Near-Infrared Light Photovoltaic Detector Based on GaAs Nanocone Array/Monolayer Graphene Schottky Junction
Near infrared light photodiodes have been attracting increasing research interest due to their wide application in various fields. In this study, the fabrication of a new n‐type GaAs nanocone (GaAsNCs) array/monolayer graphene (MLG) Schottky junction is reported for NIR light detection. The NIR phot...
Saved in:
Published in | Advanced functional materials Vol. 24; no. 19; pp. 2794 - 2800 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.05.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Near infrared light photodiodes have been attracting increasing research interest due to their wide application in various fields. In this study, the fabrication of a new n‐type GaAs nanocone (GaAsNCs) array/monolayer graphene (MLG) Schottky junction is reported for NIR light detection. The NIR photodetector (NIRPD) shows obvious rectifying behavior with a turn‐on voltage of 0.6 V. Further device analysis reveals that the photovoltaic NIRPDs are highly sensitive to 850 nm light illumination, with a fast response speed and good spectral selectivity at zero bias voltage. It is also revealed that the NIRPD is capable of monitoring high‐switching frequency optical signals (∼2000 Hz) with a high relative balance. Theoretical simulations based on finite difference time domain (FDTD) analysis finds that the high device performance is partially associated with the optical property, which can trap most incident photons in an efficient way. It is expected that such a self‐driven NIRPD will have potential application in future optoelectronic devices.
A new Schottky junction near‐infrared light photodetector is fabricated by coating a GaAs nanocone array with a monolayer graphene film, which shows high sensitivity to near‐infrared light irradiation, with good reproducibility, excellent selectivity, and rapid response speed. |
---|---|
AbstractList | Near infrared light photodiodes have been attracting increasing research interest due to their wide application in various fields. In this study, the fabrication of a new
n
‐type GaAs nanocone (GaAsNCs) array/monolayer graphene (MLG) Schottky junction is reported for NIR light detection. The NIR photodetector (NIRPD) shows obvious rectifying behavior with a turn‐on voltage of 0.6 V. Further device analysis reveals that the photovoltaic NIRPDs are highly sensitive to 850 nm light illumination, with a fast response speed and good spectral selectivity at zero bias voltage. It is also revealed that the NIRPD is capable of monitoring high‐switching frequency optical signals (∼2000 Hz) with a high relative balance. Theoretical simulations based on finite difference time domain (FDTD) analysis finds that the high device performance is partially associated with the optical property, which can trap most incident photons in an efficient way. It is expected that such a self‐driven NIRPD will have potential application in future optoelectronic devices. Near infrared light photodiodes have been attracting increasing research interest due to their wide application in various fields. In this study, the fabrication of a new n‐type GaAs nanocone (GaAsNCs) array/monolayer graphene (MLG) Schottky junction is reported for NIR light detection. The NIR photodetector (NIRPD) shows obvious rectifying behavior with a turn‐on voltage of 0.6 V. Further device analysis reveals that the photovoltaic NIRPDs are highly sensitive to 850 nm light illumination, with a fast response speed and good spectral selectivity at zero bias voltage. It is also revealed that the NIRPD is capable of monitoring high‐switching frequency optical signals (∼2000 Hz) with a high relative balance. Theoretical simulations based on finite difference time domain (FDTD) analysis finds that the high device performance is partially associated with the optical property, which can trap most incident photons in an efficient way. It is expected that such a self‐driven NIRPD will have potential application in future optoelectronic devices. A new Schottky junction near‐infrared light photodetector is fabricated by coating a GaAs nanocone array with a monolayer graphene film, which shows high sensitivity to near‐infrared light irradiation, with good reproducibility, excellent selectivity, and rapid response speed. Near infrared light photodiodes have been attracting increasing research interest due to their wide application in various fields. In this study, the fabrication of a new n-type GaAs nanocone (GaAsNCs) array/monolayer graphene (MLG) Schottky junction is reported for NIR light detection. The NIR photodetector (NIRPD) shows obvious rectifying behavior with a turn-on voltage of 0.6 V. Further device analysis reveals that the photovoltaic NIRPDs are highly sensitive to 850 nm light illumination, with a fast response speed and good spectral selectivity at zero bias voltage. It is also revealed that the NIRPD is capable of monitoring high-switching frequency optical signals (2000 Hz) with a high relative balance. Theoretical simulations based on finite difference time domain (FDTD) analysis finds that the high device performance is partially associated with the optical property, which can trap most incident photons in an efficient way. It is expected that such a self-driven NIRPD will have potential application in future optoelectronic devices. A new Schottky junction near-infrared light photodetector is fabricated by coating a GaAs nanocone array with a monolayer graphene film, which shows high sensitivity to near-infrared light irradiation, with good reproducibility, excellent selectivity, and rapid response speed. |
Author | Chen, Jing-Jing Li, Qiang Huang, Jian-An Wang, Li Luo, Lin-Bao Hu, Han Liang, Feng-Xia Wu, Chun-Yan Wang, Ming-Zheng |
Author_xml | – sequence: 1 givenname: Lin-Bao surname: Luo fullname: Luo, Lin-Bao email: luolb@hfut.edu.cn organization: School of Electronic Science and Applied Physics and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, Anhui, PR China – sequence: 2 givenname: Jing-Jing surname: Chen fullname: Chen, Jing-Jing organization: School of Electronic Science and Applied Physics and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, Anhui, PR China – sequence: 3 givenname: Ming-Zheng surname: Wang fullname: Wang, Ming-Zheng organization: School of Electronic Science and Applied Physics and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, Anhui, PR China – sequence: 4 givenname: Han surname: Hu fullname: Hu, Han organization: School of Electronic Science and Applied Physics and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, Anhui, PR China – sequence: 5 givenname: Chun-Yan surname: Wu fullname: Wu, Chun-Yan organization: School of Electronic Science and Applied Physics and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, Anhui, PR China – sequence: 6 givenname: Qiang surname: Li fullname: Li, Qiang organization: School of Electronic Science and Applied Physics and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, Anhui, PR China – sequence: 7 givenname: Li surname: Wang fullname: Wang, Li organization: School of Electronic Science and Applied Physics and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, Anhui, PR China – sequence: 8 givenname: Jian-An surname: Huang fullname: Huang, Jian-An email: luolb@hfut.edu.cn organization: Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, PR China – sequence: 9 givenname: Feng-Xia surname: Liang fullname: Liang, Feng-Xia email: luolb@hfut.edu.cn organization: School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, Anhui, PR China |
BookMark | eNqFkE1PGzEURa0KpALttmsvu5lgjz22WYavARQCUiPKzvJ4bGIysVPbKcy_Z6KgqEKqWL0nvXOunu4h2PPBGwB-YDTCCJXHqrXLUYkwQYQw8QUcYIZZQVAp9nY7fvwKDlN6RghzTugBWEyNisW1t1FF08KJe5pneD8POfwNXVZOw3OTjc4hwlOVBiJ4WKtxglPlgx4egOMYVX98G3zoVG8irKNazc1w-KWHmLzo4c3a6-yC_wb2reqS-f4-j8Ds8mJ2dlVM7urrs_Gk0LRkoqANFUIY3eqyaohAvKVGM81MS05aRrGmvGwwsVpzizm2tNWN4ASLZgCsJUfg5zZ2FcOftUlZLl3SpuuUN2GdJK4opqjiJRtQukV1DClFY6V2WW1-zVG5TmIkN9XKTbVyV-2gjT5oq-iWKvb_F062wovrTP8JLcfnl7f_usXWdSmb152r4kIyTnglf09r-Tid1Q_V6YOckTd2Np81 |
CitedBy_id | crossref_primary_10_1039_C5TC00449G crossref_primary_10_1002_adom_202500289 crossref_primary_10_3390_nano9050799 crossref_primary_10_1007_s12274_019_2583_5 crossref_primary_10_1039_C6TC01083K crossref_primary_10_1021_acsnano_4c09023 crossref_primary_10_1515_nanoph_2019_0094 crossref_primary_10_1016_j_carbon_2024_119529 crossref_primary_10_1021_acsami_1c11277 crossref_primary_10_1088_1361_6641_aa6819 crossref_primary_10_1016_j_mssp_2020_104989 crossref_primary_10_1002_adom_201700081 crossref_primary_10_1016_j_talanta_2020_120808 crossref_primary_10_3390_nano12183230 crossref_primary_10_1016_j_optmat_2021_111910 crossref_primary_10_1016_j_pmatsci_2021_100856 crossref_primary_10_1109_JSEN_2021_3120554 crossref_primary_10_1007_s10854_015_2981_8 crossref_primary_10_1002_adfm_201503905 crossref_primary_10_1016_j_sna_2020_112446 crossref_primary_10_1039_C8NR00594J crossref_primary_10_1002_adma_202004412 crossref_primary_10_1016_j_synthmet_2018_03_016 crossref_primary_10_1364_OE_24_000134 crossref_primary_10_1002_adma_201502999 crossref_primary_10_1016_j_nantod_2018_02_009 crossref_primary_10_1021_acsnano_1c02007 crossref_primary_10_1109_TED_2022_3183184 crossref_primary_10_3390_ma15134396 crossref_primary_10_1016_j_matlet_2020_127910 crossref_primary_10_1016_j_mssp_2024_108605 crossref_primary_10_1039_C8NR00158H crossref_primary_10_1039_C6TC04894C crossref_primary_10_1016_j_mssp_2023_107331 crossref_primary_10_1016_j_mtphys_2022_100673 crossref_primary_10_1016_j_mssp_2025_109472 crossref_primary_10_1021_acs_nanolett_0c00232 crossref_primary_10_1039_D1MA00670C crossref_primary_10_1016_j_vacuum_2021_110792 crossref_primary_10_1039_D0NR04974C crossref_primary_10_3390_ma16041735 crossref_primary_10_1016_j_jlumin_2022_119280 crossref_primary_10_1039_C5NR09003B crossref_primary_10_1007_s10853_020_05618_y crossref_primary_10_1002_adfm_201800704 crossref_primary_10_1021_acsami_9b14679 crossref_primary_10_1039_C5TC01772F crossref_primary_10_1051_epjap_2017160440 crossref_primary_10_1364_OE_24_025922 crossref_primary_10_1088_1361_6528_ac1a43 crossref_primary_10_1021_acsami_0c14996 crossref_primary_10_1016_j_nanoen_2023_108331 crossref_primary_10_1021_acsomega_8b03548 crossref_primary_10_1002_admi_202202208 crossref_primary_10_1002_ente_202300492 crossref_primary_10_3390_s18124163 crossref_primary_10_1002_adfm_202107992 crossref_primary_10_1039_D1TC00949D crossref_primary_10_1109_TED_2015_2453399 crossref_primary_10_1039_D0TC04621C crossref_primary_10_1039_D0NR06788A crossref_primary_10_1002_adfm_202111970 crossref_primary_10_1088_1361_6641_acc3bc crossref_primary_10_1039_C5TC01799H crossref_primary_10_1088_2053_1591_ab49ab crossref_primary_10_1002_admt_201700005 crossref_primary_10_1039_C8TC00498F crossref_primary_10_1021_acsami_7b04616 crossref_primary_10_1063_5_0079006 crossref_primary_10_1002_adom_201500360 crossref_primary_10_1002_admt_202000643 crossref_primary_10_1002_agt2_529 crossref_primary_10_1063_1_4966899 crossref_primary_10_1039_D1NR00333J crossref_primary_10_1021_acsami_5b08677 crossref_primary_10_1364_OL_44_002598 crossref_primary_10_1039_D0CP04250A crossref_primary_10_3390_mi9070350 crossref_primary_10_1016_j_mtnano_2022_100295 crossref_primary_10_1039_C9NR01096C crossref_primary_10_1002_adma_201602867 crossref_primary_10_1016_j_jallcom_2021_163439 crossref_primary_10_1002_adpr_202000134 crossref_primary_10_1007_s11433_014_5627_6 crossref_primary_10_1016_j_jpcs_2024_112421 crossref_primary_10_1063_5_0204248 crossref_primary_10_1088_0957_4484_27_48_48LT03 crossref_primary_10_1038_srep42484 crossref_primary_10_1063_5_0051885 crossref_primary_10_1016_j_ijleo_2021_166549 crossref_primary_10_2139_ssrn_4093979 crossref_primary_10_1155_2015_326384 crossref_primary_10_1088_0957_4484_26_21_215702 crossref_primary_10_1021_acs_jpcc_8b11652 crossref_primary_10_1021_acsomega_9b00267 crossref_primary_10_1002_adom_202200062 crossref_primary_10_1038_srep12320 crossref_primary_10_1002_admi_202102068 crossref_primary_10_1088_1742_6596_687_1_012080 crossref_primary_10_1364_OE_399505 crossref_primary_10_1002_adom_202200611 crossref_primary_10_1038_srep20343 crossref_primary_10_1039_C8TC05765F crossref_primary_10_1039_C9TC00797K crossref_primary_10_1016_j_apsusc_2023_156624 crossref_primary_10_1039_D1TC04290D crossref_primary_10_1002_adom_201801272 crossref_primary_10_1007_s11051_016_3736_z crossref_primary_10_1039_D0TC03872E crossref_primary_10_1007_s11090_018_9945_8 crossref_primary_10_1021_acsami_2c05038 crossref_primary_10_1039_D4TC00215F crossref_primary_10_1021_acs_jpcc_9b04260 crossref_primary_10_1002_pssr_202300465 crossref_primary_10_1088_2053_1591_aa69a2 crossref_primary_10_1039_C9NR04312H crossref_primary_10_1021_acsami_6b06580 crossref_primary_10_1088_0957_4484_25_41_415401 crossref_primary_10_3390_mi14061226 crossref_primary_10_1021_acsanm_2c01039 crossref_primary_10_1002_admt_202200772 crossref_primary_10_1016_j_nanoen_2020_104544 crossref_primary_10_1116_6_0001570 crossref_primary_10_1039_D1QI00187F crossref_primary_10_1557_mrs_2017_141 crossref_primary_10_1007_s00339_021_04705_4 crossref_primary_10_1016_j_physb_2018_02_010 crossref_primary_10_1021_acsanm_0c01258 crossref_primary_10_1063_5_0236154 crossref_primary_10_3390_electronics8121493 crossref_primary_10_1016_j_materresbull_2021_111382 crossref_primary_10_1021_acsami_3c13552 crossref_primary_10_1021_acsami_3c17477 crossref_primary_10_1063_1_4919727 crossref_primary_10_1039_D0RA04308G crossref_primary_10_1007_s00339_020_04009_z crossref_primary_10_1021_acsami_6b09943 crossref_primary_10_1002_adma_201902039 crossref_primary_10_1016_j_jlumin_2022_119477 crossref_primary_10_1039_C5TA03652F crossref_primary_10_1016_j_optmat_2024_115183 crossref_primary_10_3390_cryst11101160 crossref_primary_10_1002_admt_202202126 crossref_primary_10_1002_adfm_201804712 crossref_primary_10_1002_adfm_202208807 crossref_primary_10_1039_D5TA00296F crossref_primary_10_1088_1361_6528_ad4973 crossref_primary_10_1039_C5NR03308J crossref_primary_10_1088_1674_1056_27_9_097104 crossref_primary_10_1016_j_sna_2021_112625 crossref_primary_10_1039_D2TC00438K crossref_primary_10_1109_TED_2023_3248543 crossref_primary_10_1021_acs_chemrev_1c00735 crossref_primary_10_1088_1361_6641_ad7d2c crossref_primary_10_1016_j_physleta_2021_127558 crossref_primary_10_1021_acsnano_6b01842 crossref_primary_10_1002_adfm_201705970 crossref_primary_10_1364_OE_23_004839 crossref_primary_10_1116_1_5114910 crossref_primary_10_1002_advs_202003713 crossref_primary_10_1039_C8RA07683A crossref_primary_10_1002_adom_201701282 crossref_primary_10_1021_acs_nanolett_5b00906 crossref_primary_10_1088_1361_6528_aaa4d6 crossref_primary_10_1016_j_mtcomm_2020_101092 crossref_primary_10_1039_C5TC04410C crossref_primary_10_1002_lpor_201500179 crossref_primary_10_1021_acsami_8b12009 crossref_primary_10_1364_PRJ_480612 crossref_primary_10_1002_smll_201502336 crossref_primary_10_1016_j_optmat_2022_113408 crossref_primary_10_1109_LED_2015_2478395 crossref_primary_10_1007_s11433_016_0402_y crossref_primary_10_12677_APP_2018_82017 |
Cites_doi | 10.1021/nl802636b 10.1002/adma.201101655 10.1021/nn301888e 10.1021/nl202732r 10.1126/science.1062340 10.1063/1.3491212 10.1063/1.4724208 10.1007/s11664-008-0534-0 10.1021/nl202708d 10.1103/PhysRevLett.96.157402 10.1021/nl0802178 10.1063/1.4773245 10.1021/nl303682j 10.1021/nl901110b 10.1117/12.502164 10.1109/3.958360 10.1021/nn300989g 10.1038/nphoton.2011.33 10.1039/c0jm02778b 10.1002/smll.201203188 10.1039/c2jm16632a 10.1002/adfm.200600351 10.1063/1.3459961 10.1021/nl204550q 10.1063/1.3120281 10.1039/c2nr30277b 10.1021/nl204414u 10.1063/1.3584871 10.1017/CBO9780511614255 10.1364/OE.19.006100 10.3390/s130405054 10.1002/smll.201203151 |
ContentType | Journal Article |
Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7QQ 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201303368 |
DatabaseName | Istex CrossRef Ceramic Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Ceramic Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | 2800 |
ExternalDocumentID | 10_1002_adfm_201303368 ADFM201303368 ark_67375_WNG_XNTGV5BV_T |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51172151; 21101051 – fundername: Fundamental Research Funds for the Central Universities funderid: 2011HGZJ0004; 2012HGCX0003; 2013HGCH0012 – fundername: China Postdoctoral Science Foundation funderid: 103471013 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7QQ 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4268-4b4888ecdc25b3807d4ec6c6ed39d641c472b13fcc7f171f4dcb87318bd39ff3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Thu Jul 10 17:37:47 EDT 2025 Tue Jul 01 01:30:12 EDT 2025 Thu Apr 24 23:06:28 EDT 2025 Wed Jan 22 16:17:37 EST 2025 Wed Oct 30 09:48:21 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4268-4b4888ecdc25b3807d4ec6c6ed39d641c472b13fcc7f171f4dcb87318bd39ff3 |
Notes | China Postdoctoral Science Foundation - No. 103471013 National Natural Science Foundation of China - No. 51172151; No. 21101051 Fundamental Research Funds for the Central Universities - No. 2011HGZJ0004; No. 2012HGCX0003; No. 2013HGCH0012 ark:/67375/WNG-XNTGV5BV-T ArticleID:ADFM201303368 istex:A86042059D74A123212163E9B04F90D8628ABCE1 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1541405726 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1541405726 crossref_citationtrail_10_1002_adfm_201303368 crossref_primary_10_1002_adfm_201303368 wiley_primary_10_1002_adfm_201303368_ADFM201303368 istex_primary_ark_67375_WNG_XNTGV5BV_T |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-01 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | G. E. Bulman, D. R. Myers, J. J. Wiczer, L. R. Dawson, R. M. Biefeld, T. E. Zipperian, IEEE Electron. Devices Meet. 1984, 30, 719. M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, R. Hillenbrand, Nat. Photonics 2011, 5, 283. J. J. Hassan, M. A. Mahdi, S. J. Kasim, N. M. Ahmed, H. Abu Hassan, Z. Hassan, Appl. Phys. Lett. 2012, 101, 261108. L. B. Luo, J. S. Jie, W. F. Zhang, Z. B. He, J. X. Wang, G. D. Yuan, W. J. Zhang, L. C. M. Wu, S. T. Lee, Appl. Phys. Lett. 2009, 94, 193101. B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, T. Fukui, Nano Lett. 2009, 9, 112. K. X. Z. Wang, Z. F. Yu, V. Liu, Y. Cui, S. H. Fan, Nano Lett. 2012, 12, 1616. P. Senanayake, C. H. Hung, J. Shapiro, A. Lin, B. L. Liang, B. S. Williams, D. L. Huffaker, Nano Lett. 2011, 11, 5279. J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. B. Luo, Y. K. Liu, J. A. Zapien, C. Surya, S. T. Lee, Appl. Phys. Lett. 2011, 98, 183108. C. Downs, T. E. Vandervelde, Sensors 2013, 13, 5054. A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, Y. Y. Proskuryakov, Appl. Phys. Lett. 2001, 89, 5676. X. H. An, F. Z. Liu, Y. J. Jung, S. Kar, Nano Lett. 2013, 13, 909. B. Desiatov, I. Goykhman, U. Levy, Nano Lett. 2009, 9, 3381. Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, S. T. Lee, Adv. Funct. Mater. 2007, 17, 1795. J. A. Czaban, D. A. Thompson, R. R. LaPierre, Nano Lett. 2008, 8, 148. B. Nie, L. B. Luo, C. Xie, P. Lv, J. S. Jie, M. Feng, F. Z. Li, C. Y. Wu, L. Wang, Y. Q. Yu, S. H. Yu, Small 2013, 9, 2872. X. Xie, S. Y. Kwok, Z. Z. Lu, Y. K. Liu, Y. L. Cao, L. B. Luo, J. A. Zapien, I. Bello, C. S. Lee, S. T. Lee, W. J. Zhang, Nanoscale 2012, 4, 2914. C. Li, Y. Bando, M. Y. Liao, Y. Koide, D. Golberg, Appl. Phys. Lett. 2010, 97, 161102. X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, A. F. Hebard, Nano Lett. 2012, 12, 2745. J. Tatebayyashi, A. Jallipalli, M. N. Kutty, S. H. Huang, T. J. Rotter, G. Balakrishnan, L. R. Dawson, D. L. Huffaker, J. Electron. Mater. 2008, 37, 1758. G. Mariani, R. B. Laghumavarapu, B. T. de villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, D. L. Huffaker, Appl. Phys. Lett. 2010, 97, 013107. Y. L. Cao, Z. T. Liu, L. M. Chen, Y. B. Tang, L. B. Luo, J. S. Jie, W. J. Zhang, S. T. Lee, C. S. Lee, Opt. Exp. 2011, 19, 6100. J. M. Liu, Photonic devices, Cambridge University Press, Cambridge, 2005. A. D. Stiff, S. Krishna, P. Bhattacharya, S. W. Kennerly, IEEE J. Quantum Elect. 2001, 37, 1412. W. Gao, J. Shu, C. Y. Qiu, Q. F. Xu, ACS Nano 2012, 6, 7806. P. C. Wu, Y. Dai, Y. Ye, Y. Yin, L. Dai, J. Mater. Chem. 2011, 21, 2563. L. J. Yang, S. Wang, Q. S. Zeng, Z. Y. Zhang, L. M. Peng, Small 2013, 9, 1225. E. D. Palik, Handbook of Optical-Constants, J. Opt. Soc. Am. A 1984 L. Y. Cao, B. Nabet, J. E. Spanier, Phys. Rev. Lett. 2006, 96, 157402. Q. L. Bao, K. P. Loh, ACS Nano 2012, 6, 3677. X. W. Fu, Z. M. Liao, Y. B. Zhou, H. C. Wu, Y. Q. Bie, J. Xu, D. P. Yu, Appl. Phys. Lett. 2012, 100, 223114. J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, C. M. Lieber, Science 2001, 293, 1455. C. W. Liang, S. Roth, Nano Lett. 2008, 8, 1809. P. Senanayake, C. H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, D. L. Huffaker, Nano Lett. 2011, 11, 5279. S. H. Lee, X. G. Zhang, C. M. Parish, H. N. Lee, D. B. Smith, Y. N. He, J. Xu, Adv. Mater. 2011, 23, 4381. P. W. Barber, R. K. Chang, Optical effects associated with small particles, World Scientific, Singapore 1988. Z. W. Gao, W. F. Jin, Y. Zhou, Y. Dai, B. Yu, C. Liu, W. J. Xu, Y. P. Li, H. L. Peng, Z. F. Liu, Nanoscale 2013, 5, 12. D. Wu, Y. Jiang, Y. G. Zhang, J. Li, Y. Q. Yu, Y. Zhang, Z. F. Zhu, L. Wang, C. Y. Wu, L. B. Luo, J. Mater. Chem. 2012, 22, 6206. M. Dejarld, J. C. Shin, W. Chern, D. Chanda, K. Balasundaram, J. A. Rogers, X. L. Li, Nano Lett. 2011, 11, 5259. V. V. Vasilyev, V. N. Ovsyuk, Y. G. Sidorov, Proc. SPIE 2003, 5065, 39. 2007; 17 2010; 97 2006; 96 2012; 100 2012; 101 2008; 37 2011; 11 2008; 8 2011; 98 2005 2001; 89 2013; 5 2012; 12 2011; 19 2011; 5 2013; 9 1984; 30 2001; 293 2013; 13 2009; 94 2003; 5065 2009; 9 2011; 21 1984 2001; 37 2011; 23 2012; 6 2012; 4 2012; 22 1988 Barber P. W. (e_1_2_6_36_1) 1988 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Bulman G. E. (e_1_2_6_9_1) 1984; 30 e_1_2_6_19_1 Czaban J. A. (e_1_2_6_14_1) 2008; 8 e_1_2_6_13_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_40_1 Yakimov A. I. (e_1_2_6_7_1) 2001; 89 e_1_2_6_8_1 Gao Z. W. (e_1_2_6_20_1) 2013; 5 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 Palik E. D. (e_1_2_6_39_1) 1984 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: P. C. Wu, Y. Dai, Y. Ye, Y. Yin, L. Dai, J. Mater. Chem. 2011, 21, 2563. – reference: V. V. Vasilyev, V. N. Ovsyuk, Y. G. Sidorov, Proc. SPIE 2003, 5065, 39. – reference: Z. W. Gao, W. F. Jin, Y. Zhou, Y. Dai, B. Yu, C. Liu, W. J. Xu, Y. P. Li, H. L. Peng, Z. F. Liu, Nanoscale 2013, 5, 12. – reference: J. J. Hassan, M. A. Mahdi, S. J. Kasim, N. M. Ahmed, H. Abu Hassan, Z. Hassan, Appl. Phys. Lett. 2012, 101, 261108. – reference: A. D. Stiff, S. Krishna, P. Bhattacharya, S. W. Kennerly, IEEE J. Quantum Elect. 2001, 37, 1412. – reference: C. Li, Y. Bando, M. Y. Liao, Y. Koide, D. Golberg, Appl. Phys. Lett. 2010, 97, 161102. – reference: D. Wu, Y. Jiang, Y. G. Zhang, J. Li, Y. Q. Yu, Y. Zhang, Z. F. Zhu, L. Wang, C. Y. Wu, L. B. Luo, J. Mater. Chem. 2012, 22, 6206. – reference: Y. L. Cao, Z. T. Liu, L. M. Chen, Y. B. Tang, L. B. Luo, J. S. Jie, W. J. Zhang, S. T. Lee, C. S. Lee, Opt. Exp. 2011, 19, 6100. – reference: E. D. Palik, Handbook of Optical-Constants, J. Opt. Soc. Am. A 1984 – reference: W. Gao, J. Shu, C. Y. Qiu, Q. F. Xu, ACS Nano 2012, 6, 7806. – reference: C. W. Liang, S. Roth, Nano Lett. 2008, 8, 1809. – reference: G. Mariani, R. B. Laghumavarapu, B. T. de villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, D. L. Huffaker, Appl. Phys. Lett. 2010, 97, 013107. – reference: J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. B. Luo, Y. K. Liu, J. A. Zapien, C. Surya, S. T. Lee, Appl. Phys. Lett. 2011, 98, 183108. – reference: A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, Y. Y. Proskuryakov, Appl. Phys. Lett. 2001, 89, 5676. – reference: J. M. Liu, Photonic devices, Cambridge University Press, Cambridge, 2005. – reference: L. Y. Cao, B. Nabet, J. E. Spanier, Phys. Rev. Lett. 2006, 96, 157402. – reference: J. A. Czaban, D. A. Thompson, R. R. LaPierre, Nano Lett. 2008, 8, 148. – reference: B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, T. Fukui, Nano Lett. 2009, 9, 112. – reference: J. Tatebayyashi, A. Jallipalli, M. N. Kutty, S. H. Huang, T. J. Rotter, G. Balakrishnan, L. R. Dawson, D. L. Huffaker, J. Electron. Mater. 2008, 37, 1758. – reference: X. W. Fu, Z. M. Liao, Y. B. Zhou, H. C. Wu, Y. Q. Bie, J. Xu, D. P. Yu, Appl. Phys. Lett. 2012, 100, 223114. – reference: Q. L. Bao, K. P. Loh, ACS Nano 2012, 6, 3677. – reference: P. Senanayake, C. H. Hung, J. Shapiro, A. Lin, B. L. Liang, B. S. Williams, D. L. Huffaker, Nano Lett. 2011, 11, 5279. – reference: S. H. Lee, X. G. Zhang, C. M. Parish, H. N. Lee, D. B. Smith, Y. N. He, J. Xu, Adv. Mater. 2011, 23, 4381. – reference: L. J. Yang, S. Wang, Q. S. Zeng, Z. Y. Zhang, L. M. Peng, Small 2013, 9, 1225. – reference: M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, R. Hillenbrand, Nat. Photonics 2011, 5, 283. – reference: P. Senanayake, C. H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, D. L. Huffaker, Nano Lett. 2011, 11, 5279. – reference: P. W. Barber, R. K. Chang, Optical effects associated with small particles, World Scientific, Singapore 1988. – reference: K. X. Z. Wang, Z. F. Yu, V. Liu, Y. Cui, S. H. Fan, Nano Lett. 2012, 12, 1616. – reference: B. Desiatov, I. Goykhman, U. Levy, Nano Lett. 2009, 9, 3381. – reference: Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, S. T. Lee, Adv. Funct. Mater. 2007, 17, 1795. – reference: C. Downs, T. E. Vandervelde, Sensors 2013, 13, 5054. – reference: G. E. Bulman, D. R. Myers, J. J. Wiczer, L. R. Dawson, R. M. Biefeld, T. E. Zipperian, IEEE Electron. Devices Meet. 1984, 30, 719. – reference: J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, C. M. Lieber, Science 2001, 293, 1455. – reference: B. Nie, L. B. Luo, C. Xie, P. Lv, J. S. Jie, M. Feng, F. Z. Li, C. Y. Wu, L. Wang, Y. Q. Yu, S. H. Yu, Small 2013, 9, 2872. – reference: X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, A. F. Hebard, Nano Lett. 2012, 12, 2745. – reference: L. B. Luo, J. S. Jie, W. F. Zhang, Z. B. He, J. X. Wang, G. D. Yuan, W. J. Zhang, L. C. M. Wu, S. T. Lee, Appl. Phys. Lett. 2009, 94, 193101. – reference: X. Xie, S. Y. Kwok, Z. Z. Lu, Y. K. Liu, Y. L. Cao, L. B. Luo, J. A. Zapien, I. Bello, C. S. Lee, S. T. Lee, W. J. Zhang, Nanoscale 2012, 4, 2914. – reference: X. H. An, F. Z. Liu, Y. J. Jung, S. Kar, Nano Lett. 2013, 13, 909. – reference: M. Dejarld, J. C. Shin, W. Chern, D. Chanda, K. Balasundaram, J. A. Rogers, X. L. Li, Nano Lett. 2011, 11, 5259. – volume: 9 start-page: 2872 year: 2013 publication-title: Small – volume: 4 start-page: 2914 year: 2012 publication-title: Nanoscale – volume: 12 start-page: 1616 year: 2012 publication-title: Nano Lett. – year: 2005 – volume: 101 start-page: 261108 year: 2012 publication-title: Appl. Phys. Lett. – volume: 11 start-page: 5279 year: 2011 publication-title: Nano Lett. – volume: 9 start-page: 1225 year: 2013 publication-title: Small – volume: 12 start-page: 2745 year: 2012 publication-title: Nano Lett. – volume: 30 start-page: 719 year: 1984 publication-title: IEEE Electron. Devices Meet. – volume: 23 start-page: 4381 year: 2011 publication-title: Adv. Mater. – volume: 293 start-page: 1455 year: 2001 publication-title: Science – volume: 13 start-page: 5054 year: 2013 publication-title: Sensors – volume: 9 start-page: 3381 year: 2009 publication-title: Nano Lett. – volume: 89 start-page: 5676 year: 2001 publication-title: Appl. Phys. Lett. – volume: 97 start-page: 013107 year: 2010 publication-title: Appl. Phys. Lett. – volume: 9 start-page: 112 year: 2009 publication-title: Nano Lett. – volume: 17 start-page: 1795 year: 2007 publication-title: Adv. Funct. Mater. – volume: 5065 start-page: 39 year: 2003 publication-title: Proc. SPIE – volume: 100 start-page: 223114 year: 2012 publication-title: Appl. Phys. Lett. – volume: 22 start-page: 6206 year: 2012 publication-title: J. Mater. Chem. – volume: 96 start-page: 157402 year: 2006 publication-title: Phys. Rev. Lett. – volume: 11 start-page: 5259 year: 2011 publication-title: Nano Lett. – volume: 19 start-page: 6100 year: 2011 publication-title: Opt. Exp. – volume: 21 start-page: 2563 year: 2011 publication-title: J. Mater. Chem. – year: 1988 – volume: 5 start-page: 283 year: 2011 publication-title: Nat. Photonics – year: 1984 publication-title: Handbook of Optical‐Constants, J. Opt. Soc. Am. A – volume: 37 start-page: 1758 year: 2008 publication-title: J. Electron. Mater. – volume: 37 start-page: 1412 year: 2001 publication-title: IEEE J. Quantum Elect. – volume: 94 start-page: 193101 year: 2009 publication-title: Appl. Phys. Lett. – volume: 98 start-page: 183108 year: 2011 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 3677 year: 2012 publication-title: ACS Nano – volume: 13 start-page: 909 year: 2013 publication-title: Nano Lett. – volume: 5 start-page: 12 year: 2013 publication-title: Nanoscale – volume: 97 start-page: 161102 year: 2010 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 7806 year: 2012 publication-title: ACS Nano – volume: 8 start-page: 1809 year: 2008 publication-title: Nano Lett. – volume: 8 start-page: 148 year: 2008 publication-title: Nano Lett. – volume: 8 start-page: 148 year: 2008 ident: e_1_2_6_14_1 publication-title: Nano Lett. – ident: e_1_2_6_15_1 doi: 10.1021/nl802636b – ident: e_1_2_6_21_1 doi: 10.1002/adma.201101655 – ident: e_1_2_6_40_1 doi: 10.1021/nn301888e – ident: e_1_2_6_16_1 doi: 10.1021/nl202732r – ident: e_1_2_6_2_1 doi: 10.1126/science.1062340 – ident: e_1_2_6_5_1 doi: 10.1063/1.3491212 – ident: e_1_2_6_34_1 doi: 10.1063/1.4724208 – volume: 89 start-page: 5676 year: 2001 ident: e_1_2_6_7_1 publication-title: Appl. Phys. Lett. – ident: e_1_2_6_8_1 doi: 10.1007/s11664-008-0534-0 – ident: e_1_2_6_24_1 doi: 10.1021/nl202708d – ident: e_1_2_6_35_1 doi: 10.1103/PhysRevLett.96.157402 – ident: e_1_2_6_12_1 doi: 10.1021/nl0802178 – ident: e_1_2_6_13_1 doi: 10.1063/1.4773245 – ident: e_1_2_6_19_1 doi: 10.1021/nl303682j – ident: e_1_2_6_38_1 doi: 10.1021/nl901110b – volume: 30 start-page: 719 year: 1984 ident: e_1_2_6_9_1 publication-title: IEEE Electron. Devices Meet. – volume: 5 start-page: 12 year: 2013 ident: e_1_2_6_20_1 publication-title: Nanoscale – ident: e_1_2_6_10_1 doi: 10.1117/12.502164 – ident: e_1_2_6_31_1 doi: 10.1109/3.958360 – ident: e_1_2_6_3_1 doi: 10.1021/nn300989g – volume-title: Optical effects associated with small particles year: 1988 ident: e_1_2_6_36_1 – ident: e_1_2_6_37_1 doi: 10.1038/nphoton.2011.33 – ident: e_1_2_6_6_1 doi: 10.1039/c0jm02778b – ident: e_1_2_6_26_1 doi: 10.1002/smll.201203188 – year: 1984 ident: e_1_2_6_39_1 publication-title: Handbook of Optical‐Constants, J. Opt. Soc. Am. A – ident: e_1_2_6_11_1 doi: 10.1039/c2jm16632a – ident: e_1_2_6_33_1 doi: 10.1002/adfm.200600351 – ident: e_1_2_6_17_1 doi: 10.1063/1.3459961 – ident: e_1_2_6_18_1 doi: 10.1021/nl202732r – ident: e_1_2_6_22_1 doi: 10.1021/nl204550q – ident: e_1_2_6_25_1 doi: 10.1063/1.3120281 – ident: e_1_2_6_32_1 doi: 10.1039/c2nr30277b – ident: e_1_2_6_27_1 doi: 10.1021/nl204414u – ident: e_1_2_6_23_1 doi: 10.1063/1.3584871 – ident: e_1_2_6_29_1 doi: 10.1017/CBO9780511614255 – ident: e_1_2_6_28_1 doi: 10.1364/OE.19.006100 – ident: e_1_2_6_4_1 doi: 10.3390/s130405054 – ident: e_1_2_6_30_1 doi: 10.1002/smll.201203151 |
SSID | ssj0017734 |
Score | 2.525418 |
Snippet | Near infrared light photodiodes have been attracting increasing research interest due to their wide application in various fields. In this study, the... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2794 |
SubjectTerms | Arrays Devices Electric potential Gallium arsenide Gallium arsenides Graphene light trapping monolayer graphene Monolayers Nanostructure nanostructures near infrared light photodetectors |
Title | Near-Infrared Light Photovoltaic Detector Based on GaAs Nanocone Array/Monolayer Graphene Schottky Junction |
URI | https://api.istex.fr/ark:/67375/WNG-XNTGV5BV-T/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201303368 https://www.proquest.com/docview/1541405726 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELfQ9gIPjL-iAyYjIXjKWjvOnz52lHZMa4WgjL5Z8dnWUFkytanE9rSPwGfkk3CXtKFFQkjwlkjnxLF9v7uL735m7GUKUjhv4qCL-BgoAAhMQsyIobGqIoxLqTh5NI6PP6mTaTTdqOKv-SGaH26kGRVek4JnZtH-RRqaWU-V5ITBYUzVvpSwRV7Rh4Y_SiRJva0cC0rwEtM1a2NHtrebb1mlXRrgb1su56bjWlmewR7L1n2uE05mh8vSHML1b3SO__NR99jdlVvKe_U6us9uufwBu7NBVviQXYxRKX7cfH-X-zllrfNTiuv5-_OiLBDjyuwL8L4rq10AfoTG0fIi58Ost-AI4QXG3Q6fP8-u2ogjGFCjr8-HRJeNaMuJDLQsZ1f8BO0srZVHbDJ4O3lzHKwOawgAjXwaKINQkDqwICNDLPZWOYghdjbs2lgJUIk0IvQAiReJ8MqCSRNEFIMC3oeP2U6OHXnCuKQo1YcWfIS-B2RdZSMJRri0Y8KOsy0WrOdKw4rInM7T-KprCmapaRR1M4ot9rqRv6wpPP4o-aqa-kYsm88o8S2J9OfxUE_Hk-FZdHSmJy32Yr02NKoj7bFkuSuWCy3oWHX0gWXcYrKa6b-8U_f6g1Fzt_8vjZ6y23it6jTMZ2ynnC_dc3SVSnPAdnv90enHg0otfgKEDQ35 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZg9wAceCPK00gITtnWifPoscvSdpc2QigsvVnx2BarLgnqphLLiZ_Ab-SXMJM0YYuEkOCYaJyH7flmxh5_w9jzBHxhnY68IeKjJwHA0zExIwbayJowLqHDyfM0mr6XR4uwzSakszANP0S34EaaUeM1KTgtSPd_sYbmxtFRcgLhIEous10q611HVe86BikRx83GciQoxUssWt7Ggd_fbr9ll3api79sOZ0XXdfa9oxvMN1-dZNystxbV3oPvv5G6Phfv3WTXd94pnzUTKVb7JItbrNrF_gK77BPKerFj2_fDwu3osR1PqPQnr_9WFYlwlyVnwA_sFW9EcD30T4aXhZ8ko_OOKJ4iaG3xeev8vM-QgnG1Oju8wkxZiPgcuIDrarlOT9CU0vT5S7Lxq-zV1NvU6_BA7TziSc1okFiwYAfaiKyN9JCBJE1wdBEUoCMfS0CBxA7EQsnDegkRlDRKOBccI_tFPgh9xn3KVB1gQEXovsB-VCa0ActbDLQwcCaHvPawVKw4TKnkhqnqmFh9hX1oup6scdedvKfGxaPP0q-qMe-E8tXS8p9i0P1IZ2oRZpNjsP9Y5X12LN2cijUSNpmyQtbrs-UoMrq6Ab7UY_59VD_5Z1qdDCed1cP_qXRU3Zlms1nanaYvnnIruJ92WRlPmI71WptH6PnVOkntW78BNZ7EIA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELdgkxA88B9R_hoJwVPWOnGc9LGjtNvYogmV0TcrPtti6kimLpUYT3wEPiOfhLukDS0SQoLHROfEse9-dxeff2bsZQqhcN6ooI_4GEgACExCzIiRsbImjEtpc_JRpvY-yINpPF3bxd_wQ7Q_3MgyarwmAz-3vvuLNDS3nnaSEwZHKr3KtqXqpaTXw_ctgZRIkmZdWQmq8BLTFW1jL-xutt9wS9s0wl82Ys71yLV2PaNbLF91uqk4me0sKrMDX3_jc_yfr7rNbi7jUj5oFOkOu-KKu-zGGlvhPfY5Q6v48e37fuHnVLbODymx58efyqpEkKvyU-BDV9XLAHwXvaPlZcHH-eCCI4aXmHg7fP48v-wikGBGjcE-HxNfNsItJzbQqppd8gN0tKQs99lk9HbyZi9YntYQAHr5NJAGsSB1YCGMDdHYW-lAgXI26lslBcgkNCLyAIkXifDSgkkThBSDAt5HD9hWgR15yHhIaaqPLPgYgw_I-9LGIRjh0p6Jes52WLCaKw1LJnM6UONMNxzMoaZR1O0odtjrVv684fD4o-SreupbsXw-o8q3JNYfs7GeZpPxSbx7oicd9mKlGxrtkRZZ8sKViwst6Fx1DIJD1WFhPdN_eaceDEdH7dWjf2n0nF07Ho704X727jG7jrdlU5L5hG1V84V7imFTZZ7VlvETsyIPOA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-Infrared+Light+Photovoltaic+Detector+Based+on+GaAs+Nanocone+Array%2FMonolayer+Graphene+Schottky+Junction&rft.jtitle=Advanced+functional+materials&rft.au=Luo%2C+Lin-Bao&rft.au=Chen%2C+Jing-Jing&rft.au=Wang%2C+Ming-Zheng&rft.au=Hu%2C+Han&rft.date=2014-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=24&rft.issue=19&rft.spage=2794&rft.epage=2800&rft_id=info:doi/10.1002%2Fadfm.201303368&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |