2008, 8, 148.
B. Nie, L. B. Luo, C. Xie, P. Lv, J. S. Jie, M. Feng, F. Z. Li, C. Y. Wu, L. Wang, Y. Q. Yu, S. H. Yu, Small 2013, 9, 2872.
X. Xie, S. Y. Kwok, Z. Z. Lu, Y. K. Liu, Y. L. Cao, L. B. Luo, J. A. Zapien, I. Bello, C. S. Lee, S. T. Lee, W. J. Zhang, Nanoscale 2012, 4, 2914.
C. Li, Y. Bando, M. Y. Liao, Y. Koide, D. Golberg, Appl. Phys. Lett. 2010, 97, 161102.
X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, A. F. Hebard, Nano Lett. 2012, 12, 2745.
J. Tatebayyashi, A. Jallipalli, M. N. Kutty, S. H. Huang, T. J. Rotter, G. Balakrishnan, L. R. Dawson, D. L. Huffaker, J. Electron. Mater. 2008, 37, 1758.
G. Mariani, R. B. Laghumavarapu, B. T. de villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, D. L. Huffaker, Appl. Phys. Lett. 2010, 97, 013107.
Y. L. Cao, Z. T. Liu, L. M. Chen, Y. B. Tang, L. B. Luo, J. S. Jie, W. J. Zhang, S. T. Lee, C. S. Lee, Opt. Exp. 2011, 19, 6100.
J. M. Liu, Photonic devices, Cambridge University Press, Cambridge, 2005.
A. D. Stiff, S. Krishna, P. Bhattacharya, S. W. Kennerly, IEEE J. Quantum Elect. 2001, 37, 1412.
W. Gao, J. Shu, C. Y. Qiu, Q. F. Xu, ACS Nano 2012, 6, 7806.
P. C. Wu, Y. Dai, Y. Ye, Y. Yin, L. Dai, J. Mater. Chem. 2011, 21, 2563.
L. J. Yang, S. Wang, Q. S. Zeng, Z. Y. Zhang, L. M. Peng, Small 2013, 9, 1225.
E. D. Palik, Handbook of Optical-Constants, J. Opt. Soc. Am. A 1984
L. Y. Cao, B. Nabet, J. E. Spanier, Phys. Rev. Lett. 2006, 96, 157402.
Q. L. Bao, K. P. Loh, ACS Nano 2012, 6, 3677.
X. W. Fu, Z. M. Liao, Y. B. Zhou, H. C. Wu, Y. Q. Bie, J. Xu, D. P. Yu, Appl. Phys. Lett. 2012, 100, 223114.
J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, C. M. Lieber, Science 2001, 293, 1455.
C. W. Liang, S. Roth, Nano Lett. 2008, 8, 1809.
P. Senanayake, C. H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, D. L. Huffaker, Nano Lett. 2011, 11, 5279.
S. H. Lee, X. G. Zhang, C. M. Parish, H. N. Lee, D. B. Smith, Y. N. He, J. Xu, Adv. Mater. 2011, 23, 4381.
P. W. Barber, R. K. Chang, Optical effects associated with small particles, World Scientific, Singapore 1988.
Z. W. Gao, W. F. Jin, Y. Zhou, Y. Dai, B. Yu, C. Liu, W. J. Xu, Y. P. Li, H. L. Peng, Z. F. Liu, Nanoscale 2013, 5, 12.
D. Wu, Y. Jiang, Y. G. Zhang, J. Li, Y. Q. Yu, Y. Zhang, Z. F. Zhu, L. Wang, C. Y. Wu, L. B. Luo, J. Mater. Chem. 2012, 22, 6206.
M. Dejarld, J. C. Shin, W. Chern, D. Chanda, K. Balasundaram, J. A. Rogers, X. L. Li, Nano Lett. 2011, 11, 5259.
V. V. Vasilyev, V. N. Ovsyuk, Y. G. Sidorov, Proc. SPIE 2003, 5065, 39.
2007; 17
2010; 97
2006; 96
2012; 100
2012; 101
2008; 37
2011; 11
2008; 8
2011; 98
2005
2001; 89
2013; 5
2012; 12
2011; 19
2011; 5
2013; 9
1984; 30
2001; 293
2013; 13
2009; 94
2003; 5065
2009; 9
2011; 21
1984
2001; 37
2011; 23
2012; 6
2012; 4
2012; 22
1988
Barber P. W. (e_1_2_6_36_1) 1988
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Bulman G. E. (e_1_2_6_9_1) 1984; 30
e_1_2_6_19_1
Czaban J. A. (e_1_2_6_14_1) 2008; 8
e_1_2_6_13_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_40_1
Yakimov A. I. (e_1_2_6_7_1) 2001; 89
e_1_2_6_8_1
Gao Z. W. (e_1_2_6_20_1) 2013; 5
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
Palik E. D. (e_1_2_6_39_1) 1984
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: P. C. Wu, Y. Dai, Y. Ye, Y. Yin, L. Dai, J. Mater. Chem. 2011, 21, 2563.
– reference: V. V. Vasilyev, V. N. Ovsyuk, Y. G. Sidorov, Proc. SPIE 2003, 5065, 39.
– reference: Z. W. Gao, W. F. Jin, Y. Zhou, Y. Dai, B. Yu, C. Liu, W. J. Xu, Y. P. Li, H. L. Peng, Z. F. Liu, Nanoscale 2013, 5, 12.
– reference: J. J. Hassan, M. A. Mahdi, S. J. Kasim, N. M. Ahmed, H. Abu Hassan, Z. Hassan, Appl. Phys. Lett. 2012, 101, 261108.
– reference: A. D. Stiff, S. Krishna, P. Bhattacharya, S. W. Kennerly, IEEE J. Quantum Elect. 2001, 37, 1412.
– reference: C. Li, Y. Bando, M. Y. Liao, Y. Koide, D. Golberg, Appl. Phys. Lett. 2010, 97, 161102.
– reference: D. Wu, Y. Jiang, Y. G. Zhang, J. Li, Y. Q. Yu, Y. Zhang, Z. F. Zhu, L. Wang, C. Y. Wu, L. B. Luo, J. Mater. Chem. 2012, 22, 6206.
– reference: Y. L. Cao, Z. T. Liu, L. M. Chen, Y. B. Tang, L. B. Luo, J. S. Jie, W. J. Zhang, S. T. Lee, C. S. Lee, Opt. Exp. 2011, 19, 6100.
– reference: E. D. Palik, Handbook of Optical-Constants, J. Opt. Soc. Am. A 1984
– reference: W. Gao, J. Shu, C. Y. Qiu, Q. F. Xu, ACS Nano 2012, 6, 7806.
– reference: C. W. Liang, S. Roth, Nano Lett. 2008, 8, 1809.
– reference: G. Mariani, R. B. Laghumavarapu, B. T. de villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, D. L. Huffaker, Appl. Phys. Lett. 2010, 97, 013107.
– reference: J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. B. Luo, Y. K. Liu, J. A. Zapien, C. Surya, S. T. Lee, Appl. Phys. Lett. 2011, 98, 183108.
– reference: A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, Y. Y. Proskuryakov, Appl. Phys. Lett. 2001, 89, 5676.
– reference: J. M. Liu, Photonic devices, Cambridge University Press, Cambridge, 2005.
– reference: L. Y. Cao, B. Nabet, J. E. Spanier, Phys. Rev. Lett. 2006, 96, 157402.
– reference: J. A. Czaban, D. A. Thompson, R. R. LaPierre, Nano Lett. 2008, 8, 148.
– reference: B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, T. Fukui, Nano Lett. 2009, 9, 112.
– reference: J. Tatebayyashi, A. Jallipalli, M. N. Kutty, S. H. Huang, T. J. Rotter, G. Balakrishnan, L. R. Dawson, D. L. Huffaker, J. Electron. Mater. 2008, 37, 1758.
– reference: X. W. Fu, Z. M. Liao, Y. B. Zhou, H. C. Wu, Y. Q. Bie, J. Xu, D. P. Yu, Appl. Phys. Lett. 2012, 100, 223114.
– reference: Q. L. Bao, K. P. Loh, ACS Nano 2012, 6, 3677.
– reference: P. Senanayake, C. H. Hung, J. Shapiro, A. Lin, B. L. Liang, B. S. Williams, D. L. Huffaker, Nano Lett. 2011, 11, 5279.
– reference: S. H. Lee, X. G. Zhang, C. M. Parish, H. N. Lee, D. B. Smith, Y. N. He, J. Xu, Adv. Mater. 2011, 23, 4381.
– reference: L. J. Yang, S. Wang, Q. S. Zeng, Z. Y. Zhang, L. M. Peng, Small 2013, 9, 1225.
– reference: M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, R. Hillenbrand, Nat. Photonics 2011, 5, 283.
– reference: P. Senanayake, C. H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, D. L. Huffaker, Nano Lett. 2011, 11, 5279.
– reference: P. W. Barber, R. K. Chang, Optical effects associated with small particles, World Scientific, Singapore 1988.
– reference: K. X. Z. Wang, Z. F. Yu, V. Liu, Y. Cui, S. H. Fan, Nano Lett. 2012, 12, 1616.
– reference: B. Desiatov, I. Goykhman, U. Levy, Nano Lett. 2009, 9, 3381.
– reference: Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, S. T. Lee, Adv. Funct. Mater. 2007, 17, 1795.
– reference: C. Downs, T. E. Vandervelde, Sensors 2013, 13, 5054.
– reference: G. E. Bulman, D. R. Myers, J. J. Wiczer, L. R. Dawson, R. M. Biefeld, T. E. Zipperian, IEEE Electron. Devices Meet. 1984, 30, 719.
– reference: J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, C. M. Lieber, Science 2001, 293, 1455.
– reference: B. Nie, L. B. Luo, C. Xie, P. Lv, J. S. Jie, M. Feng, F. Z. Li, C. Y. Wu, L. Wang, Y. Q. Yu, S. H. Yu, Small 2013, 9, 2872.
– reference: X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, A. F. Hebard, Nano Lett. 2012, 12, 2745.
– reference: L. B. Luo, J. S. Jie, W. F. Zhang, Z. B. He, J. X. Wang, G. D. Yuan, W. J. Zhang, L. C. M. Wu, S. T. Lee, Appl. Phys. Lett. 2009, 94, 193101.
– reference: X. Xie, S. Y. Kwok, Z. Z. Lu, Y. K. Liu, Y. L. Cao, L. B. Luo, J. A. Zapien, I. Bello, C. S. Lee, S. T. Lee, W. J. Zhang, Nanoscale 2012, 4, 2914.
– reference: X. H. An, F. Z. Liu, Y. J. Jung, S. Kar, Nano Lett. 2013, 13, 909.
– reference: M. Dejarld, J. C. Shin, W. Chern, D. Chanda, K. Balasundaram, J. A. Rogers, X. L. Li, Nano Lett. 2011, 11, 5259.
– volume: 9
  start-page: 2872
  year: 2013
  publication-title: Small
– volume: 4
  start-page: 2914
  year: 2012
  publication-title: Nanoscale
– volume: 12
  start-page: 1616
  year: 2012
  publication-title: Nano Lett.
– year: 2005
– volume: 101
  start-page: 261108
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 5279
  year: 2011
  publication-title: Nano Lett.
– volume: 9
  start-page: 1225
  year: 2013
  publication-title: Small
– volume: 12
  start-page: 2745
  year: 2012
  publication-title: Nano Lett.
– volume: 30
  start-page: 719
  year: 1984
  publication-title: IEEE Electron. Devices Meet.
– volume: 23
  start-page: 4381
  year: 2011
  publication-title: Adv. Mater.
– volume: 293
  start-page: 1455
  year: 2001
  publication-title: Science
– volume: 13
  start-page: 5054
  year: 2013
  publication-title: Sensors
– volume: 9
  start-page: 3381
  year: 2009
  publication-title: Nano Lett.
– volume: 89
  start-page: 5676
  year: 2001
  publication-title: Appl. Phys. Lett.
– volume: 97
  start-page: 013107
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 112
  year: 2009
  publication-title: Nano Lett.
– volume: 17
  start-page: 1795
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 5065
  start-page: 39
  year: 2003
  publication-title: Proc. SPIE
– volume: 100
  start-page: 223114
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 22
  start-page: 6206
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 96
  start-page: 157402
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 5259
  year: 2011
  publication-title: Nano Lett.
– volume: 19
  start-page: 6100
  year: 2011
  publication-title: Opt. Exp.
– volume: 21
  start-page: 2563
  year: 2011
  publication-title: J. Mater. Chem.
– year: 1988
– volume: 5
  start-page: 283
  year: 2011
  publication-title: Nat. Photonics
– year: 1984
  publication-title: Handbook of Optical‐Constants, J. Opt. Soc. Am. A
– volume: 37
  start-page: 1758
  year: 2008
  publication-title: J. Electron. Mater.
– volume: 37
  start-page: 1412
  year: 2001
  publication-title: IEEE J. Quantum Elect.
– volume: 94
  start-page: 193101
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 98
  start-page: 183108
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 3677
  year: 2012
  publication-title: ACS Nano
– volume: 13
  start-page: 909
  year: 2013
  publication-title: Nano Lett.
– volume: 5
  start-page: 12
  year: 2013
  publication-title: Nanoscale
– volume: 97
  start-page: 161102
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 7806
  year: 2012
  publication-title: ACS Nano
– volume: 8
  start-page: 1809
  year: 2008
  publication-title: Nano Lett.
– volume: 8
  start-page: 148
  year: 2008
  publication-title: Nano Lett.
– volume: 8
  start-page: 148
  year: 2008
  ident: e_1_2_6_14_1
  publication-title: Nano Lett.
– ident: e_1_2_6_15_1
  doi: 10.1021/nl802636b
– ident: e_1_2_6_21_1
  doi: 10.1002/adma.201101655
– ident: e_1_2_6_40_1
  doi: 10.1021/nn301888e
– ident: e_1_2_6_16_1
  doi: 10.1021/nl202732r
– ident: e_1_2_6_2_1
  doi: 10.1126/science.1062340
– ident: e_1_2_6_5_1
  doi: 10.1063/1.3491212
– ident: e_1_2_6_34_1
  doi: 10.1063/1.4724208
– volume: 89
  start-page: 5676
  year: 2001
  ident: e_1_2_6_7_1
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_6_8_1
  doi: 10.1007/s11664-008-0534-0
– ident: e_1_2_6_24_1
  doi: 10.1021/nl202708d
– ident: e_1_2_6_35_1
  doi: 10.1103/PhysRevLett.96.157402
– ident: e_1_2_6_12_1
  doi: 10.1021/nl0802178
– ident: e_1_2_6_13_1
  doi: 10.1063/1.4773245
– ident: e_1_2_6_19_1
  doi: 10.1021/nl303682j
– ident: e_1_2_6_38_1
  doi: 10.1021/nl901110b
– volume: 30
  start-page: 719
  year: 1984
  ident: e_1_2_6_9_1
  publication-title: IEEE Electron. Devices Meet.
– volume: 5
  start-page: 12
  year: 2013
  ident: e_1_2_6_20_1
  publication-title: Nanoscale
– ident: e_1_2_6_10_1
  doi: 10.1117/12.502164
– ident: e_1_2_6_31_1
  doi: 10.1109/3.958360
– ident: e_1_2_6_3_1
  doi: 10.1021/nn300989g
– volume-title: Optical effects associated with small particles
  year: 1988
  ident: e_1_2_6_36_1
– ident: e_1_2_6_37_1
  doi: 10.1038/nphoton.2011.33
– ident: e_1_2_6_6_1
  doi: 10.1039/c0jm02778b
– ident: e_1_2_6_26_1
  doi: 10.1002/smll.201203188
– year: 1984
  ident: e_1_2_6_39_1
  publication-title: Handbook of Optical‐Constants, J. Opt. Soc. Am. A
– ident: e_1_2_6_11_1
  doi: 10.1039/c2jm16632a
– ident: e_1_2_6_33_1
  doi: 10.1002/adfm.200600351
– ident: e_1_2_6_17_1
  doi: 10.1063/1.3459961
– ident: e_1_2_6_18_1
  doi: 10.1021/nl202732r
– ident: e_1_2_6_22_1
  doi: 10.1021/nl204550q
– ident: e_1_2_6_25_1
  doi: 10.1063/1.3120281
– ident: e_1_2_6_32_1
  doi: 10.1039/c2nr30277b
– ident: e_1_2_6_27_1
  doi: 10.1021/nl204414u
– ident: e_1_2_6_23_1
  doi: 10.1063/1.3584871
– ident: e_1_2_6_29_1
  doi: 10.1017/CBO9780511614255
– ident: e_1_2_6_28_1
  doi: 10.1364/OE.19.006100
– ident: e_1_2_6_4_1
  doi: 10.3390/s130405054
– ident: e_1_2_6_30_1
  doi: 10.1002/smll.201203151
SSID ssj0017734
Score 2.525418
Snippet Near infrared light photodiodes have been attracting increasing research interest due to their wide application in various fields. In this study, the...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2794
SubjectTerms Arrays
Devices
Electric potential
Gallium arsenide
Gallium arsenides
Graphene
light trapping
monolayer graphene
Monolayers
Nanostructure
nanostructures
near infrared light
photodetectors
Title Near-Infrared Light Photovoltaic Detector Based on GaAs Nanocone Array/Monolayer Graphene Schottky Junction
URI https://api.istex.fr/ark:/67375/WNG-XNTGV5BV-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201303368
https://www.proquest.com/docview/1541405726
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELfQ9gIPjL-iAyYjIXjKWjvOnz52lHZMa4WgjL5Z8dnWUFkytanE9rSPwGfkk3CXtKFFQkjwlkjnxLF9v7uL735m7GUKUjhv4qCL-BgoAAhMQsyIobGqIoxLqTh5NI6PP6mTaTTdqOKv-SGaH26kGRVek4JnZtH-RRqaWU-V5ITBYUzVvpSwRV7Rh4Y_SiRJva0cC0rwEtM1a2NHtrebb1mlXRrgb1su56bjWlmewR7L1n2uE05mh8vSHML1b3SO__NR99jdlVvKe_U6us9uufwBu7NBVviQXYxRKX7cfH-X-zllrfNTiuv5-_OiLBDjyuwL8L4rq10AfoTG0fIi58Ost-AI4QXG3Q6fP8-u2ogjGFCjr8-HRJeNaMuJDLQsZ1f8BO0srZVHbDJ4O3lzHKwOawgAjXwaKINQkDqwICNDLPZWOYghdjbs2lgJUIk0IvQAiReJ8MqCSRNEFIMC3oeP2U6OHXnCuKQo1YcWfIS-B2RdZSMJRri0Y8KOsy0WrOdKw4rInM7T-KprCmapaRR1M4ot9rqRv6wpPP4o-aqa-kYsm88o8S2J9OfxUE_Hk-FZdHSmJy32Yr02NKoj7bFkuSuWCy3oWHX0gWXcYrKa6b-8U_f6g1Fzt_8vjZ6y23it6jTMZ2ynnC_dc3SVSnPAdnv90enHg0otfgKEDQ35
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZg9wAceCPK00gITtnWifPoscvSdpc2QigsvVnx2BarLgnqphLLiZ_Ab-SXMJM0YYuEkOCYaJyH7flmxh5_w9jzBHxhnY68IeKjJwHA0zExIwbayJowLqHDyfM0mr6XR4uwzSakszANP0S34EaaUeM1KTgtSPd_sYbmxtFRcgLhIEous10q611HVe86BikRx83GciQoxUssWt7Ggd_fbr9ll3api79sOZ0XXdfa9oxvMN1-dZNystxbV3oPvv5G6Phfv3WTXd94pnzUTKVb7JItbrNrF_gK77BPKerFj2_fDwu3osR1PqPQnr_9WFYlwlyVnwA_sFW9EcD30T4aXhZ8ko_OOKJ4iaG3xeev8vM-QgnG1Oju8wkxZiPgcuIDrarlOT9CU0vT5S7Lxq-zV1NvU6_BA7TziSc1okFiwYAfaiKyN9JCBJE1wdBEUoCMfS0CBxA7EQsnDegkRlDRKOBccI_tFPgh9xn3KVB1gQEXovsB-VCa0ActbDLQwcCaHvPawVKw4TKnkhqnqmFh9hX1oup6scdedvKfGxaPP0q-qMe-E8tXS8p9i0P1IZ2oRZpNjsP9Y5X12LN2cijUSNpmyQtbrs-UoMrq6Ab7UY_59VD_5Z1qdDCed1cP_qXRU3Zlms1nanaYvnnIruJ92WRlPmI71WptH6PnVOkntW78BNZ7EIA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELdgkxA88B9R_hoJwVPWOnGc9LGjtNvYogmV0TcrPtti6kimLpUYT3wEPiOfhLukDS0SQoLHROfEse9-dxeff2bsZQqhcN6ooI_4GEgACExCzIiRsbImjEtpc_JRpvY-yINpPF3bxd_wQ7Q_3MgyarwmAz-3vvuLNDS3nnaSEwZHKr3KtqXqpaTXw_ctgZRIkmZdWQmq8BLTFW1jL-xutt9wS9s0wl82Ys71yLV2PaNbLF91uqk4me0sKrMDX3_jc_yfr7rNbi7jUj5oFOkOu-KKu-zGGlvhPfY5Q6v48e37fuHnVLbODymx58efyqpEkKvyU-BDV9XLAHwXvaPlZcHH-eCCI4aXmHg7fP48v-wikGBGjcE-HxNfNsItJzbQqppd8gN0tKQs99lk9HbyZi9YntYQAHr5NJAGsSB1YCGMDdHYW-lAgXI26lslBcgkNCLyAIkXifDSgkkThBSDAt5HD9hWgR15yHhIaaqPLPgYgw_I-9LGIRjh0p6Jes52WLCaKw1LJnM6UONMNxzMoaZR1O0odtjrVv684fD4o-SreupbsXw-o8q3JNYfs7GeZpPxSbx7oicd9mKlGxrtkRZZ8sKViwst6Fx1DIJD1WFhPdN_eaceDEdH7dWjf2n0nF07Ho704X727jG7jrdlU5L5hG1V84V7imFTZZ7VlvETsyIPOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-Infrared+Light+Photovoltaic+Detector+Based+on+GaAs+Nanocone+Array%2FMonolayer+Graphene+Schottky+Junction&rft.jtitle=Advanced+functional+materials&rft.au=Luo%2C+Lin-Bao&rft.au=Chen%2C+Jing-Jing&rft.au=Wang%2C+Ming-Zheng&rft.au=Hu%2C+Han&rft.date=2014-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=24&rft.issue=19&rft.spage=2794&rft.epage=2800&rft_id=info:doi/10.1002%2Fadfm.201303368&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon